1
|
AbdRabou MA, Mehany ABM, Massoud D, Nabeeh A, Asran AM, Germoush MO, Al-Otaibi AM, Atwa A. Mitigation of biochemical alterations in streptozotocin-induced gestational diabetes in rats through mesenchymal stem cells and olive leaf extract. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 39233508 DOI: 10.1002/jez.2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Treatment with mesenchymal stem cells (MSCs) is a new promising therapeutic approach with substantial very auspicious potential. They have been shown to protect various played a role in protecting organs from damage. This current study aims to evaluate the impact of the treatment of olive leaf extract (OLE), bone marrow-derived (BM-MSCs), and their combination on hepatotoxicity in pregnant rats with diabetes. METHODS Animals were divided into five groups (10 pregnant rats each) as follows: control, GDM group, and OLE group (rats received streptozotocin (STZ) at a dose of 35 mg/kg body weight). GD + OLE set (pregnant rats were administered OLE at a dose of 200 mg extract/kg of body weight). GD + MSCs group (pregnant rats treated with MSCs). GD + OLE + MSCs group (pregnant rats were treated with both MSCs and OLE). RESULTS STZ induced significant changes in liver parameters, lipid profile, and oxidative stress. Treatment with OLE, BM-MSCs, and their combination significantly ameliorated STZ-induced liver damage and oxidative stress. STZ resulted in a significant change in liver parameters, lipid profile, and oxidative stress. OLE, BM-MSC, and combination have significantly improved STZ-induced deterioration in liver and improved oxidative stress. CONCLUSIONS The findings demonstrate that OLE and BM-MSCs have beneficial effects in mitigating diabetes-related liver alterations. These outcomes showed that OLE and BM-MSC have beneficial effects in alleviating diabetes-related alterations in the liver.
Collapse
Affiliation(s)
- Mervat A AbdRabou
- Biology Department, College of Science, Olive Research Center, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Diaa Massoud
- Biology Department, College of Science, Olive Research Center, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Aml M Asran
- Olive Research Center, Jouf University, Dean of the common First Year, Sakaka, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Olive Research Center, Jouf University, Sakaka, Saudi Arabia
| | - Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed Atwa
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Chernysheva МB, Ruchko ЕS, Karimova МV, Vorotelyak ЕA, Vasiliev АV. Development, regeneration, and physiological expansion of functional β-cells: Cellular sources and regulators. Front Cell Dev Biol 2024; 12:1424278. [PMID: 39045459 PMCID: PMC11263198 DOI: 10.3389/fcell.2024.1424278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Pancreatic regeneration is a complex process observed in both normal and pathological conditions. The aim of this review is to provide a comprehensive understanding of the emergence of a functionally active population of insulin-secreting β-cells in the adult pancreas. The renewal of β-cells is governed by a multifaceted interaction between cellular sources of genetic and epigenetic factors. Understanding the development and heterogeneity of β-cell populations is crucial for functional β-cell regeneration. The functional mass of pancreatic β-cells increases in situations such as pregnancy and obesity. However, the specific markers of mature β-cell populations and postnatal pancreatic progenitors capable of increasing self-reproduction in these conditions remain to be elucidated. The capacity to regenerate the β-cell population through various pathways, including the proliferation of pre-existing β-cells, β-cell neogenesis, differentiation of β-cells from a population of progenitor cells, and transdifferentiation of non-β-cells into β-cells, reveals crucial molecular mechanisms for identifying cellular sources and inducers of functional cell renewal. This provides an opportunity to identify specific cellular sources and mechanisms of regeneration, which could have clinical applications in treating various pathologies, including in vitro cell-based technologies, and deepen our understanding of regeneration in different physiological conditions.
Collapse
Affiliation(s)
- М. B. Chernysheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Е. S. Ruchko
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - М. V. Karimova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
- Department of Biology and Biotechnologies Charles Darwin, The Sapienza University of Rome, Rome, Italy
| | - Е. A. Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - А. V. Vasiliev
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
3
|
Khoshkerdar A, Eid N, Batra V, Baker N, Holmes N, Henson S, Sang F, Wright V, McLaren J, Shakesheff K, Woad KJ, Morgan HL, Watkins AJ. Sub-Optimal Paternal Diet at the Time of Mating Disrupts Maternal Adaptations to Pregnancy in the Late Gestation Mouse. Nutrients 2024; 16:1879. [PMID: 38931234 PMCID: PMC11206308 DOI: 10.3390/nu16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pregnancy represents a stage during which maternal physiology and homeostatic regulation undergo dramatic change and adaptation. The fundamental purpose of these adaptations is to ensure the survival of her offspring through adequate nutrient provision and an environment that is tolerant to the semi-allogenic foetus. While poor maternal diet during pregnancy is associated with perturbed maternal adaptations during pregnancy, the influence of paternal diet on maternal well-being is less clearly defined. We fed C57BL/6 male mice either a control (CD), low protein diet (LPD), a high fat/sugar Western diet (WD) or the LPD or WD supplemented with methyl donors (MD-LPD and MD-WD, respectively) for a minimum of 8 weeks prior to mating with C57BL/6 females. Mated females were culled at day 17 of gestation for the analysis of maternal metabolic, gut, cardiac and bone health. Paternal diet had minimal influences on maternal serum and hepatic metabolite levels or gut microbiota diversity. However, analysis of the maternal hepatic transcriptome revealed distinct profiles of differential gene expression in response to the diet of the father. Paternal LPD and MD-LPD resulted in differential expression of genes associated with lipid metabolism, transcription, ubiquitin conjugation and immunity in dams, while paternal WD and MD-WD modified the expression of genes associated with ubiquitin conjugation and cardiac morphology. Finally, we observed changes in maternal femur length, volume of trabecular bone, trabecular connectivity, volume of the cortical medullar cavity and thickness of the cortical bone in response to the father's diets. Our current study demonstrates that poor paternal diet at the time of mating can influence the patterns of maternal metabolism and gestation-associated adaptations to her physiology.
Collapse
Affiliation(s)
- Afsaneh Khoshkerdar
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Nader Eid
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Vipul Batra
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Nichola Baker
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Nadine Holmes
- Deep Seq, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (N.H.); (S.H.); (F.S.); (V.W.)
| | - Sonal Henson
- Deep Seq, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (N.H.); (S.H.); (F.S.); (V.W.)
| | - Fei Sang
- Deep Seq, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (N.H.); (S.H.); (F.S.); (V.W.)
| | - Victoria Wright
- Deep Seq, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (N.H.); (S.H.); (F.S.); (V.W.)
| | - Jane McLaren
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2UH, UK; (J.M.)
| | - Kevin Shakesheff
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2UH, UK; (J.M.)
| | - Kathryn J. Woad
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Hannah L. Morgan
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Adam J. Watkins
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| |
Collapse
|
4
|
Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol 2024; 24:161. [PMID: 38730357 PMCID: PMC11083820 DOI: 10.1186/s12866-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Zifeng Cui
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China.
| |
Collapse
|
5
|
Yang L, Zhou Y, Jiang M, Wen W, Guo Y, Pakhale S, Wen SW. Why Female Smokers Have Poorer Long-Term Health Outcomes than Male Smokers: The Role of Cigarette Smoking During Pregnancy. Public Health Rev 2024; 45:1605579. [PMID: 38487619 PMCID: PMC10938403 DOI: 10.3389/phrs.2024.1605579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives: Women's health status is better than men but the opposite is true for female smokers who usually have poorer long-health outcomes than male smokers. The objectives of this study were to thoroughly reviewed and analyzed relevant literature and to propose a hypothesis that may explain this paradox phenomenon. Methods: We conducted a search of literature from three English databases (EMBASE, MEDLINE, and Google Scholar) from inception to 13 November 2023. A combination of key words and/or subject headings in English was applied, including relevant terms for cigarette smoking, sex/gender, pregnancy, and health indicators. We then performed analysis of the searched literature. Results: Based on this review/analysis of literature, we proposed a hypothesis that may explain this paradox phenomenon: female smokers have worse long-term health outcomes than male smokers because some of them smoke during pregnancy, and the adverse effects of cigarette smoking during pregnancy is much stronger than cigarette smoking during non-pregnancy periods. Conclusion: Approval of our pregnancy-amplification theory could provide additional evidence on the adverse effect on women's long-term health outcomes for cigarette smoking during pregnancy.
Collapse
Affiliation(s)
- Li Yang
- Respiratory Medicine Department of Xiangtan Central Hospital of Hunan Province, Xiangtan, Hunan, China
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Yunchun Zhou
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Pulmonary and Critical Care Medicine of Yuxi People’s Hospital of Yunnan Province, Yuxi, Yunnan, China
| | - Mingyan Jiang
- Respiratory Medicine Department of Xiangtan Central Hospital of Hunan Province, Xiangtan, Hunan, China
| | - Wendy Wen
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Yanfang Guo
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- BORN (Better Outcome Registry Network) Ontario, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Smita Pakhale
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Division of Respiratory, The Ottawa Hospital, Ottawa, ON, Canada
| | - Shi Wu Wen
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Cissé YM, Montgomery KR, Zierden HC, Hill EM, Kane PJ, Huang W, Kane MA, Bale TL. Maternal preconception stress produces sex-specific effects at the maternal:fetal interface to impact offspring development and phenotypic outcomes†. Biol Reprod 2024; 110:339-354. [PMID: 37971364 PMCID: PMC10873277 DOI: 10.1093/biolre/ioad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Hill
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick J Kane
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Li S, Wang L, Yang H, Fan L. Changes in the shape and function of the fetal heart of pre- and gestational diabetes mothers. BMC Pregnancy Childbirth 2024; 24:57. [PMID: 38212679 PMCID: PMC10782618 DOI: 10.1186/s12884-024-06262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Hyperglycemia during pregnancy can affect fetal heart in many ways, including causing cardiac malformation, leading to hypertrophic cardiomyopathy and cardiac dysfunction. Echocardiographic evaluation can assist identify alterations in heart structure, morphology and function, enabling prompt monitoring and management. However, according to earlier research, the cardiac alterations are modest in hyperglycemic mothers' fetuses, and might not be detectable using conventional methods and it is also unclear whether these changes are related to the metabolism of mothers. Fetal Heart Quantification (Fetal HQ) can assess ventricular geometry and function more sensitively and thoroughly, and identify sub-clinical cardiac dysfunction. The purpose of this study was to evaluate fetal heart by Fetal HQ in fetuses of hyperglycemic mothers who either had pre-gestational or gestational diabetes and to correlate them with maternal metabolic indices. METHODS The fetuses of 25 gestational age-matched control mothers, 48 women with gestational diabetes mellitus (GDM), and 11 women with diabetes mellitus (DM) were included in the prospective case-control research. Using fetal echocardiography and speckle tracking echocardiography (STE), the heart of the fetus was evaluated. Differences in the groups' anthropometric, metabolic, and cardiac parameters were examined. It was assessed whether maternal features, prenatal glucose, lipids, and maternal hemoglobin A1c (HbA1c) correlated with fetal cardiac parameters. RESULTS The LV EDV and ESV were significantly higher in the GDM group as compared to the DM group (p < 0.05). The GSI% was significantly lower in the GDM group compared with the control (p < 0.05). The LV SV and CO of the GDM group were both significantly higher compared with the DM group (p < 0.05). There was a significant decrease in RV FS for segments 1-7 in GDM fetuses compared to the control (p < 0.05) and for segments 5-10 compared to DM (p < 0.05). Fetal cardiac morphology and function indices correlate with maternal pregestational weight, BMI, early pregnancy fast glucose, lipids, and glycemic control levels. CONCLUSIONS Fetuses exposed to gestational diabetes have altered heart morphology and function that is linked to maternal metabolic parameters, which presents a special indication for performing geometry and function cardiac assessment. Fetal HQ can be employed to evaluate the fetal cardiac shape and function in fetuses exposed to gestational diabetes.
Collapse
Affiliation(s)
- Shuang Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Lixin Fan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Ducarme G, Planche L, Lbakhar M. Predictive Factors for Successful Cervical Ripening among Women with Gestational Diabetes Mellitus at Term: A Prospective Study. J Clin Med 2023; 13:139. [PMID: 38202146 PMCID: PMC10779893 DOI: 10.3390/jcm13010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of this prospective cohort study is to identify the predictive factors for vaginal delivery among women (n = 146) who underwent cervical ripening using a dinoprostone insert (PG) alone (13.7%), cervical ripening balloon (CRB) alone (52.7%), oral misoprostol (M) alone (4.1%), or repeated methods (R, 29.5%) for gestational diabetes mellitus (GDM) at term, and to analyze maternal and neonatal morbidity outcomes according to the method for cervical ripening. After cervical ripening, vaginal delivery occurred in 84.2% (n = 123) and was similar among groups (90.0% after PG, 83.1% after CRB, 83.3% after M, and 83.7% after R; p = 0.89). After a multivariable logistic regression analysis adjusted for potential confounders, the internal cervical os being open before cervical ripening was a predictor of vaginal delivery (adjusted odds ratio (OR) of 4.38, 95% confidence index (CI) of 1.62-13.3, p = 0.03), and previous cesarean delivery was a predictor of cesarean delivery (aOR of 7.67, 95% CI of 2.49-24.00, p < 0.01). Birthweight was also significantly associated with cesarean delivery (aOR of 1.15, 95% CI of 1.03-1.31, p = 0.02). The rates of maternal and neonatal morbidity outcomes were 10.9% (n = 16) and 19.9% (n = 29), respectively, and did not differ according to the mode of delivery and to the method used for cervical ripening. Identifying these specific high-risk women (previous cesarean delivery and internal cervical os being closed before cervical ripening) for cesarean delivery among women who underwent cervical ripening for GDM at term is important and practical for all physicians to make a decision in partnership with women.
Collapse
Affiliation(s)
- Guillaume Ducarme
- Department of Obstetrics and Gynecology, Centre Hospitalier Departemental, 85000 La Roche sur Yon, France;
| | - Lucie Planche
- Clinical Research Center, Centre Hospitalier Departemental, 85000 La Roche sur Yon, France;
| | - Mounia Lbakhar
- Department of Obstetrics and Gynecology, Centre Hospitalier Departemental, 85000 La Roche sur Yon, France;
| |
Collapse
|
9
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
10
|
Saini N, Mooney SM, Smith SM. Alcohol blunts pregnancy-mediated insulin resistance and reduces fetal brain glucose despite elevated fetal gluconeogenesis, and these changes associate with fetal weight outcomes. FASEB J 2023; 37:e23172. [PMID: 37665328 PMCID: PMC11167647 DOI: 10.1096/fj.202300788r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Prenatal alcohol exposure (PAE) impairs fetal growth and neurodevelopment. Although alcohol is well known to alter metabolism, its impact on these processes during pregnancy is largely unexplored. Here, we investigate how alcohol affects maternal-fetal glucose metabolism using our established mouse binge model of PAE. In the dam, alcohol reduces the hepatic abundance of glucose and glycolytic intermediates, and the gluconeogenic enzymes glucose-6-phosphtase and phosphoenolpyruvate carboxykinase. Fasting blood glucose is also reduced. In a healthy pregnancy, elevated maternal gluconeogenesis and insulin resistance ensures glucose availability for the fetus. Glucose and insulin tolerance tests reveal that alcohol impairs the dam's ability to acquire insulin resistance. Alcohol-exposed dams have enhanced glucose clearance (p < .05) in early gestation, after just two days of alcohol, and this persists through late term when fetal glucose needs are maximal. However, maternal plasma insulin levels, hepatic insulin signaling, and the abundance of glucose transporter proteins remain unchanged. In the PAE fetus, the expression of hepatic gluconeogenic genes is elevated, and there is a trend for elevated blood and liver glucose levels. In contrast, fetal brain and placental glucose levels remain low. This reduced maternal fasting glucose, reduced hepatic glucose, and elevated glucose clearance inversely correlated with fetal body and brain weight. Taken together, these data suggest that alcohol blunts the adaptive changes in maternal glucose metabolism that otherwise enhance fetal glucose availability. Compensatory attempts by the fetus to increase glucose pools via gluconeogenesis do not normalize brain glucose. These metabolic changes may contribute to the impaired fetal growth and brain development that typifies PAE.
Collapse
Affiliation(s)
- Nipun Saini
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Sandra M. Mooney
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Susan M. Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| |
Collapse
|
11
|
O'Brien K, Wang Y. The Placenta: A Maternofetal Interface. Annu Rev Nutr 2023; 43:301-325. [PMID: 37603428 DOI: 10.1146/annurev-nutr-061121-085246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The placenta is the gatekeeper between the mother and the fetus. Over the first trimester of pregnancy, the fetus is nourished by uterine gland secretions in a process known as histiotrophic nutrition. During the second trimester of pregnancy, placentation has evolved to the point at which nutrients are delivered to the placenta via maternal blood (hemotrophic nutrition). Over gestation, the placenta must adapt to these variable nutrient supplies, to alterations in maternal physiology and blood flow, and to dynamic changes in fetal growth rates. Numerous questions remain about the mechanisms used to transport nutrients to the fetus and the maternal and fetal determinants of this process. Growing data highlight the ability of the placenta to regulate this process. As new technologies and omics approaches are utilized to study this maternofetal interface, greater insight into this unique organ and its impact on fetal development and long-term health has been obtained.
Collapse
Affiliation(s)
- Kimberly O'Brien
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| | - Yiqin Wang
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| |
Collapse
|
12
|
Yang N, Zhang W, Ji C, Ge J, Zhang X, Li M, Wang M, Zhang T, He J, Zhu H. Metabolic alteration of circulating steroid hormones in women with gestational diabetes mellitus and the related risk factors. Front Endocrinol (Lausanne) 2023; 14:1196935. [PMID: 37396163 PMCID: PMC10310992 DOI: 10.3389/fendo.2023.1196935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Background Abnormally changed steroid hormones during pregnancy are closely related to the pathological process of gestational diabetes mellitus (GDM). Our aim was to systematically profile the metabolic alteration of circulating steroid hormones in GDM women and screen for risk factors. Methods This study was a case-control study with data measured from 40 GDM women and 70 healthy pregnant women during their 24-28 gestational weeks. 36 kinds of steroid hormones, including 3 kinds of corticosteroids, 2 kinds of progestins, 5 kinds of androgens and 26 kinds of downstream estrogens in serum were systematically measured using a combined sensitive UPLC-MS/MS method. The flux of different metabolic pathways of steroid hormones was analyzed. Logistic regression and ROC curve model analyses were performed to identify potential steroid markers closely associated with GDM development. Results Serum corticosteroids, progestins and almost all the estrogen metabolites via 16-pathway from parent estrogens were higher in GDM women compared with healthy controls. Most of the estrogen metabolites via 4-pathway and more than half of the metabolites via 2-pathway were not significantly different. 16α-hydroxyestrone (16OHE1), estrone-glucuronide/sulfate (E1-G/S) and the ratio of total 2-pathway estrogens to total estrogens were screened as three indicators closely related to the risk of GDM development. The adjusted odds ratios of GDM for the highest quartile compared with the lowest were 72.22 (95% CI 11.27-462.71, P trend <0.001) for 16OHE1 and 6.28 (95% CI 1.74-22.71, P trend <0.05) for E1-G/S. The ratio of 2-pathway estrogens to total estrogens was negatively associated with the risk of GDM. Conclusion The whole metabolic flux from cholesterol to downstream steroid hormones increased in GDM condition. The most significant changes were observed in the 16-pathway metabolism of estrogens, rather than the 2- or 4-pathway or other types of steroid hormones. 16OHE1 may be a strong marker associated with the risk for GDM.
Collapse
Affiliation(s)
- Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zhang
- Nanjing Qlife Medical Technology Co., Ltd, Nanjing, Jiangsu, China
| | - Cheng Ji
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiajia Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoli Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meijuan Li
- Nanjing Qlife Medical Technology Co., Ltd, Nanjing, Jiangsu, China
| | - Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Tianqi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jun He
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Musa E, Salazar-Petres E, Arowolo A, Levitt N, Matjila M, Sferruzzi-Perri AN. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol 2023; 601:1287-1306. [PMID: 36849131 DOI: 10.1113/jp284139] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are associated with insulin resistance and health risks for mother and offspring. Obesity is also characterized by low-grade inflammation, which in turn, impacts insulin sensitivity. The placenta secretes inflammatory cytokines and hormones that influence maternal glucose and insulin handling. However, little is known about the effect of maternal obesity, GDM and their interaction, on placental morphology, hormones and inflammatory cytokines. In a South African cohort of non-obese and obese pregnant women with and without GDM, this study examined placental morphology using stereology, placental hormone and cytokine expression using real-time PCR, western blotting and immunohistochemistry, and circulating TNFα and IL-6 concentrations using ELISA. Placental expression of endocrine and growth factor genes was not altered by obesity or GDM. However, LEPTIN gene expression was diminished, syncytiotrophoblast TNFα immunostaining elevated and stromal and fetal vessel IL-6 staining reduced in the placenta of obese women in a manner that was partly influenced by GDM status. Placental TNFα protein abundance and maternal circulating TNFα concentrations were reduced in GDM. Both maternal obesity and, to a lesser extent, GDM were accompanied by specific changes in placental morphometry. Maternal blood pressure and weight gain and infant ponderal index were also modified by obesity and/or GDM. Thus, obesity and GDM have specific impacts on placental morphology and endocrine and inflammatory states that may relate to pregnancy outcomes. These findings may contribute to developing placenta-targeted treatments that improve mother and offspring outcomes, which is particularly relevant given increasing rates of obesity and GDM worldwide. KEY POINTS: Rates of maternal obesity and gestational diabetes (GDM) are increasing worldwide, including in low-middle income countries (LMIC). Despite this, much of the work in the field is conducted in higher-income countries. In a well-characterised cohort of South African women, this study shows that obesity and GDM have specific impacts on placental structure, hormone production and inflammatory profile. Moreover, such placental changes were associated with pregnancy and neonatal outcomes in women who were obese and/or with GDM. The identification of specific changes in the placenta may help in the design of diagnostic and therapeutic approaches to improve pregnancy and neonatal outcomes with particular significant benefit in LMICs.
Collapse
Affiliation(s)
- Ezekiel Musa
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, Kaduna State University, Kaduna, Nigeria
| | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Afolake Arowolo
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Naomi Levitt
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mushi Matjila
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Mandato C, Panera N, Alisi A. Pregnancy and Metabolic-Associated Fatty Liver Disease. Endocrinol Metab Clin North Am 2023. [PMID: 37495342 DOI: 10.1016/j.ecl.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD), the term proposed to substitute nonalcoholic fatty liver disease, comprises not only liver features but also potentially associated metabolic dysfunctions. Since experimental studies in mice and retrospective clinical studies in humans investigated the association between nonalcoholic fatty liver disease during pregnancy and the adverse clinical outcomes in mothers and offspring, it is plausible that MAFLD may cause similar or worse effects on mother and the offspring. Only a few studies have investigated the possible association of maternal MAFLD with more severe pregnancy-related complications. This article provides an overview of the evidence for this dangerous liaison.
Collapse
|
15
|
DeFoor M, Amiri A. A Conceptual Analysis of Mental Health Maladaptation in Postpartum. J Perinat Educ 2023; 32:14-22. [PMID: 36632513 PMCID: PMC9822563 DOI: 10.1891/jpe-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: This concept analysis aims to explore how the concept of maladaptation applies to mental health changes among postpartum women. Background: The concept of maladaptation is utilized throughout various disciplines but minimally in women's health, including a limited focus on maladaptive body dissatisfaction and perfectionistic beliefs of women in the postpartum period. Methods: The Walker and Avant eight-phase model was used to guide this analysis. Data Source: A search for maladaptation articles through Cumulative Index to Nursing and Allied Health Literature (CINAHL) Complete, ProQuest, and PubMed databases, as well as Google Scholar, was conducted. Results: A review of the literature concerning maladaptation in postpartum mental health resulted in defining two key attributes, including conforming to cultural norms of body image and pressure of perfection. In understanding maladaptation and its attributes, childbirth educators and health-care professionals will be able to better determine more contributing factors for postpartum depression (PPD) and formulate a plan that includes early intervention and support. Conclusion: This concept analysis is intended to improve maternal and neonatal health outcomes by understanding mental health maladaptations related to PPD.
Collapse
|
16
|
Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131:66-77. [PMID: 35393235 DOI: 10.1016/j.semcdb.2022.03.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a transient fetal organ that plays a critical role in the health and wellbeing of both the fetus and its mother. Functionally, the placenta sustains the growth of the fetus as it facilitates delivery of oxygen and nutrients and removal of waste products. Not surprisingly, defective early placental development is the primary cause of common disorders of pregnancy, including recurrent miscarriage, fetal growth restriction, pre-eclampsia and stillbirth. Adverse pregnancy conditions will also affect the life-long health of the fetus via developmental programming[1]. Despite its critical importance in reproductive success and life-long health, our understanding of placental development is not extensive, largely due to ethical limitations to studying early or chronological placental development, lack of long-term in vitro models, or comparative animal models. In this review, we examine current knowledge of early human placental development, discuss the critical role of the maternal endometrium and of the fetal-maternal dialogue in pregnancy success, and we explore the latest models of trophoblast and endometrial stem cells. In addition, we discuss the role of oxygen in placental formation and function, how nutrient delivery is mediated during the periods of histotrophic nutrition (uptake of uterine secretions) and haemotrophic nutrition (exchange between the maternal and fetal circulations), and how placental endocrine function facilitates fetal growth and development.
Collapse
Affiliation(s)
- Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
17
|
Lean SC, Candia AA, Gulacsi E, Lee GCL, Sferruzzi-Perri AN. Obesogenic diet in mice compromises maternal metabolic physiology and lactation ability leading to reductions in neonatal viability. Acta Physiol (Oxf) 2022; 236:e13861. [PMID: 35880402 PMCID: PMC9787084 DOI: 10.1111/apha.13861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 01/29/2023]
Abstract
AIMS Diets containing high-fat and high sugar (HFHS) lead to overweight/obesity. Overweight/obesity increases the risk of infertility, and of the pregnant mother and her child for developing metabolic conditions. Overweight/obesity has been recreated in mice, but most studies focus on the effects of chronic, long-term HFHS diet exposure. Here, we exposed mice to HFHS from 3 weeks prior to pregnancy with the aim of determining impacts on fertility, and gestational and neonatal outcomes. METHODS Time-domain NMR scanning was used to assess adiposity, glucose, and insulin tolerance tests were employed to examine metabolic physiology, and morphological and proteomic analyses conducted to assess structure and nutrient levels of maternal organs and placenta. RESULTS Fertility measures of HFHS dams were largely the same as controls. HFHS dams had increased adiposity pre-pregnancy, however, exhibited exacerbated lipolysis/hyper-mobilization of adipose stores in late pregnancy. While there were no differences in glucose or insulin tolerance, HFHS dams were hyperglycemic and hyperinsulinemic in pregnancy. HFHS dams had fatty livers and altered pancreatic islet morphology. Although fetuses were hyperglycemic and hyperinsulinemic, there was no change in fetal growth in HFHS dams. There were also reductions in placenta formation. Moreover, there was increased offspring loss during lactation, which was related to aberrant mammary gland development and milk protein composition in HFHS dams. CONCLUSIONS These findings are relevant given current dietary habits and the development of maternal and offspring alterations in the absence of an increase in maternal weight and adiposity during pregnancy, which are the current clinical markers to determine risk across gestation.
Collapse
Affiliation(s)
- Samantha C Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alejandro A Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department for the Woman and Newborn Health Promotion, Universidad de Chile, Santiago, Chile
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Giselle C L Lee
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Maternal and Neonatal Vitamin D Binding Protein Polymorphisms and 25-Hydroxyvitamin D Cutoffs as Determinants of Neonatal Birth Anthropometry. Nutrients 2022; 14:nu14183799. [PMID: 36145176 PMCID: PMC9504771 DOI: 10.3390/nu14183799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Vitamin D-binding protein (VDBP) is a vital regulator of optimal vitamin D homeostasis and bioavailability. Apart from its well-documented role as a key component in vitamin D dynamic transfer and circulation, it has a myriad of immunoregulatory functions related to innate immunity, which becomes particularly critical in states of increased immunological tolerance including pregnancy. In this regard, VDBP dyshomeostasis is considered to contribute to the development of several fetal, maternal, and neonatal adverse outcomes. However, precise physiological pathways, including the contribution of specific VDBP polymorphisms behind such phenomena, are yet to be fully deciphered. Our aim was to assess the combined effect of maternal and neonatal VDBP polymorphism heterogeneity in conjunction with different maternal and neonatal 25(OH)D cutoffs on the neonatal anthropometric profile at birth. Methods: The study included data and samples from a cohort of 66 mother–child pairs at birth. The inclusion criterion was full-term pregnancy (gestational weeks 37–42). Neonatal and maternal 25(OH)D cutoffs were included according to vitamin D status at birth and delivery. Concentrations of 25(OH)D2 and 25(OH)D3 were measured using liquid chromatography–tandem mass spectrometry. Results: The upper arm length of neonates with 25(OH)D ≤ 25 nmol/L was higher in neonate CC carriers for rs2298850. The upper thigh neonatal circumference was also higher in the ones with either 25(OH)D ≤ 50 or ≤75 nmol/L in rs2298850 CG + GG or rs4588 GT + TT carriers. We did not observe any significant effect for maternal VDBP polymorphisms nor for birth maternal 25(OH)D concentrations, on birth neonatal anthropometry. Conclusions: Our findings emphasize a potential role for neonatal VDBP genotypes rs2298850 and rs4588, in conjunction with specific neonatal 25(OH)D cutoffs, in the range of sufficiency on neonatal growth and development.
Collapse
|
19
|
Lopez-Tello J, Salazar-Petres E, Webb L, Fowden AL, Sferruzzi-Perri AN. Ablation of PI3K-p110alpha Impairs Maternal Metabolic Adaptations to Pregnancy. Front Cell Dev Biol 2022; 10:928210. [PMID: 35846351 PMCID: PMC9283861 DOI: 10.3389/fcell.2022.928210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023] Open
Abstract
Pregnancy requires adaptations in maternal metabolism to support fetal growth. The phosphoinositol-3-kinase (PI3K) signalling pathway controls multiple biological processes and defects in this pathway are linked to metabolic disorders including insulin resistance and glucose intolerance in non-pregnant animals. However, relatively little is known about the contribution of PI3K signalling to the maternal metabolic adaptations during pregnancy. Using mice with partial inactivation of the PI3K isoform, p110α (due to a heterozygous dominant negative mutation; Pik3ca-D933A), the effects of impaired PI3K-p110α signalling on glucose and insulin handling were examined in the pregnant and non-pregnant states and related to the morphological, molecular, and mitochondrial changes in key metabolic organs. The results show that non-pregnant mice lacking PI3K-p110α are glucose intolerant but exhibit compensatory increases in pancreatic glucose-stimulated insulin release and adipose tissue mitochondrial respiratory capacity and fatty acid oxidation. However, in pregnancy, mutant mice failed to show the normal increment in glucose intolerance and pancreatic β-cell mass observed in wild-type pregnant dams and exhibited further enhanced adipose tissue mitochondrial respiratory capacity. These maladaptations in pregnant mutant mice were associated with fetal growth restriction. Hence, PI3K-p110α is a key regulator of metabolic adaptations that support fetal growth during normal pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Amanda N. Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
卞 京, 陈 平, 卞 读, 贺 晓, Mutamba AK, 王 涛. [Correlation of Lipin gene expression with hepatic fat content in rats with intrauterine growth retardation]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:440-446. [PMID: 35527422 PMCID: PMC9044995 DOI: 10.7499/j.issn.1008-8830.2110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/01/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the correlation of the expression of Lipin1 in visceral adipose tissue and Lipin2 in liver tissue with hepatic fat content in rats with intrauterine growth retardation (IUGR). METHODS Pregnant rats were given a low-protein (10% protein) diet during pregnancy to establish a model of IUGR in neonatal rats. The pregnant rats in the control group were given a normal-protein (21% protein) diet during pregnancy. The neonatal rats were weighed and liver tissue was collected on day 1 and at weeks 3, 8, and 12 after birth, and visceral adipose tissue was collected at weeks 3, 8, and 12 after birth. The 3.0T 1H-magnetic resonance spectroscopy was used to measure hepatic fat content at weeks 3, 8, and 12 after birth. Real-time PCR was used to measure mRNA expression levels of Lipin2 in liver tissue and Lipin1 in visceral adipose tissue. Western blot was used to measure protein levels of Lipin2 in liver tissue and Lipin1 in visceral adipose tissue. A Pearson correlation analysis was performed to investigate the correlation of mRNA and protein expression of Lipin with hepatic fat content. RESULTS The IUGR group had significantly higher mRNA and protein expression levels of Lipin1 in visceral adipose tissue than the control group at weeks 3, 8, and 12 after birth (P<0.05). Compared with the control group, the IUGR group had significantly lower mRNA and protein expression levels of Lipin2 in liver tissue on day 1 after birth and significantly higher mRNA and protein expression levels of Lipin2 at weeks 1, 3, 8, and 12 after birth (P<0.05). At week 3 after birth, there was no significant difference in hepatic fat content between the IUGR and control groups (P>0.05), while at weeks 8 and 12 after birth, the IUGR group had a significantly higher hepatic fat content than the control group (P<0.05). The protein and mRNA expression levels of Lipin1 were positively correlated with hepatic fat content (r=0.628 and 0.521 respectively; P<0.05), and the protein and mRNA expression levels of Lipin2 were also positively correlated with hepatic fat content (r=0.601 and 0.524 respectively; P<0.05). CONCLUSIONS Upregulation of the mRNA and protein expression levels of Lipin1 in visceral adipose tissue and Lipin2 in liver tissue can increase hepatic fat content in rats with IUGR and may be associated with obesity in adulthood.
Collapse
Affiliation(s)
| | - 平洋 陈
- 中南大学湘雅二医院儿童医学中心新生儿专科, 湖南长沙 410011
| | | | - 晓日 贺
- 中南大学湘雅二医院儿童医学中心新生儿专科, 湖南长沙 410011
| | | | - 涛 王
- 中南大学湘雅二医院儿童医学中心新生儿专科, 湖南长沙 410011
| |
Collapse
|
21
|
Napso T, Lean SC, Lu M, Mort EJ, Desforges M, Moghimi A, Bartels B, El‐Bacha T, Fowden AL, Camm EJ, Sferruzzi‐Perri AN. Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol (Oxf) 2022; 234:e13795. [PMID: 35114078 PMCID: PMC9286839 DOI: 10.1111/apha.13795] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
AIM The current study investigated the impact of maternal obesity on placental phenotype in relation to fetal growth and sex. METHODS Female C57BL6/J mice were fed either a diet high in fat and sugar or a standard chow diet, for 6 weeks prior to, and during, pregnancy. At day 19 of gestation, placental morphology and mitochondrial respiration and dynamics were assessed using high-resolution respirometry, stereology, and molecular analyses. RESULTS Diet-induced maternal obesity increased the rate of small for gestational age fetuses in both sexes, and increased blood glucose concentrations in offspring. Placental weight, surface area, and maternal blood spaces were decreased in both sexes, with reductions in placental trophoblast volume, oxygen diffusing capacity, and an increased barrier to transfer in males only. Despite these morphological changes, placental mitochondrial respiration was unaffected by maternal obesity, although the influence of fetal sex on placental respiratory capacity varied between dietary groups. Moreover, in males, but not females, maternal obesity increased mitochondrial complexes (II and ATP synthase) and fission protein DRP1 abundance. It also reduced phosphorylated AMPK and capacity for lipid synthesis, while increasing indices of oxidative stress, specifically in males. In females only, placental mitochondrial biogenesis and capacity for lipid synthesis, were both enhanced. The abundance of uncoupling protein-2 was decreased by maternal obesity in both fetal sexes. CONCLUSION Maternal obesity exerts sex-dependent changes in placental phenotype in association with alterations in fetal growth and substrate supply. These findings may inform the design of personalized lifestyle interventions or therapies for obese pregnant women.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Samantha C. Lean
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Minhui Lu
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Emily J. Mort
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Michelle Desforges
- Division of Developmental Biology and Medicine Maternal & Fetal Health Research Centre University of Manchester Manchester UK
| | - Ali Moghimi
- The Children’s Hospital at Westmead Westmead New South Wales Australia
- Department of Paediatrics Monash University Monash Victoria Australia
| | - Beverly Bartels
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Tatiana El‐Bacha
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Abigail L. Fowden
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Emily J. Camm
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Amanda N. Sferruzzi‐Perri
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| |
Collapse
|
22
|
Yeo E, Brubaker PL, Sloboda DM. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J Endocrinol 2022; 253:R1-R19. [PMID: 35099411 PMCID: PMC8942339 DOI: 10.1530/joe-21-0354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes. Recent data suggest that the maternal gut microbiota may play a role in these adaptations, but changes to maternal gut physiology and the underlying intestinal mechanisms remain unclear. In this review, we discuss selective aspects of intestinal physiology including the role of the incretin hormone, glucagon-like peptide 1 (GLP-1), and the role of the maternal gut microbiome in the maternal metabolic adaptations to pregnancy. Specifically, we discuss how bacterial components and metabolites could mediate the effects of the microbiota on host physiology, including nutrient absorption and GLP-1 secretion and action, and whether these mechanisms may change maternal insulin sensitivity and secretion during pregnancy. Finally, we discuss how these pathways could be altered in disease states during pregnancy including maternal obesity and diabetes.
Collapse
Affiliation(s)
- Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Carvalho DP, Dias AF, Sferruzzi-Perri AN, Ortiga-Carvalho TM. Gaps in the knowledge of thyroid hormones and placental biology. Biol Reprod 2022; 106:1033-1048. [DOI: 10.1093/biolre/ioac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Thyroid hormones (THs) are required for the growth and development of the foetus, stimulating anabolism and oxygen consumption from the early stages of pregnancy to the period of foetal differentiation close to delivery. Maternal changes in the hypothalamic–pituitary thyroid axis are also well known. In contrast, several open questions remain regarding the relationships between the placenta and the maternal and foetal TH systems. The exact mechanism by which the placenta participates in regulating the TH concentration in the foetus and mother and the role of TH in the placenta are still poorly studied. In this review, we aim to summarize the available data in the area and highlight significant gaps in our understanding of the ontogeny and cell-specific localization of TH transporters, TH receptors and TH metabolic enzymes in the placenta in both human and rodent models. Significant deficiencies also exist in knowledge of the contribution of genomic and nongenomic effects of TH on the placenta and finally how the placenta reacts during pregnancy when the mother has thyroid disease. By addressing these key knowledge gaps, improved pregnancy outcomes and management of women with thyroid alterations may be possible.
Collapse
Affiliation(s)
- Daniela Pereira Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariane Fontes Dias
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Tania Maria Ortiga-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Aykroyd BRL, Tunster SJ, Sferruzzi-Perri AN. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 2022; 149:dev199811. [PMID: 34982814 PMCID: PMC8783045 DOI: 10.1242/dev.199811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.
Collapse
Affiliation(s)
| | | | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
25
|
Wang D, Liu C, Liu X, Zhang Y, Wang Y. Evaluation of prenatal changes in fetal cardiac morphology and function in maternal diabetes mellitus using a novel fetal speckle-tracking analysis: a prospective cohort study. Cardiovasc Ultrasound 2021; 19:25. [PMID: 34193164 PMCID: PMC8247232 DOI: 10.1186/s12947-021-00256-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Background Due to metabolic changes in the second trimester and the increasing number of pregnant women with obesity and advanced maternal age, the incidence of gestational diabetes mellitus (GDM) remains high. This study aimed to evaluate the effects of GDM on fetal cardiac morphology and function, and to determine whether these changes increase with increasing estimated fetal weight (EFW). Methods Fifty-eight women with GDM (GDM group) and 58 women with a healthy pregnancy (control group) were included in this prospective observational cohort study. Each group included subgroups of 31 pregnant women with a gestational age between 24+0 weeks and 27+6 weeks as well as 27 pregnant women with a gestational age between 28+0 weeks and 40+0 weeks. For all fetuses, a cine of 2–3 s in the four-chamber view was obtained, and online speckle-tracking analysis was performed using the GE Automatic Fetal Heart Assessment Tool (fetal HQ; General Electric Healthcare Ultrasound, Zipf, Austria) to measure the global sphericity index (GSI), global longitudinal strain (GLS), fractional area change (FAC), 24-segment sphericity index (SI), and 24-segment end-diastolic diameter of the left ventricle (LV) and right ventricle (RV). Data were analyzed using the independent t-test and Wilcoxon rank-sum test, as applicable. Results The GDM group (mean HbA1c value was 5.3 ± 0.57 mmol/L) showed a lower GSI value than the control group (1.21 vs. 1.27, P = 0.000), which indicated a rounder shape of the heart. In addition, fetuses in the GDM group demonstrated significant impairment in cardiac function compared to those in the control group (LV-GLS: -18.26% vs. -22.70%, RV-GLS: -18.52% vs. -22.74%, LV-FAC: 35.30% vs. 42.36%, RV-FAC: 30.89% vs. 36.80%; P = 0.000 for all). Subgroup analyses according to gestational age (24+0–27+6 weeks and 28+0–40+0 weeks) showed that the statistical differences were retained between the GDM and control groups in each subgroup. Conclusions Fetuses of women with GDM present with signs of biventricular systolic dysfunction according to deformation analysis using fetal HQ. Additionally, the heart had a rounder shape in the GDM group than in the control group. This study showed that fetal HQ can be used to assess fetal cardiac morphology and function easily and quickly, and the effects of GDM on fetal cardiac morphology and function appeared from the second trimester. Thus, whether earlier and stricter clinical intervention was necessary remained to be further studied. Furthermore, future studies will need to supplement the effects of blood glucose levels on GLS, FAC, GSI, and 24-segment SI. Additionally, the long-term follow-up after birth should also be improved to observe the influence of changes in the indicators on the prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12947-021-00256-z.
Collapse
Affiliation(s)
- Dong Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Caixia Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xinyu Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Ying Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Yu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
26
|
Napso T, Zhao X, Lligoña MI, Sandovici I, Kay RG, George AL, Gribble FM, Reimann F, Meek CL, Hamilton RS, Sferruzzi-Perri AN. Placental secretome characterization identifies candidates for pregnancy complications. Commun Biol 2021; 4:701. [PMID: 34103657 PMCID: PMC8187406 DOI: 10.1038/s42003-021-02214-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
Alterations in maternal physiological adaptation during pregnancy lead to complications, including abnormal birthweight and gestational diabetes. Maternal adaptations are driven by placental hormones, although the full identity of these is lacking. This study unbiasedly characterized the secretory output of mouse placental endocrine cells and examined whether these data could identify placental hormones important for determining pregnancy outcome in humans. Secretome and cell peptidome analyses were performed on cultured primary trophoblast and fluorescence-activated sorted endocrine trophoblasts from mice and a placental secretome map was generated. Proteins secreted from the placenta were detectable in the circulation of mice and showed a higher relative abundance in pregnancy. Bioinformatic analyses showed that placental secretome proteins are involved in metabolic, immune and growth modulation, are largely expressed by human placenta and several are dysregulated in pregnancy complications. Moreover, proof-of-concept studies found that secreted placental proteins (sFLT1/MIF and ANGPT2/MIF ratios) were increased in women prior to diagnosis of gestational diabetes. Thus, placental secretome analysis could lead to the identification of new placental biomarkers of pregnancy complications.
Collapse
Affiliation(s)
- Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Marta Ibañez Lligoña
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ionel Sandovici
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, The Rosie Hospital, Cambridge, UK
| | - Richard G Kay
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Amy L George
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Claire L Meek
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Russell S Hamilton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Rodgers A, Sferruzzi-Perri AN. Developmental programming of offspring adipose tissue biology and obesity risk. Int J Obes (Lond) 2021; 45:1170-1192. [PMID: 33758341 PMCID: PMC8159749 DOI: 10.1038/s41366-021-00790-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
Obesity is reaching epidemic proportions and imposes major negative health crises and an economic burden in both high and low income countries. The multifaceted nature of obesity represents a major health challenge, with obesity affecting a variety of different organs and increases the risk of many other noncommunicable diseases, such as type 2 diabetes, fatty liver disease, dementia, cardiovascular diseases, and even cancer. The defining organ of obesity is the adipose tissue, highlighting the need to more comprehensively understand the development and biology of this tissue to understand the pathogenesis of obesity. Adipose tissue is a miscellaneous and highly plastic endocrine organ. It comes in many different sizes and shades and is distributed throughout many different locations in the body. Though its development begins prenatally, quite uniquely, it has the capacity for unlimited growth throughout adulthood. Adipose tissue is also a highly sexually dimorphic tissue, patterning men and women in different ways, which means the risks associated with obesity are also sexually dimorphic. Recent studies show that environmental factors during prenatal and early stages of postnatal development have the capacity to programme the structure and function of adipose tissue, with implications for the development of obesity. This review summarizes the evidence for a role for early environmental factors, such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during gestation in the programming of adipose tissue and obesity in the offspring. We will also discuss the complexity of studying adipose tissue biology and the importance of appreciating nuances in adipose tissue, such as sexual dimorphism and divergent responses to metabolic and endocrine stimuli. Given the rising levels of obesity worldwide, understanding how environmental conditions in early life affects adipose tissue phenotype and the subsequent development of obesity is of absolute importance.
Collapse
Affiliation(s)
- Amanda Rodgers
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Siragher E, Sferruzzi-Perri AN. Placental hypoxia: What have we learnt from small animal models? Placenta 2021; 113:29-47. [PMID: 34074553 DOI: 10.1016/j.placenta.2021.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Intrauterine hypoxia is a feature of pregnancy complications, both at high altitude and sea level. To understand the placental response to reduced oxygen availability, small animal models of maternal inhalation hypoxia (MIH) or reduced uterine perfusion pressure (RUPP) may be utilised. The aim of this review was to compare the findings of those studies to identify the role of oxygen availability in adapting placental structural and functional phenotypes in relation to fetal outcome. It also sought to explore the evidence for the involvement of particular genes and protein signalling pathways in the placenta in mediating hypoxia driven alterations. The data available demonstrate that both MIH and RUPP can induce placental hypoxia, which affects placental structure and vascularity, as well as glucose, amino acid, calcium and possibly lipid transport capacity. In addition, changes have been observed in HIF, VEGF, insulin/IGF2, AMPK, mTOR, PI3K and PPARγ signalling, which may be key in linking together observed phenotypes under conditions of placental hypoxia. Many different manipulations have been examined, with varied outcomes depending on the intensity, timing and duration of the insult. Some manipulations have detrimental effects on placental phenotype, viability and fetal growth, whereas in others, the placenta appears to adapt to uphold fetal growth despite the challenge of low oxygen. Together these data suggest a complex response of the placenta to reduced oxygen availability, which links to changes in fetal outcomes. However, further work is required to explore the role of fetal sex, altered maternal physiology and placental molecular mechanisms to fully understand placental responses to hypoxia and their relevance for pregnancy outcome.
Collapse
Affiliation(s)
- Emma Siragher
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
29
|
Salazar-Petres ER, Sferruzzi-Perri AN. Pregnancy-induced changes in β-cell function: what are the key players? J Physiol 2021; 600:1089-1117. [PMID: 33704799 DOI: 10.1113/jp281082] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal metabolic adaptations during pregnancy ensure appropriate nutrient supply to the developing fetus. This is facilitated by reductions in maternal peripheral insulin sensitivity, which enables glucose to be available in the maternal circulation for transfer to the fetus for growth. To balance this process and avoid excessive hyperglycaemia and glucose intolerance in the mother during pregnancy, maternal pancreatic β-cells undergo remarkable changes in their function including increasing their proliferation and glucose-stimulated insulin secretion. In this review we examine how placental and maternal hormones work cooperatively to activate several signalling pathways, transcription factors and epigenetic regulators to drive adaptations in β-cell function during pregnancy. We also explore how adverse maternal environmental conditions, including malnutrition, obesity, circadian rhythm disruption and environmental pollutants, may impact the endocrine and molecular mechanisms controlling β-cell adaptations during pregnancy. The available data from human and experimental animal studies highlight the need to better understand how maternal β-cells integrate the various environmental, metabolic and endocrine cues and thereby determine appropriate β-cell adaptation during gestation. In doing so, these studies may identify targetable pathways that could be used to prevent not only the development of pregnancy complications like gestational diabetes that impact maternal and fetal wellbeing, but also more generally the pathogenesis of other metabolic conditions like type 2 diabetes.
Collapse
Affiliation(s)
- Esteban Roberto Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
30
|
Lu M, Sferruzzi-Perri AN. Placental mitochondrial function in response to gestational exposures. Placenta 2021; 104:124-137. [PMID: 33338764 DOI: 10.1016/j.placenta.2020.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Poor environmental conditions, including malnutrition, hypoxia and obesity in the mother increase the risk of pregnancy complications, such as pre-eclampsia and gestational diabetes mellitus, which impacts the lifelong health of the mother and her offspring. The placenta plays an important role in determining pregnancy outcome by acting as an exchange interface and endocrine hub to support fetal growth. Mitochondria are energy powerhouses of cells that fuel placental physiology throughout pregnancy, including placental development, substrate exchange and hormone secretion. They are responsive to environmental cues and changes in mitochondrial function may serve to mediate or mitigate the impacts of poor gestational environments on placental physiology and hence, the risks of pregnancy complications. Thus, a more integrated understanding about the role of placental mitochondria in orchestrating changes in relation to environmental conditions and pregnancy outcome is paramount. This review summarises the functions of mitochondria in the placenta and findings from humans and experimental animals that demonstrate how mitochondrial structure and function are altered in different gestational environments (namely complicated pregnancies and adverse environmental conditions). Together the available data suggest that mitochondria in the placenta play a major role in determining placental physiology, fetal growth and pregnancy outcome.
Collapse
Affiliation(s)
- Minhui Lu
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Sferruzzi-Perri AN. Placental mitochondria central to gestational diabetes pathogenesis? J Physiol 2020; 599:1019-1020. [PMID: 33337541 DOI: 10.1113/jp281041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|