1
|
Zhang H, Zha X, Zhang B, Zheng Y, Elsabagh M, Wang H, Wang M. Gut microbiota contributes to bisphenol A-induced maternal intestinal and placental apoptosis, oxidative stress, and fetal growth restriction in pregnant ewe model by regulating gut-placental axis. MICROBIOME 2024; 12:28. [PMID: 38365714 PMCID: PMC10874076 DOI: 10.1186/s40168-024-01749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is an environmental contaminant with endocrine-disrupting properties that induce fetal growth restriction (FGR). Previous studies on pregnant ewes revealed that BPA exposure causes placental apoptosis and oxidative stress (OS) and decreases placental efficiency, consequently leading to FGR. Nonetheless, the response of gut microbiota to BPA exposure and its role in aggravating BPA-mediated apoptosis, autophagy, mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and OS of the maternal placenta and intestine are unclear in an ovine model of gestation. RESULTS Two pregnant ewe groups (n = 8/group) were given either a subcutaneous (sc) injection of corn oil (CON group) or BPA (5 mg/kg/day) dissolved in corn oil (BPA group) once daily, from day 40 to day 110 of gestation. The maternal colonic digesta and the ileum and placental tissue samples were collected to measure the biomarkers of autophagy, apoptosis, mitochondrial dysfunction, ERS, and OS. To investigate the link between gut microbiota and the BPA-induced FGR in pregnant ewes, gut microbiota transplantation (GMT) was conducted in two pregnant mice groups (n = 10/group) from day 0 to day 18 of gestation after removing their intestinal microbiota by antibiotics. The results indicated that BPA aggravates apoptosis, ERS and autophagy, mitochondrial function injury of the placenta and ileum, and gut microbiota dysbiosis in pregnant ewes. GMT indicated that BPA-induced ERS, autophagy, and apoptosis in the ileum and placenta are attributed to gut microbiota dysbiosis resulting from BPA exposure. CONCLUSIONS Our findings indicate the underlying role of gut microbiota dysbiosis and gut-placental axis behind the BPA-mediated maternal intestinal and placental apoptosis, OS, and FGR. The findings further provide novel insights into modulating the balance of gut microbiota through medication or probiotics, functioning via the gut-placental axis, to alleviate gut-derived placental impairment or FGR. Video Abstract.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, P. R. China.
| |
Collapse
|
2
|
Zhang H, Zha X, Zhang B, Zheng Y, Liu X, Elsabagh M, Ma Y, Wang H, Shu G, Wang M. Dietary rumen-protected L-arginine or N-carbamylglutamate enhances placental amino acid transport and suppresses angiogenesis and steroid anabolism in underfed pregnant ewes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:149-158. [PMID: 38023379 PMCID: PMC10679858 DOI: 10.1016/j.aninu.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023]
Abstract
This study aimed to investigate the effects of dietary supplementation of underfed Hu ewes from d 35 to 110 of gestation with either rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) on placental amino acid (AA) transport, angiogenic gene expression, and steroid anabolism. On d 35 of gestation, 32 Hu ewes carrying twin fetuses were randomly divided into four treatment groups, each consisting of eight ewes, and were fed the following diets: A diet providing 100% of NRC's nutrient requirements for pregnant ewes (CON); A diet providing 50% of NRC's nutrient requirements for pregnant ewes (RES); RES diet plus 5 g/d NCG (RES + NCG); or RES diet plus 20 g/d RP-Arg (RES + ARG). On the d 110 of pregnancy, blood samples were taken from the mother, and samples were collected from type A cotyledons (COT; the fetal portions of the placenta). The levels of 17β-estradiol and progesterone in the maternal serum and both the capillary area density (CAD) and capillary surface density (CSD) in type A COT were decreased in response to Arg or NCG supplementation when compared to the RES group. The concentrations of arginine, leucine, putrescine and spermidine in type A COT were higher (P < 0.05) in the RES + ARG or RES + NCG group than in the RES group. The mRNA expression levels of inducible nitric oxide synthase (iNOS) and solute carrier family 15, member 1 (SLC15A1) were increased (P < 0.05) while those of progesterone receptor (PGR) and fibroblast growth factor 2 (FGF2) were decreased in type A COT by supplementation with either NCG or RP-Arg compared to the RES group. The results suggest that providing underfed pregnant ewes from d 35 to 110 of gestation with a diet supplemented with NCG or RP-Arg improves placental AA transport, and reduces the expression of angiogenic growth factor genes and steroid anabolism, leading to better fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guihua Shu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Zhang H, Zha X, Zheng Y, Liu X, Elsabagh M, Wang H, Jiang H, Wang M. Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model. J Anim Sci Biotechnol 2023; 14:117. [PMID: 37691111 PMCID: PMC10494380 DOI: 10.1186/s40104-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Exposure to bisphenol A (BPA), an environmental pollutant known for its endocrine-disrupting properties, during gestation has been reported to increase the risk of fetal growth restriction (FGR) in an ovine model of pregnancy. We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta, oxidative stress, inflammatory responses, autophagy and endoplasmic reticulum stress (ERS). However, precise mechanisms underlying the BPA-induced placental dysfunction, and subsequently, FGR, as well as the potential involvement of placental ERS in these complications, remain to be investigated. METHODS In vivo experiment, 16 twin-pregnant (from d 40 to 130 of gestation) Hu ewes were randomly distributed into two groups (8 ewes each). One group served as a control and received corn oil once a day, whereas the other group received BPA (5 mg/kg/d as a subcutaneous injection). In vitro study, ovine trophoblast cells (OTCs) were exposed to 4 treatments, 6 replicates each. The OTCs were treated with 400 μmol/L BPA, 400 μmol/L BPA + 0.5 μg/mL tunicamycin (Tm; ERS activator), 400 μmol/L BPA + 1 μmol/L 4-phenyl butyric acid (4-PBA; ERS antagonist) and DMEM/F12 complete medium (control), for 24 h. RESULTS In vivo experiments, pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency, progesterone (P4) level and fetal weight, and an increase in placental estrogen (E2) level, together with barrier dysfunctions, OS, inflammatory responses, autophagy and ERS in type A cotyledons. In vitro experiment, the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy, ERS, pro-apoptosis and inflammatory response, and a decrease in the P4 level and the related protein and gene expressions of antioxidant, anti-apoptosis and barrier function. Moreover, treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine (the increased E2 level and decreased P4 level), OS, inflammatory responses, autophagy, and ERS. However, treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above. CONCLUSIONS In general, the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs, and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine, OS, inflammatory responses, and autophagy. These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Honghua Jiang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
4
|
Sferruzzi‐Perri AN, Lopez‐Tello J, Salazar‐Petres E. Placental adaptations supporting fetal growth during normal and adverse gestational environments. Exp Physiol 2023; 108:371-397. [PMID: 36484327 PMCID: PMC10103877 DOI: 10.1113/ep090442] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? How the placenta, which transports nutrients and oxygen to the fetus, may alter its support of fetal growth developmentally and with adverse gestational conditions. What advances does it highlight? Placental formation and function alter with the needs of the fetus for substrates for growth during normal gestation and when there is enhanced competition for substrates in species with multiple gestations or adverse gestational environments, and this is mediated by imprinted genes, signalling pathways, mitochondria and fetal sexomes. ABSTRACT The placenta is vital for mammalian development and a key determinant of life-long health. It is the interface between the mother and fetus and is responsible for transporting the nutrients and oxygen a fetus needs to develop and grow. Alterations in placental formation and function, therefore, have consequences for fetal growth and birthweight, which in turn determine perinatal survival and risk of non-communicable diseases for the offspring in later postnatal life. However, the placenta is not a static organ. As this review summarizes, research from multiple species has demonstrated that placental formation and function alter developmentally to the needs of the fetus for substrates for growth during normal gestation, as well as when there is greater competition for substrates in polytocous species and monotocous species with multiple gestations. The placenta also adapts in response to the gestational environment, integrating information about the ability of the mother to provide nutrients and oxygen with the needs of the fetus in that prevailing environment. In particular, placental structure (e.g. vascularity, surface area, blood flow, diffusion distance) and transport capacity (e.g. nutrient transporter levels and activity) respond to suboptimal gestational environments, namely malnutrition, obesity, hypoxia and maternal ageing. Mechanisms mediating developmentally and environmentally induced homeostatic responses of the placenta that help support normal fetal growth include imprinted genes, signalling pathways, subcellular constituents and fetal sexomes. Identification of these placental strategies may inform the development of therapies for complicated human pregnancies and advance understanding of the pathways underlying poor fetal outcomes and their consequences for health and disease risk.
Collapse
Affiliation(s)
- Amanda Nancy Sferruzzi‐Perri
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jorge Lopez‐Tello
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Esteban Salazar‐Petres
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Facultad de CienciasDepartamento de Ciencias Básicas, Universidad Santo TomásValdiviaChile
| |
Collapse
|
5
|
Zhang H, Zheng Y, Liu X, Zha X, Elsabagh M, Ma Y, Jiang H, Wang H, Wang M. Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes. ENVIRONMENT INTERNATIONAL 2023; 173:107806. [PMID: 36841186 DOI: 10.1016/j.envint.2023.107806] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA)-induced oxidative stress (OS) and its potentially associated autophagy and apoptosis have not been studied previously in pregnant ewes. Accordingly, this study investigated the underlying mechanisms of BPA-induced autophagy and apoptosis in the placenta and primary trophoblasts of pregnant ewes exposed to BPA both in vivo and in vitro. In vivo experiment, pregnant Hu ewes (n = 8) were exposed to 5 mg/kg/d of BPA compared to control ewes (n = 8) receiving only corn oil from day 40 through day 110 of gestation. Exposure to BPA during gestation resulted in placental insufficiency, fetal growth restriction (FGR), autophagy, endoplasmic reticulum stress (ERS), mitochondrial dysfunction, OS, and apoptosis in type A placentomes. Regarding in vitro model, primary ovine trophoblasts were exposed to BPA, BPA plus chloroquine (CQ; an autophagy inhibitor) or BPA plus rapamycin (RAP; an autophagy activator) for 12 h. Data illustrated that exposure to BPA enhanced autophagy (ULK1, Beclin-1, LC3, Parkin, and PINK1), ERS (GRP78, CHOP10, ATF4, and ATF6) and apoptosis (Caspase 3, Bcl-2, Bax, P53) but decreased the antioxidant (CAT, Nrf2, HO-1, and NQO1)-related mRNA and protein expressions as well as impaired the mitochondrial function. Moreover, treatment with CQ exacerbated the BPA-mediated OS, mitochondrial dysfunction, apoptosis, and ERS. On the contrary, RAP treatment counteracted the BPA-induced trophoblast dysfunctions mentioned above. Overall, the findings illustrated that BPA exposure could contribute to autophagy in the ovine placenta and trophoblasts and that autophagy, in turn, could alleviate BPA-induced apoptosis, mitochondrial dysfunction, ERS, and OS. These results offer new mechanistic insights into the role of autophagy in mitigating BPA-induced placental dysfunctions and FGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Nĭgde Ömer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Honghua Jiang
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China.
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
6
|
The Update of Fetal Growth Restriction Associated with Biomarkers. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Reed SA, Ashley R, Silver G, Splaine C, Jones AK, Pillai SM, Peterson ML, Zinn SA, Govoni KE. Maternal nutrient restriction and over-feeding during gestation alter expression of key factors involved in placental development and vascularization. J Anim Sci 2022; 100:6596678. [PMID: 35648126 DOI: 10.1093/jas/skac155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Poor maternal nutrition can negatively affect fetal and placental growth and development. However, the mechanism(s) that contribute to altered placenta growth and function are not well understood. We hypothesized that poor maternal diet would impact signaling through the C-X-C motif chemokine ligand (CXCL) 12-CXCL4 axis and/or placental expression of the insulin-like growth factor (IGF) axis. Using our established sheep model of poor maternal nutrition, we examined the effects of restricted- and over-feeding on ewe placentome gene and protein expression. Specifically, ewes were fed a control (CON; 100%), restricted (RES; 60%), or over (OVER; 140%) diet beginning at day 30.2 ± 0.02 of gestation, and samples were collected at days 45, 90, and 135 of gestation, representing periods of active placentation, peak placental growth, and near term, respectively. Placentomes were separated into cotyledon and caruncle, and samples snap frozen. Protein was determined by western blot and mRNA expression by real-time PCR. Data were analyzed by ANOVA and significance determined at P ≤ 0.05. Ewes fed a RES diet had decreased CXCL12 and vascular endothelial growth factor (VEGF), and increased tumor necrosis factor (TNF)α protein compared with CON ewes in caruncle at day 45 (P ≤0.05). In day 45 cotyledon, CXCR7 protein was increased and mTOR was decreased in RES relative to CON (P ≤0.05). At day 90, CXCR4 and CXCR7 were reduced in RES caruncle compared with CON, whereas VEGF was reduced and mTOR increased in cotyledon of RES ewes relative to CON (P ≤0.05). In OVER caruncle, at day 45 CXCR4 and VEGF were reduced and at day 90 CXCR4, CXCR7, and TNFα were reduced in caruncle compared with CON (P ≤0.05). There was no observed effect of OVER diet on protein abundance in the cotyledon (P > 0.05). Expression of IGF-II mRNA was increased in OVER at day 45 and IGFBP-3 was reduced in RES at day 90 in caruncle relative to CON (P ≤0.05). Maternal diet did not alter placentome diameter or weight (P > 0.05). These findings suggest that restricted- and over-feeding negatively impact protein and mRNA expression of key chemokines and growth factors implicated in proper placenta development and function.
Collapse
Affiliation(s)
- Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ryan Ashley
- Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Gail Silver
- Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Caitlyn Splaine
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Amanda K Jones
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Sambhu M Pillai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Maria L Peterson
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Steven A Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Kristen E Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
8
|
Bhunu B, Riccio I, Intapad S. Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension. Integr Blood Press Control 2021; 14:141-152. [PMID: 34675650 PMCID: PMC8517636 DOI: 10.2147/ibpc.s312868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In recent decades, both clinical and animal studies have shown that fetal growth restriction (FGR), caused by exposure to adverse uterine environments, is a risk factor for hypertension as well as for a variety of adult diseases. This observation has shaped and informed the now widely accepted theory of developmental origins of health and disease (DOHaD). There is a plethora of evidence supporting the association of FGR with increased risk of adult hypertension; however, the underlying mechanisms responsible for this correlation remain unclear. This review aims to explain the current advances in the field of fetal programming of hypertension and a brief narration of the underlying mechanisms that may link FGR to increased risk of adult hypertension. We explain the theory of DOHaD and then provide evidence from both clinical and basic science research which support the theory of fetal programming of adult hypertension. In addition, we have explored the underlying mechanisms that may link FGR to an increased risk of adult hypertension. These mechanisms include epigenetic changes, metabolic disorders, vascular dysfunction, neurohormonal impairment, and alterations in renal physiology and function. We further describe sex differences seen in the developmental origins of hypertension and provide insights into the opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel Riccio
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
9
|
Griffiths RM, Pru CA, Behura SK, Cronrath AR, McCallum ML, Kelp NC, Winuthayanon W, Spencer TE, Pru JK. AMPK is required for uterine receptivity and normal responses to steroid hormones. Reproduction 2021; 159:707-717. [PMID: 32191914 DOI: 10.1530/rep-19-0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that 5'-AMP-activated protein kinase (AMPK) is essential for normal reproductive functions in female mice. Conditional ablation of Prkaa1 and Prkaa2, genes that encode the α1 and α2 catalytic domains of AMPK, resulted in early reproductive senescence, faulty artificial decidualization, uterine inflammation and fibrotic postparturient endometrial regeneration. We also noted a delay in the timing of embryo implantation in Prkaa1/2d/d female mice, suggesting a role for AMPK in establishing uterine receptivity. As outlined in new studies here, conditional uterine ablation of Prkaa1/2 led to an increase in ESR1 in the uteri of Prkaa1/2d/d mice, resulting in prolonged epithelial cell proliferation and retention of E2-induced gene expression (e.g. Msx1, Muc1, Ltf) through the implantation window. Within the stromal compartment, stromal cell proliferation was reduced by five-fold in Prkaa1/2d/d mice, and this was accompanied by a significant decrease in cell cycle regulatory genes and aberrant expression of decidualization marker genes such as Hand2, Bmp2, Fst and Inhbb. This phenotype is consistent with our prior study, demonstrating a failure of the Prkaa1/2d/d uterus to undergo decidualization. Despite these uterine defects, ovarian function seemed to be normal following ablation of Prkaa1/2 from peri-ovulatory follicles in which ovulation, luteinization and serum progesterone levels were not different on day 5 of pregnancy or pseudopregnancy between Prkaa1/2fl/fl and Prkaa1/2d/d mice. These cumulative findings demonstrate that AMPK activity plays a prominent role in mediating several steroid hormone-dependent events such as epithelial cell proliferation, uterine receptivity and decidualization as pregnancy is established.
Collapse
Affiliation(s)
- Richard M Griffiths
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Susanta K Behura
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Andrea R Cronrath
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Melissa L McCallum
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - James K Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
10
|
Kuo K, Roberts VHJ, Gaffney J, Takahashi DL, Morgan T, Lo JO, Stouffer RL, Frias AE. Maternal High-Fat Diet Consumption and Chronic Hyperandrogenemia Are Associated With Placental Dysfunction in Female Rhesus Macaques. Endocrinology 2019; 160:1937-1949. [PMID: 31180495 PMCID: PMC6656425 DOI: 10.1210/en.2019-00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/04/2019] [Indexed: 01/25/2023]
Abstract
The risk of adverse perinatal outcomes with maternal polycystic ovary syndrome may differ among hyperandrogenic and nonhyperandrogenic phenotypes and is likely modulated by maternal obesity and diet. The relative contribution of maternal hyperandrogenism and nutritional status to placental dysfunction is unknown. Female rhesus macaques (N = 39) were assigned at puberty to one of four treatment groups: subcutaneous cholesterol implants and a standard chow diet (controls); testosterone (T) implants and a normal diet; cholesterol implants and a high-fat, Western-style diet (WSD); and testosterone implants in combination with a high-fat diet. After 3.5 years of treatment, contrast-enhanced and Doppler ultrasound analyses of placental blood flow were performed for a representative subset of animals from each treatment group during pregnancy, and placental architecture assessed with stereological analysis. Placental growth factors, cellular nutrient sensors, and angiogenic markers were measured with ELISA and Western blotting. WSD consumption was associated with a 30% increase in placental flux rate relative to that in animals receiving a normal diet. T and WSD treatments were each independently associated with increased villous volume, and T also was associated with an ∼ 40% decrease fetal capillary volume on stereological analysis. T treatment was associated with significantly increased mTOR and SOCS3 expression. WSD consumption was associated with decreased GLUT1 expression and microvillous membrane localization. Hyperandrogenemic and nonhyperandrogenemic phenotypes are associated with altered placental angiogenesis, nutrient sensing, and glucose transport. WSD and T appear to have distinct effects on vascular impedance and capillary angiogenesis.
Collapse
Affiliation(s)
- Kelly Kuo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
- Correspondence: Kelly Kuo, MD, Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, SJH 2356, Portland, Oregon 97239. E-mail:
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Jessica Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Diana L Takahashi
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Terry Morgan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Jamie O Lo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Antonio E Frias
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
11
|
Embryonic programming of heart disease in response to obesity during pregnancy. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165402. [PMID: 30759362 DOI: 10.1016/j.bbadis.2019.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Obesity during pregnancy programs adult-onset heart disease in the offspring. Clinical studies indicate that exposure to an adverse environment in utero during early, as compared to late, gestation leads to a higher prevalence of adult-onset heart disease. This suggests that the early developing heart is particularly sensitive to an adverse environment. Accordingly, growing evidence from clinical studies and animal models demonstrates that obesity during pregnancy alters the function of the fetal heart, programming a higher risk of cardiovascular disease later in life. Moreover, gene expression patterns and signaling pathways that promote initiation and progression of cardiovascular disease are altered in the hearts in offspring born to obese mothers. However, the mechanisms mediating the long-term effects of an adverse environment in utero on the developing heart leading to adult-onset disease are not clear. Here, we review clinical and experimental evidence documenting the effects of maternal obesity during pregnancy on the fetal and post-natal heart and emphasize on the potential mechanisms of disease programming.
Collapse
|
12
|
McCoski SR, Vailes MT, Owens CE, Cockrum RR, Ealy AD. Exposure to maternal obesity alters gene expression in the preimplantation ovine conceptus. BMC Genomics 2018; 19:737. [PMID: 30305020 PMCID: PMC6180665 DOI: 10.1186/s12864-018-5120-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Embryonic and fetal exposure to maternal obesity causes several maladaptive morphological and epigenetic changes in exposed offspring. The timing of these events is unclear, but changes can be observed even after a short exposure to maternal obesity around the time of conception. The hypothesis of this work is that maternal obesity influences the ovine preimplantation conceptus early in pregnancy, and this exposure will affect gene expression in embryonic and extraembryonic tissues. Results Obese and lean ewe groups were established by overfeeding or normal feeding, respectively. Ewes were then bred to genetically similar rams. Conceptuses were collected at day 14 of gestation. Morphological assessments were made, conceptuses were sexed by genomic PCR analysis, and samples underwent RNA-sequencing analysis. While no obvious morphological differences existed between conceptuses, differentially expressed genes (≥ 2-fold; ≥ 0.2 RPKM; ≤ 0.05 FDR) were detected based on maternal obesity exposure (n = 21). Also, differential effects of maternal obesity were noted on each conceptus sex (n = 347). A large portion of differentially expressed genes were associated with embryogenesis and placental development. Conclusions Findings reveal that the preimplantation ovine conceptus genome responds to maternal obesity in a sex-dependent manner. The sexual dimorphism in response to the maternal environment coupled with changes in placental gene expression may explain aberrations in phenotype observed in offspring derived from obese females. Electronic supplementary material The online version of this article (10.1186/s12864-018-5120-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah R McCoski
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA
| | - McCauley T Vailes
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA
| | - Connor E Owens
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Rebecca R Cockrum
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA.
| |
Collapse
|
13
|
Fensterseifer SR, Austin KJ, Ford SP, Alexander BM. Effects of maternal obesity on maternal and fetal plasma concentrations of adiponectin and expression of adiponectin and its receptor genes in cotyledonary and adipose tissues at mid- and late-gestation in sheep. Anim Reprod Sci 2018; 197:231-239. [PMID: 30172606 DOI: 10.1016/j.anireprosci.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022]
Abstract
Adiponectin potentially influences fetal weight by altering insulin signaling and trans-placental amino acid and glucose transporters. The objective of this study was to determine how maternal obesity influences maternal and fetal plasma concentrations of adiponectin, expression of fetal adiponectin, its receptors, and adipogenic genes at mid- and late-gestation. Blood samples and tissues were collected from obese and control multiparous pregnant ewes at day 75 or 135 of gestation. Although day of gestation or maternal obesity did not influence (P > 0.6) maternal plasma concentrations of adiponectin, fetal weight was increased (P < 0.001) and adiponectin tended to decrease (P = 0.10) at mid-gestation in fetuses from obese ewes. Differences were not apparent at late-gestation (P > 0.70). Relative abundance of adiponectin (P = 0.01), AdipoR2 (P = 0.04) and PPARγ (P = 0.01) mRNA was less at mid-gestation in fetal adipose tissue from obese mothers. By late gestation, maternal obesity tended to associated with a decrease in relative abundance of adiponectin (P = 0.09) and SREBF1 (P = 0.10) mRNA in fetal adipose tissue. Maternal obesity did not influence (P ≥ 0.20) the relative abundance of adiponectin, AdipoR1 and AdipoR2 mRNA in cotyledonary tissue at mid or late- gestation. In conclusion, maternal obesity in sheep influences relative abundance of fetal adipose tissue mRNA for adiponectin and adipogenic, as well as plasma concentrations of total adiponectin. Although adiposity in pregnant ewes did not influence maternal adiponectin, maternal obesity potentially influenced fetal adipogenesis by altering the abundance of adiponectin, PPARγ and SREBF1 mRNA in fetal adipose tissue.
Collapse
Affiliation(s)
- S R Fensterseifer
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States
| | - K J Austin
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States
| | - S P Ford
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States; Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States
| | - B M Alexander
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States.
| |
Collapse
|
14
|
Roca Fraga FJ, Lagisz M, Nakagawa S, Lopez-Villalobos N, Blair HT, Kenyon PR. Meta-analysis of lamb birth weight as influenced by pregnancy nutrition of multiparous ewes. J Anim Sci 2018; 96:1962-1977. [PMID: 29506123 PMCID: PMC6140851 DOI: 10.1093/jas/sky072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/26/2018] [Indexed: 12/14/2022] Open
Abstract
Across the literature, there is large variation in lamb birth weight responses to changes in the ewe pregnancy nutrition. Much of this heterogeneity has been attributed to several factors inherent to each experiment; however, the relative contribution of these experimental factors has not yet been quantified. This meta-analysis aimed to systematically review the variation in lamb birth weight responses across nutritional studies involving adult multiparous ewes. Effect-sizes for individual studies were estimated using the unbiased estimator Hedges' g, whereby positive and negative values indicate heavier and lighter treatment lambs vs. controls, respectively. Heterogeneity varied between early-, mid- and late-pregnancy undernutrition studies (I2total [early pregnancy] = 19.90%, I2total [midpregnancy] = 52.10%, I2total [late pregnancy] = 68.70%). The small average effects for early- (0.04, highest posterior density [HPD] interval = -0.22, 0.28) and mid-pregnancy undernutrition (-0.15, HPD interval = -0.35, 0.05) suggest that if farmers anticipate a potential feed shortage, ewes can be allowed to lose weight providing nutrition is resumed to adequate levels later in pregnancy. On the contrary, late-pregnancy undernutrition was associated with a significant decrease in lamb birth weight (-0.72, HPD interval = -0.86, -0.55). Thus, management practices should focus on ensuring adequate nutrition in late pregnancy. Increasing lamb birth weight could be possible by feeding ewes above their pregnancy maintenance requirement (0.23, HPD interval = 0.002, 0.48), though the number of studies is limited and further research is needed.
Collapse
Affiliation(s)
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Hugh T Blair
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Paul R Kenyon
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
15
|
Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol 2017; 595:5057-5093. [PMID: 28337745 DOI: 10.1113/jp273330] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype, which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ionel Sandovici
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Miguel Constancia
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
16
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
17
|
Chavatte-Palmer P, Tarrade A, Kiefer H, Duranthon V, Jammes H. Breeding animals for quality products: not only genetics. Reprod Fertil Dev 2017; 28:94-111. [PMID: 27062878 DOI: 10.1071/rd15353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.
Collapse
Affiliation(s)
| | - Anne Tarrade
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Kiefer
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Véronique Duranthon
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Jammes
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| |
Collapse
|
18
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
19
|
Gabory A, Chavatte-Palmer P, Vambergue A, Tarrade A. [Impact of maternal obesity and diabetes on placental function]. Med Sci (Paris) 2016; 32:66-73. [PMID: 26850609 DOI: 10.1051/medsci/20163201011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Located at the feto-maternal interface, the placenta is involved in exchange, endocrine and immune functions, which impact fetal development. In contact with the maternal environment, this organ is sensitive to metabolic disorders as over-nutrition, obesity or diabetes. The alteration of blood parameters associated with these pathologies affects placental histology, vascularization and nutrient transfers and, according to the types of troubles, induces local inflammation or hypoxia. These placental changes lead to disturbance of development and fetal growth, which increase the risk of pathologies in offspring in adulthood. The placenta thus appears as a crucial player in the fetal programming.
Collapse
Affiliation(s)
- Anne Gabory
- Inra, UMR 1198 biologie du développement et reproduction, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Pascale Chavatte-Palmer
- Inra, UMR 1198 biologie du développement et reproduction, Domaine de Vilvert, F-78350 Jouy-en-Josas, France - Fondation PremUp, 4, avenue de l'Observatoire, F-75006 Paris, France
| | - Anne Vambergue
- Hôpital Claude Huriez, CHRU Lille, université Lille2, EA 4489 environnement périnatal et croissance, Faculté de médecine, place de Verdun, F-59000 Lille, France
| | - Anne Tarrade
- Inra, UMR 1198 biologie du développement et reproduction, Domaine de Vilvert, F-78350 Jouy-en-Josas, France - Fondation PremUp, 4, avenue de l'Observatoire, F-75006 Paris, France
| |
Collapse
|
20
|
Higgins JS, Vaughan OR, Fernandez de Liger E, Fowden AL, Sferruzzi-Perri AN. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy. J Physiol 2015; 594:1341-56. [PMID: 26377136 PMCID: PMC4771776 DOI: 10.1113/jp271057] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
Key points Hypoxia is a major cause of fetal growth restriction, particularly at high altitude, although little is known about its effects on placental phenotype and resource allocation to fetal growth. In the present study, maternal hypoxia induced morphological and functional changes in the mouse placenta, which depended on the timing and severity of hypoxia, as well as the degree of maternal hypophagia. Hypoxia at 13% inspired oxygen induced beneficial changes in placental morphology, nutrient transport and metabolic signalling pathways associated with little or no change in fetal growth, irrespective of gestational age. Hypoxia at 10% inspired oxygen adversely affected placental phenotype and resulted in severe fetal growth restriction, which was due partly to maternal hypophagia. There is a threshold between 13% and 10% inspired oxygen, corresponding to altitudes of ∼3700 m and 5800 m, respectively, at which the mouse placenta no longer adapts to support fetal resource allocation. This has implications for high altitude human pregnancies.
Abstract The placenta adapts its transport capacity to nutritional cues developmentally, although relatively little is known about placental transport phenotype in response to hypoxia, a major cause of fetal growth restriction. The present study determined the effects of both moderate hypoxia (13% inspired O2) between days (D)11 and D16 or D14 and D19 of pregnancy and severe hypoxia (10% inspired O2) from D14 to D19 on placental morphology, transport capacity and fetal growth on D16 and D19 (term∼D20.5), relative to normoxic mice in 21% O2. Placental morphology adapted beneficially to 13% O2; fetal capillary volume increased at both ages, exchange area increased at D16 and exchange barrier thickness reduced at D19. Exposure to 13% O2 had no effect on placental nutrient transport on D16 but increased placental uptake and clearance of 3H‐methyl‐d‐glucose at D19. By contrast, 10% O2 impaired fetal vascularity, increased barrier thickness and reduced placental 14C‐methylaminoisobutyric acid clearance at D19. Consequently, fetal growth was only marginally affected in 13% O2 (unchanged at D16 and −5% at D19) but was severely restricted in 10% O2 (−21% at D19). The hypoxia‐induced changes in placental phenotype were accompanied by altered placental insulin‐like growth factor (IGF)‐2 expression and insulin/IGF signalling, as well as by maternal hypophagia depending on the timing and severity of the hypoxia. Overall, the present study shows that the mouse placenta can integrate signals of oxygen and nutrient availability, possibly through the insulin‐IGF pathway, to adapt its phenotype and optimize maternal resource allocation to fetal growth during late pregnancy. It also suggests that there is a threshold between 13% and 10% inspired O2 at which these adaptations no longer occur. Hypoxia is a major cause of fetal growth restriction, particularly at high altitude, although little is known about its effects on placental phenotype and resource allocation to fetal growth. In the present study, maternal hypoxia induced morphological and functional changes in the mouse placenta, which depended on the timing and severity of hypoxia, as well as the degree of maternal hypophagia. Hypoxia at 13% inspired oxygen induced beneficial changes in placental morphology, nutrient transport and metabolic signalling pathways associated with little or no change in fetal growth, irrespective of gestational age. Hypoxia at 10% inspired oxygen adversely affected placental phenotype and resulted in severe fetal growth restriction, which was due partly to maternal hypophagia. There is a threshold between 13% and 10% inspired oxygen, corresponding to altitudes of ∼3700 m and 5800 m, respectively, at which the mouse placenta no longer adapts to support fetal resource allocation. This has implications for high altitude human pregnancies.
Collapse
Affiliation(s)
- J S Higgins
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - O R Vaughan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - E Fernandez de Liger
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol 2015; 218:50-8. [DOI: 10.1242/jeb.110320] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent and rapid worldwide increase in non-communicable diseases challenges the assumption that genetic factors are the primary contributors to such diseases. A new concept of the ‘developmental origins of health and disease’ (DOHaD) is at stake and therefore requires a paradigm shift. Maternal obesity and malnutrition predispose offspring to develop metabolic syndrome, a vicious cycle leading to transmission to subsequent generation(s), with differences in response and susceptibility according to the sex of the individual. The placenta is a programming agent of adult health and disease. Adaptations of placental phenotype in response to maternal diet and metabolic status alter fetal nutrient supply. This implies important epigenetic changes that are, however, still poorly documented in DOHaD studies, particularly concerning overnutrition. The aim of this review is to discuss the emerging knowledge on the relationships between the effect of maternal nutrition or metabolic status on placental function and the risk of diseases later in life, with a specific focus on epigenetic mechanisms and sexual dimorphism. Explaining the sex-specific causal variables and how males versus females respond and adapt to environmental perturbations should help physicians and patients to anticipate disease susceptibility.
Collapse
Affiliation(s)
- Anne Tarrade
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Polina Panchenko
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Claudine Junien
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
- UVSQ, Université Versailles-Saint-Quentin-en-Yvelines, France
| | - Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
22
|
Brett KE, Ferraro ZM, Yockell-Lelievre J, Gruslin A, Adamo KB. Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta. Int J Mol Sci 2014; 15:16153-85. [PMID: 25222554 PMCID: PMC4200776 DOI: 10.3390/ijms150916153] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/25/2022] Open
Abstract
Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth.
Collapse
Affiliation(s)
- Kendra Elizabeth Brett
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON K1H 8L1, Canada.
| | - Zachary Michael Ferraro
- Division of Maternal-Fetal Medicine, Obstetrics and Gynecology, the Ottawa Hospital, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada.
| | - Julien Yockell-Lelievre
- Ottawa Hospital Research Institute, Cancer Centre, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada.
| | - Andrée Gruslin
- Division of Maternal-Fetal Medicine, Obstetrics and Gynecology, the Ottawa Hospital, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada.
| | - Kristi Bree Adamo
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
23
|
Díaz P, Powell TL, Jansson T. The role of placental nutrient sensing in maternal-fetal resource allocation. Biol Reprod 2014; 91:82. [PMID: 25122064 DOI: 10.1095/biolreprod.114.121798] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The placenta mediates maternal-fetal exchange and has historically been regarded as a passive conduit for nutrients. However, emerging evidence suggests that the placenta actively responds to nutritional and metabolic signals from the mother and the fetus. We propose that the placenta integrates a multitude of maternal and fetal nutritional cues with information from intrinsic nutrient-sensing signaling pathways to match fetal demand with maternal supply by regulating maternal physiology, placental growth, and nutrient transport. This process, which we have called placental nutrient sensing, ensures optimal allocation of resources between the mother and the fetus to maximize the chances for propagation of parental genes without jeopardizing maternal health. We suggest that these mechanisms have evolved because of the evolutionary pressures of maternal undernutrition, which result in decreased placental growth and down-regulation of nutrient transporters, thereby limiting fetal growth to ensure maternal survival. These regulatory loops may also function in response to maternal overnutrition, leading to increased placental growth and nutrient transport in cases of maternal obesity or gestational diabetes. Thus, placental nutrient sensing modulates maternal-fetal resource allocation to increase the likelihood of reproductive success. This model implies that the placenta plays a critical role in mediating fetal programming and determining lifelong health.
Collapse
Affiliation(s)
- Paula Díaz
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Theresa L Powell
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Thomas Jansson
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
24
|
Ueda H, Nakai T, Konishi T, Tanaka K, Sakazaki F, Min KS. Effects of Zinc Deficiency and Supplementation on Leptin and Leptin Receptor Expression in Pregnant Mice. Biol Pharm Bull 2014; 37:581-7. [DOI: 10.1248/bpb.b13-00813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hidenori Ueda
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University
| | - Taketo Nakai
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University
| | - Tatsuya Konishi
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University
| | - Keiichi Tanaka
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University
| | | | - Kyong-Son Min
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University
| |
Collapse
|
25
|
Braun T, Challis JR, Newnham JP, Sloboda DM. Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev 2013; 34:885-916. [PMID: 23970762 DOI: 10.1210/er.2013-1012] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An adverse early-life environment is associated with long-term disease consequences. Adversity early in life is hypothesized to elicit developmental adaptations that serve to improve fetal and postnatal survival and prepare the organism for a particular range of postnatal environments. These processes, although adaptive in their nature, may later prove to be maladaptive or disadvantageous if the prenatal and postnatal environments are widely discrepant. The exposure of the fetus to elevated levels of either endogenous or synthetic glucocorticoids is one model of early-life adversity that contributes substantially to the propensity of developing disease. Moreover, early-life glucocorticoid exposure has direct clinical relevance because synthetic glucocorticoids are routinely used in the management of women at risk of early preterm birth. In this regard, reports of adverse events in human newborns have raised concerns about the safety of glucocorticoid treatment; synthetic glucocorticoids have detrimental effects on fetal growth and development, childhood cognition, and long-term behavioral outcomes. Experimental evidence supports a link between prenatal exposure to synthetic glucocorticoids and alterations in fetal development and changes in placental function, and many of these alterations appear to be permanent. Because the placenta is the conduit between the maternal and fetal environments, it is likely that placental function plays a key role in mediating effects of fetal glucocorticoid exposure on hypothalamic-pituitary-adrenal axis development and long-term disease risk. Here we review recent insights into how the placenta responds to changes in the intrauterine glucocorticoid environment and discuss possible mechanisms by which the placenta mediates fetal hypothalamic-pituitary-adrenal development, metabolism, cardiovascular function, and reproduction.
Collapse
Affiliation(s)
- Thorsten Braun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, 1280 Main Street West, HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1.
| | | | | | | |
Collapse
|
26
|
Zhu MJ, Du M, Ford SP. CELL BIOLOGY SYMPOSIUM: Impacts of maternal obesity on placental and gut inflammation and health. J Anim Sci 2013; 92:1840-9. [PMID: 24243902 DOI: 10.2527/jas.2013-7106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Obesity in pregnant women is a growing public health concern that negatively affects fetal development and has long-term impacts on offspring health. The placenta plays an essential role in nutrient transport to the fetus and supports fetal growth and development. Maternal obesity (MO) induces an exacerbated proinflammatory milieu in the placenta providing an inflammatory environment for fetuses. The gut is one of the largest immune organs and mainly develops during the fetal stage. Maternal obesity and the corresponding inflammatory uteroplacental environment affect gut development, incurring inflammatory responses in the fetal intestine that further prime or program the offspring gut to enhance inflammation and impair intestinal barrier integrity. This review summarizes the impact of MO on inflammatory responses in placenta and fetal intestine and the long-term effects on offspring intestinal health. Because "leaky gut" is one of the main etiological factors for a number of common diseases, including inflammatory bowel diseases, type I diabetes, and related autoimmune diseases, the adverse effect of MO on the overall health of progeny is further discussed.
Collapse
Affiliation(s)
- M J Zhu
- School of Food Science, Washington State University, Pullman 99164
| | | | | |
Collapse
|
27
|
DelCurto H, Wu G, Satterfield MC. Nutrition and reproduction: links to epigenetics and metabolic syndrome in offspring. Curr Opin Clin Nutr Metab Care 2013; 16:385-91. [PMID: 23703295 DOI: 10.1097/mco.0b013e328361f96d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Inappropriate exposure of gametes and/or products of conception to nutritional imbalance alters critical metabolic set points in the offspring and increases propensity to disease. This review will focus on recent findings highlighting clear links to epigenetic modifications in response to dietary manipulations as well as nutritional strategies with the potential to mitigate the effects of an otherwise poor nutritional environment. RECENT FINDINGS Maternal nutritional imbalance, either through global nutritional manipulation or deficiencies in select nutrients, predisposes the offspring to metabolic disease. Disease susceptibility is linked to global and/or specific modifications of the epigenome at key metabolic regulatory genes. Paternal nutritional imbalance also increases the likelihood of metabolic disease in offspring through similar epigenetic mechanisms. Finally, dietary intervention with select nutrients has been shown to ameliorate postnatal disease phenotypes in offspring, although the exact molecular mechanisms have not been elucidated. SUMMARY Select nutrients, such as amino acids and vitamins, not only serve as building blocks for growth but also mediate a myriad of physiological functions, including providing substrates for DNA synthesis. These nutrients hold great promise as intervention strategies to combat a suboptimal developmental environment.
Collapse
Affiliation(s)
- Hannah DelCurto
- Department of Animal Science, Texas A&M University, College Station, TX 77843–2471, USA
| | | | | |
Collapse
|
28
|
Sferruzzi-Perri AN, Vaughan OR, Haro M, Cooper WN, Musial B, Charalambous M, Pestana D, Ayyar S, Ferguson-Smith AC, Burton GJ, Constancia M, Fowden AL. An obesogenic diet during mouse pregnancy modifies maternal nutrient partitioning and the fetal growth trajectory. FASEB J 2013; 27:3928-37. [PMID: 23825226 DOI: 10.1096/fj.13-234823] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In developed societies, high-sugar and high-fat (HSHF) diets are now the norm and are increasing the rates of maternal obesity during pregnancy. In pregnant rodents, these diets lead to cardiovascular and metabolic dysfunction in their adult offspring, but the intrauterine mechanisms involved remain unknown. This study shows that, relative to standard chow, HSHF feeding throughout mouse pregnancy increases maternal adiposity (+30%, P<0.05) and reduces fetoplacental growth at d 16 (-10%, P<0.001). At d 19, however, HSHF diet group pup weight had normalized, despite the HSHF diet group placenta remaining small and morphologically compromised. This altered fetal growth trajectory was associated with enhanced placental glucose and amino acid transfer (+35%, P<0.001) and expression of their transporters (+40%, P<0.024). HSHF feeding also up-regulated placental expression of fatty acid transporter protein, metabolic signaling pathways (phosphoinositol 3-kinase and mitogen-activated protein kinase), and several growth regulatory imprinted genes (Igf2, Dlk1, Snrpn, Grb10, and H19) independently of changes in DNA methylation. Obesogenic diets during pregnancy, therefore, alter maternal nutrient partitioning, partly through changes in the placental phenotype, which helps to meet fetal nutrient demands for growth near term. However, by altering provision of specific nutrients, dietary-induced placental adaptations have important roles in programming development with health implications for the offspring in later life.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- 1Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK CB2 3EG.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rappolee DA, Zhou S, Puscheck EE, Xie Y. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells. Reproduction 2013; 145:R139-55. [PMID: 23463790 DOI: 10.1530/rep-12-0240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.
Collapse
Affiliation(s)
- D A Rappolee
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine.
| | | | | | | |
Collapse
|
30
|
Jansson T, Aye ILMH, Goberdhan DCI. The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta 2012; 33 Suppl 2:e23-9. [PMID: 22687819 PMCID: PMC3463762 DOI: 10.1016/j.placenta.2012.05.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/11/2012] [Accepted: 05/23/2012] [Indexed: 11/20/2022]
Abstract
Nutrient-sensing signaling pathways regulate cell metabolism and growth in response to altered nutrient levels and growth factor signaling. Because trophoblast cell metabolism and associated signaling influence fetal nutrient availability, trophoblast nutrient sensors may have a unique role in regulating fetal growth. We review data in support of a role for mammalian target of rapamycin complex 1 (mTORC1) in placental nutrient-sensing. Placental insulin/IGF-I signaling and fetal levels of oxygen, glucose and amino acids (AAs) are altered in pregnancy complications such as intrauterine growth restriction, and all these factors are well-established upstream regulators of mTORC1. Furthermore, mTORC1 is a positive regulator of placental AA transporters, suggesting that trophoblast mTORC1 modulates AA transfer across the placenta. In addition, placental mTORC1 signaling is also known to be modulated in pregnancy complications associated with altered fetal growth and in animal models in which maternal nutrient availability has been altered experimentally. Recently, significant progress has been made in identifying the molecular mechanisms by which mTORC1 senses AAs, a process requiring shuttling of mTOR to late endosomal and lysosomal compartments (LELs). We recently identified members of the proton-assisted amino acid transporter (PAT/SLC36) family as critical components of the AA-sensing system or 'nutrisome' that regulates mTORC1 on LEL membranes, placing AA transporters and their subcellular regulation both upstream and downstream of mTORC1-driven processes. We propose a model in which placental mTORC1 signaling constitutes a critical link between maternal nutrient availability and fetal growth, thereby influencing the long-term health of the fetus.
Collapse
Affiliation(s)
- T Jansson
- Center for Pregnancy and Newborn Research, Department of OB/GYN, University of Texas Health Science Center, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
31
|
Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17:282-301. [PMID: 22044276 PMCID: PMC3353821 DOI: 10.1089/ars.2011.4381] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. RECENT ADVANCES DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. CRITICAL ISSUES Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. FUTURE DIRECTIONS Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition.
Collapse
Affiliation(s)
- Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Scott V. Dindot
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - M. Carey Satterfield
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
32
|
Long NM, Nathanielsz PW, Ford SP. The impact of maternal overnutrition and obesity on hypothalamic-pituitary-adrenal axis response of offspring to stress. Domest Anim Endocrinol 2012; 42:195-202. [PMID: 22264661 PMCID: PMC4206411 DOI: 10.1016/j.domaniend.2011.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022]
Abstract
We evaluated the effect of maternal obesity before and throughout gestation on offspring hypothalamic-pituitary-adrenal axis function. Multiparous Rambouillet by Columbia crossbred ewes were fed either 100% of National Research Council (NRC) recommendations (control, C) or 150% of NRC recommendations (obese, OB) from 60 d before mating until lambing. Ten lambs born to OB ewes (five males and five females), and eight lambs born to C ewes (three male and five female) were studied. From delivery to weaning lambs were maintained with their mothers, who were all fed 100% NRC recommendations. After weaning, all lambs were group housed and fed the same diet to meet NRC requirements. At 19 mo of age lambs were placed in individual pens and fed a pelletized diet to meet maintenance requirements. Jugular vein catheters were placed and 2 d later lambs received an intravenous (i.v.) adrenocorticotropic hormone (ACTH) challenge followed by an i.v. corticotropin-releasing hormone (CRH)/arginine vasopressin (AVP) challenge 1 d later. Thirty d later offspring were again catheterized and placed into metabolism crates for 2 d before receiving an isolation stress test. ACTH and cortisol responses to the isolation stress test and CRH/AVP challenge and cortisol responses to ACTH challenge were determined. Cortisol was quantified via radioimmunoassay and ACTH was quantified using an Immulite 1000; both were analyzed using repeated measures using the MIXED procedure of SAS. Offspring from OB ewes had elevated basal plasma ACTH and cortisol compared with C offspring before all three challenges (P < 0.05). Offspring from OB mothers tended (P = 0.06) to have a greater ACTH response after an i.v. CRH/AVP injection than offspring from C mothers (12,340 ± 1,430 vs 8,170 ± 1,570 area under the curve, respectively). Cortisol response to the CRH/AVP and ACTH challenges was not influenced by maternal nutrition (P = 0.46) and averaged 4.77 ± 0.2 μg/dL and 1.94 ± 0.01 μg/dL, respectively. The ACTH response following the isolation stress test was also similar (P = 0.82) for OB and C offspring (147 ± 20 pg/mL), and cortisol response during the isolation stress test was similar between C and OB offspring (P = 0.64, 5.25 ± 0.3 μg/dL). These findings suggest that maternal obesity before and during gestation does not affect stress responses by the offspring, but has an impact on hypothalamic-pituitary-adrenal sensitivity. The lack of differences in cortisol release under the influence of difference concentrations of ACTH during the CRH/AVP challenge could indicate adrenal dysfunction in OB offspring.
Collapse
Affiliation(s)
- N M Long
- Center for the Study of Fetal Programming, Laramie, WY, USA
| | | | | |
Collapse
|
33
|
Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 2012; 43:1593-603. [DOI: 10.1007/s00726-012-1235-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/28/2012] [Indexed: 12/16/2022]
|
34
|
Long NM, Rule DC, Zhu MJ, Nathanielsz PW, Ford SP. Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots. J Anim Sci 2012; 90:2201-10. [PMID: 22266999 DOI: 10.2527/jas.2011-4343] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal nutrient restriction leads to alteration in fetal adipose tissue, and offspring from obese mothers have an increased risk of developing obesity. We hypothesized that maternal obesity increases fetal adipogenesis. Multiparous ewes (Columbia/Rambouillet cross 3 to 5 yr of age) carrying twins were assigned to a diet of 100% (Control; CON; n = 4) or 150% (Obese; OB, n = 7) of NRC maintenance requirements from 60 d before conception until necropsy on d 135 of gestation. Maternal and fetal plasma were collected and stored at -80°C for glucose and hormone analyses. Fetal measurements were made at necropsy, and perirenal, pericardial, and subcutaneous adipose tissues were collected from 7 male twin fetuses per group and snap frozen at -80°C. Protein and mRNA expression of fatty acid translocase [cluster of differentiation (CD) 36], fatty acid transport proteins (FATP) 1 and 4, insulin-sensitive glucose transporter (GLUT-4), fatty acid synthase (FASN), and acetyl-coA carboxylase (ACC) was evaluated. Fetal weight was similar, but fetal carcass weight (FCW) was reduced (P < 0.05) in OB versus CON fetuses. Pericardial and perirenal adipose tissue weights were increased (P < 0.05) as a percentage of FCW in OB versus CON fetuses, as was subcutaneous fat thickness (P < 0.001). Average adipocyte diameter was greater (P < 0.01) in the perirenal fat and the pericardial fat (P = 0.06) in OB fetuses compared with CON fetuses. Maternal plasma showed no difference (P > 0.05) in glucose or other hormones, fetal plasma glucose was similar (P = 0.42), and cortisol, IGF-1, and thyroxine were reduced (P ≤ 0.05) in OB fetuses compared with CON fetuses. Protein and mRNA expression of CD 36, FATP 1 and 4, and GLUT-4 were increased (P ≤ 0.05) in all fetal adipose depots in OB versus CON fetuses. The mRNA expression of FASN and ACC was increased (P < 0.05) in OB vs. CON fetuses in all 3 fetal adipose tissue depots. Fatty acid concentrations were increased (P = 0.01) in the perirenal depot of OB versus CON fetuses, and specific fatty acid concentrations were altered (P < 0.05) in subcutaneous and pericardial adipose tissue because of maternal obesity. In conclusion, maternal obesity was associated with increased fetal adiposity, increased fatty acid and glucose transporters, and increased expression of enzymes mediating fatty acid biosynthesis in adipose depots. These alterations, if maintained into the postnatal period, could predispose the offspring to later obesity and metabolic disease.
Collapse
Affiliation(s)
- N M Long
- The Center for the Study of Fetal Programming, Laramie, WY 82071, USA
| | | | | | | | | |
Collapse
|
35
|
McNeill BA, Barrell GK, Ridgway MJ, Wellby MP, Prickett TCR, Espiner EA. Caloric restriction, but not caloric loading, affects circulating fetal and maternal C-type natriuretic peptide concentrations in late ovine gestation. Reprod Fertil Dev 2012; 24:1063-70. [DOI: 10.1071/rd11312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/25/2012] [Indexed: 11/23/2022] Open
Abstract
The factors regulating the greatly elevated concentrations of maternal plasma C-type natriuretic peptide (CNP) forms in ruminant pregnancy are largely unknown, but nutrient status is likely to be important. Previous work has shown that increases in maternal plasma CNP, sourced from the placenta, occur in response to caloric restriction in late gestation. Whether oversupply of nutrients also regulates CNP secretion in pregnancy has not been studied. Hypothesising that CNP in fetal and maternal tissues will be responsive to both deficiency and excess, we studied changes in CNP and a cosecreted fragment, namely N-terminal pro-CNP (NTproCNP), during short-term periods of caloric restriction (CR) and loading (CL). Twin-bearing ewes received CR (fasted Days 121–124), CL (Days 110–124) or control maintenance diets. During CR, fetal plasma CNP forms, insulin-like growth factor (IGF)-1 and liveweight all fell, and maternal plasma NTproCNP increased. During CL, fetal IGF-1 increased, whereas CNP forms and liveweight were unchanged, as were maternal concentrations of CNP forms. The high abundance of CNP peptides in placental tissues was unaffected by these short-term changes in nutrient supply. We conclude that CNP in the fetal–maternal unit is acutely responsive to undernutrition, but is unaffected by oversupply in late gestation.
Collapse
|
36
|
Sferruzzi-Perri AN, Vaughan OR, Coan PM, Suciu MC, Darbyshire R, Constancia M, Burton GJ, Fowden AL. Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology 2011; 152:3202-12. [PMID: 21673101 DOI: 10.1210/en.2011-0240] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pattern of fetal growth is a major determinant of the subsequent health of the infant. We recently showed in undernourished (UN) mice that fetal growth is maintained until late pregnancy, despite reduced placental weight, through adaptive up-regulation of placental nutrient transfer. Here, we determine the role of the placental-specific transcript of IGF-II (Igf2P0), a major regulator of placental transport capacity in mice, in adapting placental phenotype to UN. We compared the morphological and functional responses of the wild-type (WT) and Igf2P0-deficient placenta in WT mice fed ad libitium or 80% of the ad libitium intake. We observed that deletion of Igf2P0 prevented up-regulation of amino acid transfer normally seen in UN WT placenta. This was associated with a reduction in the proportion of the placenta dedicated to nutrient transport, the labyrinthine zone, and its constituent volume of trophoblast in Igf2P0-deficient placentas exposed to UN on d 16 of pregnancy. Additionally, Igf2P0-deficient placentas failed to up-regulate their expression of the amino acid transporter gene, Slc38a2, and down-regulate phosphoinositide 3-kinase-protein kinase B signaling in response to nutrient restriction on d 19. Furthermore, deleting Igf2P0 altered maternal concentrations of hormones (insulin and corticosterone) and metabolites (glucose) in both nutritional states. Therefore, Igf2P0 plays important roles in adapting placental nutrient transfer capacity during UN, via actions directly on the placenta and/or indirectly through the mother.
Collapse
Affiliation(s)
- A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ma Y, Zhu MJ, Uthlaut AB, Nijland MJ, Nathanielsz PW, Hess BW, Ford SP. Upregulation of growth signaling and nutrient transporters in cotyledons of early to mid-gestational nutrient restricted ewes. Placenta 2011; 32:255-63. [PMID: 21292322 DOI: 10.1016/j.placenta.2011.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 01/20/2023]
Abstract
Multiparous ewes received 100% (control, C, n = 13) or 50% (nutrient restricted, NR, n = 14) of NRC dietary requirements from d28-d78 of gestation. On d78, 5 C and 6 NR ewes were necropsied. The remaining 8 C and 8 NR ewes were fed to 100% of NRC from d78-d135 and necropsied. Maternal blood was collected at both necropsies and at weekly intervals for assay of glucose, insulin and leptin. Fetal blood was collected at d78 and d135 necropsies for assay of glucose and lipids. Cotyledonary (COT) tissue was evaluated for protein and mRNA expression [fatty acid transporter (FATP)1, FATP4, CD36, glucose transporter (GLUT)1 and GLUT3], mRNA expression only [placenta fatty acid binding protein (FABPpm) and lipoprotein lipase (LPL)], or expression of phosphorylated and total protein forms [AMP kinase (AMPK)α, acetyl-CoA carboxylase (ACC), extracellular signal-regulated kinase (Erk)1/2, mammalian target of rapamycin (mTOR) and protein kinase B (Akt)]. On d78, but not d135, placental and fetal weights were reduced (P < 0.05) in NR vs. C ewes. Maternal circulating glucose, insulin and leptin levels were decreased in NR vs. C ewes on d78 (P < 0.05) but similar at d135. Fetal blood glucose and triglyceride levels were lower in NR vs. C ewes (P < 0.05) on d78, but similar on d135. On d78, GLUT1, FATP4, CD36 mRNA and protein expression levels, FABPpm mRNA level, and leptin protein level were all increased (P < 0.05) in COT of NR vs. C ewes. AMPK, ACC, and Erk1/2 activities were also increased (P < 0.05) in NR vs. C COT on d78. In contrast, only FATP4 was increased (P < 0.05) at both the mRNA and protein levels in COT of NR realimented vs. C ewes on d135. These data demonstrate placental adaptation to maternal NR through increasing nutrient transporter production and growth signaling activity.
Collapse
Affiliation(s)
- Y Ma
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhang L, Long NM, Hein SM, Ma Y, Nathanielsz PW, Ford SP. Maternal obesity in ewes results in reduced fetal pancreatic β-cell numbers in late gestation and decreased circulating insulin concentration at term. Domest Anim Endocrinol 2011; 40:30-9. [PMID: 20933362 PMCID: PMC3008620 DOI: 10.1016/j.domaniend.2010.08.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/14/2010] [Accepted: 08/18/2010] [Indexed: 01/09/2023]
Abstract
About 30% of U.S. women of reproductive age are obese, a condition linked to offspring obesity and diabetes. This study utilized an ovine model of maternal obesity in which ewes are overfed to induce obesity at conception and throughout gestation. At mid-gestation, fetuses from these obese ewes are macrosomic, hyperglycemic, and hyperinsulinemic, and they exhibited markedly increased pancreatic weight and β-cell numbers compared with fetuses of ewes fed to requirements. This study was conducted to establish fetal pancreatic phenotype and function in late gestation and at term in this ovine model. Multiparous ewes were fed a control (C, 100% National Research Council [NRC] recommendations) or obesogenic (OB, 150% NRC) diet from 60 days before conception to necropsy at day 135 of gestation or to lambing. No differences were observed in fetal size or weight on day 135 or in lamb birth weights between C and OB ewes. In contrast to our previously published results at mid-gestation, pancreatic weights (P < 0.01) and β-cell numbers (P < 0.05) of OB fetuses were markedly lower than those from C fetuses, whereas the β-cell apoptotic rate was increased (P < 0.05) in day 135 OB versus C fetuses. At birth, blood insulin concentration was lower (P < 0.05) and glucose level was higher (P < 0.05) in newborn lambs from OB versus C ewes. These data demonstrate differential impacts of maternal obesity on fetal pancreatic growth and β-cell numbers during early and late gestation. During the first half of gestation there was a marked increase in pancreatic growth, β-cell proliferation, and insulin secretion, followed by a reduction in pancreatic growth and β-cell numbers in late gestation, resulting in reduced circulating insulin at term. It is speculated that the failure of the pancreas to return to a normal cellular composition and function postnatally could result in glucose/insulin dysregulation, leading to obesity, glucose intolerance, and diabetes in postnatal life.
Collapse
Affiliation(s)
- Liren Zhang
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY
- Department of Animal Science, University of Wyoming; Laramie, WY
| | - Nathan M. Long
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY
- Department of Animal Science, University of Wyoming; Laramie, WY
| | - Sarah M. Hein
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY
- Department of Animal Science, University of Wyoming; Laramie, WY
| | - Yan Ma
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY
- Department of Animal Science, University of Wyoming; Laramie, WY
| | - Peter W. Nathanielsz
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY
- Center for Pregnancy and Newborn Research, University of Texas, Health Sciences Center, San Antonio, TX
| | - Stephen P. Ford
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY
- Department of Animal Science, University of Wyoming; Laramie, WY
- Corresponding author: Stephen P. Ford, PhD, Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Department 3684, 1000 East University Ave, Laramie, WY 82071, Tel: (307) 766-2709; FAX: (307) 766-2355,
| |
Collapse
|
39
|
Long NM, George LA, Uthlaut AB, Smith DT, Nijland MJ, Nathanielsz PW, Ford SP. Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring1. J Anim Sci 2010; 88:3546-53. [DOI: 10.2527/jas.2010-3083] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
40
|
Zhu MJ, Ma Y, Long NM, Du M, Ford SP. Maternal obesity markedly increases placental fatty acid transporter expression and fetal blood triglycerides at midgestation in the ewe. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1224-31. [PMID: 20844260 DOI: 10.1152/ajpregu.00309.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity of women at conception is increasing, a condition associated with offspring obesity. We hypothesized that maternal obesity increases placental fatty acid transporter (FATP) expression, enhancing delivery of fatty acids to their fetuses. Sheep are a commonly utilized biomedical model for pregnancy studies. Nonpregnant ewes were randomly assigned to a control group [100% of National Research Council (NRC) recommendations] or obese group (OB, 150% of NRC) from 60 days before conception to 75 or 135 days of gestation (dG; term = 150 dG), when placental cotyledonary tissue was collected for analysis. Fetuses of OB ewes were markedly heavier (P < 0.05) on 75 dG than fetuses from control ewes, but this difference disappeared by 135 dG. Maternal obesity markedly increased (P < 0.05) cholesterol and triglyceride concentrations of both maternal and fetal blood. There is no difference in lipoprotein lipase mRNA expression between control and OB group at either gestational age. On 75 dG, the mRNA expression of FATP1 (P < 0.05), FATP4 (P = 0.08), and fatty acid translocase CD (cluster of differentiation) 36 (P < 0.05) proteins were more enhanced in cotyledonary tissue from OB than control ewes; consistently, protein expression of FATP1 and FATP4 was increased (P < 0.05). Similarly, on 135 dG, the mRNA levels of FATP1, FATP4, and CD36 were all higher (P < 0.05), but only FATP4 protein content was enhanced (P < 0.05) in OB cotyledonary tissue. Peroxisome proliferator-activated receptor (PPAR)-γ regulates the expression of FATPs. Both the mRNA expression and protein content of PPARγ were increased in OB cotyledonary in the midgestation. In conclusion, maternal obesity enhances the mRNA expression and protein content of FATPs in cotyledonary in the midgestation, which is associated with higher PPARγ content in cotyledonary.
Collapse
Affiliation(s)
- Mei J Zhu
- Dept. of Animal Science, Univ. of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | |
Collapse
|
41
|
Ma Y, Zhu MJ, Zhang L, Hein SM, Nathanielsz PW, Ford SP. Maternal obesity and overnutrition alter fetal growth rate and cotyledonary vascularity and angiogenic factor expression in the ewe. Am J Physiol Regul Integr Comp Physiol 2010; 299:R249-58. [PMID: 20427725 DOI: 10.1152/ajpregu.00498.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In pregnant sheep, maternal:fetal exchange occurs across placentomes composed of placental cotyledonary and uterine caruncular tissues. Recently, we reported that fetal weights of obese (OB) ewes [fed a diet of 150% of National Research Council (NRC) recommendations] were approximately 30% greater than those of control (C) ewes (fed a diet 100% of NRC recommendations) at midgestation (MG), but fetal weights were similar in late gestation (LG). Transplacental nutrient exchange is dependent on placental blood flow, which itself is dependent on placental vascularity. The current study investigated whether the observed initial faster and subsequent slower fetal growth rate of OB compared with C was associated with changes in cotyledonary vascularity and expression of angiogenic factors (vascular endothelial growth factor, fibroblast growth factor-2, placental growth factor, angiopoietin-1 and -2). Cotyledonary arteriole diameters were markedly greater (P < 0.05) in OB than C ewes at MG, but while arteriole diameter of C ewes increased (P < 0.05) from MG to LG, they remained unchanged in OB ewes. Cotyledonary arterial angiogenic factors mRNA and protein expression were lower (P < 0.05) in OB than C ewes at MG and remained low from MG to LG. In contrast, mRNA levels of angiogenic factors in C ewes declined from high levels at MG to reach those of OB ewes by LG. The increase in cotyledonary arteriole diameter in early to MG may function to accelerate fetal growth rate in OB ewes, while the decreased cotyledonary arterial angiogenic factors from MG-LG may function to protect the fetus from excessive placental vascular development, increased maternal nutrient delivery, and excessive weight gain.
Collapse
Affiliation(s)
- Yan Ma
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | | | | | |
Collapse
|
42
|
Fan X, Turdi S, Ford SP, Hua Y, Nijland MJ, Zhu M, Nathanielsz PW, Ren J. Influence of gestational overfeeding on cardiac morphometry and hypertrophic protein markers in fetal sheep. J Nutr Biochem 2010; 22:30-7. [PMID: 20188535 DOI: 10.1016/j.jnutbio.2009.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/29/2009] [Accepted: 11/09/2009] [Indexed: 02/06/2023]
Abstract
Intrauterine overnutrition is associated with development of cardiovascular disease in adulthood although the underlying mechanism has not been precisely elucidated. This study evaluated the effects of maternal overnutrition on fetal cardiac morphometry and hypertrophy-related mRNA/protein expression. Multiparous ewes were fed either 150% of National Research Council (NRC) nutrient requirements (overfed group) or 100% of NRC requirements (control group) from 60 days before mating to Day 75 (D75) of gestation, when ewes were euthanized. Cardiac morphometry, histology and expression of Akt, forkhead-3a (Foxo3a), glycogen synthase kinase-3β (GSK3β), mammalian target of rapamycin (mTOR), NFATc3 and GATA4, atrial natriuretic factor (ANF), calcineurin A and caspase-8 were examined. Crown rump length, left and right ventricular free wall weights and left ventricular wall thickness were increased in D75 overnourished fetuses. Hematoxylin and eosin staining revealed irregular myofiber orientation and increased interstitial space in heart tissues from overfed group. Masson's trichrome staining displayed myofiber hypertrophy and fascicular disarray in heart tissues from overfed group. Overfeeding significantly enhanced Foxo3a phosphorylation in both ventricles, while protein expression of Akt, Foxo3a, GSK3β and caspase-8 as well as phosphorylated Akt and GSK3β in either ventricle was unaffected. Overfeeding increased left ventricular mTOR, NFATc3 (both total and phosphorylated) and calcineurin A. GATA4, pGATA4 and ANF expression were unchanged in both ventricles. Collectively, our data suggested that overfeeding during early to mid gestation (D75) leads to morphometric changes without overt pathology which may be related to elevated expression of mTOR, NFATc3, calcineurin A and phosphorylation of Foxo3a, mTOR and NFATc3.
Collapse
Affiliation(s)
- Xiujuan Fan
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhu MJ, Du M, Nathanielsz PW, Ford SP. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta 2010; 31:387-91. [PMID: 20185176 DOI: 10.1016/j.placenta.2010.02.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/28/2010] [Accepted: 02/03/2010] [Indexed: 01/13/2023]
Abstract
Obesity in pregnant women is a growing public health concern. The placenta is a source of cytokines which can induce maternal gestational insulin resistance and alter nutrient transport to the fetus. Obesity induces placental inflammation at term, but the impact of obesity on placental inflammation earlier in pregnancy has not been defined. Using sheep as an experimental model, we hypothesized that maternal obesity (MO) would induce inflammation in the cotyledonary (COT) tissue of the placentome by mid-gestation. Nonpregnant ewes were randomly assigned to a control (C, 100% of NRC recommendations) or obese (OB, 150% of NRC) group from 60 days before conception to 75 day of gestation (dG), when ewes were necropsied and placental COT tissue collected for analyses. Free fatty acids content, triglyceride and cholesterol content were higher (P < 0.05) in the fetal plasma of OB compared to C ewes on day 75. MO increased mRNA levels of toll-like receptor (TLR) 2 (P < 0.05) and TLR4 (P = 0.06), macrophage markers cluster of differentiation (CD)11b (P = 0.06), CD14 and CD68 (P < 0.05), and proinflammatory cytokines tumor necrosis factor (TNF)alpha (P < 0.01), interleukin (IL)-6 (P < 0.05), IL-8(P < 0.01) and IL-18 (P = 0.06), in COT tissue. Inflammatory c-Jun N-terminal kinase (JNK)/c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) signaling pathways were up-regulated (P < 0.05) in COT of OB ewes. In conclusion, MO enhanced the placental inflammatory response in OB ewes at mid-gestation, possibly as a result of increased TLR4 and free fatty acids.
Collapse
Affiliation(s)
- M J Zhu
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | |
Collapse
|
44
|
Zhao JX, Yan X, Tong JF, Means WJ, McCormick RJ, Zhu MJ, Du M. Mouse AMP-activated protein kinase gamma3 subunit R225Q mutation affecting mouse growth performance when fed a high-energy diet. J Anim Sci 2009; 88:1332-40. [PMID: 20023137 DOI: 10.2527/jas.2009-2376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Rendement Napole (RN) genotype widely exists in Hampshire pigs. Recently, RN gene was identified as a R200Q mutation in AMP-activated protein kinase (AMPK) gamma3 subunit. The effect of RN genotype on the growth performance of animals and the underlying mechanisms remain controversial. Using transgenic mice carrying an analogous R225Q mutation, the objective of this study was to study the role of RN gene in the growth performance of animals at different energy levels. Wild-type (WT) mice and those with the RN mutation were assigned to 4 groups: 1) WT plus normal diet, 2) RN plus normal diet, 3) WT plus high-energy diet, and 4) RN plus high-energy diet. Mice were weaned at 21 d old and fed the trial diets for 1 mo and then killed for carcass measurements. The pH of postmortem muscle from RN mice was less (P < 0.01) than that from WT mice. No difference in growth performance was observed when mice were fed a normal diet. When fed a high-energy diet, RN mice showed a greater fat accumulation (WT vs. RN, 1.11 vs. 1.63 g for gonadal fat and 1.40 vs. 1.84 g for subcutaneous fat; P < 0.05). Muscle weight was also increased (WT vs. RN, 0.27 vs. 0.30 g for gastrocnemius muscle; P < 0.05). The food consumption was greater in RN compared with WT mice (2.95 vs. 2.49 g; P < 0.05). The AMPK content and its downstream target, acetyl-CoA carboxylase (ACC), content were greater in RN mice (P < 0.05). The phosphorylation of ACC at Ser 79, a site exclusively phosphorylated by AMPK, was increased (P < 0.05), showing greater AMPK activity in RN mouse muscle. No difference in muscle fiber composition and mitochondrial content was observed between WT and RN mice. High fat diet downregulates protein kinase B but upregulates extracellular signal-regulated kinase signaling. In conclusion, the R225Q mutation has no major effect on the growth performance of animals fed a normal diet; a high-energy diet increased fatness in RN mice, likely due to their greater consumption of feed compared with WT mice.
Collapse
Affiliation(s)
- J X Zhao
- Department of Animal Science, University of Wyoming, Laramie, USA
| | | | | | | | | | | | | |
Collapse
|