1
|
Díaz AS, da Cunha Cruz Y, Duarte VP, de Castro EM, Magalhães PC, Pereira FJ. The role of sodium nitroprusside (SNP) in alleviating cadmium stress in maize plants. PROTOPLASMA 2024:10.1007/s00709-024-01987-2. [PMID: 39251440 DOI: 10.1007/s00709-024-01987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to plants and animals and can accumulate in the environment as a result of industrial activities and agricultural application of some types of phosphate fertilizer. This study aimed to assess the role of sodium nitroprusside (SNP), as a source of nitric oxide (NO) in alleviating Cd stress in maize plants. Maize plants were kept in soil saturated with 40%-strength nutrient solution in a greenhouse, and cadmium nitrate, Cd(NO3)2, was applied at different concentrations, (0, 10, and 50 µM). Sodium nitroprusside, [Fe(CN)5NO]·2H2O, at concentrations of 0.05, 0.1, and 0.2 µM. Growth, leaf gas exchange, and leaf anatomy analyses were performed. The experimental design was completely randomized in a 3 × 3 factorial arrangement with five replicates. The highest concentrations of Cd and SNP reduced the total dry mass and leaf and stem dry mass but increased the allocation of biomass to the roots and stem, but the leaf allocation did not change. The application of Cd and SNP promoted an increase in gas exchange and leaf area, in addition to an increase in leaf tissue thickness and stomatal density. The presence of SNP at low concentrations reduces the toxicity of Cd, but at high concentrations, this compound can generate negative effects and even toxicity in maize plants.
Collapse
Affiliation(s)
| | - Yasmini da Cunha Cruz
- Universidade Federal de Lavras, Lavras, Minas Gerais State, Zip Code 37200-000, Brazil
| | | | | | | | - Fabricio José Pereira
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, Zip Code: 37130-001, Brazil.
| |
Collapse
|
2
|
Jiang P, Zhong X, Zhang X, You S, Liu J, Yu G. Effect of Mn on Cd 2+ uptake by protoplasts of the Cd/Mn hyperaccumulator Celosia argentea Linn. differs by treatment method. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108925. [PMID: 39002306 DOI: 10.1016/j.plaphy.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The effect mechanism of Mn on Cd uptake by Celosia argentea was investigated via a series of hydroponics experiments. The results showed that different manganese treatments had different effects on Cd uptake by C. argentea. Mn pretreatment increased Cd uptake by root protoplasts at Cd concentrations (4 and 6 μM). Protoplasts reached peak Cd uptake rate at 6 μM Cd and 25 °C, with 67.71 ± 0.13 μM h-1 mL-1 in the control, and 77.99 ± 0.49 μM h-1 mL-1 in the 50 μM Mn pretreatment group. However, simultaneous treatment with Cd and Mn reduced the Cd2+ uptake by root protoplasts. This discrepancy may be attributed to the fact that cadmium and manganese share some transporters in root cells. The transcriptome analysis in roots revealed that ten genes (including ABCC, ABCA, ABCG, ABCB, ABC1, BZIP19, and ZIP5) were significantly upregulated in response to Mn stress (p < 0.05). These genes regulate the expression of transporters belonging to the ABC, and ZIP families, which may be involved in Cd uptake by root cells of C. argentea. Mn pretreatment upregulates the expression of Mn/Cd transporters, enhancing Cd uptake by root protoplasts. For the simultaneous treatment of Cd and Mn, inhibition of Cd uptake was due to the competition of the same transporters. These findings provide helpful insights for understanding the mechanism of Mn and Cd uptake in hyperaccumulators and give implications to improve the phytoremediation of Cd-contaminated soil by C. argentea.
Collapse
Affiliation(s)
- Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, Guilin, 541004, China
| | - Xia Zhong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Guangxi Science and Technology Normal University, Laibin, 546199, China.
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
3
|
Kumari R, Kapoor P, Mir BA, Singh M, Parrey ZA, Rakhra G, Parihar P, Khan MN, Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide 2024; 150:1-17. [PMID: 38972538 DOI: 10.1016/j.niox.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Maninder Singh
- Department of Biotechnology and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121004, India
| | - Parul Parihar
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
4
|
Jin X, Wu P, Li P, Xiong C, Gui M, Huang W. Transcriptome analysis reveals insight into the protective effect of N-acetylcysteine against cadmium toxicity in Ganoderma lucidum (Polyporales: Polyporaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58436-58449. [PMID: 36991205 DOI: 10.1007/s11356-023-26635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Ganoderma lucidum is widely cultivated and used as traditional medicine in China and other Asian countries. As a member of macrofungi, Ganoderma lucidum is also prone to bioaccumulation of cadmium and other heavy metals in a polluted environment, which affects the growth and production of Ganoderma lucidum, as well as human health. N-Acetyl-L-cysteine (NAC) is considered a general antioxidant and free radical scavenger that is involved in the regulation of various stress responses in plants and animals. However, whether NAC could regulate cadmium stress responses in macrofungi, particularly edible fungi, is still unknown. In this work, we found that the exogenous NAC could alleviate Cd-induced growth inhibition and reduce the cadmium accumulation in Ganoderma lucidum. The application of the NAC cloud also inhibit cadmium-induced H2O2 production in the mycelia. By using transcriptome analysis, 2920 and 1046 differentially expressed unigenes were identified in "Cd100 vs CK" and "NAC_Cd100 vs Cd100," respectively. These differential unigenes were classified into a set of functional categories and pathways, which indicated that various biological pathways may play critical roles in the protective effect of NAC against Cd‑induced toxicity in Ganoderma lucidum. Furthermore, it suggested that the ATP-binding cassette transporter, ZIP transporter, heat shock protein, glutathione transferases, and Cytochrome P450 genes contributed to the increased tolerance to cadmium stress after NAC application in Ganoderma lucidum. These results provide new insight into the physiological and molecular response of Ganoderma lucidum to cadmium stress and the protective role of NAC against cadmium toxicity.
Collapse
Affiliation(s)
- Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China.
| |
Collapse
|
5
|
Luo F, Zhu D, Sun H, Zou R, Duan W, Liu J, Yan Y. Wheat Selenium-binding protein TaSBP-A enhances cadmium tolerance by decreasing free Cd 2+ and alleviating the oxidative damage and photosynthesis impairment. FRONTIERS IN PLANT SCIENCE 2023; 14:1103241. [PMID: 36824198 PMCID: PMC9941557 DOI: 10.3389/fpls.2023.1103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cadmium, one of the toxic heavy metals, robustly impact crop growth and development and food safety. In this study, the mechanisms of wheat (Triticum aestivum L.) selenium-binding protein-A (TaSBP-A) involved in response to Cd stress was fully investigated by overexpression in Arabidopsis and wheat. As a cytoplasm protein, TaSBP-A showed a high expression in plant roots and its expression levels were highly induced by Cd treatment. The overexpression of TaSBP-A enhanced Cd-toleration in yeast, Arabidopsis and wheat. Meanwhile, transgenic Arabidopsis under Cd stress showed a lower H2O2 and malondialdehyde content and a higher photochemical efficiency in the leaf and a reduction of free Cd2+ in the root. Transgenic wheat seedlings of TaSBP exhibited an increment of Cd content in the root, and a reduction Cd content in the leaf under Cd2+ stress. Cd2+ binding assay combined with a thermodynamics survey and secondary structure analysis indicated that the unique CXXC motif in TaSBP was a major Cd-binding site participating in the Cd detoxification. These results suggested that TaSBP-A can enhance the sequestration of free Cd2+ in root and inhibit the Cd transfer from root to leaf, ultimately conferring plant Cd-tolerance via alleviating the oxidative stress and photosynthesis impairment triggered by Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
6
|
Wu S, Hu C, Wang X, Wang Y, Yu M, Xiao H, Shabala S, Wu K, Tan Q, Xu S, Sun X. Cadmium-induced changes in composition and co-metabolism of glycerolipids species in wheat root: Glycerolipidomic and transcriptomic approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127115. [PMID: 34537635 DOI: 10.1016/j.jhazmat.2021.127115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Lipids are the structural constituents of cell membranes and play crucial roles in plant adaptation to abiotic stresses. The aim of this study was to use glycerolipidomic and transcriptomic to analyze the changes in lipids metabolism induced by cadmium (Cd) exposure in wheat. The results indicated that Cd stress did not decrease the concentrations of monogalactosyldiacyglycerol (MGDG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and phosphatidic acid at 6 h, but decreased digalactosyldoacylglycerol (DGDG), MGDG, PC, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and LPC concentrations in wheat root at 24 h. Although the concentrations of highly abundant glycerolipids PC and PE were decreased, the ratios of PC/PE increased thus contributing to wheat adaptation to Cd stress. Cd did not reduce the extent of total lipid unsaturation due to the unchanged concentrations of high abundance species of C36:4, C34:2, C34:3 and C36:6 at 6 h, indicative of their roles in resisting Cd stress. The correlation analysis revealed the glycerolipids species experiencing co-metabolism under Cd stress, which is driven by the activated expression of genes related to glycerolipid metabolism, desaturation and oxylipin synthesis. This study gives insights into the changes of glycerolipids induced by Cd and the roles in wheat adaptation to Cd stress.
Collapse
Affiliation(s)
- Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA
| | - Yiwen Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Hongdong Xiao
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Kongjie Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Institute of Quality Stander and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciencs, Guangzhou 510640, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
7
|
Díaz AS, da Cunha Cruz Y, Duarte VP, de Castro EM, Magalhães PC, Pereira FJ. The role of reactive oxygen species and nitric oxide in the formation of root cortical aerenchyma under cadmium contamination. PHYSIOLOGIA PLANTARUM 2021; 173:2323-2333. [PMID: 34625976 DOI: 10.1111/ppl.13582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to evaluate root cortical aerenchyma formation in response to Cd-driven hydrogen peroxide (H2 O2 ) production and the role of nitric oxide (NO) in the alleviation of Cd oxidative stress in maize roots and its effects on aerenchyma development. Maize plants were subjected to continuous flooding for 30 days, and the following treatments were applied weekly: Cd(NO3 )2 at 0, 10, and 50 μM and Na2 [Fe(CN)5 NO]·2H2 O (an NO donor) at 0.5, 0.1, and 0.2 μM. The root biometrics; oxidative stress indicators H2 O2 and malondialdehyde (MDA); and activities of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were analyzed. The root dry and fresh masses decreased at higher concentrations of NO and Cd. H2 O2 also decreased at higher NO concentrations; however, MDA increased only at higher Cd levels. SOD activity decreased at higher concentrations of NO, but CAT activity increased. Aerenchyma development decreased in response to NO. Consequently, NO acts as an antagonist to Cd, decreasing the concentration of H2 O2 by reducing SOD activity and increasing CAT activity. Although H2 O2 is directly linked to aerenchyma formation, increased H2 O2 concentrations are necessary for root cortical aerenchyma development.
Collapse
|
8
|
Wu J, Li R, Lu Y, Bai Z. Sustainable management of cadmium-contaminated soils as affected by exogenous application of nutrients: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113081. [PMID: 34171783 DOI: 10.1016/j.jenvman.2021.113081] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollution in arable land is of great concern as it impairs plant growth and further threats human health via food-chain. Exogenous supplementation of nutrients is an environmentally-friendly, cost-effective, convenient and feasible strategy for regulating Cd uptake, transport and accumulation in plants. To sustain Cd-contaminated soils management, on the one hand, a low level of the Cd-contaminated soil is expected to cultivate crops with decreased Cd accumulation as affected by exogenous nutrients application, on another hand, a high level of the Cd-contaminated soil is suggested to cultivate phytoextraction plants with increased Cd accumulation as affected by exogenous nutrients application. Nevertheless, effects of nutrients on Cd accumulation in plants are still ambiguous. Thus, data of Cd accumulation in shoots of plants as affected by exogenous application of nutrients were collected from previously published articles between 2005 and 2021 in the present study. According to the data, exogenous supply of calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn) and silicon (Si) to a larger extent decrease Cd amounts in shoots of plants. By contrast, exogenous nitrogen (N), and deficient Ca, Mg and Fe supply have a great possibility to increase Cd amounts in shoots of plants. Although exogenous application of phosphorus (P), sulfur (S), potassium (K), zinc (Zn) and selenium (Se) have a great opportunity to increase biomass, they show different effects on Cd concentrations. As a result, the odds are even for increasing and decreasing Cd amounts in shoots of plants. Taken together, exogenous application of Ca, Mg, Fe, Mn and Si might decrease Cd accumulation in plants that are recommended for crops production. Exogenous N and deficient Ca, Mg and Fe supply might increase Cd accumulation in plants that are recommended for phytoextraction plants. Exogenous application of P, S, K, Zn and Se have half a chance to increase or decrease Cd accumulation in plants. Therefore, dosages, forms and species should be taken into account when exogenous P, S, K, Zn and Se are added.
Collapse
Affiliation(s)
- Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Ruijuan Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yuan Lu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| |
Collapse
|
9
|
Souri Z, Karimi N, Farooq MA, da Silva Lobato AK. Improved physiological defense responses by application of sodium nitroprusside in Isatis cappadocica Desv. under cadmium stress. PHYSIOLOGIA PLANTARUM 2021; 173:100-115. [PMID: 33011999 DOI: 10.1111/ppl.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Isatis cappadocica is a well-known arsenic-hyperaccumulator, but there are no reports of its responses to cadmium (Cd). Nitric oxide (NO) is a signaling molecule, which induces cross-stress tolerance and mediates several physio-biochemical processes related to heavy metal toxicity. In this study, the effects of Cd and sodium nitroprusside (SNP as NO donor) on the growth, defense responses and Cd accumulation in I. cappadocica were investigated. When I. cappadocica was treated with 100 and 200 μM Cd, there was an insignificant inhibition of shoot growth. However, Cd stress at Cd400 treatment decreased significantly the dry weight of root and shoot by 73 and 38%, respectively, as compared to control. The application of SNP significantly improved the growth parameters and mitigated Cd toxicity. In addition, SNP decreased reactive oxygen species (ROS) production induced by Cd. The increased total thiol and glutathione (GSH) concentrations after SNP application may play a decisive role in maintaining cellular redox homeostasis, thereby protecting plants against oxidative damage under Cd stress. Bovine hemoglobin (Hb as NO scavenger) reduced the protective role of SNP, suggesting a major role of NO in the defensive effect of SNP. Furthermore, the reduction in shoot growth and the increase of oxidative damage were more severe after the addition of Hb, which confirms the protective role of NO against Cd-induced oxidative stress. The protective role of SNP in decreasing Cd-induced oxidative stress may be related to NO production, which can lead to stimulation of the thiols synthesis and improve defense system.
Collapse
Affiliation(s)
- Zahra Souri
- Laboratory of plant physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of plant physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Muhammad A Farooq
- Agri. Services Department, Fauji Fertilizer Company Limited, Multan, Pakistan
| | - Allan K da Silva Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazonia, Paragominas, Brazil
| |
Collapse
|
10
|
Zhu L, Guo J, Sun Y, Wang S, Zhou C. Acetic Acid-Producing Endophyte Lysinibacillus fusiformis Orchestrates Jasmonic Acid Signaling and Contributes to Repression of Cadmium Uptake in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670216. [PMID: 34149767 PMCID: PMC8211922 DOI: 10.3389/fpls.2021.670216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Diverse signaling pathways regulated by phytohormones are essential for the adaptation of plants to adverse environments. Root endophytic bacteria can manipulate hormone-related pathways to benefit their host plants under stress conditions, but the mechanisms underlying endophyte-mediated plant stress adaptation remain poorly discerned. Herein, the acetic acid-producing endophytic bacteria Lysinibacillus fusiformis Cr33 greatly reduced cadmium (Cd) accumulation in tomato plants. L. fusiformis led to a marked increase in jasmonic acid (JA) content and down-regulation of iron (Fe) uptake-related genes in Cd-exposed roots. Accordantly, acetic acid treatment considerably increased the JA content and inhibited root uptake of Cd uptake. In addition, the Cr33-inoculated roots displayed the increased availability of cell wall and rhizospheric Fe. Inoculation with Cr33 notably reduced the production of nitric oxide (NO) and suppressed Fe uptake systems in the Cd-treated roots, thereby contributing to hampering Cd absorption. Similar results were also observed for Cd-treated tomato plants in the presence of exogenous JA or acetic acid. However, chemical inhibition of JA biosynthesis greatly weakened the endophyte-alleviated Cd toxicity in the plants. Collectively, our findings indicated that the endophytic bacteria L. fusiformis effectively prevented Cd uptake in plants via the activation of acetic acid-mediated JA signaling pathways.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiansheng Guo
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yujun Sun
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Songhua Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Wang T, Song J, Liu Z, Liu Z, Cui J. Melatonin alleviates cadmium toxicity by reducing nitric oxide accumulation and IRT1 expression in Chinese cabbage seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15394-15405. [PMID: 33236311 DOI: 10.1007/s11356-020-11689-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/15/2020] [Indexed: 05/07/2023]
Abstract
Melatonin (MT) is reported as a kind of phytohormone, exerts various biological activities, mediating plant growth and development and responding to abiotic stresses. In the present research, we examined the possibility that MT could involve in the alleviation of cadmium (Cd) toxicity by reducing the accumulation of nitric oxide (NO). The research indicated that the addition of MT significantly increased the biomass and photosynthetic parameters of plants compared with the control treated under Cd stress. Besides, we found that compared with the control treatment, MT also reduced the level of Cd-induced nitric oxide, and at the same time, the enzyme activity related to NO synthesis and the expression of related genes were decreased. In addition, MT treatment significantly reduced the Cd content in Chinese cabbage seedlings compared with the control, which was partially reversed by the addition of SNP (NO donor). PTIO (NO scavenger) addition could reduce the Cd content when seedlings were exposed to Cd stress. At the same time, compared with the Cd stress, the concentration of Cd in MT-treated plants decreased significantly, and the expression levels of related transport genes IRT1 also decreased significantly. Taken together, these results further support the idea that under the stress of Cd, NO increases the expression of IRT1, thus further increasing the absorption of Cd and aggravating the stress of Cd in plants, while exogenously added MT can inhibit the synthesis of NO, reduce the content of Cd, and alleviate the stress caused by Cd.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinxue Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ze Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zili Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
12
|
Piacentini D, Ronzan M, Fattorini L, Della Rovere F, Massimi L, Altamura MM, Falasca G. Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:729-742. [PMID: 32353678 DOI: 10.1016/j.plaphy.2020.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) has signalling roles in plant stress responses. Cadmium (Cd) and arsenic (As) soil pollutants alter plant development, mainly the root-system, by increasing NO-content, triggering reactive oxygen species (ROS), and forming peroxynitrite by NO-reaction with the superoxide anion. Interactions of NO with ROS and peroxynitrite seem important for plant tolerance to heavy metal(oid)s, but the mechanisms underlying this process remain unclear. Our goal was to investigate NO-involvement in rice (Oryza sativa L.) root-system after exposure to Cd or As, to highlight possible differences in NO-behaviour between the two pollutants. To the aim, morpho-histological, chemical and epifluorescence analyses were carried out on roots of different origin in the root-system, under exposure to Cd or As, combined or not with sodium nitroprusside (SNP), a NO-donor compound. Results show that increased intracellular NO levels alleviate the root-system alterations induced by Cd, i.e., inhibition of adventitious root elongation and lateral root formation, increment in lignin deposition in the sclerenchyma/endodermis cell-walls, but, even if reducing As-induced endodermis lignification, do not recover the majority of the As-damages, i.e., enhancement of AR-elongation, reduction of LR-formation, anomalous tissue-proliferation. However, NO decreases both Cd and As uptake, without affecting the pollutants translocation-capability from roots to shoots. Moreover, NO reduces the Cd-induced, but not the As-induced, ROS levels by triggering peroxynitrite production. Altogether, results highlight a different behaviour of NO in modulating rice root-system response to the toxicity of the heavy metal Cd and the metalloid As, which depends by the NO-interaction with the specific pollutant.
Collapse
Affiliation(s)
- D Piacentini
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - M Ronzan
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - L Fattorini
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - F Della Rovere
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - L Massimi
- Department of Chemistry, "Sapienza" University of Rome, Italy
| | - M M Altamura
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - G Falasca
- Department of Environmental Biology, "Sapienza" University of Rome, Italy.
| |
Collapse
|
13
|
Nabaei M, Amooaghaie R. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6981-6994. [PMID: 31883077 DOI: 10.1007/s11356-019-07283-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, a pot experiment was performed to evaluate the effects of foliar spray with sodium nitroprusside (200 μM SNP) and melatonin (100 μM) singly and in combination on tolerance and accumulation of cadmium (Cd) in Catharanthus roseus (L.) G. Don plants exposed to different levels of cadmium (0, 50, 100, and 200 mg Cd kg-1 soil). The results showed that 50 mg kg-1 Cd had no significant effect on the fresh and dry weight of roots and shoots and content of chlorophyll (Chl) a and b, but the higher levels of Cd (100 and 200 mg kg-1) significantly reduced these attributes and induced an increase in the level of leaf electrolyte leakage and disrupted nutrient homeostasis. The activities of catalase (CAT) and peroxidase (POD) in leaves were increased under lower Cd concentrations (50 and 100 mg kg-1) but decreased under 200 mg kg-1 Cd. However, foliar spray with melatonin and/or SNP increased shoot biomass and the content of Chl a and b, augmented activities of POD and CAT, lowered electrolyte leakage (EL), and improved essential cations homeostasis in leaves. Cadmium content in shoots of C. roseus was less than roots and TF (transfer factor) was < 1. Interestingly, foliar spray with SNP and/or melatonin increased Cd accumulation and bioconcentration factor (BCF) in both roots and shoots and elevated the Cd transport from roots to shoot, as TF values increased in these treatments. The co-application of melatonin and SNP further than their separate usage augmented Cd tolerance through increasing activities of antioxidant enzymes and regulating mineral homeostasis in C. roseus. Furthermore, co-treatment of SNP and melatonin increased Cd phytoremediation efficiency in C. roseus through increasing biomass and elevating uptake and translocation of Cd from root to shoot.
Collapse
Affiliation(s)
- Masoomeh Nabaei
- Plant Sciences Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
| | - Rayhaneh Amooaghaie
- Plant Sciences Department, Science Faculty, Shahrekord University, Shahrekord, Iran
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
14
|
Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Sidhu GPS, Bali AS, Asgher M, Bhardwaj R, Thukral AK, Fidalgo F, Zheng B. Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. PHYSIOLOGIA PLANTARUM 2020; 168:318-344. [PMID: 31240720 DOI: 10.1111/ppl.13004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 05/07/2023]
Abstract
Given their sessile nature, plants continuously face unfavorable conditions throughout their life cycle, including water scarcity, extreme temperatures and soil pollution. Among all, metal(loid)s are one of the main classes of contaminants worldwide, posing a serious threat to plant growth and development. When in excess, metals which include both essential and non-essential elements, quickly become phytotoxic, inducing the occurrence of oxidative stress. In this way, in order to ensure food production and safety, attempts to enhance plant tolerance to metal(loid)s are urgently needed. Nitric oxide (NO) is recognized as a signaling molecule, highly involved in multiple physiological events, like the response of plants to abiotic stress. Thus, substantial efforts have been made to assess NO potential in alleviating metal-induced oxidative stress in plants. In this review, an updated overview of NO-mediated protection against metal toxicity is provided. After carefully reviewing NO biosynthetic pathways, focus was given to the interaction between NO and the redox homeostasis followed by photosynthetic performance of plants under metal excess.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Vinod Kumar
- Department of Botany, DAV University, Jalandhar, 144012, India
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Gagan P S Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh, 160047, India
| | - Aditi S Bali
- Department of Botany, M.C.M.D.A.V. College for Women, Chandigarh, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ashwani K Thukral
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
15
|
Lei GJ, Sun L, Sun Y, Zhu XF, Li GX, Zheng SJ. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:218-227. [PMID: 30912267 DOI: 10.1111/jipb.12801] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/07/2019] [Indexed: 05/21/2023]
Abstract
Jasmonic acid (JA) is thought to be involved in plant responses to cadmium (Cd) stress, but the underlying molecular mechanisms are poorly understood. Here, we show that Cd treatment rapidly induces the expression of genes promoting endogenous JA synthesis, and subsequently increases the JA concentration in Arabidopsis roots. Furthermore, exogenous methyl jasmonate (MeJA) alleviates Cd-generated chlorosis of new leaves by decreasing the Cd concentration in root cell sap and shoot, and decreasing the expression of the AtIRT1, AtHMA2 and AtHMA4 genes promoting Cd uptake and long-distance translocation, respectively. In contrast, mutation of a key JA synthesis gene, AtAOS, greatly enhances the expression of AtIRT1, AtHMA2 and AtHMA4, increases Cd concentration in both roots and shoots, and confers increased sensitivity to Cd. Exogenous MeJA recovers the enhanced Cd-sensitivity of the ataos mutant, but not of atcoi1, a JA receptor mutant. In addition, exogenous MeJA reduces NO levels in Cd-stressed Arabidopsis root tips. Taken together, our results suggest that Cd-induced JA acts via the JA signaling pathway and its effects on NO levels to positively restrict Cd accumulation and alleviates Cd toxicity in Arabidopsis via suppression of the expression of genes promoting Cd uptake and long-distance translocation.
Collapse
Affiliation(s)
- Gui Jie Lei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Terrón-Camero LC, Del Val C, Sandalio LM, Romero-Puertas MC. Low endogenous NO levels in roots and antioxidant systems are determinants for the resistance of Arabidopsis seedlings grown in Cd. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113411. [PMID: 31672356 DOI: 10.1016/j.envpol.2019.113411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 10/14/2019] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd), which is a toxic non-essential heavy metal capable of entering plants and thus the food chain, constitutes a major environmental and health concern worldwide. An understanding of the tools used by plants to overcome Cd stress could lead to the production of food crops with lower Cd uptake capacity and of plants with greater Cd uptake potential for phytoremediation purposes in order to restore soil efficiency in self-sustaining ecosystems. The signalling molecule nitric oxide (NO), whose function remains unclear, has recently been involved in responses to Cd stress. Using different mutants, such as nia1nia2, nox1, argh1-1 and Atnoa1, which were altered in NO metabolism, we analysed various parameters related to reactive oxygen and nitrogen species (ROS/RNS) metabolism and seedling fitness following germination and growth under Cd treatment conditions for seven days. Seedling roots were the most affected, with an increase in ROS and RNS observed in wild type (WT) seedling roots, leading to increased oxidative damage and fitness loss. Mutants that showed lower NO levels in seedling roots under Cd stress were more resistant than WT seedlings due to the maintenance of antioxidant systems which protect against oxidative damage.
Collapse
Affiliation(s)
- Laura C Terrón-Camero
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - Coral Del Val
- Department of Artificial Intelligence, University of Granada, E-18071, Granada, Spain; Andalusian Data Science and Computational Intelligence (DaSCI) Research Institute, University of Granada, E-18071, Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain.
| |
Collapse
|
17
|
Su N, Wu Q, Chen H, Huang Y, Zhu Z, Chen Y, Cui J. Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: Possible involvement of nitric oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:45-55. [PMID: 31071632 DOI: 10.1016/j.envpol.2019.03.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/23/2019] [Indexed: 05/19/2023]
Abstract
Hydrogen gas (H2) has been shown as an important factor in plant tolerance to abiotic stresses, but the underlying mechanisms remain unclear. In the present study, the effects of H2 and its interaction with nitric oxide (NO) on alleviating cadmium (Cd) stress in Brassica campestris seedlings were investigated. NO donor (SNP) or hydrogen-rich water (HRW) treatment showed a significant improvement in growth of Cd-stressed seedlings. Cd treatment upregulated both endogenous NO and H2 (36% and 66%, respectively), and the increase of H2 was prior to NO increase. When treated with NO scavenger (PTIO) or NO biosynthesis enzyme inhibitors (L-NAME and Gln), HRW-induced alleviation under Cd stress was prevented. Under Cd stress, HRW pretreatment significantly enhanced the NO accumulation, and together up-regulated the activity of NR (nitrate reductase) and expression of NR. HRW induced lower reactive oxygen species (ROS), higher AsA content, enhanced activity of POD (peroxidase) and SOD (superoxide dismutase) in seedling roots were inhibited by PTIO, L-NAME and Gln. Through proteomic analysis, the level of 29 proteins were changed in response to H2 and NO-induced amelioration of Cd stress. Nearly half of them were involved in oxidation-reduction processes (about 20%) or antioxidant enzymes (approximately 20%). These results strongly indicate that in Cd-stressed seedlings, pretreatment with HRW induces the accumulation of H2 (biosynthesized or permeated), which further stimulates the biosynthesis of NO through the NR pathway. Finally, H2 and NO together enhance the antioxidant capabilities of seedlings in response to Cd toxicity.
Collapse
Affiliation(s)
- Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wu
- Department of Horticulture, Foshan University, Foshan 528000, China
| | - Hui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengbo Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Praveen A, Pandey A, Gupta M. Nitric oxide alters nitrogen metabolism and PIN gene expressions by playing protective role in arsenic challenged Brassica juncea L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:95-107. [PMID: 30925332 DOI: 10.1016/j.ecoenv.2019.03.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Plants have ability to adapt themselves through altering their growth process. In the present study, we examined exogenous application of nitric oxide (NO) on nitrogen metabolism and auxin (PIN) gene expression, and its possible role in alleviation of arsenic (As) toxicity in Brassica juncea seedlings. Seven days old hydroponically grown B. juncea seedlings were exposed to AsIII (150 μM), Sodium nitroprusside (NO donor, 100 μM), AsIII + SNP and control (without metal)for 48 h. Experimental results revealed that AsIII stress: enhanced the level of nitrite, NiR activity, NO3- and NH4+content as well as NADH-GOGAT activity; but GDH level decreased; enhanced content of amino acids; upregulated gene expression level of N metabolism and downregulated polar auxin transporter genes (PIN); inhibited plant growth and morphological parameters; increased MDA, H2O2, cysteine, proline content, enzymatic antioxidants (SOD, CAT, APX; GSH, TT, NPT); and decreased nutrient content. AsIII + SNP combination reduced the accumulation of As; improved growth; chlorophyll, protein and mineral nutrient content by scavenging ROS generation; maintained amino acids content; downregulated expression of N metabolism genes and upregulated expression of auxin transporter (PIN) genes . Additional biochemical data depicts reduction in the level of nitrogen related enzymatic activities, and other stress related parameters. Overall, this study provides an integrated view that exogenous SNP (NO donor) supplementation alleviated the inhibitory role of AsIII in B. juncea seedlings by altering nutrients, amino acids and auxin redistribution via expression of nitrogen and PIN gene profiling.
Collapse
Affiliation(s)
- Afsana Praveen
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 67, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India.
| |
Collapse
|
19
|
Demecsová L, Bočová B, Zelinová V, Tamás L. Enhanced nitric oxide generation mitigates cadmium toxicity via superoxide scavenging leading to the formation of peroxynitrite in barley root tip. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:20-28. [PMID: 31125706 DOI: 10.1016/j.jplph.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to observe the possible function of increased superoxide and NO production in the response of barley root tip to the harmful level of Cd. While superoxide generation was detected only in the transition zone, the formation of NO was observed in the apical elongation zones of the control root tips. However, the root region with the superoxide generation was also associated with peroxynitrite specific fluorescence signal. Superoxide, H2O2 and peroxynitrite generation increased with Cd treatment in a dose-dependent manner. In turn, NO level increased at low 10-20 μM but decreased at high 50-60 μM Cd concentrations in comparison with the control. While co-treatment of roots with rotenone markedly attenuated the Cd-induced superoxide generation and lipid peroxidation, it increased the level of NO in the root tips. Although rotenone did not influence the Cd-induced increase of GPX activity at 10-30 μM Cd concentrations, it markedly reversed the high 40-60 μM Cd concentrations-induced decline of GPX activity. Cd-induced cell death was associated with robust superoxide generation, but not with a high level of peroxynitrite. The Cd-evoked inhibition of root growth was significantly reversed by a strong antioxidant N-acetyl cysteine but not by a peroxynitrite scavenger uric acid, suggesting that similarly to Cd-induced cell death, an imbalance in the ROS homeostasis and not an enhanced level of peroxynitrite is responsible for the Cd-induced root growth inhibition. Based on these findings, it can be assumed that NO acts mainly in the regulation of superoxide level in the tips of root. Under Cd stress, the enhanced NO level is involved in the scavenging of highly toxic superoxide through the formation of peroxynitrite, thus reducing the superoxide-mediated cell death in barley root.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
| | - Beáta Bočová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic.
| |
Collapse
|
20
|
Huang S, Jiang S, Liang J, Chen M, Shi Y. Current knowledge of bermudagrass responses to abiotic stresses. BREEDING SCIENCE 2019; 69:215-226. [PMID: 31481830 PMCID: PMC6711739 DOI: 10.1270/jsbbs.18164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/21/2019] [Indexed: 06/08/2023]
Abstract
Bermudagrass (Cynodon spp.) is a common turfgrass found in parks, landscapes, sports fields, and golf courses. It is also grown as a forage crop for animal production in many countries. Consequently, bermudagrass has significant ecological, environmental, and economic importance. Like many other food crops, bermudagrass production also faces challenges from various abiotic and biotic stresses. In this review we will focus on abiotic stresses and their impacts on turfgrass quality and yield. Among the abiotic stresses, drought, salinity and cold stress are known to be the most damaging stresses that can directly affect the production of turfgrass worldwide. In this review, we also discuss the impacts of nutrient supply, cadmium, waterlogging, shade and wear stresses on bermudagrass growth and development. Detailed discussions on abiotic stress effects on bermudagrass morphology, physiology, and gene expressions should benefit our current understanding on molecular mechanisms controlling bermudagrass tolerance against various abiotic stresses. We believe that the rapid development of transcriptomics and proteomics, as well as bermudagrass stable transformation technologies will promote the production of new bermudagrass cultivars with desirable tolerance against abiotic stresses.
Collapse
Affiliation(s)
- Shilian Huang
- College of Life Sciences, South China Agricultural University,
483 Wushan Road, Guangzhou, Guangdong, 510642,
China
| | - Shaofeng Jiang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University,
109 Huan Cheng North 2nd Road, Guilin, Guangxi, 541004,
China
| | - Junsong Liang
- College of Biology & Pharmacy, Yulin Normal University,
1303 Jiaoyudong Road, Yulin, Guangxi, 537000,
China
| | - Miao Chen
- Faculty of Agricultural Science, Guangdong Ocean University,
Haida Road #1, Zhanjiang, Guangdong, 524088,
China
| | - Yancai Shi
- Guangxi Institute of Botany, Chinese Academy of Sciences,
85 Yanshan Town, Guilin, Guangxi, 541006,
China
| |
Collapse
|
21
|
Wu S, Shi K, Hu C, Guo J, Tan Q, Sun X. Non-invasive microelectrode cadmium flux measurements reveal the decrease of cadmium uptake by zinc supply in pakchoi root (Brassica chinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:363-368. [PMID: 30391841 DOI: 10.1016/j.ecoenv.2018.10.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Zinc (Zn) possesses similar properties to cadmium (Cd) and inhibits Cd uptake in plants. To get more detailed mechanisms of Zn-inhibited Cd uptake in pakchoi, a hydroponic experiment was conducted to investigate the effects of various Zn levels on Cd concentrations, real time flux of Cd, expressions of genes related to Cd uptake under Cd exposure. The results showed that the Cd concentrations and Cd accumulations in pakchoi root decreased with increasing Zn levels, which were coincident with that real time Cd influx and net Cd influx of pakchoi root decreased with increasing Zn levels by non-invasive micro-test technology (NMT). Additionally, the expressions of Cd-related transporters including BcNRAMP5, BcIRT1 and BcMGT1 decreased with the increase of Zn levels under Cd exposure, especially BcIRT1 with the highest decreased rates. Furthermore, the expressions of these genes decreased gradually with the prolongation of Zn treated time under Cd toxicity. The results indicate that Zn inhibits Cd uptake by inhibition of the expressions of Cd-related transporters, especially BcIRT1 in pakchoi root.
Collapse
Affiliation(s)
- Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070 China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070 China
| | - Kaili Shi
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070 China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070 China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070 China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070 China
| | - Jilin Guo
- College of life Science, Xinjiang Normal University, Urumqi 830054 China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070 China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070 China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070 China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070 China; Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou, China, 310058.
| |
Collapse
|
22
|
Drzeżdżon J, Jacewicz D, Chmurzyński L. The impact of environmental contamination on the generation of reactive oxygen and nitrogen species - Consequences for plants and humans. ENVIRONMENT INTERNATIONAL 2018; 119:133-151. [PMID: 29957355 DOI: 10.1016/j.envint.2018.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 05/23/2023]
Abstract
Environmental contaminants, such as heavy metals, nanomaterials, and pesticides, induce the formation of reactive oxygen and nitrogen species (RONS). Plants interact closely with the atmosphere, water, and soil, and consequently RONS intensely affect their biochemistry. For the past 30 years researchers have thoroughly examined the role of RONS in plant organisms and oxidative modifications to cellular components. Hydrogen peroxide, superoxide anion, nitrogen(II) oxide, and hydroxyl radicals have been found to take part in many metabolic pathways. In this review the various aspects of the oxidative stress induced by environmental contamination are described based on an analysis of literature. The review reinforces the contention that RONS play a dual role, that is, both a deleterious and a beneficial one, in plants. Environmental contamination affects human health, also, and so we have additionally described the impact of RONS on the coupled human - environment system.
Collapse
Affiliation(s)
- Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
23
|
Praveen A, Gupta M. Nitric oxide confronts arsenic stimulated oxidative stress and root architecture through distinct gene expression of auxin transporters, nutrient related genes and modulates biochemical responses in Oryza sativa L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:950-962. [PMID: 29949846 DOI: 10.1016/j.envpol.2018.04.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/26/2018] [Accepted: 04/22/2018] [Indexed: 05/12/2023]
Abstract
Plants have the ability to adapt themselves under stressed conditions through reprogramming their growth and development. Understanding the mechanisms regulating overall growth of stressed plant is an important issue for plant and environmental biology research. Although the role of NO in modulating arsenic (As) toxicity is known, nitric oxide (NO) induced alteration in auxin and nutrient related transporters during As stress in rice is poorly understood. Experimental results showed that As exposure decreased gene expression level of polar auxin transporter (PIN proteins), and nutrient transporter related genes (AMT, NRT, NiR, PHT, KTP). The improved tolerance induced by As + NO combination is attributed to reduced As accumulation in rice seedlings, improved root architectural changes, overall growth of plant, chlorophyll, protein content, and accumulation of mineral nutrients by reducing the ROS generation. Further, enhanced transcript levels of PIN proteins and mineral nutrition related genes were also observed under As + NO treatment. Additional biochemical data revealed enhanced oxidative stress by increasing the level of antioxidant enzymes, and stress-related parameters. Overall, the study provides an integrated view of plant response during As + NO interaction to change the plant metabolism through different cellular processes.
Collapse
Affiliation(s)
- Afsana Praveen
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India.
| |
Collapse
|
24
|
|
25
|
Tamás L, Demecsová L, Zelinová V. L-NAME decreases the amount of nitric oxide and enhances the toxicity of cadmium via superoxide generation in barley root tip. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:68-74. [PMID: 29604535 DOI: 10.1016/j.jplph.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Exposure of barley roots to mM concentrations of L-NAME for 30 min caused a considerable root growth inhibition in a dose-dependent manner. The inhibition of root growth was higher in seedlings co-treated with Cd and L-NAME, compared with roots treated with Cd alone, despite the fact that L-NAME markedly reduced the uptake of Cd by roots. Treatment of roots with L-NAME evoked a decrease in NO level in both control and Cd-treated root tips only after a relatively long lag period, which overlaps with an increase in superoxide and H2O2 levels and peroxynitrite generation. L-NAME-induced root growth inhibition is alleviated not only by the application of the NO donor SNP but also by the ROS and peroxynitrite scavengers. Our results indicate that L-NAME, a NOS inhibitor in the animal kingdom, indeed evokes NO depletion also in the plant tissues; however, it does not occur due to the action of L-NAME as an inhibitor of NOS or NOS-like activity, but as a consequence of L-NAME-induced enhanced superoxide generation, leading to increased peroxynitrite level in the root tips due to the reaction between superoxide and NO.
Collapse
Affiliation(s)
- Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic.
| | - Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
| |
Collapse
|
26
|
Borges KLR, Salvato F, Alcântara BK, Nalin RS, Piotto FÂ, Azevedo RA. Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:245-258. [PMID: 29294240 DOI: 10.1007/s10646-017-1889-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Despite numerous studies on cadmium (Cd) uptake and accumulation in crops, relatively little is available considering the temporal dynamic of Cd uptake and responses to stress focused on the root system. Here we highlighted the responses to Cd-induced stress in roots of two tomato genotypes contrasting in Cd-tolerance: the tolerant Pusa Ruby and the sensitive Calabash Rouge. Tomato genotypes growing in the presence of 35 μM CdCl2 exhibited a similar trend of Cd accumulation in tissues, mainly in the root system and overall plants exhibited reduction in the dry matter weight. Both genotypes showed similar trends for malondialdehyde and hydrogen peroxide accumulation with increases when exposed to Cd, being this response more pronounced in the sensitive genotype. When the antioxidant machinery is concerned, in the presence of Cd the reduced glutathione content was decreased in roots while ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) activities were increased in the presence of Cd in the tolerant genotype. Altogether these results suggest APX, GR and GST as the main players of the antioxidant machinery against Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Karina Lima Reis Borges
- Laboratory of Plant Genetics and Biochemistry, Genetics Department, "Luiz de Queiroz" College of Agriculture, Piracicaba, SP, Brazil
| | - Fernanda Salvato
- Laboratory of Plant Genetics and Biochemistry, Genetics Department, "Luiz de Queiroz" College of Agriculture, Piracicaba, SP, Brazil
- Laboratory of Molecular Physiology of Plants, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | | | - Rafael Storto Nalin
- Laboratory of Statistical Genetics, Genetics Department, "Luiz de Queiroz" College of Agriculture, Piracicaba, SP, Brazil
| | - Fernando Ângelo Piotto
- Laboratory of Plant Genetics and Biochemistry, Genetics Department, "Luiz de Queiroz" College of Agriculture, Piracicaba, SP, Brazil
| | - Ricardo Antunes Azevedo
- Laboratory of Plant Genetics and Biochemistry, Genetics Department, "Luiz de Queiroz" College of Agriculture, Piracicaba, SP, Brazil.
| |
Collapse
|
27
|
Reda M, Golicka A, Kabała K, Janicka M. Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:55-64. [PMID: 29362099 DOI: 10.1016/j.plantsci.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Nitrate reductase (NR) mainly reduces nitrate to nitrite. However, in certain conditions it can reduce nitrite to NO. In plants, a plasma membrane-associated form of NR (PM-NR) is present. It produces NO2- for nitrite NO/reductase (Ni-NOR), which can release NO into the apoplastic space. The effect of 50 mM NaCl on NO formation and the involvement of NR in NO biosynthesis were studied in cucumber seedling roots under salt stress. In salt-stressed roots, the amount of NO was higher than in control. The application of tungstate abolished the increase of NO level in stressed roots, indicating that NR was responsible for NO biosynthesis under the test conditions. The involvement of other molybdoenzymes was excluded using specific inhibitors. Furthermore, higher cNR and PM-NR activities were observed in NaCl-treated roots. The increase in NR activity was due to the stimulation of CsNR genes expression and posttranslational modifications, such as enzyme dephosphorylation. This was confirmed by Western blot analysis. Moreover, the increase of nitrite tissue level in short-term stressed roots and the nitrite/nitrate ratio, with a simultaneous decrease of nitrite reductase (NiR) activity, in both short- and long-term stressed roots, could promote the production of NO by NR in roots under salt stress.
Collapse
Affiliation(s)
- Małgorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland.
| | - Agnieszka Golicka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
28
|
Izbiańska K, Floryszak-Wieczorek J, Gajewska J, Meller B, Kuźnicki D, Arasimowicz-Jelonek M. RNA and mRNA Nitration as a Novel Metabolic Link in Potato Immune Response to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2018; 9:672. [PMID: 29896206 PMCID: PMC5987678 DOI: 10.3389/fpls.2018.00672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 05/05/2023]
Abstract
Peroxynitrite (ONOO-) exhibits a well-documented nitration activity in relation to proteins and lipids; however, the interaction of ONOO- with nucleic acids remains unknown in plants. The study uncovers RNA and mRNA nitration as an integral event in plant metabolism intensified during immune response. Using potato-avr/vr Phytophthora infestans systems and immunoassays we documented that potato immunity is accompanied by two waves of boosted ONOO- formation affecting guanine nucleotides embedded in RNA/mRNA and protein tyrosine residues. The early ONOO- generation was orchestrated with an elevated level of protein nitration and a huge accumulation of 8-nitroguanine (8-NO2-G) in RNA and mRNA pools confirmed as a biomarker of nucleic acid nitration. Importantly, potato cells lacking ONOO- due to scavenger treatment and attacked by the avr pathogen exhibited a low level of 8-NO2-G in the mRNA pool correlated with reduced symptoms of programmed cell death (PCD). The second burst of ONOO- coincided both with an enhanced level of tyrosine-nitrated proteins identified as subtilisine-like proteases and diminished protease activity in cells surrounding the PCD zone. Nitration of both RNA/mRNA and proteins via NO/ONOO- may constitute a new metabolic switch in redox regulation of PCD, potentially limiting its range in potato immunity to avr P. infestans.
Collapse
Affiliation(s)
- Karolina Izbiańska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Magdalena Arasimowicz-Jelonek, ;
| |
Collapse
|
29
|
Shukla A, Srivastava S, Suprasanna P. Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Curr Genomics 2017; 18:512-522. [PMID: 29204080 PMCID: PMC5684655 DOI: 10.2174/1389202918666170608093327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION As a consequence of a sessile lifestyle, plants often have to face a number of life threatening abiotic and biotic stresses. Plants counteract the stresses through morphological and physiological adaptations, which are imparted through flexible and well-coordinated network of signalling and effector molecules, where phytohormones play important role. Hormone synthesis, signal transduction, perception and cross-talks create a complex network. Omics approaches, which include transcriptomics, genomics, proteomics and metabolomics, have opened new paths to understand such complex networks. OBJECTIVE This review concentrates on the importance of phytohormones and enzymatic expressions under metal stressed conditions. CONCLUSION This review sheds light on gene expressions involved in plant adaptive and defence responses during metal stress. It gives an insight of genomic approaches leading to identification and functional annotation of genes involved in phytohormone signal transduction and perception. Moreover, it also emphasizes on perception, signalling and cross-talks among various phytohormones and other signalling components viz., Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS).
Collapse
Affiliation(s)
- Anurakti Shukla
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai - 400085, Maharashtra, India
| |
Collapse
|
30
|
Wang TT, Shi ZQ, Hu LB, Xu XF, Han FX, Zhou LG, Chen J. Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (Oryza sativa) Seedling by Decreasing Endogenous Nitric Oxide Generation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7396-7405. [PMID: 28771007 DOI: 10.1021/acs.jafc.7b02950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Thymol has been developed as medicine and food preservative due to its immune-regulatory effect and antimicrobial activity, respectively. However, little is currently known about the role of thymol in the modulation of plant physiology. In the present study, we applied biochemical and histochemical approaches to investigate thymol-induced tolerance in rice (Oryza sativa) seedlings against Cd (cadmium) stress. Thymol at 20 μM recovered root growth completely upon CdCl2 exposure. Thymol pronouncedly decreased Cd-induced ROS accumulation, oxidative injury, cell death, and Cd2+ accumulation in roots. Pharmaceutical experiments suggested that endogenous NO mediated Cd-induced phytotoxicity. Thymol decreased Cd-induced NO accumulation by suppressing the activity of NOS (nitric oxide synthase) and NR (nitrate reductase) in root. The application of NO donor (SNP, sodium nitroprusside) resulted in the increase in endogenous NO level, which in turn compromised the alleviating effects of thymol on Cd toxicity. Such findings may helpful to illustrate the novel role of thymol in the modulation of plant physiology, which may be applicable to improve crop stress tolerance.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences , Nanjing 210014, China
- College of Life Sciences, Nanjing Normal University , Nanjing 210064, China
| | - Zhi Qi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences , Nanjing 210014, China
- College of Life Sciences, Nanjing Normal University , Nanjing 210064, China
| | - Liang-Bin Hu
- Department of Food Science, Henan Institute of Science and Technology , Xinxiang 453003, China
| | - Xiao-Feng Xu
- College of Life Sciences, Nanjing Normal University , Nanjing 210064, China
| | - Fengxiang X Han
- Department of Chemistry and Biochemistry, Jackson State University , Jackson, Mississippi 39217, United States
| | - Li-Gang Zhou
- Department of Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences , Nanjing 210014, China
- Department of Food Science, Henan Institute of Science and Technology , Xinxiang 453003, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Provincial Department of Agriculture and Forestry , Nanjing 210014, China
| |
Collapse
|
31
|
Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, Dhankher OP, Norton GJ, Chakrabarty D, Tripathi RD. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:163-173. [PMID: 28371690 DOI: 10.1016/j.plaphy.2017.02.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
Nitric oxide (NO) and salicylic acid (SA) are important signaling molecules in plant system. In the present study both NO and SA showed a protective role against arsenite (AsIII) stress in rice plants when supplied exogenously. The application of NO and SA alleviated the negative impact of AsIII on plant growth. Nitric oxide supplementation to AsIII treated plants greatly decreased arsenic (As) accumulation in the roots as well as shoots/roots translocation factor. Arsenite exposure in plants decreased the endogenous levels of NO and SA. Exogenous supplementation of SA not only enhanced endogenous level of SA but also the level of NO through enhanced nitrate reductase (NR) activity, whether AsIII was present or not. Exogenously supplied NO decreased the NR activity and level of endogenous NO. Arsenic accumulation was positively correlated with the expression level of OsLsi1, a transporter responsible for AsIII uptake. The endogenous level of NO and SA were positively correlated to each other either when AsIII was present or not. This close relationship indicates that NO and SA work in harmony to modulate the signaling response in AsIII stressed plants.
Collapse
Affiliation(s)
- Amit Pal Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Garima Dixit
- Department of Botany, Lucknow University, Lucknow 226 007, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Amit Kumar
- Department of Botany, Lucknow University, Lucknow 226 007, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Seema Mishra
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Navin Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Sameer Dixit
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Pradyumna Kumar Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Sanjay Dwivedi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Vivek Pandey
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Om Prakash Dhankher
- Department of Botany, Lucknow University, Lucknow 226 007, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Gareth J Norton
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003-9320, USA; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Debasis Chakrabarty
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK.
| |
Collapse
|
32
|
An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 2017; 67:39-52. [PMID: 28456602 DOI: 10.1016/j.niox.2017.04.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/16/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Pollution due to heavy metal(loid)s has become common menace across the globe. This is due to unprecedented frequent geological changes coupled with increasing anthropogenic activities, and population growth rate. Heavy metals (HMs) presence in the soil causes toxicity, and hampers plant growth and development. Plants being sessile are exposed to a variety of stress and/or a network of different kinds of stresses throughout their life cycle. To sense and transduce these stress signal, the signal reactive nitrogen species (RNS) particularly nitric oxide (NO) is an important secondary messenger next to only reactive oxygen species (ROS). Nitric oxide, a redox active molecule, colourless simple gas, and being a free radical (NO) has the potential in regulating multiple biological signaling responses in a variety of plants. Nitric oxide can counteract HMs-induced ROS, either by direct scavenging or by stimulating antioxidants defense team; therefore, it is also known as secondary antioxidant. The imbalance or cross talk of/between NO and ROS concentration along with antioxidant system leads to nitrosative and oxidative stress, or combination of both i.e., nitro-oxidative stress. Endogenous synthesis of NO also takes place in plants in the presence of heavy metals. During HM stress the different organelles of plant cells can biosynthesize NO in parallel to the ROS, such as in mitochondria, chloroplasts, peroxisomes, cytoplasm, endoplasmic reticulum and apoplasts. In view of the above, an effort has been made in the present review article to trace current knowledge and latest advances in chemical properties, biological roles, mechanism of NO action along with the physiological, biochemical, and molecular changes that occur in plants under different metal stress. A brief focus is also carried on ROS properties, roles, and their production.
Collapse
|
33
|
Asopa PP, Bhatt R, Sihag S, Kothari SL, Kachhwaha S. Effect of cadmium on physiological parameters of cereal and millet plants-A comparative study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:225-230. [PMID: 27420113 DOI: 10.1080/15226514.2016.1207608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metal load is an abiotic stress that becomes stronger by continual industrial production, wastage, and long-range transport of contaminants. It deteriorates the conditions of agricultural soil that leads to lower growth of cereals as well as decreasing nutritional value of harvested grains. Cadmium (Cd) entry by food chain also affects the health of population. The present study is focused on finding out the superior cereal variety under increasing Cd regime. The plants were grown in increasing Cd levels (0-1000 µM) in the medium and were investigated on 15th day of the exposure. Various parameters like antioxidative enzymes and osmoprotectant levels were studied in both roots and shoots. Cd accumulation in plant organs was determined by atomic absorption spectrophotometry (AAS). Analysis of stress tolerance mechanisms through reactive oxygen species (ROS) scavenging and better partitioning of Cd in roots indicated kodo millet to be more stress tolerant than wheat.
Collapse
Affiliation(s)
| | - Ritika Bhatt
- a Department of Botany , University of Rajasthan , Jaipur , India
| | - Santosh Sihag
- a Department of Botany , University of Rajasthan , Jaipur , India
| | - S L Kothari
- a Department of Botany , University of Rajasthan , Jaipur , India
- b Institute of Biotechnology, Amity University , Jaipur , Rajasthan , India
| | - Sumita Kachhwaha
- a Department of Botany , University of Rajasthan , Jaipur , India
| |
Collapse
|
34
|
Luo ZB, He J, Polle A, Rennenberg H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 2016; 34:1131-1148. [DOI: 10.1016/j.biotechadv.2016.07.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
|
35
|
Méndez AAE, Pena LB, Benavides MP, Gallego SM. Priming with NO controls redox state and prevents cadmium-induced general up-regulation of methionine sulfoxide reductase gene family in Arabidopsis. Biochimie 2016; 131:128-136. [PMID: 27702579 DOI: 10.1016/j.biochi.2016.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/15/2022]
Abstract
In the present study we evaluated the pre-treatment (priming) of Arabidopsis thaliana plants with sodium nitroprusside (SNP), a NO-donor, as an interesting approach for improving plant tolerance to cadmium stress. We focused on the cell redox balance and on the methionine sulfoxide reductases (MSR) family as a key component of such response. MSR catalyse the reversible oxidation of MetSO residues back to Met. Five MSRA genes and nine MSRB genes have been identified in A. thaliana, coding for proteins with different subcellular locations. After treating 20 days-old A. thaliana (Col 0) plants with 100 μM CdCl2, increased protein carbonylation in leaf tissue, lower chlorophyll content and higher levels of reactive oxygen species (ROS) in chloroplasts were detected, together with increased accumulation of all MSR transcripts evaluated. Further analysis showed reduction in guaiacol peroxidase activity (GPX) and increased catalase (CAT) activity, with no effect on ascorbate peroxidase (APX) activity. Pre-exposition of plants to 100 μM SNP before cadmium treatment restored redox balance; this seems to be linked to a better performance of antioxidant defenses. Our results indicate that NO priming may be acting as a modulator of plant antioxidant system by interfering in oxidative responses and by preventing up-regulation of MSR genes caused by metal exposure.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Junín 956, Buenos Aires, C1113AA, Argentina; IQUIFIB-CONICET, Argentina
| | - Liliana B Pena
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Junín 956, Buenos Aires, C1113AA, Argentina; IQUIFIB-CONICET, Argentina
| | - María P Benavides
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Junín 956, Buenos Aires, C1113AA, Argentina; IQUIFIB-CONICET, Argentina
| | - Susana M Gallego
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Junín 956, Buenos Aires, C1113AA, Argentina; IQUIFIB-CONICET, Argentina.
| |
Collapse
|
36
|
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:470. [PMID: 27199999 PMCID: PMC4843763 DOI: 10.3389/fpls.2016.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide ([Formula: see text]), hydrogen peroxide (H2O2) and the hydroxyl radical ((•)OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, Dhankher OP, Tripathi RD. Nitric Oxide Alleviated Arsenic Toxicity by Modulation of Antioxidants and Thiol Metabolism in Rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2016; 6:1272. [PMID: 26793232 PMCID: PMC4709823 DOI: 10.3389/fpls.2015.01272] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/28/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule and has a profound impact on plant growth and development. It is reported to serve as pro oxidant as well as antioxidant in plant system. In the present study, we evaluated the protective role of NO against arsenate (As(V)) toxicity in rice plants. As(V) exposure has hampered the plant growth, reduced the chlorophyll content, and enhanced the oxidative stress, while the exogenous NO supplementation has reverted these symptoms. NO supplementation has reduced the arsenic (As) accumulation in root as well as shoot. NO supplementation to As(V) exposed plants has reduced the gene expression level of OsLsi1 and OsLsi2. As(V) stress significantly impacted thiol metabolism, it reduced GSH content and GSH/GSSG ratio, and enhanced the level of PCs. NO supplementation maintained the GSH/GSSG ratio and reduced the level of PCs. NO supplementation reverted As(V) induced iron deficiency in shoot and had significant impact of gene expression level of various iron transporters (OsYSL2, OsFRDL1, OsIRT1, and OsIRO2). Conclusively, exogenous application of NO could be advantageous against As(V) toxicity and could confer the tolerance to As(V) stress in rice.
Collapse
Affiliation(s)
- Amit P. Singh
- C.S.I.R.-National Botanical Research InstituteLucknow, India
| | - Garima Dixit
- C.S.I.R.-National Botanical Research InstituteLucknow, India
| | - Amit Kumar
- C.S.I.R.-National Botanical Research InstituteLucknow, India
| | - Seema Mishra
- C.S.I.R.-National Botanical Research InstituteLucknow, India
| | | | - Sanjay Dwivedi
- C.S.I.R.-National Botanical Research InstituteLucknow, India
| | | | | | - Shekhar Mallick
- C.S.I.R.-National Botanical Research InstituteLucknow, India
| | - Vivek Pandey
- C.S.I.R.-National Botanical Research InstituteLucknow, India
| | - Om P. Dhankher
- Stockbridge School of Agriculture, University of Massachusetts AmherstAmherst, MA, USA
| | | |
Collapse
|
38
|
Corpas FJ. Reactive Nitrogen Species (RNS) in Plants Under Physiological and Adverse Environmental Conditions: Current View. PROGRESS IN BOTANY 2016:97-119. [PMID: 0 DOI: 10.1007/124_2016_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
39
|
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and Metal Stress: Small Molecule, Big Impact. FRONTIERS IN PLANT SCIENCE 2016; 7:23. [PMID: 26870052 PMCID: PMC4735362 DOI: 10.3389/fpls.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.
Collapse
|
40
|
Guo S, Yao Y, Zuo L, Shi W, Gao N, Xu H. Enhancement of tolerance ofGanoderma lucidumto cadmium by nitric oxide. J Basic Microbiol 2015; 56:36-43. [DOI: 10.1002/jobm.201500451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/19/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Shanshan Guo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences; Sichuan University; Chengdu Sichuan China
| | - Yuan Yao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences; Sichuan University; Chengdu Sichuan China
| | - Lei Zuo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences; Sichuan University; Chengdu Sichuan China
| | - Wenjin Shi
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences; Sichuan University; Chengdu Sichuan China
| | - Ni Gao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences; Sichuan University; Chengdu Sichuan China
| | - Heng Xu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences; Sichuan University; Chengdu Sichuan China
| |
Collapse
|
41
|
Sneideris LC, Gavassi MA, Campos ML, D'Amico-Damião V, Carvalho RF. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress. AN ACAD BRAS CIENC 2015; 87:1847-52. [PMID: 26221985 DOI: 10.1590/0001-3765201520140332] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress.
Collapse
Affiliation(s)
- Larissa C Sneideris
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, BR
| | - Marina A Gavassi
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, BR
| | - Marcelo L Campos
- Research Laboratory, Department of Energy-Plant, Michigan State University, East Lansing, Michigan, US
| | - Victor D'Amico-Damião
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, BR
| | - Rogério F Carvalho
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, BR
| |
Collapse
|
42
|
Keunen E, Schellingen K, Van Der Straeten D, Remans T, Colpaert J, Vangronsveld J, Cuypers A. ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2967-2977. [PMID: 25743159 DOI: 10.1093/jxb/erv035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study aims to unravel the functional significance of alternative oxidase1a (AOX1a) induction in Arabidopsis thaliana leaves exposed to cadmium (Cd) by comparing wild-type (WT) plants and aox1a knockout mutants. In the absence of AOX1a, differences in stress-responsive transcript and glutathione levels suggest an increased oxidative challenge during moderate (5 µM) and prolonged (72h) Cd exposure. Nevertheless, aox1a knockout leaves showed lower hydrogen peroxide (H2O2) accumulation as compared to the WT due to both acute (24h) and prolonged (72h) exposure to 5 µM Cd, but not to 10 µM Cd. Taken together, we propose a working model where AOX1a acts early in the response to Cd and activates or maintains a mitochondrial signalling pathway impacting on cellular antioxidative defence at the post-transcriptional level. This fine-tuning pathway is suggested to function during moderate (5 µM) Cd exposure while being overwhelmed during more severe (10 µM) Cd stress. Within this framework, ethylene is required - either directly or indirectly via NADPH oxidase isoform C - to fully induce AOX1 expression. In addition, reciprocal crosstalk between these components was demonstrated in leaves of A. thaliana plants exposed to Cd.
Collapse
Affiliation(s)
- Els Keunen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Kerim Schellingen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Ghent University, Karel Lodewijk Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Tony Remans
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Jan Colpaert
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| |
Collapse
|
43
|
Asgher M, Khan MIR, Anjum NA, Khan NA. Minimising toxicity of cadmium in plants--role of plant growth regulators. PROTOPLASMA 2015; 252:399-413. [PMID: 25303855 DOI: 10.1007/s00709-014-0710-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 05/20/2023]
Abstract
A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.
Collapse
Affiliation(s)
- Mohd Asgher
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | | | | |
Collapse
|
44
|
Duan X, Li X, Ding F, Zhao J, Guo A, Zhang L, Yao J, Yang Y. Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:95-102. [PMID: 25485957 DOI: 10.1016/j.ecoenv.2014.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 05/07/2023]
Abstract
The inhibition of root growth was investigated in wheat seedlings exposed to 3mM zinc (Zn). Zn treatment with or without 250 µM 2-phenyl-4,4,5,5,-tetrame-thylimidazoline-3-oxide-1-oxyl (PTIO) or 10 µM diphenylene iodonium (DPI) significantly inhibited growth, increased malondialdehyde content and lowered cell viability in roots. The most prominent changes of these three parameters at Zn+DPI treatment could be partly blocked by high PTIO concentration (1mM). The production of nitric oxide (NO) and hydrogen peroxide (H2O2) influenced each other under different treatments, with the highest NO level and the highest H2O2 accumulation in Zn+DPI-treated roots. Compared with Zn-stressed roots, catalase, soluble peroxidase (POD), ascorbate peroxidase and superoxide dismutase decreased in Zn+DPI-treated roots, suggesting that ROS generation from plasma membrane (PM) NADPH oxidase was associated with the regulation of antioxidant enzyme activities. Additionally, Zn-treated roots exhibited significant decreases in cell wall-bound POD, diamine oxidase and polyamine oxidase activities. Our results suggested that Zn-induced effects on root growth resulted from NO interaction with H2O2 and that Zn+DPI-induced strongest inhibition could be explained by the highest increase in the endogenous NO content and the reduction of extracellular ROS production.
Collapse
Affiliation(s)
- Xiaohui Duan
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoning Li
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Fan Ding
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Jie Zhao
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Aifeng Guo
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Li Zhang
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Jian Yao
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Yingli Yang
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
45
|
Wu Q, Su N, Cai J, Shen Z, Cui J. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:174-82. [PMID: 25543863 DOI: 10.1016/j.jplph.2014.09.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 05/08/2023]
Abstract
The aim of the present paper was to understand the specific mechanism of hydrogen-rich water (HRW) in alleviating cadmium (Cd) toxicity in Chinese cabbage (Brassica campestris spp. chinensis L.). Our results showed that the addition of 50% saturation HRW significantly alleviated the Cd toxic symptoms, including the improvement of both root elongation and seedling growth inhibition. These responses were consistent with a significant decrease of Cd accumulation in roots and shoots, which was further confirmed by the histochemical staining. Molecular evidence illustrated that Cd-induced up-regulations of IRT1 and Nramp1 genes, responsible for Cd absorption, were blocked by HRW. By contrast, Cd-induced up-regulation of the HMA3 gene, which regulates Cd sequestration into the root vacuoles, was substantially strengthened by HRW. Furthermore, compared with those in Cd stress alone, the expressions of HMA2 and HMA4, which function in the transportation of Cd to xylem, were repressed by co-treatment with HRW. HRW enhanced the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase. These results were further confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) production. Taken together, these results suggest that the improvement of Cd tolerance by HRW was associated with reduced Cd uptake and increased antioxidant defense capacities. Therefore, the application of HRW may be a promising strategy to improve Cd tolerance of Chinese cabbage.
Collapse
Affiliation(s)
- Qi Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangtao Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Wang D, Liu Y, Tan X, Liu H, Zeng G, Hu X, Jian H, Gu Y. Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3489-3497. [PMID: 25242592 DOI: 10.1007/s11356-014-3581-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd)-induced growth inhibition is one of the primary factors limiting phytoremediation effect of Boehmeria nivea (L.) Gaud in contaminated soil. Sodium nitroprusside (SNP), a donor of nitric oxide (NO), has been evidenced to alleviate Cd toxicity in many plants. However, as an important mechanism of NO in orchestrating cellular functions, S-nitrosylation is still poorly understood in its relation with Cd tolerance of plants. In this study, higher exogenous NO levels were found to coincide with higher S-nitrosylation level expressed as content of S-nitrosothiols (SNO). The addition of low concentration (100 μM) SNP increased the SNO content, and it simultaneously induced an alleviating effect against Cd toxicity by enhancing the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) and reduced the accumulation of H2O2 as compared with Cd alone. Application of S-nitrosoglutathione reductase (GSNOR) inhibitors dodecanoic acid (DA) in 100 μM SNP group brought in an extra elevation in S-nitrosylation level and further reinforced the effect of SNP. While the additions of 400 μM SNP and 400 μM SNP + 50 μM DA further elevated the S-nitrosylation level, it markedly weakened the alleviating effect against Cd toxicity as compared with the addition of 100 μM SNP. This phenomenon could be owing to excess consumption of glutathione (GSH) to form SNO under high S-nitrosylation level. Therefore, the present study indicates that S-nitrosylation is involved in the ameliorating effect of SNP against Cd toxicity. This involvement exhibited a concentration-dependent property.
Collapse
Affiliation(s)
- Dafei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang B, Shang S, Jabben Z, Zhang G. Sodium chloride alleviates cadmium toxicity by reducing nitric oxide accumulation in tobacco. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:56-60. [PMID: 25194697 DOI: 10.1016/j.ecoenv.2014.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
Nitric oxide (NO) is involved in regulating the response of plants to Cd toxicity. In this study, we examined possible involvement of NO in the alleviation of Cd toxicity by NaCl in tobacco plants. Two independent experiments were conducted to investigate the changes of NO accumulation and Cd concentration in tobacco plants after the addition of a NO donor, sodium nitroprusside dehydrate (SNP), or a NO inhibitor, nitro-l-arginine methyl ester (l-NAME) in the solution containing NaCl and Cd. NO accumulation in tobacco roots was enhanced when plants were exposed to Cd, but reduced in the treatments of NaCl or l-NAME. NO production was not enhanced even when SNP (NO donor) was added to the solution containing Cd and NaCl. Root number was reduced in plants exposed to Cd, and increased by the addition of NaCl and reduced by the addition of SNP. Addition of NaCl or l-NAME to the Cd-containing solution reduced Cd concentration in plant tissues, with l-NAME having a more dramatic effect. It can be concluded that alleviation of Cd toxicity by NaCl contributed to reduction of NO accumulation in plants.
Collapse
Affiliation(s)
- Binglin Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Shenghua Shang
- Guizhou Tobacco Science Institute, Tanbei Road, Jingyangxiaoqu, Guiyang 550081, PR China
| | - Zahra Jabben
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
48
|
Nitric oxide negatively regulates AKT1-mediated potassium uptake through modulating vitamin B6 homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:16196-201. [PMID: 25355908 DOI: 10.1073/pnas.1417473111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO), an active signaling molecule in plants, is involved in numerous physiological processes and adaptive responses to environmental stresses. Under high-salt conditions, plants accumulate NO quickly, and reorganize Na(+) and K(+) contents. However, the molecular connection between NO and ion homeostasis is largely unknown. Here, we report that NO lowers K(+) channel AKT1-mediated plant K(+) uptake by modulating vitamin B6 biosynthesis. In a screen for Arabidopsis NO-hypersensitive mutants, we isolated sno1 (sensitive to nitric oxide 1), which is allelic to the previously noted mutant sos4 (salt overly sensitive 4) that has impaired Na(+) and K(+) contents and overproduces pyridoxal 5'-phosphate (PLP), an active form of vitamin B6. We showed that NO increased PLP and decreased K(+) levels in plant. NO induced SNO1 gene expression and enzyme activity, indicating that NO-triggered PLP accumulation mainly occurs through SNO1-mediated vitamin B6 salvage biosynthetic pathway. Furthermore, we demonstrated that PLP significantly repressed the activity of K(+) channel AKT1 in the Xenopus oocyte system and Arabidopsis root protoplasts. Together, our results suggest that NO decreases K(+) absorption by promoting the synthesis of vitamin B6 PLP, which further represses the activity of K(+) channel AKT1 in Arabidopsis. These findings reveal a previously unidentified pivotal role of NO in modulating the homeostasis of vitamin B6 and potassium nutrition in plants, and shed light on the mechanism of NO in plant acclimation to environmental changes.
Collapse
|
49
|
Han B, Yang Z, Xie Y, Nie L, Cui J, Shen W. Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. MOLECULAR PLANT 2014; 7:388-403. [PMID: 23974911 DOI: 10.1093/mp/sst122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Up-regulation of the gene that encodes intracellular heme oxygenase 1 (HO1) benefits plants under cadmium (Cd(2+)) stress; however, the molecular mechanisms remain unclear. Here, we elucidate the role of Arabidopsis HY1 (AtHO1) in Cd(2+) tolerance by using genetic and molecular approaches. Analysis of two HY1 null mutants, three HY1 overexpression lines, HO double or triple mutants, as well as phyA and phyB mutants revealed the specific hypersensitivity of hy1 to Cd(2+) stress. Supplementation with two enzymatic by-products of HY1, carbon monoxide (CO) and iron (Fe, especially), rescued the Cd(2+)-induced inhibition of primary root (PR) elongation in hy1-100. The mutation of HY1, which exhibited lower glutathione content than Col-0 in root tissues, was able to induce nitric oxide (NO) overproduction, Cd(2+) accumulation, and severe Fe deficiency in root tissues. However, the contrasting responses appeared in 35S:HY1-4. Additionally, reduced levels of Ferric Reduction Oxidase 2 (FRO2) and Iron-Regulated Transporter 1 (IRT1) transcripts, and increased levels of Heavy Metal ATPase 2/4 (HMA2/4) transcripts bolster the notion that HY1 up-regulation ameliorates Fe deficiency, and might increase Cd(2+) exclusion. Taken together, these results showed that HY1 plays a common link in Cd(2+) tolerance by decreasing NO production and improving Fe homeostasis in Arabidopsis root tissues.
Collapse
Affiliation(s)
- Bin Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
50
|
Farnese FS, Oliveira JA, Gusman GS, Leão GA, Silveira NM, Silva PM, Ribeiro C, Cambraia J. Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:123-137. [PMID: 24912205 DOI: 10.1080/15226514.2012.759532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Effect of nitric oxide (NO) in mitigating stress induced by arsenic (As) was assessed in Pistia stratiotes, with NO supplied as sodium nitroprusside (SNP). Plants were exposed to four treatments: control, SNP (0.1 mg L(-1)), As (1.5 mg L(-1)), As + SNP (1.5 and 0.1 mg L(-1)), for seven days (analyses of growth, absorption of As and mineral nutrients) and for 24 h (analyses of concentration of reactive oxygen intermediates (ROIs), antioxidant capacity and photosynthesis). P. stratiotes accumulated high concentrations of As and this accumulation wasn't affected by the addition of SNP, but the tolerance index of the plant to As increased. SNP attenuated effects of As on the absorption of mineral nutrients (Ca, Fe, Mn, and Mg), but not for phosphorus, and maintained concentrations of ROIs to normal levels, probably due to the increase in antioxidant capacity. The As damaged the photosynthesis by the decrease in pigment contents and by disturbance the photochemical (loss of PSII efficiency and increases in non-photochemical quenching coefficient) and biochemical (reductions in carbon assimilation, increase in the C(i)/C(a) and phi(PSII)/phi(CO2) ratios) steps. The addition of SNP restored these parameters to normal levels. Thus, NO was able to increasing the resistance of P. stratiotes to As.
Collapse
|