1
|
He P, He H, Su C, Liu Y, Wang J, Wu Y, Wang B, Wang S, Zhao J. Amomum villosum Lour. alleviates pre-eclampsia by inducing enrichment of Bifidobacterium bifidum through vanillic acid to inhibit placental ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119217. [PMID: 39672393 DOI: 10.1016/j.jep.2024.119217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amomum villosum Lour. (AVL), a traditional Chinese medicine, is widely used to pregnancy-related vomiting and prevent miscarriage. Pre-eclampsia (PE) is a severe pregnancy syndrome. Recent studies have demonstrated interactions between PE and the digestive system. However, it is uncertain that AVL against PE was associated with the gut. AIM OF THE STUDY The current research examined the curative impact of AVL on PE and underly mechanisms based on the gut-placenta axis. MATERIALS AND METHODS A water decoction of AVL (WOA) was extracted in boiling water, and then the decoction was converted into dried particles by freeze drying. An NG-nitro-L-arginine methyl ester (L-NAME)-induced PE mouse model was established and the preventative activity of WOA was evaluated. Furthermore, the gut microbial composition and structure were analyzed using 16S rRNA gene sequencing. Fecal microbiota transplantation (FMT) experiment was applied to confirm the efficacy of gut microbiota remodeled by WOA. RESULTS WOA presented protective efficacy against PE. Notably, WOA induced a significant decrease in maternal hypertension and urine protein levels and promoted fetal intrauterine growth in a dose-dependent manner, thereby improving adverse pregnancy outcomes. Moreover, WOA modulated the angiogenic imbalance by decreasing the ratio between sFlt-1 (soluble fms-like tyrosine kinase 1) and PlGF (placental growth factor) to repair placental injury and inhibited placental ferroptosis by increasing the protein levels of FPN1, FTH1, xCT, and GPX4. Tight junction proteins (ZO-1, Occludin, Claudin1) in the placenta and colon were significantly upregulated by WOA, leading to enhanced placental and gut barriers. WOA rescued intestinal dysbiosis by enriching Bifidobacterium and Akkermansia. Fecal microbiota transplantation (FMT) experiments revealed that the protection of WOA on placenta and gut were dependent on the gut microbial composition. Furthermore, supplementation with both Bifidobacterium bifidum (B. bifidum) and vanillic acid (VA, the major component of WOA) ameliorated PE symptoms. Intriguingly, results from both in vivo and in vitro analyses indicated that the B. bifidum population was enriched by VA. CONCLUSIONS This research is the first to demonstrate that WOA prevents PE by enriching Bifidobacterium bifidum, strengthening the gut-placenta barrier, and inhibiting placental ferroptosis. Our findings provide compelling evidence for the vital involvement of the gut-placental axis in the protection of AVL on PE, presenting a novel target for the clinic.
Collapse
Affiliation(s)
- Peishi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Haoqing He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chang Su
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Yarui Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jiahan Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yun Wu
- Shenzhen Tsumura Medicine Co. LTD, Shenzhen, Guangdong, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Shuhong Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; TCM-Integrated Hospital of Southern Medical University, Guangzhou, 510315, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
2
|
Horvath V, Svobodova A, Cabral JV, Fiala R, Burkert J, Stadler P, Lindner J, Bednar J, Zemlickova M, Jirsova K. Inter-placental variability is not a major factor affecting the healing efficiency of amniotic membrane when used for treating chronic non-healing wounds. Cell Tissue Bank 2023; 24:779-788. [PMID: 37227562 PMCID: PMC10616215 DOI: 10.1007/s10561-023-10096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
This study aimed to evaluate the efficacy of cryopreserved amniotic membrane (AM) grafts in chronic wound healing, including the mean percentage of wound closure per one AM application, and to determine whether the healing efficiency differs between AM grafts obtained from different placentas. A retrospective study analyzing inter-placental differences in healing capacity and mean wound closure after the application of 96 AM grafts prepared from nine placentas. Only the placentas from which the AM grafts were applied to patients suffering from long-lasting non-healing wounds successfully healed by AM treatment were included. The data from the rapidly progressing wound-closure phase (p-phase) were analyzed. The mean efficiency for each placenta, expressed as an average of wound area reduction (%) seven days after the AM application (baseline, 100%), was calculated from at least 10 applications. No statistical difference between the nine placentas' efficiency was found in the progressive phase of wound healing. The 7-day average wound reduction in particular placentas varied from 5.70 to 20.99% (median from 1.07 to 17.75) of the baseline. The mean percentage of wound surface reduction of all analyzed defects one week after the application of cryopreserved AM graft was 12.17 ± 20.12% (average ± SD). No significant difference in healing capacity was observed between the nine placentas. The data suggest that if there are intra- and inter-placental differences in AM sheets' healing efficacy, they are overridden by the actual health status of the subject or even the status of its individual wounds.
Collapse
Affiliation(s)
- Vojtech Horvath
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - Alzbeta Svobodova
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Joao Victor Cabral
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Radovan Fiala
- Department of Cardiovascular Surgery, Motol University Hospital, Prague, Czech Republic
| | - Jan Burkert
- Department of Cardiovascular Surgery, Motol University Hospital, Prague, Czech Republic
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic
| | - Petr Stadler
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jaroslav Lindner
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Bednar
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Martina Zemlickova
- Clinic of Dermatovenerology, General Teaching Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 01, Prague, Czech Republic.
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
3
|
Forrest AD, Poliektov NE, Easley KA, Michopoulos V, Ravi M, Cheedarla N, Neish AS, Cheedarla S, Roback JD, Dunlop AL, Badell ML, Dude CM. Characterization of the inflammatory response to COVID-19 illness in pregnancy. Cytokine 2023; 170:156319. [PMID: 37544133 DOI: 10.1016/j.cyto.2023.156319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Pregnant patients face greater morbidity and mortality from COVID-19 related illness than their non-pregnant peers. Previous research in non-pregnant patients established that poor clinical outcomes in SARS-CoV-2 positive patients admitted to the ICU were correlated with a significant increase in the proinflammatory markers interleukin (IL)-1β, IL-6, IL-8, and IL-10. Importantly, high levels of these inflammatory markers have also been associated with adverse pregnancy outcomes, including spontaneous preterm birth, preeclampsia, and severe respiratory disease. STUDY DESIGN This was a retrospective cohort study that compared the serum inflammatory cytokine profiles of pregnant patients with acute/post-acute SARS-CoV-2 infection to those with previous exposure. All subjects in both cohorts tested positive for SARS-CoV-2 antibodies; however, those in the acute/post-acute infection cohort had a documented positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) result within 30 days of serum sample collection. Serum samples were obtained during prenatal venipuncture from 13 to 39 weeks' gestation and the cohorts were matched by gestational age. The inflammatory cytokines interferon (IFN)-γ, IL-10, IL-1β, IL-4, IL-6, IL-8, and tumor necrosis factor (TNF)-α were assayed from maternal serum using a standard ELISA assay and median cytokine concentrations were compared using the Mann-Whitney test. RESULTS AND DISCUSSION We enrolled 50 non-Hispanic Black patients with confirmed COVID-19 infection who received prenatal care at Grady Memorial Hospital in Atlanta, Georgia. Those with acute/post-acute infection (n = 22) had significantly higher concentrations of SARS-CoV-2 antibody, IL-10, IL-1β, and IL-8, while patients with previous exposure (n = 28) had significantly higher concentrations of IL-4. There were no significant inter-group differences in medical comorbidities. Pregnant patients with acute/post-acute SARS-CoV-2 infection had significantly higher serum concentrations of pro-inflammatory cytokines as compared to those with previous exposure, suggesting that, like in the non-pregnant population, SARS-CoV-2 infection alters the levels of circulating proinflammatory markers during pregnancy. The increased levels of cytokines may contribute to the adverse obstetric outcomes observed with COVID-19 illness.
Collapse
Affiliation(s)
- Alexandra D Forrest
- Johns Hopkins University, Department of Gynecology and Obstetrics, Baltimore, MD, United States.
| | - Natalie E Poliektov
- Johns Hopkins University, Department of Gynecology and Obstetrics, Baltimore, MD, United States
| | - Kirk A Easley
- Emory University Rollins School of Public Health, Department of Biostatistics and Bioinformatics, Atlanta, GA, United States
| | - Vasiliki Michopoulos
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States
| | - Meghna Ravi
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States
| | - Narayanaiah Cheedarla
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA, United States
| | - Andrew S Neish
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA, United States
| | - Suneetha Cheedarla
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA, United States
| | - John D Roback
- Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA, United States
| | - Anne L Dunlop
- Johns Hopkins University, Department of Gynecology and Obstetrics, Baltimore, MD, United States
| | - Martina L Badell
- Johns Hopkins University, Department of Gynecology and Obstetrics, Baltimore, MD, United States
| | - Carolynn M Dude
- Johns Hopkins University, Department of Gynecology and Obstetrics, Baltimore, MD, United States
| |
Collapse
|
4
|
Borboa-Olivares H, Rodríguez-Sibaja MJ, Espejel-Nuñez A, Flores-Pliego A, Mendoza-Ortega J, Camacho-Arroyo I, Gonzalez-Camarena R, Echeverria-Arjonilla JC, Estrada-Gutierrez G. A Novel Predictive Machine Learning Model Integrating Cytokines in Cervical-Vaginal Mucus Increases the Prediction Rate for Preterm Birth. Int J Mol Sci 2023; 24:13851. [PMID: 37762154 PMCID: PMC10530929 DOI: 10.3390/ijms241813851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Preterm birth (PB) is a leading cause of perinatal morbidity and mortality. PB prediction is performed by measuring cervical length, with a detection rate of around 70%. Although it is known that a cytokine-mediated inflammatory process is involved in the pathophysiology of PB, none screening method implemented in clinical practice includes cytokine levels as a predictor variable. Here, we quantified cytokines in cervical-vaginal mucus of pregnant women (18-23.6 weeks of gestation) with high or low risk for PB determined by cervical length, also collecting relevant obstetric information. IL-2, IL-6, IFN-γ, IL-4, and IL-10 were significantly higher in the high-risk group, while IL-1ra was lower. Two different models for PB prediction were created using the Random Forest machine-learning algorithm: a full model with 12 clinical variables and cytokine values and the adjusted model, including the most relevant variables-maternal age, IL-2, and cervical length- (detection rate 66 vs. 87%, false positive rate 12 vs. 3.33%, false negative rate 28 vs. 6.66%, and area under the curve 0.722 vs. 0.875, respectively). The adjusted model that incorporate cytokines showed a detection rate eight points higher than the gold standard calculator, which may allow us to identify the risk PB risk more accurately and implement strategies for preventive interventions.
Collapse
Affiliation(s)
- Hector Borboa-Olivares
- Community Interventions Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
- PhD Program in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 09310, Mexico
| | - Maria Jose Rodríguez-Sibaja
- Department of Maternal-Fetal Medicine, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (A.E.-N.); (A.F.-P.)
| | - Arturo Flores-Pliego
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (A.E.-N.); (A.F.-P.)
| | - Jonatan Mendoza-Ortega
- Department of Bioinformatics and Statistical Analysis, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de Mexico, Mexico City 11000, Mexico;
| | - Ramón Gonzalez-Camarena
- Department of Health Sciences, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| | | | - Guadalupe Estrada-Gutierrez
- Research Division, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| |
Collapse
|
5
|
Gajić M, Schröder-Heurich B, Horvat Mercnik M, Cervar-Zivkovic M, Wadsack C, von Versen-Höynck F, Mayer-Pickel K. The Impact of Hydroxychloroquine on Primary Feto-Placental Endothelial Cells from Healthy and Early-Onset Preeclamptic Placentas. Int J Mol Sci 2023; 24:10934. [PMID: 37446111 PMCID: PMC10341411 DOI: 10.3390/ijms241310934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hydroxychloroquine (HCQ), an anti-malarial drug, is suggested as a promising candidate for the treatment of pregnancy-related disorders associated with endothelial activation, among which there is preeclampsia (PE). Arterial feto-placental endothelial cells (fpECAs) were isolated from control (CTR) and early-onset preeclamptic (EO-PE) placentas. The aim of this study was to test potential protective effects of HCQ in an in vitro model of endothelial activation as well as in cells isolated from EO-PE placentas. To mimic PE conditions, CTR fpECAs were exposed to a pro-inflammatory environment consisting of tumor necrosis factor α (TNF-α), interleukin (IL)-6 and IL-1β (furtherly referred as MIX) with or without varying concentrations of HCQ (1 µg/mL and 10 µg/mL). Their effect on wound healing and endothelial barrier integrity was analyzed. Variations in the expression of IL-8 and leukocyte adhesion molecules (LAM) on both mRNA and protein levels were determined between CTR and PE fpECAs in the presence or absence of HCQ. MIX decreased wound healing and stability of the endothelial barrier, but HCQ did not affect it. Significant differences between CTR and EO-PE fpECAs were observed in IL-8 mRNA, protein secretion, and vascular cell adhesion protein 1 (VCAM-1) mRNA expression levels. After challenging CTR fpECAs with MIX, upregulation of both mRNA and protein levels was observed in all molecules. Combined treatment of HCQ and MIX slightly lowered VCAM-1 total protein amount. In CTR fpECAs, treatment with low concentrations of HCQ alone (1 µg/mL) reduced basal levels of IL-8 and VCAM-1 mRNA and secretion of IL-8, while in EO-PE fpECAs, a higher (10µg/mL) HCQ concentration slightly reduced the gene expression of IL-8. Conclusion: These results provide additional support for the safety of HCQ, as it did not adversely affect endothelial functionality in control fpECAs at the tested concentration. Furthermore, the observed limited effects on IL-8 secretion in EO-PE fpECAs warrant further investigation, highlighting the need for clinical trials to assess the potential therapeutic effects of HCQ in preeclampsia. Conducting clinical trials would offer a more comprehensive understanding of HCQ's efficacy and safety, allowing us to explore its potential benefits and limitations in a real-world clinical setting.
Collapse
Affiliation(s)
- Maja Gajić
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, A-8036 Graz, Austria; (M.G.); (M.H.M.); (M.C.-Z.); (C.W.)
| | - Bianca Schröder-Heurich
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (B.S.-H.); (F.v.V.-H.)
| | - Monika Horvat Mercnik
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, A-8036 Graz, Austria; (M.G.); (M.H.M.); (M.C.-Z.); (C.W.)
| | - Mila Cervar-Zivkovic
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, A-8036 Graz, Austria; (M.G.); (M.H.M.); (M.C.-Z.); (C.W.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, A-8036 Graz, Austria; (M.G.); (M.H.M.); (M.C.-Z.); (C.W.)
- BioTechMed-Graz, Mozartgasse 12/II, A-8010 Graz, Austria
| | - Frauke von Versen-Höynck
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (B.S.-H.); (F.v.V.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Karoline Mayer-Pickel
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, A-8036 Graz, Austria; (M.G.); (M.H.M.); (M.C.-Z.); (C.W.)
| |
Collapse
|
6
|
Tossetta G, Fantone S, Senzacqua M, Galosi AB, Marzioni D, Morroni M. ZO-1 expression in normal human macula densa: Immunohistochemical and immunofluorescence investigations. J Anat 2023; 242:1184-1188. [PMID: 36719664 PMCID: PMC10184539 DOI: 10.1111/joa.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
The macula densa (MD) is an anatomical structure having a plaque shape, placed in the distal end of thick ascending limb of each nephron and belonging to juxtaglomerular apparatus (JGA). The aim of the present investigation is to investigate the presence of ZO-1, a specific marker of tight juncions (TJs), in MD cells. Six samples of normal human renal tissue were embedded in paraffin for ZO-1 expression analysis by immunohistochemical and immunofluorescence techniques. We detected ZO-1 expression in the apical part of cell membrane in MD cells by immunohistochemistry. In addition, ZO-1 and nNOS expressions (a specific marker of MD) were colocalized in MD cells providing clear evidence of TJs presence in normal human MD. Since ZO-1 is responsible for diffusion barrier formation, its presence in the MD supports the existence of a tubulomesangial barrier that ensures a regulated exchange between MD and JGA effectors in renal and glomerular haemodynamic homeostasis.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Benedetto Galosi
- Division of Urology, Department of Clinical and Specialist Sciences, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| |
Collapse
|
7
|
Alpoim-Moreira J, Szóstek-Mioduchowska A, Słyszewska M, Rebordão MR, Skarzynski DJ, Ferreira-Dias G. 5-Aza-2′-Deoxycytidine (5-Aza-dC, Decitabine) Inhibits Collagen Type I and III Expression in TGF-β1-Treated Equine Endometrial Fibroblasts. Animals (Basel) 2023; 13:ani13071212. [PMID: 37048467 PMCID: PMC10093662 DOI: 10.3390/ani13071212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Endometrosis negatively affects endometrial function and fertility in mares, due to excessive deposition of type I (COL1) and type III (COL3) collagens. The pro-fibrotic transforming growth factor (TGF-β1) induces myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, and collagen synthesis. In humans, fibrosis has been linked to epigenetic mechanisms. To the best of our knowledge, this has not been described in mare endometrium. Therefore, this study aimed to investigate the in vitro epigenetic regulation in TGF-β1-treated mare endometrial fibroblasts and the use of 5-aza-2′-deoxycytidine (5-aza-dC), an epigenetic modifier, as a putative treatment option for endometrial fibrosis. Methods and Results: The in vitro effects of TGF-β1 and of 5-aza-dC on DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), COL1A1, COL3A1, and α-SMA transcripts were analyzed in endometrial fibroblasts, and COL1 and COL3 secretion in a co-culture medium. TGF-β1 upregulated DNMT3A transcripts and collagen secretion. In TGF-β1-treated endometrial fibroblasts, DNA methylation inhibitor 5-aza-dC decreased collagen transcripts and secretion, but not α-SMA transcripts. Conclusion: These findings suggest a possible role of epigenetic mechanisms during equine endometrial fibrogenesis. The in vitro effect of 5-aza-dC on collagen reduction in TGF-β1-treated fibroblasts highlights this epigenetic involvement. This may pave the way to different therapeutic approaches for endometrosis.
Collapse
|
8
|
Trinh QD, Pham NTK, Takada K, Ushijima H, Komine-Aizawa S, Hayakawa S. Roles of TGF-β1 in Viral Infection during Pregnancy: Research Update and Perspectives. Int J Mol Sci 2023; 24:ijms24076489. [PMID: 37047462 PMCID: PMC10095195 DOI: 10.3390/ijms24076489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) is a pleiotropic growth factor playing various roles in the human body including cell growth and development. More functions of TGF-β1 have been discovered, especially its roles in viral infection. TGF-β1 is abundant at the maternal-fetal interface during pregnancy and plays an important function in immune tolerance, an essential key factor for pregnancy success. It plays some critical roles in viral infection in pregnancy, such as its effects on the infection and replication of human cytomegalovirus in syncytiotrophoblasts. Interestingly, its role in the enhancement of Zika virus (ZIKV) infection and replication in first-trimester trophoblasts has recently been reported. The above up-to-date findings have opened one of the promising approaches to studying the mechanisms of viral infection during pregnancy with links to corresponding congenital syndromes. In this article, we review our current and recent advances in understanding the roles of TGF-β1 in viral infection. Our discussion focuses on viral infection during pregnancy, especially in the first trimester. We highlight the mutual roles of viral infection and TGF-β1 in specific contexts and possible functions of the Smad pathway in viral infection, with a special note on ZIKV infection. In addition, we discuss promising approaches to performing further studies on this topic.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
9
|
Li Z, Wang J, Gao X, Du J, Sui H, Wu J, Zhong Y, Liang B, Huang Y, Ye R, Deng Y, Yang X, Huang Z. Investigation of Microplastics (≥10 μm) in Meconium by Fourier Transform Infrared Microspectroscopy. TOXICS 2023; 11:310. [PMID: 37112537 PMCID: PMC10143218 DOI: 10.3390/toxics11040310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Microplastics are prevalent emerging pollutants with widespread distribution in air, land and water. They have been detected in human stool, blood, lungs, and placentas. However, human fetal microplastic exposure remains largely under-studied. To assess fetal microplastic exposure, we investigated microplastics using 16 meconium samples. We used hydrogen peroxide (H2O2), nitric acid (HNO3) and a combination of Fenton's reagent and HNO3 pretreatment methods respectively to digest the meconium sample. We analyzed 16 pretreated meconium samples with an ultra-depth three-dimensional microscope and Fourier transform infrared microspectroscopy. The result showed that H2O2, HNO3 and Fenton's reagent combined with HNO3 pretreatment methods could not digest our meconium samples completely. Alternatively, we developed a novel approach with high digestion efficiency using petroleum ether and alcohol (4:1, v/v), HNO3 and H2O2. This pretreatment method had good recovery and non-destructive advantages. We found no microplastics (≥10 μm) in our meconium samples, indicating that microplastic pollution levels in the fetal living environment are miniscule. Different results between previous studies' and ours underscore that comprehensive and strict quality control are necessary for further studies on microplastic exposure using human bio-samples.
Collapse
Affiliation(s)
- Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiamin Wang
- Beijing Key Laboratory of Organic Materials Testing Technology & Quality Evaluation, Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Xia Gao
- Beijing Key Laboratory of Organic Materials Testing Technology & Quality Evaluation, Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Haixia Sui
- Division III of Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jieling Wu
- Department of Healthcare, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Ma Y, Potenza DM, Ajalbert G, Brenna A, Zhu C, Ming XF, Yang Z. Paracrine Effects of Renal Proximal Tubular Epithelial Cells on Podocyte Injury under Hypoxic Conditions Are Mediated by Arginase-II and TGF-β1. Int J Mol Sci 2023; 24:ijms24043587. [PMID: 36835007 PMCID: PMC9966309 DOI: 10.3390/ijms24043587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hypoxia is an important risk for renal disease. The mitochondrial enzyme arginase-II (Arg-II) is expressed and/or induced by hypoxia in proximal tubular epithelial cells (PTECs) and in podocytes, leading to cellular damage. Because PTECs are vulnerable to hypoxia and located in proximity to podocytes, we examined the role of Arg-II in the crosstalk of PTECs under hypoxic conditions with podocytes. A human PTEC cell line (HK2) and a human podocyte cell line (AB8/13) were cultured. Arg-ii gene was ablated by CRISPR/Case9 in both cell types. HK2 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) for 48 h. Conditioned medium (CM) was collected and transferred to the podocytes. Podocyte injuries were then analyzed. Hypoxic (not normoxic) HK2-CM caused cytoskeletal derangement, cell apoptosis, and increased Arg-II levels in differentiated podocytes. These effects were absent when arg-ii in HK2 was ablated. The detrimental effects of the hypoxic HK2-CM were prevented by TGF-β1 type-I receptor blocker SB431542. Indeed, TGF-β1 levels in hypoxic HK2-CM (but not arg-ii-/--HK2-CM) were increased. Furthermore, the detrimental effects of TGF-β1 on podocytes were prevented in arg-ii-/--podocytes. This study demonstrates crosstalk between PTECs and podocytes through the Arg-II-TGF-β1 cascade, which may contribute to hypoxia-induced podocyte damage.
Collapse
|
11
|
Green EA, Garrick SP, Peterson B, Berger PJ, Galinsky R, Hunt RW, Cho SX, Bourke JE, Nold MF, Nold-Petry CA. The Role of the Interleukin-1 Family in Complications of Prematurity. Int J Mol Sci 2023; 24:2795. [PMID: 36769133 PMCID: PMC9918069 DOI: 10.3390/ijms24032795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Preterm birth is a major contributor to neonatal morbidity and mortality. Complications of prematurity such as bronchopulmonary dysplasia (BPD, affecting the lung), pulmonary hypertension associated with BPD (BPD-PH, heart), white matter injury (WMI, brain), retinopathy of prematurity (ROP, eyes), necrotizing enterocolitis (NEC, gut) and sepsis are among the major causes of long-term morbidity in infants born prematurely. Though the origins are multifactorial, inflammation and in particular the imbalance of pro- and anti-inflammatory mediators is now recognized as a key driver of the pathophysiology underlying these illnesses. Here, we review the involvement of the interleukin (IL)-1 family in perinatal inflammation and its clinical implications, with a focus on the potential of these cytokines as therapeutic targets for the development of safe and effective treatments for early life inflammatory diseases.
Collapse
Affiliation(s)
- Elys A. Green
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven P. Garrick
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Briana Peterson
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Philip J. Berger
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Robert Galinsky
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Rod W. Hunt
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven X. Cho
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3168, Australia
| | - Marcel F. Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Claudia A. Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
12
|
Nintedanib-αVβ6 Integrin Ligand Conjugates Reduce TGF β-Induced EMT in Human Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24021475. [PMID: 36674990 PMCID: PMC9861180 DOI: 10.3390/ijms24021475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Growth factors and cytokines released in the lung cancer microenvironment promote an epithelial-to-mesenchymal transition (EMT) that sustains the progression of neoplastic diseases. TGFβ is one of the most powerful inducers of this transition, as it induces overexpression of the fibronectin receptor, αvβ6 integrin, in cancer cells which, in turn, is strongly associated with EMT. Thus, αvβ6 integrin receptors may be exploited as a target for the selective delivery of anti-tumor agents. We introduce three novel synthesized conjugates, in which a selective αvβ6 receptor ligand is linked to nintedanib, a potent kinase inhibitor used to treat advanced adenocarcinoma lung cancer in clinics. The αvβ6 integrin ligand directs nintedanib activity to the target cells of the tumor microenvironment, avoiding the onset of negative side effects in normal cells. We found that the three conjugates inhibit the adhesion of cancer cells to fibronectin in a concentration-dependent manner and that αvβ6-expressing cells internalized the conjugated compounds, thus permitting nintedanib to inhibit 2D and 3D cancer cell growth and suppress the clonogenic ability of the EMT phenotype as well as intervening in other aspects associated with the EMT transition. These results highlight αvβ6 receptors as privileged access points for dual-targeting molecular conjugates engaged in an efficient and precise strategy against non-small cell lung cancer.
Collapse
|
13
|
Something Smells Fishy: How Lipid Mediators Impact the Maternal-Fetal Interface and Neonatal Development. Biomedicines 2023; 11:biomedicines11010171. [PMID: 36672679 PMCID: PMC9855822 DOI: 10.3390/biomedicines11010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Normal pregnancy relies on inflammation for implantation, placentation, and parturition, but uncontrolled inflammation can lead to poor maternal and infant outcomes. Maternal diet is one modifiable factor that can impact inflammation. Omega-3 and -6 fatty acids obtained through the diet are metabolized into bioactive compounds that effect inflammation. Recent evidence has shown that the downstream products of omega-3 and -6 fatty acids may influence physiology during pregnancy. In this review, the current knowledge relating to omega-3 and omega-6 metabolites during pregnancy will be summarized.
Collapse
|
14
|
Puerariae lobatae Radix Alleviates Pre-Eclampsia by Remodeling Gut Microbiota and Protecting the Gut and Placental Barriers. Nutrients 2022; 14:nu14235025. [PMID: 36501055 PMCID: PMC9738998 DOI: 10.3390/nu14235025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Pre-eclampsia (PE) is a serious pregnancy complication, and gut dysbiosis is an important cause of it. Puerariae lobatae Radix (PLR) is a medicine and food homologous species; however, its effect on PE is unclear. This study aimed to investigate the efficacy of PLR in alleviating PE and its mechanisms. We used an NG-nitro-L-arginine methyl ester (L-NAME)-induced PE mouse model to examine the efficacy of preventive and therapeutic PLR supplementation. The results showed that both PLR interventions alleviated hypertension and proteinuria, increased fetal and placental weights, and elevated the levels of VEGF and PlGF. Moreover, PLR protected the placenta from oxidative stress via activating the Nrf2/HO-1/NQO1 pathway and mitigated placental damage by increasing intestinal barrier markers (ZO-1, Occludin, and Claudin-1) expression and reducing lipopolysaccharide leakage. Notably, preventive PLR administration corrected gut dysbiosis in PE mice, as evidenced by the increased abundance and positive interactions of beneficial bacteria including Bifidobacterium, Blautia, and Turicibacter. Fecal microbiota transplantation confirmed that the gut microbiota partially mediated the beneficial effects of PLR on PE. Our findings revealed that modulating the gut microbiota is an effective strategy for the treatment of PE and highlighted that PLR might be used as an intestinal nutrient supplement in PE patients.
Collapse
|
15
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
16
|
Do the Causes of Spontaneous Preterm Delivery Affect Placental Inflammatory Pathology and Neonatal Outcomes? Diagnostics (Basel) 2022; 12:diagnostics12092126. [PMID: 36140528 PMCID: PMC9498177 DOI: 10.3390/diagnostics12092126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: To investigate the severity of histologic chorioamnionitis /funisitis according to the indication for preterm delivery and their corresponding neonatal outcomes. Method: This study included 411 singleton women who delivered between 21+0 and 31+6 week of gestation due to preterm labor (PTL, n = 165), preterm premature rupture of membranes (PPROM, n = 202), or incompetent internal os of the cervix (IIOC, n = 44). The primary outcome measure was the rate of severe histological chorioamnionitis/funisitis. Secondary outcome measure was neonatal outcomes including neonatal and infant death, and neonatal composite morbidity. Results: The PPROM group demonstrated a higher rate of severe histological chorioamnionitis/funisitis compared to the PTL group (severe histological chorioamnionitis; PPROM, 66.3% vs. PTL, 49.1%, p = 0.001, severe funisitis; PPROM, 44.1% vs. PTL, 23.6%, p < 0.001) and this remained significant after multivariable analysis (severe histologic chorioamnionitis, OR 2.367, 95% CI 1.517−3.693; severe funisitis, OR 2.668, 95% CI 1.684−4.226). For neonatal outcomes only, a higher rate of patent ductus arteriosus was observed in the IIOC group compared to the PTL and PPROM groups (IIOC, 77.3% vs. PTL, 54.0% vs. PPROM, 54.0%, p = 0.043) and this remained significant after multivariable analysis. Conclusion: Indication of spontaneous preterm delivery might affect the placental inflammatory pathology and neonatal morbidity.
Collapse
|
17
|
Citation: Tight Junction Protein Expression-Inducing Probiotics Alleviate TNBS-Induced Cognitive Impairment with Colitis in Mice. Nutrients 2022; 14:nu14142975. [PMID: 35889931 PMCID: PMC9317072 DOI: 10.3390/nu14142975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
A leaky gut is closely connected with systemic inflammation and psychiatric disorder. The rectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS) induces gut inflammation and cognitive function in mice. Therefore, we selected Bifidobacterium longum NK219, Lactococcus lactis NK209, and Lactobacillus rhamnosus NK210, which induced claudin-1 expression in TNBS- or lipopolysaccharide (LPS)-stimulated Caco-2 cells, from the fecal bacteria collection of humans and investigated their effects on cognitive function and systemic inflammatory immune response in TNBS-treated mice. The intrarectal injection of TNBS increased cognitive impairment-like behaviors in the novel object recognition and Y-maze tests, TNF-α, IL-1β, and IL-17 expression in the hippocampus and colon, and LPS level in the blood and feces, while the expression of hippocampal claudin-5 and colonic claudin-1 decreased. Oral administration of NK209, NK210, and NK219 singly or together decreased TNBS-impaired cognitive behaviors, TNF-α and IL-1β expression, NF-κB+Iba1+ cell and LPS+Iba1+ cell numbers in the hippocampus, and LPS level in the blood and feces, whereas BDNF+NeuN+ cell and claudin-5+ cell numbers and IL-10 expression increased. Furthermore, they suppressed TNBS-induced colon shortening and colonic TNF-α and IL-1β expression, while colonic IL-10 expression and mucin protein-2+ cell and claudin-1+ cell numbers expression increased. Of these, NK219 most strongly alleviated cognitive impairment and colitis. They additively alleviated cognitive impairment with colitis. Based on these findings, NK209, NK210, NK219, and their combinations may alleviate cognitive impairment with systemic inflammation by suppressing the absorption of gut bacterial products including LPS into the blood through the suppression of gut bacterial LPS production and alleviation of a leaky gut by increasing gut tight junction proteins and mucin-2 expression.
Collapse
|
18
|
Chen W, Xiao W, Liu X, Yuan P, Zhang S, Wang Y, Wu W. Pharmacological manipulation of macrophage autophagy effectively rejuvenates the regenerative potential of biodegrading vascular graft in aging body. Bioact Mater 2022; 11:283-299. [PMID: 34977432 PMCID: PMC8668428 DOI: 10.1016/j.bioactmat.2021.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/28/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Declined regenerative potential and aggravated inflammation upon aging create an inappropriate environment for arterial regeneration. Macrophages are one of vital effector cells in the immune microenvironment, especially during biomaterials mediated repairing process. Here, we revealed that the macrophage autophagy decreased with aging, which led to aggravated inflammation, thereby causing poor vascular remodeling of artificial grafts in aging body. Through loading the autophagy-targeted drugs, rapamycin and 3-MA (3-methyladenine), in PCL (polycaprolactone) sheath of the PGS (poly glycerol sebacate) - PCL vascular graft, the essential role of macrophage autophagy was confirmed in regulating macrophage polarization and biomaterial degradation. Moreover, the utilization of rapamycin promoted anti-inflammatory polarization of macrophage by activating autophagy, which further promoted myogenic differentiation of vascular progenitor cells and accelerated endothelialization. Our study elucidated the contribution of pharmacological manipulation of macrophage autophagy in promoting regeneration of small caliber artery, which may pave a new avenue for clinical translation of vascular grafts in aging body.
Collapse
Affiliation(s)
- Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China
| | - Weiwei Xiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pingping Yuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yinggang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Signaling Pathways in Pregnancy. Cells 2022; 11:cells11091385. [PMID: 35563691 PMCID: PMC9101431 DOI: 10.3390/cells11091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
|
20
|
Tossetta G, Fantone S, Licini C, Marzioni D, Mattioli-Belmonte M. The multifaced role of HtrA1 in the development of joint and skeletal disorders. Bone 2022; 157:116350. [PMID: 35131488 DOI: 10.1016/j.bone.2022.116350] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
HtrA1 (High temperature requirement A1) family proteins include four members, widely conserved from prokaryotes to eukaryotes, named HtrA1, HtrA2, HtrA3 and HtrA4. HtrA1 is a serine protease involved in a variety of biological functions regulating many signaling pathways degrading specific components and playing key roles in many human diseases such as neurodegenerative disorders, pregnancy complications and cancer. Due to its role in the breakdown of many ExtraCellular Matrix (ECM) components of articular cartilage such as fibronectin, decorin and aggrecan, HtrA1 encouraged many researches on studying its role in several skeletal diseases (SDs). These studies were further inspired by the fact that HtrA1 is able to regulate the signaling of one of the most important cytokines involved in SDs, the TGFβ-1. This review aims to summarize the data currently available on the role of HtrA1 in skeletal diseases such as Osteoporosis, Rheumatoid Arthritis, Osteoarthritis and Intervertebral Disc Degeneration (IDD). The use of HtrA1 as a marker of frailty in geriatric medicine would represent a powerful tool for identifying older individuals at risk of developing skeletal disorders, evaluating an appropriate intervention to improve quality care in these people avoiding or improving age-related SDs in the elderly population.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Caterina Licini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| |
Collapse
|
21
|
Brien ME, Gaudreault V, Hughes K, Hayes DJL, Heazell AEP, Girard S. A Systematic Review of the Safety of Blocking the IL-1 System in Human Pregnancy. J Clin Med 2021; 11:jcm11010225. [PMID: 35011965 PMCID: PMC8745599 DOI: 10.3390/jcm11010225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Blockade of the interleukin-1 (IL-1) pathway has been used therapeutically in several inflammatory diseases including arthritis and cryopyrin-associated periodic syndrome (CAPS). These conditions frequently affect women of childbearing age and continued usage of IL-1 specific treatments throughout pregnancy has been reported. IL-1 is involved in pregnancy complications and its blockade could have therapeutic potential. We systematically reviewed all reported cases of IL-1 blockade in human pregnancy to assess safety and perinatal outcomes. We searched several databases to find reports of specific blockade of the IL-1 pathway at any stage of pregnancy, excluding broad spectrum or non-specific anti-inflammatory intervention. Our literature search generated 2439 references of which 22 studies included, following extensive review. From these, 88 different pregnancies were assessed. Most (64.8%) resulted in healthy term deliveries without any obstetrical/neonatal complications. Including pregnancy exposed to Anakinra or Canakinumab, 12 (15.0%) resulted in preterm birth and one stillbirth occurred. Regarding neonatal complications, 2 cases of renal agenesis (2.5%) were observed, and 6 infants were diagnosed with CAPS (7.5%). In conclusion, this systematic review describes that IL-1 blockade during pregnancy is not associated with increased adverse perinatal outcomes, considering that treated women all presented an inflammatory disease associated with elevated risk of pregnancy complications.
Collapse
Affiliation(s)
- Marie-Eve Brien
- Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada; (M.-E.B.); (V.G.); (K.H.)
| | - Virginie Gaudreault
- Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada; (M.-E.B.); (V.G.); (K.H.)
| | - Katia Hughes
- Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada; (M.-E.B.); (V.G.); (K.H.)
| | - Dexter J. L. Hayes
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (D.J.L.H.); (A.E.P.H.)
| | - Alexander E. P. Heazell
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (D.J.L.H.); (A.E.P.H.)
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-284-0545
| |
Collapse
|
22
|
Ferreira G, Santander A, Savio F, Guirado M, Sobrevia L, Nicolson GL. SARS-CoV-2, Zika viruses and mycoplasma: Structure, pathogenesis and some treatment options in these emerging viral and bacterial infectious diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166264. [PMID: 34481867 PMCID: PMC8413106 DOI: 10.1016/j.bbadis.2021.166264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/28/2023]
Abstract
The molecular evolution of life on earth along with changing environmental, conditions has rendered mankind susceptible to endemic and pandemic emerging infectious diseases. The effects of certain systemic viral and bacterial infections on morbidity and mortality are considered as examples of recent emerging infections. Here we will focus on three examples of infections that are important in pregnancy and early childhood: SARS-CoV-2 virus, Zika virus, and Mycoplasma species. The basic structural characteristics of these infectious agents will be examined, along with their general pathogenic mechanisms. Coronavirus infections, such as caused by the SARS-CoV-2 virus, likely evolved from zoonotic bat viruses to infect humans and cause a pandemic that has been the biggest challenge for humanity since the Spanish Flu pandemic of the early 20th century. In contrast, Zika Virus infections represent an expanding infectious threat in the context of global climate change. The relationship of these infections to pregnancy, the vertical transmission and neurological sequels make these viruses highly relevant to the topics of this special issue. Finally, mycoplasmal infections have been present before mankind evolved, but they were rarely identified as human pathogens until recently, and they are now recognized as important coinfections that are able to modify the course and prognosis of various infectious diseases and other chronic illnesses. The infectious processes caused by these intracellular microorganisms are examined as well as some general aspects of their pathogeneses, clinical presentations, and diagnoses. We will finally consider examples of treatments that have been used to reduce morbidity and mortality of these infections and discuss briefly the current status of vaccines, in particular, against the SARS-CoV-2 virus. It is important to understand some of the basic features of these emerging infectious diseases and the pathogens involved in order to better appreciate the contributions of this special issue on how infectious diseases can affect human pregnancy, fetuses and neonates.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Florencia Savio
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Guirado
- Department of Infectious Diseases, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaeology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
23
|
Yu WP, Ding JL, Liu XL, Zhu GD, Lin F, Xu JJ, Wang Z, Zhou JL. Titanium dioxide nanotubes promote M2 polarization by inhibiting macrophage glycolysis and ultimately accelerate endothelialization. Immun Inflamm Dis 2021; 9:746-757. [PMID: 33835721 PMCID: PMC8342206 DOI: 10.1002/iid3.429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Titanium has been widely used in prosthetic valves, but they are associated with serious defects in titanium-based prosthetic valves, such as thrombosis, calcification, and decay. Therefore, it is very important to biofunctionalize titanium-based valves to reduce inflammation and accelerate endothelialization of stents and antithrombosis. The titanium dioxide nanotubes were prepared from pure titanium (Ti) by anodic oxidation method in this study. The effects of titanium dioxide nanotubes on the metabolism of macrophages and the inflammatory reaction as implants were studied in vitro. The polarization state of macrophages and the ability to accelerate endothelialization were analyzed. The results demonstrated that titanium nanotubes promote M2 polarization of macrophages by inhibiting glycolysis and activating the Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. In general, biofunctionalization titanium with nanotube could inhibit macrophage glycolysis, reduce inflammatory factor release and promote M2 polarization by activating the AMPK signaling pathway. And endothelialization was accelerated in vitro. Our result demonstrated that titanium nanotube could act as a potential approach to biofunctionlize titanium-based prosthetic valves for endothelialization.
Collapse
Affiliation(s)
- Wen P. Yu
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jing L. Ding
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xin L. Liu
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guo D. Zhu
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Feng Lin
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jian J. Xu
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Ziyao Wang
- Department of Clinical PathologyThe First Affiliated Hospital of Gannan Medical CollegeGanzhouChina
| | - Jian L. Zhou
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
24
|
Liu Y, Liu C, An K, Gong X, Xia Z. Effect of Dietary Clostridium butyricum Supplementation on Growth Performance, Intestinal Barrier Function, Immune Function, and Microbiota Diversity of Pekin Ducks. Animals (Basel) 2021; 11:ani11092514. [PMID: 34573480 PMCID: PMC8471152 DOI: 10.3390/ani11092514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In poultry farming, the use of prophylactic antibiotics can lead to increased resistance, so probiotics are a good alternative. Clostridium butyricum (C. butyricum) has been widely used to improve the gut health of animals. Therefore, we carried out the current study of Pekin ducks supplemented with C. butyricum for a period of 42 days. Here, we found a clear increase in the growth performance of Pekin ducks supplemented with C. butyricum. Moreover, a high level of secretory IgA, IgM, IgG, IL-4, and IL-10 and comparatively higher short-chain fatty acids (SCFAs) and intestinal tight junction changes were found in Pekin ducks supplemented with C. butyricum. The gut microbial diversity of Pekin ducks supplemented with C. butyricum was clearly different than that of Pekin ducks fed a non-C. butyricum diet. In conclusion, our findings suggest that 400 mg/kg C. butyricum supplementation improved the intestinal health of Pekin ducks by increasing the α-diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems indicating that 400 mg/kg C. butyricum might be a preferable antibiotic alternative for commercial application. Abstract Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene expression, and the diversity of the intestinal microbiota in Pekin ducks varied under C. butyricum supplementation. A total of 500 ducks were randomly assigned into five treatments supplemented with basal diets containing: either 0 (group Control), 200 (group CB200), 400 (group CB400) and 600 (group CB600) mg/kg C. butyricum or 150 mg/kg aureomycin (group A150) for 42 days. In comparison with the control group, C. butyricum supplementation enhanced the growth performance and intestinal villus height of Pekin ducks at 42 d. Serum immune indexes and fecal short-chain fatty acids (SCFAs) were all improved at both 21 d and 42 d after C. butyricum addition. The mRNA expression levels of Mucin2, Zonula occludens-1 (ZO-1), Caudin-3, and Occludin increased at 21 d and 42 d and the mRNA expression levels of IL-4 and IL-10 only increased at 42 d after C. butyricum addition. Dietary C. butyricum also resulted in an increase in the number of diversities of operational taxonomic units (OTUs), and an increase in the α-diversity of intestinal microbiota. The addition of C. butyricum altered the composition of the intestinal microbiota from 21 d to 42 d. The relative abundance of Firmicutes and Bacteroidetes showed little changes among groups; however, the relative abundance of Firmicutes/Bacteroidetes were found to have been significantly different between the 21 d and 42 d. C. butyricum administration improved the intestinal health of Pekin ducks by increasing the diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems. The optimal dietary supplementation dosage was recommended as 400 mg/kg in the diet.
Collapse
Affiliation(s)
- Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Xiaowei Gong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Correspondence: ; Tel.: +86-10-62733781
| |
Collapse
|
25
|
Yu WP, Gong Y, Wang Z, Lu C, Ding JL, Liu XL, Zhu GD, Lin F, Xu JJ, Zhou JL. The biofunctionalization of titanium nanotube with chitosan/genipin heparin hydrogel and the controlled release of IL-4 for anti-coagulation and anti-thrombus through accelerating endothelialization. RSC Adv 2021; 11:16510-16521. [PMID: 35479169 PMCID: PMC9031326 DOI: 10.1039/d0ra09295a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/18/2021] [Indexed: 12/29/2022] Open
Abstract
The valve replacement is the main treatment of heart valve disease. However, thrombus formation following valve replacement has always been a major clinical drawback. Accelerating the endothelialization of cardiac valve prosthesis is the main approach to reduce thrombus. In the current study, a titanium nanotube was biofunctionalized with a chitosan/genipin heparin hydrogel and the controlled release of interleukin-4 (IL-4), and its regulation of macrophages was investigated to see if it could influence endothelial cells to eventually accelerate endothelialization. TNT60 (titanium dioxide nanotubes, 60 V) with nanoarray was obtained by anodic oxidation of 60 V, and IL-4 was loaded into the nanotube by vacuum drying. The hydrogel (chitosan : genipin = 4 : 1) was applied to the surface of the nanotubes following drying, and the heparin drops were placed on the hydrogel surface with chitosan as the polycation and heparin as the polyanion. A TNT/IL-4/G (G = gel, chitosan/genipin heparin) delivery system was prepared. Our results demonstrated that the biofunctionalization of titanium nanotube with chitosan/genipin heparin hydrogel and the controlled release of IL-4 had a significant regulatory effect on macrophage M2 polarization, reducing the inflammatory factor release and higher secretion of VEGF (vascular endothelial growth factor), which can accelerate the endothelialization of the implant.
Collapse
Affiliation(s)
- Wen Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Ziyao Wang
- Department of Clinical Pathology, The First Affiliated Hospital of Gannan Medical College Ganzhou China
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jing Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Xin Liang Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Guo Dong Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Feng Lin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jian Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jian Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| |
Collapse
|
26
|
Gatti AM, Montanari S, Ferrero S, Lavezzi AM. Silver nanoparticles in the fetal brain: new perspectives in understanding the pathogenesis of unexplained stillbirths. Nanomedicine (Lond) 2021; 16:265-274. [PMID: 33533653 DOI: 10.2217/nnm-2020-0391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report, for the first time, the surprising presence of toxic nanoparticles, especially silver, in the brain of a fetus, who died unexpectedly at the end of a regular pregnancy. After an accurate autopsy, including the examination of the fetal annexes, an in-depth anatomopathological study of the nervous system and a search by scanning electron microscopy of nanoparticles in the brain, we highlighted the sequence of events that may have led to this fetal death, triggered primarily by the transition of nanosized xenobiotics from the mother to the fetal bloodstream. From this report emerges the importance of considering the search of nanosubstances in the brain during routine investigations following unexpected and unexplained fetal and infant deaths.
Collapse
Affiliation(s)
- Antonietta M Gatti
- Health, Law, Science Association, Genève, Switzerland.,Nanodiagnostics, San Vito, Modena, Italy
| | | | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical & Dental Sciences, "Lino Rossi" Research Center for the Study & Prevention of Unexpected Perinatal Death SIDS, University of Milan, Milan Italy
| | - Anna Maria Lavezzi
- Department of Biomedical, Surgical & Dental Sciences, "Lino Rossi" Research Center for the Study & Prevention of Unexpected Perinatal Death SIDS, University of Milan, Milan Italy
| |
Collapse
|
27
|
Tossetta G, Fantone S, Giannubilo SR, Marzioni D. The Multifaced Actions of Curcumin in Pregnancy Outcome. Antioxidants (Basel) 2021; 10:antiox10010126. [PMID: 33477354 PMCID: PMC7830020 DOI: 10.3390/antiox10010126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, also known as diferuloylmethane, is the main polyphenolic substance present in the rhizomes of Curcuma longa L. This plant showed many beneficial effects and has been used since ancient times for both food and pharmaceutical purposes. Due to its pleiotropic functions, curcumin consumption in the human diet has become very common thanks also to the fact that this natural compound is considered quite safe as it does not have serious side effects. Its functions as an anti-inflammatory, anti-oxidant, neuroprotective, immunomodulatory, anti-toxicant, anti-apoptotic, and anti-diabetic compound are already known and widely demonstrated. There are numerous studies concerning its effects on various human pathologies including cancer, diabetes and arthritis while the studies on curcumin during pregnancy have been performed only in animal models. Data concerning the role of curcumin as anti-inflammatory compound suggest a possible use of curcumin in managing pregnancy complications such as Preeclampsia (PE), Gestational Diabetes Mellitus (GDM), Fetal Growth Restriction (FGR), PreTerm Birth (PTB), and exposure to toxic agents and pathogens. The aim of this review is to present data to support the possible use of curcumin in clinical trials on human gestation complications.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy;
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
- Correspondence: ; Tel.:+39-071.2206268
| |
Collapse
|
28
|
Adu-Gyamfi EA, Czika A, Gorleku PN, Ullah A, Panhwar Z, Ruan LL, Ding YB, Wang YX. The Involvement of Cell Adhesion Molecules, Tight Junctions, and Gap Junctions in Human Placentation. Reprod Sci 2020; 28:305-320. [PMID: 33146876 DOI: 10.1007/s43032-020-00364-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Placentation is a major determinant of the success of pregnancy. It is regulated by several factors such as cell adhesion molecules, tight junctions, and gap junctions. The cell adhesion molecules are integrins, cadherins, immunoglobulins, nectins, and selectins. The tight junctions are composed of claudins, occludin, and junction adhesion molecule proteins while the gap junctions are composed of connexins of varying molecular weights. During placentation, some of these molecules regulate trophoblast proliferation, trophoblast fusion, trophoblast migration, trophoblast invasion, trophoblast-endothelium adhesion, glandular remodeling, and spiral artery remodeling. There is a dysregulated placental expression of some of these molecules during obstetric complications. We have, hereby, indicated the expression patterns of the subunits of each of these molecules in the various trophoblast subtypes and in the decidua, and have highlighted their involvement in physiological and pathological placentation. The available evidence points to the relevance of these molecules as distinguishing markers of the various trophoblast lineages and as potential therapeutic targets in the management of malplacentation-mediated diseases.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Armin Czika
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Amin Ullah
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Zulqarnain Panhwar
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
29
|
Wang Z, Zhang C, Liu X, Huang F, Wang Z, Yan B. Oral intake of ZrO 2 nanoparticles by pregnant mice results in nanoparticles' deposition in fetal brains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110884. [PMID: 32563952 DOI: 10.1016/j.ecoenv.2020.110884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Nanotoxicity to fetal brains after maternal oral exposures during pregnancy is often in question because nanoparticles have to cross multiple biological barriers such as intestinal barrier, maternal blood placental barrier (BPB) and fetal blood brain barrier (BBB). Here, we investigated this seemingly impossible passage for ZrO2 nanoparticles (ZrO2 NPs) from maternal body to fetal brains using a pregnant mouse model. After three oral exposures to pregnant mice at late pregnancy (GD16, 17, 18), ZrO2 NPs were able to accumulate in fetal brains at GD19 via crossing the well-developed maternal BPB and fetal BBB. Moreover, ZrO2 NPs crossed the mature biological barriers with increasing the expression levels of caveolae, clathrin and arf6 proteins as well as decreasing the expression levels of the tight junction proteins claudin-5, occludin and ZO-1 in placenta and fetal brain. From this investigation, we speculated that the main mechanisms for such translocation were receptor-mediated endocytosis transcellular pathway and breakthrough of tight junctions paracellular pathway in mature maternal BPB and fetal BBB. These findings have important implications for other nanoparticles exposures during pregnancy and provide crucial information to safeguard fetal development from contamination of widely used nanoproducts.
Collapse
Affiliation(s)
- Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Congcong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Fengyan Huang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
30
|
Li J, Liu Y, Xue R, Shen H, Wu Y, Quinn M, Zhang H, Wu W. Inflammation-related downregulation of zonula Occludens-1 in fetal membrane contributes to development of prelabor rupture of membranes. Placenta 2020; 99:173-179. [PMID: 32810765 DOI: 10.1016/j.placenta.2020.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The aim of this research was to study the alteration of three key tight junction proteins, to explore whether they were involved in the occurrence of prelabor rupture of the membrane (PROM) and to determine the correlation with intrauterine infection. METHODS A total of 208 women were enrolled between January 2015 to December 2018, including those with preterm and term PROM (PROM group) and normal pregnancies with intact fetal membrane (control group). We investigated the expressions of three key TJ molecules (Zonula occludens-1, Occludin and Claudin-5) in fetal membranes. The localization and expression of Zonula occludens-1 (ZO-1) in the amnion and chorion were studied by immunohistochemistry assay. The associations between ZO-1 expression levels and extent of inflammatory reactions as well as other obstetric characteristics were further studied using Spearman's rank correlation test and Mann-Whitney U test. RESULTS ZO-1 was significantly downregulated in PROM group compared with control group (P < 0.001), whereas no significant changes were found for Occludin and Claudin-5. ZO-1 expression was reduced in the chorion and amnion layers in PROM group compared with that in control group, which showed a significant difference (P < 0.01), but no significant differences were observed between the preterm PROM and term PROM groups (P > 0.05). The expression levels of ZO-1 in the chorion were negatively correlated with the stage/grade of acute chorioamnionitis (P < 0.05). DISCUSSION Our study suggests that inflammation-related downregulation of ZO-1 might be a pivotal event in the occurrence of PROM, which helps to clarify the mechanism of membrane rupture caused by infection.
Collapse
Affiliation(s)
- Juan Li
- Departments of Pathology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Departments of Pathology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Xue
- Departments of Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Shen
- Departments of Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wu
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Martin Quinn
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Huijuan Zhang
- Departments of Pathology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Weibin Wu
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China; Departments of Biobank, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Simanjuntak Y, Ko HY, Lee YL, Yu GY, Lin YL. Preventive effects of folic acid on Zika virus-associated poor pregnancy outcomes in immunocompromised mice. PLoS Pathog 2020; 16:e1008521. [PMID: 32392268 PMCID: PMC7241851 DOI: 10.1371/journal.ppat.1008521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection may lead to congenital microcephaly and pregnancy loss in pregnant women. In the context of pregnancy, folic acid (FA) supplementation may reduce the risk of abnormal pregnancy outcomes. Intriguingly, FA may have a beneficial effect on the adverse pregnancy outcomes associated with ZIKV infection. Here, we show that FA inhibits ZIKV replication in human umbilical vein endothelial cells (HUVECs) and a cell culture model of blood-placental barrier (BPB). The inhibitory effect of FA against ZIKV infection is associated with FRα-AMPK signaling. Furthermore, treatment with FA reduces pathological features in the placenta, number of fetal resorptions, and stillbirths in two mouse models of in utero ZIKV transmission. Mice with FA treatment showed lower viral burden and better prognostic profiles in the placenta including reduced inflammatory response, and enhanced integrity of BPB. Overall, our findings suggest the preventive role of FA supplementation in ZIKV-associated abnormal pregnancy and warrant nutritional surveillance to evaluate maternal FA status in areas with active ZIKV transmission.
Collapse
Affiliation(s)
- Yogy Simanjuntak
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Fusarium Mycotoxins Disrupt the Barrier and Induce IL-6 Release in a Human Placental Epithelium Cell Line. Toxins (Basel) 2019; 11:toxins11110665. [PMID: 31739567 PMCID: PMC6891427 DOI: 10.3390/toxins11110665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
Deoxynivalenol, T-2 toxin, and zearalenone, major Fusarium mycotoxins, contaminate human food on a global level. Exposure to these mycotoxins during pregnancy can lead to abnormalities in neonatal development. Therefore, the aim of this study was to investigate the effects of Fusarium mycotoxins on human placental epithelial cells. As an in vitro model of placental barrier, BeWo cells were exposed to different concentrations of deoxynivalenol, zearalenone or T-2 toxin. Cytotoxicity, effects on barrier integrity, paracellular permeability along with mRNA and protein expression and localization of junctional proteins after exposure were evaluated. Induction of proinflammatory responses was determined by measuring cytokine production. Increasing mycotoxin concentrations affect BeWo cell viability, and T-2 toxin was more toxic compared to other mycotoxins. Deoxynivalenol and T-2 toxin caused significant barrier disruption, altered protein and mRNA expression of junctional proteins, and induced irregular cellular distribution. Although the effects of zearalenone on barrier integrity were less prominent, all tested mycotoxins were able to induce inflammation as measured by IL-6 release. Overall, Fusarium mycotoxins disrupt the barrier of BeWo cells by altering the expression and structure of junctional proteins and trigger proinflammatory responses. These changes in placental barrier may disturb the maternal–fetal interaction and adversely affect fetal development.
Collapse
|
33
|
Arumugasaamy N, Gudelsky A, Hurley-Novatny A, Kim PC, Fisher JP. Model Placental Barrier Phenotypic Response to Fluoxetine and Sertraline: A Comparative Study. Adv Healthc Mater 2019; 8:e1900476. [PMID: 31407872 PMCID: PMC6752965 DOI: 10.1002/adhm.201900476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Medications taken during pregnancy may significantly impact fetal development, yet there are few studies that rigorously assess medication safety due to ethical concerns. Selective serotonin reuptake inhibitors (SSRIs) are a class of drug increasingly being prescribed for depression, yet multiple studies have shown that taking SSRIs during pregnancy can lead to preterm birth and potential health concerns for the baby. Therefore, a biomimetic placental barrier model is utilized herein to assess transport profiles and phenotypic effects resulting from SSRI exposure, comparing fluoxetine and sertraline. Results show that the placental barrier quickly uptakes drug from the maternal side, but slowly releases on the fetal side. Phenotypically, there is a dose-dependent change in cell adhesion molecule (CAM) and transforming growth factor beta (TGFβ) secretions, markers of cell adhesion and angiogenesis. Both drugs impact CAM secretions, whereas sertraline alone impacts TGFβ secretions. When evaluating cell type, it becomes clear that endothelial cells, not trophoblast, are the main cell type involved in these phenotypic changes. Overall, these findings further the understanding of SSRI transplacental transport and drug-induced effects on the placental barrier.
Collapse
Affiliation(s)
- Navein Arumugasaamy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, D.C. 20010
| | - Alana Gudelsky
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, D.C. 20010
| | - Amelia Hurley-Novatny
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742
| | - Peter C.W. Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, D.C. 20010
- Department of Surgery, The George Washington University, Washington, D.C. 20037
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742
| |
Collapse
|
34
|
Fedorka CE, Ball BA, Scoggin KE, Loux SC, Troedsson MHT, Adams AA. The feto-maternal immune response to equine placentitis. Am J Reprod Immunol 2019; 82:e13179. [PMID: 31373743 DOI: 10.1111/aji.13179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Ascending placentitis is one of the leading causes of abortion in the horse. Minimal work has focused on its effect on fetal fluids or the antenatal immune response of the fetus. METHODOLOGY Placentitis was induced via transcervical inoculation of Streptococcus equi ssp Zooepidemicus, and fluids/serum/tissues were collected 4-6 days later following euthanasia. Cytokine concentrations were detected using a multiplex immunoassay within fetal fluids (amniotic and allantoic) and serum (maternal and fetal) in inoculated and control mares. In addition, tissues from fetal (spleen, liver, lung, umbilicus, amnioallantois) and maternal (spleen, liver, lung, chorioallantois, endometrium) origin were analyzed in inoculated and control mares utilizing qPCR for expression of cytokines. RESULTS No difference in cytokine concentrations in maternal or fetal serum was noted between inoculated and control mares. Concentrations of IL-1β, IL-6, IL-10, and GRO were upregulated in the amniotic fluid following inoculation, with a trend toward higher IL-6 concentration in allantoic fluid. The amnioallantoic tissue separating the two fluids had higher expression of IL-1β and IL-6 following inoculation, while chorioallantois and endometrium upregulated IL-1β and IL-8 expression. IL-1β was upregulated in the maternal spleen following inoculation. Fetal spleens were upregulated in expression of IL-1β, GRO, and IL-6, while IL-6 was higher in fetal liver after inoculation than in controls. CONCLUSION The maternal response to placentitis is primarily pro-inflammatory while the fetus appears to play a regulatory role in this inflammation. Additionally, amniotic fluid sampling may be more diagnostic of ascending placentitis than circulating cytokines.
Collapse
Affiliation(s)
- Carleigh E Fedorka
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Barry A Ball
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kirsten E Scoggin
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Shavahn C Loux
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Mats H T Troedsson
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Amanda A Adams
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
35
|
Hu J, Zhang J, Chan Y, Zhu B. A rat model of placental inflammation explains the unexplained elevated maternal serum alpha-fetoprotein associated with adverse pregnancy outcomes. J Obstet Gynaecol Res 2019; 45:1980-1988. [PMID: 31381236 DOI: 10.1111/jog.14085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
AIM It has been reported in numerous studies that elevated maternal serum alpha-fetoprotein (MS-AFP) is associated with adverse pregnancy outcomes (APO), such as pre-eclampsia, stillbirth, preterm birth and fetal growth restriction. However, the mechanism linking elevated MS-AFP and APO is obscure. In this study, we tried to explore the mechanism by using pregnant rats. METHODS Lipopolysaccharide (LPS) was used to induce placental inflammation in pregnant rats. Maternal serum and placental inflammatory cytokines and placental morphology were used to assess the level of placental inflammation. The incidences of APO and the levels of MS-AFP were evaluated. The expressions of alpha-fetoprotein (AFP) in the related organs and fetal serum AFP levels were detected. RESULTS Compared to saline-treated pregnant rats, LPS led to elevated maternal serum and placental inflammatory cytokines and a higher rate of placental inflammation. Lipopolysaccharide resulted in the features of APO and at the same time elevated MS-AFP. Maternal serum alpha-fetoprotein levels were significantly correlated to the evaluation parameters of APO. Lipopolysaccharide did not increase the expressions of AFP in fetal liver, maternal liver and placenta, but reduced the fetal serum AFP levels. CONCLUSION The phenomenon that elevated MS-AFP is associated with APO, which has been reported in human pregnancies, is observed in our rat model. Placental inflammation can be the potential cause linking the two manifestations together. Although the source of elevated MS-AFP is not identified, fetal blood circulation is suspected. Our study may provide an animal model for the future studies on this subject.
Collapse
Affiliation(s)
- Jilin Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinman Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China.,National Health Commission's Key Laboratory for Healthy Births in Western China, Department of Obstetrics and Gynecology, First People's Hospital of Yunnan Province, Kunming, China
| | - Ying Chan
- National Health Commission's Key Laboratory for Healthy Births in Western China, Department of Obstetrics and Gynecology, First People's Hospital of Yunnan Province, Kunming, China
| | - Baosheng Zhu
- Medical School, Kunming University of Science and Technology, Kunming, China.,National Health Commission's Key Laboratory for Healthy Births in Western China, Department of Obstetrics and Gynecology, First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
36
|
Paquette AG, Brockway HM, Price ND, Muglia LJ. Comparative transcriptomic analysis of human placentae at term and preterm delivery. Biol Reprod 2019; 98:89-101. [PMID: 29228154 PMCID: PMC5803773 DOI: 10.1093/biolre/iox163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
Preterm birth affects 1 out of every 10 infants in the United States, resulting in substantial neonatal morbidity and mortality. Currently, there are few predictive markers and few treatment options to prevent preterm birth. A healthy, functioning placenta is essential to positive pregnancy outcomes. Previous studies have suggested that placental pathology may play a role in preterm birth etiology. Therefore, we tested the hypothesis that preterm placentae may exhibit unique transcriptomic signatures compared to term samples reflective of their abnormal biology leading to this adverse outcome. We aggregated publicly available placental villous microarray data to generate a preterm and term sample dataset (n = 133, 55 preterm placentae and 78 normal term placentae). We identified differentially expressed genes using the linear regression for microarray (LIMMA) package and identified perturbations in known biological networks using Differential Rank Conservation (DIRAC). We identified 129 significantly differentially expressed genes between term and preterm placenta with 96 genes upregulated and 33 genes downregulated (P-value <0.05). Significant changes in gene expression in molecular networks related to Tumor Protein 53 and phosphatidylinositol signaling were identified using DIRAC. We have aggregated a uniformly normalized transcriptomic dataset and have identified novel and established genes and pathways associated with developmental regulation of the placenta and potential preterm birth pathology. These analyses provide a community resource to integrate with other high-dimensional datasets for additional insights in normal placental development and its disruption.
Collapse
Affiliation(s)
| | - Heather M Brockway
- Division of Human Genetics, Center for Prevention of Preterm Birth, Cincinnati Children's, Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Cincinnati Children's, Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Cornelius DC, Baik CH, Travis OK, White DL, Young CM, Austin Pierce W, Shields CA, Poudel B, Williams JM. NLRP3 inflammasome activation in platelets in response to sepsis. Physiol Rep 2019; 7:e14073. [PMID: 31054188 PMCID: PMC6499866 DOI: 10.14814/phy2.14073] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a complex syndrome characterized by organ dysfunction and a dysregulated immune host response to infection. There is currently no effective treatment for sepsis, but platelets have been proposed as a potential therapeutic target for the treatment of sepsis. We hypothesized that the NLRP3 inflammasome is activated in platelets during sepsis and may be associated with multiorgan injury in response to polymicrobial sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in 12- to 13-week-old male Sprague-Dawley rats. The necrotic cecum was removed at 24 h post-CLP. At 72 h post-CLP, activated platelets were significantly increased in CLP versus Sham rats. Colocalization of NLRP3 inflammasome components was observed in platelets from CLP rats at 72 h post-CLP. Plasma, pulmonary, and renal levels of IL-1β and IL-18 were significantly higher in CLP rats compared to Sham controls. Soluble markers of endothelial permeability were increased in CLP versus Sham. Renal and pulmonary histopathology were markedly elevated in CLP rats compared to Sham controls. NLRP3 is activated in platelets in response to CLP and is associated with inflammation, endothelial permeability and multiorgan injury. Our results indicate that activated platelets may play a role to cause multiorgan injury in sepsis and may have therapeutic potential for the treatment of sepsis multiorgan injury.
Collapse
Affiliation(s)
- Denise C. Cornelius
- Department of Emergency MedicineUniversity of Mississippi Medical CenterJacksonMississippi
- Department of PharmacologyUniversity of Mississippi Medical CenterJacksonMississippi
- Cardiovascular Renal‐Research CenterUniversity of Mississippi Medical CenterJacksonMississippi
| | - Cedar H. Baik
- Department of Emergency MedicineUniversity of Mississippi Medical CenterJacksonMississippi
| | - Olivia K. Travis
- Department of PharmacologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Dakota L. White
- Department of Emergency MedicineUniversity of Mississippi Medical CenterJacksonMississippi
| | - Cassandra M. Young
- Department of PharmacologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - W. Austin Pierce
- Department of Emergency MedicineUniversity of Mississippi Medical CenterJacksonMississippi
| | - Corbin A. Shields
- Department of PharmacologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Bibek Poudel
- Department of PharmacologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Jan M. Williams
- Department of PharmacologyUniversity of Mississippi Medical CenterJacksonMississippi
- Cardiovascular Renal‐Research CenterUniversity of Mississippi Medical CenterJacksonMississippi
| |
Collapse
|
38
|
Sutton JA, Rogers LM, Dixon B, Kirk L, Doster R, Algood HM, Gaddy JA, Flaherty R, Manning SD, Aronoff DM. Protein kinase D mediates inflammatory responses of human placental macrophages to Group B Streptococcus. Am J Reprod Immunol 2019; 81:e13075. [PMID: 30582878 PMCID: PMC6459189 DOI: 10.1111/aji.13075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 01/22/2023] Open
Abstract
PROBLEM During pregnancy, Group B Streptococcus (GBS) can infect fetal membranes to cause chorioamnionitis, resulting in adverse pregnancy outcomes. Macrophages are the primary resident phagocyte in extraplacental membranes. Protein kinase D (PKD) was recently implicated in mediating pro-inflammatory macrophage responses to GBS outside of the reproductive system. This work aimed to characterize the human placental macrophage inflammatory response to GBS and address the extent to which PKD mediates such effects. METHOD Primary human placental macrophages were infected with GBS in the presence or absence of a specific, small molecule PKD inhibitor, CRT 0066101. Macrophage phenotypes were characterized by evaluating gene expression, cytokine release, assembly of the NLRP3 inflammasome, and NFκB activation. RESULTS GBS evoked a strong inflammatory phenotype characterized by the release of inflammatory cytokines (TNFα, IL-1β, IL-6 (P ≤ 0.05), NLRP3 inflammasome assembly (P ≤ 0.0005), and NFκB activation (P ≤ 0.05). Pharmacological inhibition of PKD suppressed these responses, newly implicating a role for PKD in mediating immune responses of primary human placental macrophages to GBS. CONCLUSION PKD plays a critical role in mediating placental macrophage inflammatory activation in response to GBS infection.
Collapse
Affiliation(s)
- Jessica A. Sutton
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, 37208, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisa M. Rogers
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Beverly Dixon
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leslie Kirk
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan Doster
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Holly M. Algood
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, U.S.A
| | - Jennifer A. Gaddy
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, U.S.A
| | - Rebecca Flaherty
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - David M. Aronoff
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, 37208, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
39
|
D'Errico JN, Stapleton PA. Developmental onset of cardiovascular disease-Could the proof be in the placenta? Microcirculation 2019; 26:e12526. [PMID: 30597690 PMCID: PMC6599488 DOI: 10.1111/micc.12526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
The Barker Hypothesis states change to the maternal environment may have significant impacts on fetal development, setting the stage for adult disease to occur. The development of the maternofetal vasculature during implantation and maintenance during pregnancy is extremely precise, yet dynamic. Delays or dysfunction in the orchestration of anatomical remodeling, maintenance of blood pressure, or responsiveness to metabolic demand may have severe consequences to the developing fetus. While these intermissions may not be fatal to the developing fetus, an interruption, reduction, or an inability to meet fetal demand of blood flow during crucial stages of development may predispose young to disease later in life. Maternal inability to meet fetal demand can be attributed to improper placental development and vascular support through morphological change or physiological function will significantly limit nutrient delivery and waste exchange to the developing fetus. Therefore, we present an overview of the uteroplacental vascular network, maternal cardiovascular adaptations that occur during pregnancy, placental blood flow, and common maternal comorbidities and/or exposures that may perturb maternal homeostasis and affect fetal development. Overall, we examine uterine microvasculature pathophysiology contributing to a hostile gestational environment and fetal predisposition to disease as it relates to the Barker Hypothesis.
Collapse
Affiliation(s)
- Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.,Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey
| |
Collapse
|
40
|
Xu WC, Dong X, Ding JL, Liu JC, Xu JJ, Tang YH, Yi YP, Lu C, Yang W, Yang JS, Gong Y, Zhou JL. Nanotubular TiO 2 regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways. Int J Nanomedicine 2019; 14:441-455. [PMID: 30666106 PMCID: PMC6330985 DOI: 10.2147/ijn.s188439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Macrophages play important roles in the immune response to, and successful implantation of, biomaterials. Titanium nanotubes are considered promising heart valve stent materials owing to their effects on modulation of macrophage behavior. However, the effects of nanotube-regulated macrophages on endothelial cells, which are essential for stent endothelialization, are unknown. Therefore, in this study we evaluated the inflammatory responses of endothelial cells to titanium nanotubes prepared at different voltages. Methods and results In this study we used three different voltages (20, 40, and 60 V) to produce titania nanotubes with three different diameters by anodic oxidation. The state of macrophages on the samples was assessed, and the supernatants were collected as conditioned media (CM) to stimulate human umbilical vein endothelial cells (HUVECs), with pure titanium as a control group. The results indicated that titanium dioxide (TiO2) nanotubes induced macrophage polarization toward the anti-inflammatory M2 state and increased the expression of arginase-1, mannose receptor, and interleukin 10. Further mechanistic analysis revealed that M2 macrophage polarization controlled by the TiO2 nanotube surface activated the phosphatidylinositol 3-kinase/AKT and extracellular signal-regulated kinase 1/2 pathways through release of vascular endothelial growth factor to influence endothelialization. Conclusion Our findings expanded our understanding of the complex influence of nanotubes in implants and the macrophage inflammatory response. Furthermore, CM generated from culture on the TiO2 nanotube surface may represent an integrated research model for studying the interactions of two different cell types and may be a promising approach for accelerating stent endothelialization through immunoregulation.
Collapse
Affiliation(s)
- Wei-Chang Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jing-Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jian-Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yan-Hua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Ying-Ping Yi
- Department of Science and Education, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jue-Sheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jian-Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| |
Collapse
|
41
|
Novak CM, Lee JY, Ozen M, Tsimis ME, Kucirka LM, McLane MW, Xie L, Kelleher M, Xie H, Jia B, Lei J, Burd I. Increased placental T cell trafficking results in adverse neurobehavioral outcomes in offspring exposed to sub-chronic maternal inflammation. Brain Behav Immun 2019; 75:129-136. [PMID: 30261304 DOI: 10.1016/j.bbi.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 11/28/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is a cytokine mediator of perinatal brain injury. The effect of sub-chronic systemic IL-1β exposure in perinatal and offspring outcomes is unclear. The aim of this study was to examine the effects of maternal IL-1β exposure on pregnancy and offspring outcomes. At E15, CD1 dams were allocated to receive intraperitoneal injection of phosphate buffered saline or mouse recombinant IL-1β (1 mcg) for four consecutive days. We analyzed pup survivaland neurobehavioral status. At E18, placental H&E staining and fetal brain Nissl staining was performed. Placental gene expression was analyzed by qPCR and T cell infiltration was analyzed by flow cytometry. Effects of inflammation on feto-placental blood flow were analyzed by Doppler ultrasonography. IL-1β decreased pup survival (P < .0001) and adversely affected offspring performance on neurodevelopmental tests (P < .05). Placentas of exposed dams exhibited significant thinning of maternal and fetal sides, and fetal brain exhibited cortical thinning. Placental qPCR analysis revealed significant upregulation of NFκB2 (P = .0021) and CXCL11 (P = .0401). While maternal IL-1β exposure did not affect feto-placental blood flow, placental flow cytometry showed an increase in placental infiltration of CD4+ T cells at 24 h post-injection (hpi, P < .0001) and CD8+ T cells at 72 hpi (P = .0217). Maternal sub-chronic, systemic inflammation with IL-1β decreased pup survival and played a key role in perinatal brain injury. The mechanisms behind these outcomes may involve immune system activation and alterations in placental T cell trafficking.
Collapse
Affiliation(s)
- Christopher M Novak
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Maide Ozen
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Tsimis
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren M Kucirka
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Xie
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith Kelleher
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
42
|
Pan J, Zhu Z, Xu G, Niu L, Yu L, Luo Z, Yan J. Expression of claudin‑11 in a rat model of varicocele and its effects on the blood‑testis barrier. Mol Med Rep 2018; 18:5647-5651. [PMID: 30365105 PMCID: PMC6236223 DOI: 10.3892/mmr.2018.9603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
Varicocele (VC) is an abnormal tortuosity and venous distension of the pampiniform plexus in the spermatic cord. VC is the most common surgically correctable cause of male infertility. The purpose of the present study was to investigate the effects of VC on the tight junctions and the blood‑testis barrier (BTB) of Sertoli cells in the bilateral testes of rats. A model of VC was established by left renal vein narrowing in Sprague‑Dawley rats; control rats underwent dissection of the vein without narrowing. The bilateral testes were harvested at 4, 6 and 8 weeks after the operation. The relative expression of claudin‑11 and transforming growth factor (TGF)‑β in the testis was determined by reverse transcription‑polymerase chain reaction analysis and immunohistochemistry (IHC). The expression level of claudin‑11 was prominently downregulated in the VC model group compared with the control group, while the level of TGF‑β in the testes was higher in the VC group. IHC examination demonstrated that VC led to destruction of the integrity of the BTB, and the degree of destruction increased with time. Furthermore, it was also observed that unilateral VC affected contralateral testicular function. In conclusion, the present study partially explained the molecular mechanisms underlying the pathogenesis of VC and provided grounds for further research into the treatment of male infertility.
Collapse
Affiliation(s)
- Jiangang Pan
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Zhirong Zhu
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Gang Xu
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Lili Niu
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Lihang Yu
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Zhengang Luo
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Jiajun Yan
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
43
|
Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Exp Neurol 2017; 301:110-119. [PMID: 29117499 DOI: 10.1016/j.expneurol.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
In the United States, perinatal brain injury (PBI) is a major cause of infant mortality and childhood disability. For a large proportion of infants with PBI, central nervous system (CNS) injury begins in utero with inflammation (chorioamnionitis/CHORIO) and/or hypoxia-ischemia. While studies show CHORIO contributes to preterm CNS injury and is also a common independent risk factor for brain injury in term infants, the molecular mechanisms mediating inflammation in the placental-fetal-brain axis that result in PBI remain a gap in knowledge. The chemokine (C-X-C motif) ligand 1 (CXCL1), and its cognate receptor, CXCR2, have been clinically implicated in CHORIO and in mature CNS injury, although their specific role in PBI pathophysiology is poorly defined. Given CXCL1/CXCR2 signaling is essential to neural cell development and neutrophil recruitment, a key pathological hallmark of CHORIO, we hypothesized CHORIO would upregulate CXCL1/CXCR2 expression in the placenta and fetal circulation, concomitant with increased CXCL1/CXCR2 signaling in the developing brain, immune cell activation, neutrophilia, and microstructural PBI. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague Dawley rats to induce CHORIO. Specifically, uterine arteries were occluded for 60min to induce placental transient systemic hypoxia-ischemia (TSHI), followed by intra-amniotic injection of lipopolysaccharide (LPS). Pups were born at E22. Placentae, serum and brain were collected along an extended time course from E19 to postnatal day (P)15 and analyzed using multiplex electrochemiluminescence (MECI), Western blot, qPCR, flow cytometry (FC) and diffusion tensor imaging (DTI). Results demonstrate that compared to sham, CHORIO increases placental CXCL1 and CXCR2 mRNA levels, concomitant with increased CXCR2+ neutrophils. Interestingly, pup serum CXCL1 expression in CHORIO parallels this increase, with sustained elevation through P15. Analyses of CHORIO brains reveal similarly increased CXCL1/CXCR2 expression through P7, together with increased neutrophilia, microgliosis and peripheral macrophages. Similar to the placenta, cerebral neutrophilia was defined by increased CXCR2 surface expression and elevated myeloperoxidase expression (MPO), consistent with immune cell activation. Evaluation of microstructural brain injury at P15 with DTI reveals aberrant microstructural integrity in the callosal and capsular white matter, with reduced fractional anisotropy in superficial and deep layers of overlying cortex. In summary, using an established model of CHORIO that exhibits mature CNS deficits mimicking those of preterm survivors, we show CHORIO induces injury throughout the placental-fetal-brain axis with a CXCL1/CXCR2 inflammatory signature, neutrophilia, and microstructural abnormalities. These data are concomitant with abnormal cerebral CXCL1/CXCR2 expression, and support temporal aberrations in CXCL1/CXCR2 and neutrophil dynamics in the placental-fetal-brain axis following CHORIO. These investigations define novel targets for directed therapies for infants at high risk for PBI.
Collapse
|
44
|
Maternal dendrimer-based therapy for inflammation-induced preterm birth and perinatal brain injury. Sci Rep 2017; 7:6106. [PMID: 28733619 PMCID: PMC5522481 DOI: 10.1038/s41598-017-06113-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/08/2017] [Indexed: 01/06/2023] Open
Abstract
Preterm birth is a major risk factor for adverse neurological outcomes in ex-preterm children, including motor, cognitive, and behavioral disabilities. N-acetyl-L-cysteine therapy has been used in clinical studies; however, it requires doses that cause significant side effects. In this study, we explore the effect of low dose N-acetyl-L-cysteine therapy, delivered using a targeted, systemic, maternal, dendrimer nanoparticle (DNAC), in a mouse model of intrauterine inflammation. Our results demonstrated that intraperitoneal maternal DNAC administration significantly reduced the preterm birth rate and altered placental immune profile with decreased CD8+ T-cell infiltration. Furthermore, we demonstrated that DNAC improved neurobehavioral outcomes and reduced fetal neuroinflammation and long-term microglial activation in offspring. Our study is the first to provide evidence for the role of CD8+ T-cell in the maternal-fetal interface during inflammation and further support the efficacy of DNAC in preventing preterm birth and prematurity-related outcomes.
Collapse
|
45
|
The placental interleukin-6 signaling controls fetal brain development and behavior. Brain Behav Immun 2017; 62:11-23. [PMID: 27838335 PMCID: PMC5373986 DOI: 10.1016/j.bbi.2016.11.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023] Open
Abstract
Epidemiological studies show that maternal immune activation (MIA) during pregnancy is a risk factor for autism. However, mechanisms for how MIA affects brain development and behaviors in offspring remain poorly described. To determine whether placental interleukin-6 (IL-6) signaling is required for mediating MIA on the offspring, we generated mice with restricted deletion of the receptor for IL-6 (IL-6Rα) in placental trophoblasts (Cyp19-Cre+;Il6rafl/fl), and tested offspring of Cyp19-Cre+;Il6rafl/fl mothers for immunological, pathological and behavioral abnormalities following induction of MIA. We reveal that MIA results in acute inflammatory responses in the fetal brain. Lack of IL-6 signaling in trophoblasts effectively blocks MIA-induced inflammatory responses in the placenta and the fetal brain. Furthermore, behavioral abnormalities and cerebellar neuropathologies observed in MIA control offspring are prevented in Cyp19-Cre+;Il6rafl/fl offspring. Our results demonstrate that IL-6 activation in placenta is required for relaying inflammatory signals to the fetal brain and impacting behaviors and neuropathologies relevant to neurodevelopmental disease.
Collapse
|
46
|
Stojanovska V, Scherjon SA, Plösch T. Preeclampsia As Modulator of Offspring Health. Biol Reprod 2016; 94:53. [PMID: 26792940 DOI: 10.1095/biolreprod.115.135780] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/15/2016] [Indexed: 02/01/2023] Open
Abstract
A balanced intrauterine homeostasis during pregnancy is crucial for optimal growth and development of the fetus. The intrauterine environment is extremely vulnerable to multisystem pregnancy disorders such as preeclampsia, which can be triggered by various pathophysiological factors, such as angiogenic imbalance, immune responses, and inflammation. The fetus adapts to these conditions by a mechanism known as developmental programming that can lead to increased risk of chronic noncommunicable diseases in later life. This is shown in a substantial number of epidemiological studies that associate preeclampsia with increased onset of cardiovascular and metabolic diseases in the later life of the offspring. Furthermore, animal models based predominantly on one of the pathophysiological mechanism of preeclampsia, for example, angiogenic imbalance, immune response, or inflammation, do address the susceptibility of the preeclamptic offspring to increased maternal blood pressure and disrupted metabolic homeostasis. Accordingly, we extensively reviewed the latest research on the role of preeclampsia on the offspring's metabolism and cardiovascular phenotype. We conclude that future research on the pathophysiological changes during preeclampsia and methods to intervene in the harsh intrauterine environment will be essential for effective therapies.
Collapse
Affiliation(s)
- Violeta Stojanovska
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Sicco A Scherjon
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
47
|
Musolino PL, Gong Y, Snyder JMT, Jimenez S, Lok J, Lo EH, Moser AB, Grabowski EF, Frosch MP, Eichler FS. Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain 2015; 138:3206-20. [PMID: 26377633 DOI: 10.1093/brain/awv250] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/03/2015] [Indexed: 01/31/2023] Open
Abstract
See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy.
Collapse
Affiliation(s)
- Patricia L Musolino
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 2 Center for Rare Neurological Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 2 Center for Rare Neurological Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Juliet M T Snyder
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sandra Jimenez
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Josephine Lok
- 3 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eng H Lo
- 3 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ann B Moser
- 4 Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Eric F Grabowski
- 5 Department of Paediatric Haematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 6 C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| | - Florian S Eichler
- 1 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 2 Center for Rare Neurological Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|