1
|
Fisher K, Negi H, Cole O, Tomlin F, Wang Q, Stratmann JW. Structure-Function Analysis of Volatile (Z)-3-Fatty Alcohols in Tomato. J Chem Ecol 2025; 51:6. [PMID: 39853475 PMCID: PMC11761988 DOI: 10.1007/s10886-025-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Plants emit green leaf volatiles (GLVs) in response to biotic and abiotic stress. Receiver plants perceive GLVs as alarm cues resulting in activation of defensive or protective mechanisms. While this is well documented, it is not known how GLVs are perceived by receiver cells and what the structural determinants are for GLV activity. We tested whether the carbon chain length in (Z)-3-fatty alcohols with four to nine carbons and the double bonds in six-carbon alcohols contribute to bioactivity. In Solanum peruvianum suspension-cultured cells we found that (Z)-3-fatty alcohols, except (Z)-3-butenol, induce medium alkalinization and MAP kinase phosphorylation, two signaling responses often tied to the perception of molecular patterns that function in plant immunity and resistance to herbivores. In tomato (S. lycopersicum) seedlings, we found that (Z)-3-fatty alcohols induce inhibition of root growth. In both signaling and physiological responses, (Z)-3-octenol and (Z)-3-nonenol had a higher bioactivity than (Z)-3-heptenol and (Z)-3-hexenol, with (Z)-3-butenol only being active in root growth assays. Bioactivity correlated not only with chain length but also with lipophilicity of the fatty alcohols. The natural GLVs (E)-2-hexenol and the saturated 1-hexanol exhibited a higher bioactivity in pH assays than (Z)-3-hexenol, indicating that the presence and position of a double bond also contributes to bioactivity. Our results indicate that perceiving mechanisms for (Z)-3-fatty alcohols show a preference for longer chain fatty alcohols or that longer chain fatty alcohols are more accessible to receptors.
Collapse
Affiliation(s)
- Kirsten Fisher
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Present Address: Department of Bacteriology, University of Wisconsin, Madison, Madison, WI, USA
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Owen Cole
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Fallon Tomlin
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
2
|
Arimura GI, Uemura T. Cracking the plant VOC sensing code and its practical applications. TRENDS IN PLANT SCIENCE 2025; 30:105-115. [PMID: 39395880 DOI: 10.1016/j.tplants.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Volatile organic compounds (VOCs) are essential airborne mediators of interactions between plants. These plant-plant interactions require sophisticated VOC-sensing mechanisms that enable plants to regulate their defenses against pests. However, these interactions are not limited to specific plants or even conspecifics, and can function in very flexible interactions between plants. Sensing and responding to VOCs in plants is finely controlled by their uptake and transport systems as well as by cellular signaling via, for example, chromatin remodeling system-based transcriptional regulation for defense gene activation. Based on the accumulated knowledge about the interactions between plants and their major VOCs, companion plants and biostimulants are being developed for practical applications in agricultural and horticultural pest control, providing a sustainable alternative to harmful chemicals.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan.
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| |
Collapse
|
3
|
Savić J, Nakarada Đ, Stupar S, Tubić L, Milutinović M, Mojović M, Devrnja N. Glutathione Involvement in Potato Response to French Marigold Volatile Organic Compounds. Antioxidants (Basel) 2024; 13:1565. [PMID: 39765893 PMCID: PMC11673417 DOI: 10.3390/antiox13121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
To elucidate the involvement of glutathione in the mitigation of induced oxidative changes and the sequestration of perceived volatiles in cells, we exposed potato plants to French marigold essential oil. The formation of short-lived radicals, the determination of scavenging activity towards ascorbyl and DPPH radicals, and the assessment of the potato plants' overall intra/extracellular reduction status were performed using electron paramagnetic resonance spectroscopy (EPR). The results showed the presence of hydroxyl radicals in potatoes, with significantly reduced accumulation in exposed plants compared to the control group after 8 h. However, the kinetics of EPR signal intensity change for the pyrrolidine spin probe (3CP) in these plants showed very low reducing potential, suggesting that the antioxidant system acts lethargically and/or the probe has been reoxidized. Total glutathione and its reduced/oxidized form ratio, determined spectrophotometrically, showed that the exposed plants initially had lower glutathione levels with diminutive, reduced form compared to the control. Still, after 8 h, both characteristics were similar to those of the control. RT-qPCR analysis revealed that the volatiles altered the expression of glutathione metabolism-involved genes, especially that of glutathione-S-transferase, after 8 h. Glutathione metabolism was affected by volatiles in the initial response of potato plants exposed to French marigold essential oil, and glutathione molecules were involved in the mitigation of induced oxidative burst.
Collapse
Affiliation(s)
- Jelena Savić
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| | - Đura Nakarada
- BioScope Labs, Center for Physical Chemistry of Biological Systems, Faculty of Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (Đ.N.); (M.M.)
| | - Sofija Stupar
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| | - Ljiljana Tubić
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| | - Milica Milutinović
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| | - Miloš Mojović
- BioScope Labs, Center for Physical Chemistry of Biological Systems, Faculty of Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (Đ.N.); (M.M.)
| | - Nina Devrnja
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (S.S.); (L.T.); (M.M.); (N.D.)
| |
Collapse
|
4
|
Maleki FA, Seidl-Adams I, Felton GW, Kersch-Becker MF, Tumlinson JH. Stomata: gatekeepers of uptake and defense signaling by green leaf volatiles in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6872-6887. [PMID: 39397371 DOI: 10.1093/jxb/erae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Plants adapt to balance growth-defense tradeoffs in response to both biotic and abiotic stresses. Green leaf volatiles (GLVs) are released after biotic and abiotic stresses and function as damage-associated signals in plants. Although, GLVs enter plants primarily through stomata, the role of stomatal regulation on the kinetics of GLV uptake remains largely unknown. Here, we illustrate the effect of stomatal closure on the timing and magnitude of GLV uptake. We closed stomata by either exposing maize (Zea mays) plants to darkness or applying abscisic acid, a phytohormone that closes the stomata in light. Then, we exposed maize seedlings to (Z)-3-hexen-1-ol and compared its dynamic uptake under different stomatal conditions. Additionally, we used (E)-3-hexen-1-ol, an isomer of (Z)-3-hexen-1-ol not made by maize, to exclude the role of internal GLVs in our assays. We demonstrate that closed stomata effectively prevent GLV entry into exposed plants, even at high concentrations. Furthermore, our findings indicate that reduced GLV uptake impairs GLV-driven induction of biosynthesis of sesquiterpenes, a group of GLV-inducible secondary metabolites, with or without herbivory. These results elucidate how stomata regulate the perception of GLV signals, thereby dramatically changing the plant responses to herbivory, particularly under water stress or dark conditions.
Collapse
Affiliation(s)
- Feizollah A Maleki
- Center of Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Irmgard Seidl-Adams
- Center of Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gary W Felton
- Center of Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mônica F Kersch-Becker
- Center of Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - James H Tumlinson
- Center of Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Selman S, Engelberth M, Engelberth J. Organizing the Chaos: Novel Insights into the Regulation of Z-3-Hexenal Production in Damaged Maize Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2772. [PMID: 39409641 PMCID: PMC11479226 DOI: 10.3390/plants13192772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Green leaf volatiles (GLVs) are important signaling compounds that help to regulate plant defenses against pests and pathogens. Made through the hydroperoxide lyase (HPL) pathway, they are rapidly produced upon damage and can signal to other parts of the same plant or even plants nearby, where they can induce rapid defense responses directly or prime them against impending danger. In this primed state, plants can respond faster and/or stronger should pests or pathogens attack. However, while all proteins and genes involved in the biosynthesis of GLVs have been identified, little is still known about how the first two steps in the pathway, e.g., oxygenation by a lipoxygenase (LOX) and subsequent cleavage by HPL, are facilitated within the damaged tissue, resulting in the production of Z-3-hexenal (Z3al) as the first committed product of the pathway. Here, we provide evidence that several factors might be involved in the production of Z3al, including pH, Ca2+, and an environment that is highly hydrophobic. We present a model in which the extraordinary circumstances that are present at the site of Z3al production are considered, and shine new light on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Samantha Selman
- Department of Plant Pathology, Texas A&M University, College Station, TX 77843, USA;
| | - Marie Engelberth
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Jurgen Engelberth
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
6
|
Engelberth J. Green Leaf Volatiles: A New Player in the Protection against Abiotic Stresses? Int J Mol Sci 2024; 25:9471. [PMID: 39273416 PMCID: PMC11395555 DOI: 10.3390/ijms25179471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
To date, the role of green leaf volatiles (GLVs) has been mainly constrained to protecting plants against pests and pathogens. However, increasing evidence suggests that among the stresses that can significantly harm plants, GLVs can also provide significant protection against heat, cold, drought, light, and salinity stress. But while the molecular basis for this protection is still largely unknown, it seems obvious that a common theme in the way GLVs work is that most, if not all, of these stresses are associated with physical damage to the plants, which, in turn, is the major event responsible for the production of GLVs. Here, I summarize the current state of knowledge on GLVs and abiotic stresses and provide a model explaining the multifunctionality of these compounds.
Collapse
Affiliation(s)
- Jurgen Engelberth
- Department of Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78247, USA
| |
Collapse
|
7
|
Bawin T, Krause K. Rising from the shadows: Selective foraging in model shoot parasitic plants. PLANT, CELL & ENVIRONMENT 2024; 47:1118-1127. [PMID: 38058242 DOI: 10.1111/pce.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Despite being sessile, plants nonetheless forage for resources by modulating their growth. Adaptative foraging in response to changes in resource availability and presence of neighbours has strong implications for performance and fitness. It is an even more pressing issue for parasitic plants, which draw resources directly from other plants. Indeed, parasitic plants were demonstrated over the years to direct their growth towards preferred hosts and invest resources in parasitism relative to host quality. In contrast to root parasites that rely mostly on chemical cues, some shoot parasites seem to profit from the ability to integrate different types of abiotic and biotic cues. While significant progress in this field has been made recently, there are still many open questions regarding the molecular perception and the integration of diverse signalling pathways under different ecological contexts. Addressing how different cues are integrated in parasitic plants will be important when unravelling variations in plant interaction pathways, and essential to predict the spread of parasites in natural and agricultural environments. In this review, we discuss this with a focus on Cuscuta species as an emerging parasitic model, and provide research perspectives based on the recent advances in the topic and plant-plant interactions in general.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Tanarsuwongkul S, Fisher KW, Mullis BT, Negi H, Roberts J, Tomlin F, Wang Q, Stratmann JW. Green leaf volatiles co-opt proteins involved in molecular pattern signalling in plant cells. PLANT, CELL & ENVIRONMENT 2024; 47:928-946. [PMID: 38164082 DOI: 10.1111/pce.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The green leaf volatiles (GLVs) Z-3-hexen-1-ol (Z3-HOL) and Z-3-hexenyl acetate (Z3-HAC) are airborne infochemicals released from damaged plant tissues that induce defenses and developmental responses in receiver plants, but little is known about their mechanism of action. We found that Z3-HOL and Z3-HAC induce similar but distinctive physiological and signaling responses in tomato seedlings and cell cultures. In seedlings, Z3-HAC showed a stronger root growth inhibition effect than Z3-HOL. In cell cultures, the two GLVs induced distinct changes in MAP kinase (MAPK) activity and proton fluxes as well as rapid and massive changes in the phosphorylation status of proteins within 5 min. Many of these phosphoproteins are involved in reprogramming the proteome from cellular homoeostasis to stress and include pattern recognition receptors, a receptor-like cytoplasmic kinase, MAPK cascade components, calcium signaling proteins and transcriptional regulators. These are well-known components of damage-associated molecular pattern (DAMP) signaling pathways. These rapid changes in the phosphoproteome may underly the activation of defense and developmental responses to GLVs. Our data provide further evidence that GLVs function like DAMPs and indicate that GLVs coopt DAMP signaling pathways.
Collapse
Affiliation(s)
| | - Kirsten W Fisher
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - B Todd Mullis
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
- IMCS, Irmo, South Carolina, USA
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Jamie Roberts
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Fallon Tomlin
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Qiang Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
9
|
Tanaka Y, Fujita K, Date M, Watanabe B, Matsui K. Structure-activity relationship of volatile compounds that induce defense-related genes in maize seedlings. PLANT SIGNALING & BEHAVIOR 2023; 18:2234115. [PMID: 37454374 PMCID: PMC10730182 DOI: 10.1080/15592324.2023.2234115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Volatile organic compounds mediate plant-to-plant communication, and plants receiving volatile cues can acquire greater defenses against attackers. It has been expected that volatiles are received by factors that eventually lead to the induction of defense-related gene expression; however, the nature of these factors remain unclear. Structure-activity relationship analysis of gene expression induction by volatiles should provide insights into the nature of these factors. We conducted a structure-activity relationship study using maize seedlings and (Z)-3-hexen-1-yl acetate (Z3HAC) as the lead compound. The acid portion of Z3HAC was not essential, and (Z)-3-hexen-1-ol (Z3HOL), which is formed after the hydrolysis of Z3HAC, is likely the structure essential for the upregulation of the genes. The double bond of Z3HOL is essential; however, its geometry is indistinguishable. Strict specificity was detected regarding the length of the methylene chain on the α- and ω-sides of the double bond, and therefore, the 3-hexen-1-ol structure was found to be the ultimate structure. This finding provides insight into the nature of the factors that interact with a volatile compound and subsequently activate signaling pathways, leading to the upregulation of a subset of defense genes.
Collapse
Affiliation(s)
- Yasuhiro Tanaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kenya Fujita
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Minori Date
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, Chofu, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
10
|
Aratani Y, Uemura T, Hagihara T, Matsui K, Toyota M. Green leaf volatile sensory calcium transduction in Arabidopsis. Nat Commun 2023; 14:6236. [PMID: 37848440 PMCID: PMC10582025 DOI: 10.1038/s41467-023-41589-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Plants perceive volatile organic compounds (VOCs) released by mechanically- or herbivore-damaged neighboring plants and induce various defense responses. Such interplant communication protects plants from environmental threats. However, the spatiotemporal dynamics of VOC sensory transduction in plants remain largely unknown. Using a wide-field real-time imaging method, we visualize an increase in cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis leaves following exposure to VOCs emitted by injured plants. We identify two green leaf volatiles (GLVs), (Z)-3-hexenal (Z-3-HAL) and (E)-2-hexenal (E-2-HAL), which increase [Ca2+]cyt in Arabidopsis. These volatiles trigger the expression of biotic and abiotic stress-responsive genes in a Ca2+-dependent manner. Tissue-specific high-resolution Ca2+ imaging and stomatal mutant analysis reveal that [Ca2+]cyt increases instantly in guard cells and subsequently in mesophyll cells upon Z-3-HAL exposure. These results suggest that GLVs in the atmosphere are rapidly taken up by the inner tissues via stomata, leading to [Ca2+]cyt increases and subsequent defense responses in Arabidopsis leaves.
Collapse
Affiliation(s)
- Yuri Aratani
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, 338-8570, Japan
| | - Takuya Uemura
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, 338-8570, Japan
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, 338-8570, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, 338-8570, Japan.
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan.
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Singh AA, Ghosh A, Agrawal M, Agrawal SB. Secondary metabolites responses of plants exposed to ozone: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88281-88312. [PMID: 37440135 DOI: 10.1007/s11356-023-28634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Tropospheric ozone (O3) is a secondary pollutant that causes oxidative stress in plants due to the generation of excess reactive oxygen species (ROS). Phenylpropanoid metabolism is induced as a usual response to stress in plants, and induction of key enzyme activities and accumulation of secondary metabolites occur, upon O3 exposure to provide resistance or tolerance. The phenylpropanoid, isoprenoid, and alkaloid pathways are the major secondary metabolic pathways from which plant defense metabolites emerge. Chronic exposure to O3 significantly accelerates the direction of carbon flows toward secondary metabolic pathways, resulting in a resource shift in favor of the synthesis of secondary products. Furthermore, since different cellular compartments have different levels of ROS sensitivity and metabolite sets, intracellular compartmentation of secondary antioxidative metabolites may play a role in O3-induced ROS detoxification. Plants' responses to resource partitioning often result in a trade-off between growth and defense under O3 stress. These metabolic adjustments help the plants to cope with the stress as well as for achieving new homeostasis. In this review, we discuss secondary metabolic pathways in response to O3 in plant species including crops, trees, and medicinal plants; and how the presence of this stressor affects their role as ROS scavengers and structural defense. Furthermore, we discussed how O3 affects key physiological traits in plants, foliar chemistry, and volatile emission, which affects plant-plant competition (allelopathy), and plant-insect interactions, along with an emphasis on soil dynamics, which affect the composition of soil communities via changing root exudation, litter decomposition, and other related processes.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Department of Botany, University of Lucknow, -226007, Lucknow, India
| | - Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Kutty NN, Mishra M. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. FRONTIERS IN PLANT SCIENCE 2023; 14:1135000. [PMID: 37416879 PMCID: PMC10322200 DOI: 10.3389/fpls.2023.1135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Plants are continuously threatened by a plethora of biotic stresses caused by microbes, pathogens, and pests, which often act as the major constraint in crop productivity. To overcome such attacks, plants have evolved with an array of constitutive and induced defense mechanisms- morphological, biochemical, and molecular. Volatile organic compounds (VOCs) are a class of specialized metabolites that are naturally emitted by plants and play an important role in plant communication and signaling. During herbivory and mechanical damage, plants also emit an exclusive blend of volatiles often referred to as herbivore-induced plant volatiles (HIPVs). The composition of this unique aroma bouquet is dependent upon the plant species, developmental stage, environment, and herbivore species. HIPVs emitted from infested and non-infested plant parts can prime plant defense responses by various mechanisms such as redox, systemic and jasmonate signaling, activation of mitogen-activated protein (MAP) kinases, and transcription factors; mediate histone modifications; and can also modulate the interactions with natural enemies via direct and indirect mechanisms. These specific volatile cues mediate allelopathic interactions leading to altered transcription of defense-related genes, viz., proteinase inhibitors, amylase inhibitors in neighboring plants, and enhanced levels of defense-related secondary metabolites like terpenoids and phenolic compounds. These factors act as deterrents to feeding insects, attract parasitoids, and provoke behavioral changes in plants and their neighboring species. This review presents an overview of the plasticity identified in HIPVs and their role as regulators of plant defense in Solanaceous plants. The selective emission of green leaf volatiles (GLVs) including hexanal and its derivatives, terpenes, methyl salicylate, and methyl jasmonate (MeJa) inducing direct and indirect defense responses during an attack from phloem-sucking and leaf-chewing pests is discussed. Furthermore, we also focus on the recent developments in the field of metabolic engineering focused on modulation of the volatile bouquet to improve plant defenses.
Collapse
|
13
|
Kessler A, Mueller MB, Kalske A, Chautá A. Volatile-mediated plant-plant communication and higher-level ecological dynamics. Curr Biol 2023; 33:R519-R529. [PMID: 37279686 DOI: 10.1016/j.cub.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Volatile organic compounds (VOCs) in general and herbivory-induced plant volatiles (HIPVs) in particular are increasingly understood as major mediators of information transfer between plant tissues. Recent findings have moved the field of plant communication closer to a detailed understanding of how plants emit and perceive VOCs and seem to converge on a model that juxtaposes perception and emission mechanisms. These new mechanistic insights help to explain how plants can integrate different types of information and how environmental noise can affect the transmission of information. At the same time, ever-new functions of VOC-mediated plant-plant interactions are being revealed. Chemical information transfer between plants is now known to fundamentally affect plant organismal interactions and, additionally, population, community, and ecosystem dynamics. One of the most exciting new developments places plant-plant interactions along a behavioral continuum with an eavesdropping strategy at one end and mutually beneficial information-sharing among plants within a population at the other. Most importantly and based on recent findings as well as theoretical models, plant populations can be predicted to evolve different communication strategies depending on their interaction environment. We use recent studies from ecological model systems to illustrate this context dependency of plant communication. Moreover, we review recent key findings about the mechanisms and functions of HIPV-mediated information transfer and suggest conceptual links, such as to information theory and behavioral game theory, as valuable tools for a deeper understanding of how plant-plant communication affects ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Michael B Mueller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Alexander Chautá
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Parmagnani AS, Kanchiswamy CN, Paponov IA, Bossi S, Malnoy M, Maffei ME. Bacterial Volatiles (mVOC) Emitted by the Phytopathogen Erwinia amylovora Promote Arabidopsis thaliana Growth and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030600. [PMID: 36978848 PMCID: PMC10045578 DOI: 10.3390/antiox12030600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.
Collapse
Affiliation(s)
- Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | | | - Ivan A. Paponov
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Simone Bossi
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-5967
| |
Collapse
|
15
|
Costa ÁVL, Oliveira TFDC, Posso DA, Reissig GN, Parise AG, Barros WS, Souza GM. Systemic Signals Induced by Single and Combined Abiotic Stimuli in Common Bean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:924. [PMID: 36840271 PMCID: PMC9964927 DOI: 10.3390/plants12040924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
To survive in a dynamic environment growing fixed to the ground, plants have developed mechanisms for monitoring and perceiving the environment. When a stimulus is perceived, a series of signals are induced and can propagate away from the stimulated site. Three distinct types of systemic signaling exist, i.e., (i) electrical, (ii) hydraulic, and (iii) chemical, which differ not only in their nature but also in their propagation speed. Naturally, plants suffer influences from two or more stimuli (biotic and/or abiotic). Stimuli combination can promote the activation of new signaling mechanisms that are explicitly activated, as well as the emergence of a new response. This study evaluated the behavior of electrical (electrome) and hydraulic signals after applying simple and combined stimuli in common bean plants. We used simple and mixed stimuli applications to identify biochemical responses and extract information from the electrical and hydraulic patterns. Time series analysis, comparing the conditions before and after the stimuli and the oxidative responses at local and systemic levels, detected changes in electrome and hydraulic signal profiles. Changes in electrome are different between types of stimulation, including their combination, and systemic changes in hydraulic and oxidative dynamics accompany these electrical signals.
Collapse
Affiliation(s)
- Ádrya Vanessa Lira Costa
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Douglas Antônio Posso
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Gabriela Niemeyer Reissig
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | | | - Willian Silva Barros
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Matsui K, Engelberth J. Green Leaf Volatiles-The Forefront of Plant Responses Against Biotic Attack. PLANT & CELL PHYSIOLOGY 2022; 63:1378-1390. [PMID: 35934892 DOI: 10.1093/pcp/pcac117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 05/23/2023]
Abstract
Green leaf volatiles (GLVs) are six-carbon volatile oxylipins ubiquitous in vascular plants. GLVs are produced from acyl groups in the biological membranes via oxygenation by a pathway-specific lipoxygenase (LOX) and a subsequent cleavage reaction by hydroperoxide lyase. Because of the universal distribution and ability to form GLVs, they have been anticipated to play a common role in vascular plants. While resting levels in intact plant tissues are low, GLVs are immediately synthesized de novo in response to stresses, such as insect herbivory, that disrupt the cell structure. This rapid GLV burst is one of the fastest responses of plants to cell-damaging stresses; therefore, GLVs are the first plant-derived compounds encountered by organisms that interact with plants irrespective of whether the interaction is competitive or friendly. GLVs should therefore be considered important mediators between plants and organisms that interact with them. GLVs can have direct effects by deterring herbivores and pathogens as well as indirect effects by attracting predators of herbivores, while other plants can recruit them to prepare their defenses in a process called priming. While the beneficial effects provided to plants by GLVs are often less dramatic and even complementary, the buildup of these tiny effects due to the multiple functions of GLVs can amass to levels that become substantially beneficial to plants. This review summarizes the current understanding of the spatiotemporal resolution of GLV biosynthesis and GLV functions and outlines how GLVs support the basic health of plants.
Collapse
Affiliation(s)
- Kenji Matsui
- Graduate School of Sciences and Technology for Innovation (Agriculture), Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Jurgen Engelberth
- Department of Integrative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
17
|
Parmagnani AS, Maffei ME. Calcium Signaling in Plant-Insect Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2689. [PMID: 36297718 PMCID: PMC9609891 DOI: 10.3390/plants11202689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In plant-insect interactions, calcium (Ca2+) variations are among the earliest events associated with the plant perception of biotic stress. Upon herbivory, Ca2+ waves travel long distances to transmit and convert the local signal to a systemic defense program. Reactive oxygen species (ROS), Ca2+ and electrical signaling are interlinked to form a network supporting rapid signal transmission, whereas the Ca2+ message is decoded and relayed by Ca2+-binding proteins (including calmodulin, Ca2+-dependent protein kinases, annexins and calcineurin B-like proteins). Monitoring the generation of Ca2+ signals at the whole plant or cell level and their long-distance propagation during biotic interactions requires innovative imaging techniques based on sensitive sensors and using genetically encoded indicators. This review summarizes the recent advances in Ca2+ signaling upon herbivory and reviews the most recent Ca2+ imaging techniques and methods.
Collapse
|
18
|
Volatile Dimethyl Disulfide from Guava Plants Regulate Developmental Performance of Asian Citrus Psyllid through Activation of Defense Responses in Neighboring Orange Plants. Int J Mol Sci 2022; 23:ijms231810271. [PMID: 36142192 PMCID: PMC9499464 DOI: 10.3390/ijms231810271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Intercropping with guava (Psidium guajava L.) can assist with the management of Asian citrus psyllid (ACP, Diaphorina citri Kuwayama), the insect vector of the huanglongbing pathogen, in citrus orchards. Sulfur volatiles have a repellent activity and physiological effects, as well as being important components of guava volatiles. In this study, we tested whether the sulfur volatiles emitted by guava plants play a role in plant–plant communications and trigger anti-herbivore activities against ACP in sweet orange plants (Citrus sinensis L. Osbeck). Real-time determination using a proton-transfer-reaction mass spectrometer (PTR-MS) showed that guava plants continuously release methanethiol, dimethyl sulfide (DMS), and dimethyl disulfide (DMDS), and the contents increased rapidly after mechanical damage. The exposure of orange plants to DMDS resulted in the suppression of the developmental performance of ACP. The differential elevation of salicylic acid (SA) levels; the expression of phenylalanine ammonia lyase (PAL), salicylate-O-methyl transferase (SMT), and pathogenesis-related (PR1) genes; the activities of defense-related enzymes PAL, polyphenol oxidase (PPO), and peroxidase (POD); and the total polyphenol content were observed in DMDS-exposed orange plants. The emission of volatiles including myrcene, nonanal, decanal, and methyl salicylate (MeSA) was increased. In addition, phenylpropanoid and flavonoid biosynthesis, and aromatic amino acid (such as phenylalanine, tyrosine, and tryptophan) metabolic pathways were induced. Altogether, our results indicated that DMDS from guava plants can activate defense responses in eavesdropping orange plants and boost their herbivore resistance to ACP, which suggests the possibility of using DMDS as a novel approach for the management of ACP in citrus orchards.
Collapse
|
19
|
Volatile uptake, transport, perception, and signaling shape a plant's nose. Essays Biochem 2022; 66:695-702. [PMID: 36062590 PMCID: PMC9528081 DOI: 10.1042/ebc20210092] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022]
Abstract
Herbivore-induced plant volatiles regulate defenses in undamaged neighboring plants. Understanding the mechanisms by which plant volatiles are taken up, perceived, and translated into canonical defense signaling pathways is an important frontier of knowledge. Volatiles can enter plants through stomata and the cuticle. They are likely perceived by membrane-associated receptors as well as intracellular receptors. The latter likely involves metabolization and transport across cell membranes by volatile transporters. Translation of volatiles into defense priming and induction typically involves mitogen-activated protein kinases (MAPKs), WRKY transcription factors, and jasmonates. We propose that the broad range of molecular processes involved in volatile signaling will likely result in substantial spatiotemporal and ontogenetic variation in plant responsiveness to volatiles, with important consequences for plant–environment interactions.
Collapse
|
20
|
Jiao C, Guo Z, Gong J, Zuo Y, Li S, Vanegas D, McLamore ES, Shen Y. CML8 and GAD4 function in (Z)-3-hexenol-mediated defense by regulating γ-aminobutyric acid accumulation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:135-144. [PMID: 35842997 DOI: 10.1016/j.plaphy.2022.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
(Z)-3-hexenol, a small gaseous molecule, is produced in plants under biotic stress and induces defense responses in neighboring plants. However, little is known about how (Z)-3-hexenol induces plant defense-related signaling. In this study, we uncovered how (Z)-3-hexenol treatment enhances plant resistance to insect attacks by increasing γ-aminobutyric acid (GABA) contents in Arabidopsis leaves. First, (Z)-3-hexenol increases the intracellular content of calcium as secondary messenger in Arabidopsis leaf mesophyll cells. Both intracellular and extracellular calcium stores regulate changes in calcium content. Then, CML8 and GAD4 transmit calcium signaling to affect (Z)-3-hexenol induced GABA content and plant resistance. Herein, CML8 interaction with GAD4 was examined via yeast two-hybrid assays, firefly luciferase complementation imaging, and GST pull-down assays. These results indicate that (Z)-3-hexenol treatment increased the GABA contents in Arabidopsis leaves based on CML8 and GAD4, thus increasing plant resistance to the insect Plutella xylostella. This study revealed the mechanism of activating plant insect defense induced by (Z)-3-hexenol, which guides the study of volatiles as biological pest control.
Collapse
Affiliation(s)
- Chunyang Jiao
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhujuan Guo
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junqing Gong
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yixin Zuo
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuwen Li
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Diana Vanegas
- College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, 29634, South Carolina, USA
| | - Eric S McLamore
- Agricultural Sciences, Clemson University, Clemson, 29634, South Carolina, USA
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Pai VP, Cooper BG, Levin M. Screening Biophysical Sensors and Neurite Outgrowth Actuators in Human Induced-Pluripotent-Stem-Cell-Derived Neurons. Cells 2022; 11:cells11162470. [PMID: 36010547 PMCID: PMC9406775 DOI: 10.3390/cells11162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
All living cells maintain a charge distribution across their cell membrane (membrane potential) by carefully controlled ion fluxes. These bioelectric signals regulate cell behavior (such as migration, proliferation, differentiation) as well as higher-level tissue and organ patterning. Thus, voltage gradients represent an important parameter for diagnostics as well as a promising target for therapeutic interventions in birth defects, injury, and cancer. However, despite much progress in cell and molecular biology, little is known about bioelectric states in human stem cells. Here, we present simple methods to simultaneously track ion dynamics, membrane voltage, cell morphology, and cell activity (pH and ROS), using fluorescent reporter dyes in living human neurons derived from induced neural stem cells (hiNSC). We developed and tested functional protocols for manipulating ion fluxes, membrane potential, and cell activity, and tracking neural responses to injury and reinnervation in vitro. Finally, using morphology sensor, we tested and quantified the ability of physiological actuators (neurotransmitters and pH) to manipulate nerve repair and reinnervation. These methods are not specific to a particular cell type and should be broadly applicable to the study of bioelectrical controls across a wide range of combinations of models and endpoints.
Collapse
Affiliation(s)
- Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Ben G. Cooper
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
22
|
Holopainen E, Kokkola H, Faiola C, Laakso A, Kühn T. Insect Herbivory Caused Plant Stress Emissions Increases the Negative Radiative Forcing of Aerosols. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD036733. [PMID: 36249538 PMCID: PMC9540253 DOI: 10.1029/2022jd036733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Plant stress in a changing climate is predicted to increase plant volatile organic compound (VOC) emissions and thus can affect the formed secondary organic aerosol (SOA) concentrations, which in turn affect the radiative properties of clouds and aerosol. However, global aerosol-climate models do not usually consider plant stress induced VOCs in their emission schemes. In this study, we modified the monoterpene emission factors in biogenic emission model to simulate biotic stress caused by insect herbivory on needleleaf evergreen boreal and broadleaf deciduous boreal trees and studied the consequent effects on SOA formation, aerosol-cloud interactions as well as direct radiative effects of formed SOA. Simulations were done altering the fraction of stressed and healthy trees in the latest version of ECHAM-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0) global aerosol-climate model. Our simulations showed that increasing the extent of stress to the aforementioned tree types, substantially increased the SOA burden especially over the areas where these trees are located. This indicates that increased VOC emissions due to increasing stress enhance the SOA formation via oxidation of VOCs to low VOCs. In addition, cloud droplet number concentration at the cloud top increased with increasing extent of biotic stress. This indicates that as SOA formation increases, it further enhances the number of particles acting as cloud condensation nuclei. The increase in SOA formation also decreased both all-sky and clear-sky radiative forcing. This was due to a shift in particle size distributions that enhanced aerosol reflecting and scattering of incoming solar radiation.
Collapse
Affiliation(s)
- E. Holopainen
- Atmospheric Research Centre of Eastern FinlandFinnish Meteorological InstituteKuopioFinland
- Aerosol Physics Research GroupUniversity of Eastern FinlandKuopioFinland
| | - H. Kokkola
- Atmospheric Research Centre of Eastern FinlandFinnish Meteorological InstituteKuopioFinland
| | - C. Faiola
- Department of Ecology and Evolutionary BiologyUniversity of California IrvineIrvineCAUSA
- Department of ChemistryUniversity of California IrvineIrvineCAUSA
| | - A. Laakso
- Atmospheric Research Centre of Eastern FinlandFinnish Meteorological InstituteKuopioFinland
| | - T. Kühn
- Atmospheric Research Centre of Eastern FinlandFinnish Meteorological InstituteKuopioFinland
- Aerosol Physics Research GroupUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
23
|
Brosset A, Blande JD. Volatile-mediated plant-plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:511-528. [PMID: 34791168 PMCID: PMC8757495 DOI: 10.1093/jxb/erab487] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/04/2021] [Indexed: 05/12/2023]
Abstract
It is firmly established that plants respond to biotic and abiotic stimuli by emitting volatile organic compounds (VOCs). These VOCs provide information on the physiological status of the emitter plant and are available for detection by the whole community. In the context of plant-plant interactions, research has focused mostly on the defence-related responses of receiver plants. However, responses may span hormone signalling and both primary and secondary metabolism, and ultimately affect plant fitness. Here we present a synthesis of plant-plant interactions, focusing on the effects of VOC exposure on receiver plants. An overview of the important chemical cues, the uptake and conversion of VOCs, and the adsorption of VOCs to plant surfaces is presented. This is followed by a review of the substantial VOC-induced changes to receiver plants affecting both primary and secondary metabolism and influencing plant growth and reproduction. Further research should consider whole-plant responses for the effective evaluation of the mechanisms and fitness consequences of exposure of the receiver plant to VOCs.
Collapse
Affiliation(s)
- Agnès Brosset
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P.O. Box 1627, Kuopio FIN-70211, Finland
| | | |
Collapse
|
24
|
Hu L. Integration of multiple volatile cues into plant defense responses. THE NEW PHYTOLOGIST 2022; 233:618-623. [PMID: 34506634 DOI: 10.1111/nph.17724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The ability to predict future risks is essential for many organisms, including plants. Plants can gather information about potential future herbivory by detecting volatiles that are emitted by herbivore-attacked neighbors. Several individual volatiles have been identified as active danger cues. Recent work has also shown that plants may integrate multiple volatiles into their defense responses. Here, I discuss how the integration of multiple volatiles can increase the capacity of plants to predict future herbivore attack. I propose that integration of multiple volatile cues does not occur at the perception stage, but may through downstream early defense signaling and then be further consolidated by hormonal crosstalk. Exploring plant volatile cue integration can facilitate our understanding and utilization of chemical information transfer.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Institute of Plant Sciences, University of Bern, Bern, 3013, Switzerland
| |
Collapse
|
25
|
Sugimoto K, Iijima Y, Takabayashi J, Matsui K. Processing of Airborne Green Leaf Volatiles for Their Glycosylation in the Exposed Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:721572. [PMID: 34868107 PMCID: PMC8636985 DOI: 10.3389/fpls.2021.721572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/14/2021] [Indexed: 05/30/2023]
Abstract
Green leaf volatiles (GLVs), the common constituents of herbivore-infested plant volatiles (HIPVs), play an important role in plant defense and function as chemical cues to communicate with other individuals in nature. Reportedly, in addition to endogenous GLVs, the absorbance of airborne GLVs emitted by infested neighboring plants also play a major role in plant defense. For example, the exclusive accumulation of (Z)-3-hexenyl vicianoside in the HIPV-exposed tomato plants occurs by the glycosylation of airborne (Z)-3-hexenol (Z3HOL); however, it is unclear how plants process the other absorbed GLVs. This study demonstrates that tomato plants dominantly accumulated GLV-glycosides after exposure to green leaf alcohols [Z3HOL, (E)-2-hexenol, and n-hexanol] using non-targeted LC-MS analysis. Three types of green leaf alcohols were independently glycosylated without isomerization or saturation/desaturation. Airborne green leaf aldehydes and esters were also glycosylated, probably through converting aldehydes and esters into alcohols. Further, we validated these findings in Arabidopsis mutants- (Z)-3-hexenal (Z3HAL) reductase (chr) mutant that inhibits the conversion of Z3HAL to Z3HOL and the acetyl-CoA:(Z)-3-hexen-1-ol acetyltransferase (chat) mutant that impairs the conversion of Z3HOL to (Z)-3-hexenyl acetate. Exposure of the chr and chat mutants to Z3HAL accumulated lower and higher amounts of glycosides than their corresponding wild types (Col-0 and Ler), respectively. These findings suggest that plants process the exogenous GLVs by the reductase(s) and the esterase(s), and a part of the processed GLVs contribute to glycoside accumulation. Overall, the study provides insights into the understanding of the communication of the plants within their ecosystem, which could help develop strategies to protect the crops and maintain a balanced ecosystem.
Collapse
Affiliation(s)
- Koichi Sugimoto
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Yoko Iijima
- Department of Applied Chemistry, Kogakuin University, Tokyo, Japan
| | | | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
26
|
Jing T, Qian X, Du W, Gao T, Li D, Guo D, He F, Yu G, Li S, Schwab W, Wan X, Sun X, Song C. Herbivore-induced volatiles influence moth preference by increasing the β-Ocimene emission of neighbouring tea plants. PLANT, CELL & ENVIRONMENT 2021; 44:3667-3680. [PMID: 34449086 DOI: 10.1111/pce.14174] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Herbivore-induced plant volatiles prime neighbouring plants to respond more strongly to subsequent attacks. However, the key volatiles that trigger this state and their priming mechanisms remain largely unknown. The tea geometrid Ectropis obliqua is one of the most devastating leaf-feeding pests of tea plants. Here, plant-plant communication experiments demonstrated that volatiles emitted from tea plants infested by E. obliqua larvae triggered neighbouring plants to release volatiles that repel E. obliqua adult, especially mated females. Volatile analyses revealed that the quantity of eight volatiles increased dramatically when plants were exposed to volatiles emitted by infested tea plants, including (Z)-3-hexenol, linalool, α-farnesene, β-Ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). The results of behavioural bioassays demonstrated that β-Ocimene strongly repelled mated E. obliqua females. Individual volatile compound exposure experiments revealed that (Z)-3-hexenol, linalool, α-farnesene and DMNT triggered the emission of β-Ocimene from tea plants. Chemical inhibition experiments demonstrated that the emission of β-Ocimene induced by (Z)-3-hexenol, linalool, α-farnesene and DMNT were dependent on Ca2+ and JA signalling. These findings help us to understand how E. obliqua moths respond to volatiles emitted from tea plants and provide new insight into volatile-mediated plant-plant interactions. They have potential significance for the development of novel insect and pest control strategies in crops.
Collapse
Affiliation(s)
- Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Xiaona Qian
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Dongfeng Li
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Fan He
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Guomeng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Shupeng Li
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| |
Collapse
|
27
|
Contreras-Cornejo HA, Macías-Rodríguez L, Real-Santillán RO, López-Carmona D, García-Gómez G, Galicia-Gallardo AP, Alfaro-Cuevas R, González-Esquivel CE, Najera-Rincón MB, Adame-Garnica SG, Rebollar-Alviter A, Álvarez-Navarrete M, Larsen J. In a belowground multitrophic interaction, Trichoderma harzianum induces maize root herbivore tolerance against Phyllophaga vetula. PEST MANAGEMENT SCIENCE 2021; 77:3952-3963. [PMID: 33851514 DOI: 10.1002/ps.6415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Trichoderma spp. are soil fungi that interact with plant roots and associated biota such as other microorganisms and soil fauna. However, information about their interactions with root-feeding insects is limited. Here, interactions between Trichoderma harzianum and the root-feeding insect Phyllophaga vetula, a common insect pest in maize agroecosystems, were examined. RESULTS Applications of T. harzianum and P. vetula to the root system increased and decreased maize growth, respectively. Induced tolerance against herbivore attack was provided by T. harzianum maintaining a robust and functional root system as evidenced by the increased uptake of Cu, Ca, Mg, Na and K. Herbivore tolerance also coincided with changes in the emission of root volatile terpenes known to induce indirect defense responses and attract natural enemies of the herbivore. More importantly, T. harzianum induced de novo emission of several sesquiterpenes such as β-caryophyllene and δ-cadinene. In addition, single and combined applications of T. harzianum and P. vetula altered the sucrose content of the roots. Finally, T. harzianum produced 6-pentyl-2H-pyran-2-one (6-PP) a volatile compound that may act as an antifeedant-signaling compound mitigating root herbivory by P. vetula. CONCLUSION Our results provide novel information about belowground multitrophic plant-microbe-arthropod interactions between T. harzianum and P. vetula in the maize rhizosphere resulting in alterations in maize phenotypic plant responses, inducing root herbivore tolerance.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Raúl Omar Real-Santillán
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Dante López-Carmona
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Griselda García-Gómez
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ana Paola Galicia-Gallardo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Ruth Alfaro-Cuevas
- Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Carlos E González-Esquivel
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Miguel Bernardo Najera-Rincón
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarías, Campo Experimental Uruapan, Uruapan, Mexico
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Angel Rebollar-Alviter
- Universidad Autónoma Chapingo, Centro Regional Universitario Centro Occidente, Morelia, Mexico
| | | | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| |
Collapse
|
28
|
Brosset A, Islam M, Bonzano S, Maffei ME, Blande JD. Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory. Sci Rep 2021; 11:13532. [PMID: 34188152 PMCID: PMC8242006 DOI: 10.1038/s41598-021-93052-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
It is well established that plants emit, detect and respond to volatile organic compounds; however, knowledge on the ability of plants to detect and respond to volatiles emitted by non-plant organisms is limited. Recent studies indicated that plants detect insect-emitted volatiles that induce defence responses; however, the mechanisms underlying this detection and defence priming is unknown. Therefore, we explored if exposure to a main component of Plutella xylostella female sex pheromone namely (Z)-11-hexadecenal [(Z)-11-16:Ald] induced detectable early and late stage defence-related plant responses in Brassica nigra. Exposure to biologically relevant levels of vapourised (Z)-11-16:Ald released from a loaded septum induced a change in volatile emissions of receiver plants after herbivore attack and increased the leaf area consumed by P. xylostella larvae. Further experiments examining the effects of the (Z)-11-16:Ald on several stages of plant defence-related responses showed that exposure to 100 ppm of (Z)-11-16:Ald in liquid state induced depolarisation of the transmembrane potential (Vm), an increase in cytosolic calcium concentration [Ca2+]cyt, production of H2O2 and an increase in expression of reactive oxygen species (ROS)-mediated genes and ROS-scavenging enzyme activity. The results suggest that exposure to volatile (Z)-11-16:Ald increases the susceptibility of B. nigra to subsequent herbivory. This unexpected finding, suggest alternative ecological effects of detecting insect pheromone to those reported earlier. Experiments conducted in vitro showed that high doses of (Z)-11-16:Ald induced defence-related responses, but further experiments should assess how specific the response is to this particular aldehyde.
Collapse
Affiliation(s)
- Agnès Brosset
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, N70211, Kuopio, Finland.
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.,Department of Sustainable Crop Production, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Sara Bonzano
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO) Regione Gonzole, 10 - 10043, Orbassano (TO), Italy
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, N70211, Kuopio, Finland
| |
Collapse
|
29
|
Sharifi R, Ryu C. Social networking in crop plants: Wired and wireless cross-plant communications. PLANT, CELL & ENVIRONMENT 2021; 44:1095-1110. [PMID: 33274469 PMCID: PMC8049059 DOI: 10.1111/pce.13966] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 05/03/2023]
Abstract
The plant-associated microbial community (microbiome) has an important role in plant-plant communications. Plants decipher their complex habitat situations by sensing the environmental stimuli and molecular patterns and associated with microbes, herbivores and dangers. Perception of these cues generates inter/intracellular signals that induce modifications of plant metabolism and physiology. Signals can also be transferred between plants via different mechanisms, which we classify as wired- and wireless communications. Wired communications involve direct signal transfers between plants mediated by mycorrhizal hyphae and parasitic plant stems. Wireless communications involve plant volatile emissions and root exudates elicited by microbes/insects, which enable inter-plant signalling without physical contact. These producer-plant signals induce microbiome adaptation in receiver plants via facilitative or competitive mechanisms. Receiver plants eavesdrop to anticipate responses to improve fitness against stresses. An emerging body of information in plant-plant communication can be leveraged to improve integrated crop management under field conditions.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant ProtectionCollege of Agriculture and Natural Resources, Razi UniversityKermanshahIran
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystem and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
30
|
Ye M, Liu M, Erb M, Glauser G, Zhang J, Li X, Sun X. Indole primes defence signalling and increases herbivore resistance in tea plants. PLANT, CELL & ENVIRONMENT 2021; 44:1165-1177. [PMID: 32996129 DOI: 10.1111/pce.13897] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Upon herbivore attack, plants emit herbivore-induced plant volatiles (HIPVs). HIPVs can prime defences and resistance of intact plants. However, how HIPVs are decoded and translated into functional defence responses is not well understood, especially in long-lived woody plants. Here, we investigated the impact of the aromatic HIPV indole on defence-related early signalling, phytohormone accumulation, secondary metabolite biosynthesis and herbivore resistance in tea plants. We find that tea plants infested with tea geometrid caterpillars release indole at concentrations >450 ng*hr-1 . Exposure to corresponding doses of synthetic indole primes the expression of early defence genes involved in calcium (Ca2+ ) signalling, MPK signalling and jasmonate biosynthesis. Indole exposure also primes the production of jasmonates and defence-related secondary metabolites. These changes are associated with higher herbivore resistance of indole-exposed tea plants. Chemical inhibition of Ca2+ and jasmonate signalling provides evidence that both are required for indole-mediated defence priming and herbivore resistance. Our systematic assessment of the impact of indole on defence signalling and deployment shows that indole acts by boosting Ca2+ signalling, resulting in enhanced jasmonate-dependent defence and resistance in a woody plant. Our work extends the molecular basis of HIPV-induced defence priming from annual plants to an economically important tree species.
Collapse
Affiliation(s)
- Meng Ye
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Miaomiao Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jin Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiwang Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
31
|
Hu L, Zhang K, Wu Z, Xu J, Erb M. Plant volatiles as regulators of plant defense and herbivore immunity: molecular mechanisms and unanswered questions. CURRENT OPINION IN INSECT SCIENCE 2021; 44:82-88. [PMID: 33894408 DOI: 10.1016/j.cois.2021.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Plants release distinct blends of herbivore-induced plant volatiles (HIPVs) upon herbivore attack. HIPVs have long been known to influence the behavior of herbivores and natural enemies. In addition, HIPVs can act as physiological regulators that induce or prime plant defenses. Recent work indicates that the regulatory capacity of HIPVs may extend to herbivore immunity: herbivores that are exposed to HIPVs can become more resistant or susceptible to parasitoids and pathogens. While the mechanisms of HIPV-mediated plant defense regulation are being unraveled, the mechanisms underlying the regulation of herbivore immunity are unclear. Evidence so far suggests a high degree of context dependency. Here, we review the mechanisms by which HIPVs regulate plant defense and herbivore immunity. We address major gaps of knowledge and discuss directions for future mechanistic research to facilitate efforts to use the regulatory capacity of HIPVs for the biological control of insect pests.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Kaidi Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhenwei Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| |
Collapse
|
32
|
Fincheira P, Quiroz A, Tortella G, Diez MC, Rubilar O. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol Res 2021; 247:126726. [PMID: 33640574 DOI: 10.1016/j.micres.2021.126726] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Volatile organic compounds (VOCs) emitted by microorganisms have demonstrated an important role to improve growth and tolerance against abiotic stress on plants. Most studies have used Arabidopsis thaliana as a model plant, extending to other plants of commercial interest in the last years. Interestingly, the microbial VOCs are characterized by its biodegradable structure, quick action, absence of toxic substances, and acts at lower concentration to regulate plant physiological changes. These compounds modulate plant physiological processes such as phytohormone pathways, photosynthesis, nutrient acquisition, and metabolisms. Besides, the regulation of gene expression associated with cell components, biological processes, and molecular function are triggered by microbial VOCs. Otherwise, few studies have reported the important role of VOCs for confer plant tolerance to abiotic stress, such as drought and salinity. Although VOCs have shown an efficient action to enhance the plant growth under controlled conditions, there are still great challenges for their greenhouse or field application. Therefore, in this review, we summarize the current knowledge about the technical procedures, study cases, and physiological mechanisms triggered by microbial VOCs to finally discuss the challenges of its application in agriculture.
Collapse
Affiliation(s)
- Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| |
Collapse
|
33
|
Liu H, Liu Y, Cheng N, Zhang Y. De novo transcriptome assembly of transgenic tobacco ( Nicotiana tabacum NC89) with early senescence characteristic. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:237-249. [PMID: 33707866 PMCID: PMC7907299 DOI: 10.1007/s12298-021-00953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED The enzyme, α-farnesene synthase (AFS), which synthesizes α-farnesene, is the final enzyme in α-farnesene synthesis pathway. We overexpressed the α-farnesene synthase gene (previously cloned in our lab from apple peel) and ectopically expressed it in tobacco (Nicotiana tabacum NC89). Then, the transgenic plants showed an accelerated developmental process and bloomed about 7 weeks earlier than the control plants. We anticipate that de novo transcriptomic analyses of N. tabacum may provide useful information on isoprenoid biosynthesis, growth, and development. We generated 318,925,338 bp sequencing data using Illumina paired-end sequencing from the cDNA library of the apical buds of transgenic line and the wild-type line. We annotated and functionally classified the unigenes in a nucleotide and protein database. Differentially expressed unigenes may be involved in carbohydrate metabolism, nitrogen metabolism, transporter activity, hormone signal transduction, antioxidant systems and transcription regulator activity particularly related to senescence. Moreover, we analyzed eight genes related to terpenoid biosynthesis using qRT-PCR to study the changes in growth and development patterns in the transgenic plants. Our study shows that transgenic plants show premature senescence. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00953-z.
Collapse
Affiliation(s)
- Heng Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Yu Liu
- Qingdao Agricultural University, Qingdao, 266109 Shandong People’s Republic of China
| | - Nini Cheng
- Linyi University, Linyi, 276005 Shandong People’s Republic of China
| | - Yuanhu Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
34
|
Parise AG, Reissig GN, Basso LF, Senko LGS, Oliveira TFDC, de Toledo GRA, Ferreira AS, Souza GM. Detection of Different Hosts From a Distance Alters the Behaviour and Bioelectrical Activity of Cuscuta racemosa. FRONTIERS IN PLANT SCIENCE 2021; 12:594195. [PMID: 33815431 PMCID: PMC8012508 DOI: 10.3389/fpls.2021.594195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/22/2021] [Indexed: 05/03/2023]
Abstract
In our study, we investigated some physiological and ecological aspects of the life of Cuscuta racemosa Mart. (Convolvulaceae) plants with the hypothesis that they recognise different hosts at a distance from them, and they change their survival strategy depending on what they detect. We also hypothesised that, as an attempt of prolonging their survival through photosynthesis, the synthesis of chlorophylls (a phenomenon not completely explained in these parasitic plants) would be increased if the plants don't detect a host. We quantified the pigments related to photosynthesis in different treatments and employed techniques such as electrophysiological time series recording, analyses of the complexity of the obtained signals, and machine learning classification to test our hypotheses. The results demonstrate that the absence of a host increases the amounts of chlorophyll a, chlorophyll b, and β-carotene in these plants, and the content varied depending on the host presented. Besides, the electrical signalling of dodders changes according to the species of host perceived in patterns detectable by machine learning techniques, suggesting that they recognise from a distance different host species. Our results indicate that electrical signalling might underpin important processes such as foraging in plants. Finally, we found evidence for a likely process of attention in the dodders toward the host plants. This is probably to be the first empirical evidence for attention in plants and has important implications on plant cognition studies.
Collapse
Affiliation(s)
- André Geremia Parise
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
- *Correspondence: André Geremia Parise,
| | - Gabriela Niemeyer Reissig
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - Luis Felipe Basso
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - Luiz Gustavo Schultz Senko
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Gabriel Ricardo Aguilera de Toledo
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
35
|
Barbero F, Guglielmotto M, Islam M, Maffei ME. Extracellular Fragmented Self-DNA Is Involved in Plant Responses to Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:686121. [PMID: 34381477 PMCID: PMC8350447 DOI: 10.3389/fpls.2021.686121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 05/17/2023]
Abstract
A growing body of evidence indicates that extracellular fragmented self-DNA (eDNA), by acting as a signaling molecule, triggers inhibitory effects on conspecific plants and functions as a damage-associated molecular pattern (DAMP). To evaluate early and late events in DAMP-dependent responses to eDNA, we extracted, fragmented, and applied the tomato (Solanum lycopersicum) eDNA to tomato leaves. Non-sonicated, intact self-DNA (intact DNA) was used as control. Early event analyses included the evaluation of plasma transmembrane potentials (Vm), cytosolic calcium variations (Ca2+ cy t), the activity and subcellular localization of both voltage-gated and ligand-gated rectified K+ channels, and the reactive oxygen species (ROS) subcellular localization and quantification. Late events included RNA-Seq transcriptomic analysis and qPCR validation of gene expression of tomato leaves exposed to tomato eDNA. Application of eDNA induced a concentration-dependent Vm depolarization which was correlated to an increase in (Ca2+)cyt; this event was associated to the opening of K+ channels, with particular action on ligand-gated rectified K+ channels. Both eDNA-dependent (Ca2+)cyt and K+ increases were correlated to ROS production. In contrast, application of intact DNA produced no effects. The plant response to eDNA was the modulation of the expression of genes involved in plant-biotic interactions including pathogenesis-related proteins (PRPs), calcium-dependent protein kinases (CPK1), heat shock transcription factors (Hsf), heat shock proteins (Hsp), receptor-like kinases (RLKs), and ethylene-responsive factors (ERFs). Several genes involved in calcium signaling, ROS scavenging and ion homeostasis were also modulated by application of eDNA. Shared elements among the transcriptional response to eDNA and to biotic stress indicate that eDNA might be a common DAMP that triggers plant responses to pathogens and herbivores, particularly to those that intensive plant cell disruption or cell death. Our results suggest the intriguing hypothesis that some of the plant reactions to pathogens and herbivores might be due to DNA degradation, especially when associated to the plant cell disruption. Fragmented DNA would then become an important and powerful elicitor able to trigger early and late responses to biotic stress.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Michela Guglielmotto
- Neuroscience Institute of Cavalieri Ottolenghi Foundation, University of Turin, Turin, Italy
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Massimo E. Maffei,
| |
Collapse
|
36
|
The Effects of Ozone on Herbivore-Induced Volatile Emissions of Cultivated and Wild Brassica Rapa. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Since preindustrial times, concentrations of tropospheric ozone, a phytotoxic pollutant, have risen in the Northern Hemisphere. Selective breeding has intentionally modified crop plant traits to improve yield but may have altered plant defenses against abiotic and biotic stresses. This study aims to determine if cultivated and wild plants respond differently to herbivory under elevated ozone. We studied the volatile emissions of four cultivated Brassica rapa ssp. oleifera varieties and one wild population after exposure to ozone or Plutella xylostella larval feeding either individually or together. Ozone modulated the volatiles emitted in response to herbivory by all plant varieties to different extents. We did not observe a clear difference in the effects of ozone on wild and cultivated plants, but cultivated plants had higher volatile emission rates in response to herbivory and ozone had either no effect or increased the herbivore-induced response. Larvae tended to feed more on elevated ozone-treated plants; however, we could not link the increase of feeding to the change in volatile emissions. Our study complements recent studies reporting that selective breeding might not have weakened chemical defenses to biotic and abiotic stresses of cultivated plants.
Collapse
|
37
|
Role of Stomatal Conductance in Modifying the Dose Response of Stress-Volatile Emissions in Methyl Jasmonate Treated Leaves of Cucumber ( Cucumis sativa). Int J Mol Sci 2020; 21:ijms21031018. [PMID: 32033119 PMCID: PMC7038070 DOI: 10.3390/ijms21031018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Treatment by volatile plant hormone methyl jasmonate (MeJA) leads to release of methanol and volatiles of lipoxygenase pathway (LOX volatiles) in a dose-dependent manner, but how the dose dependence is affected by stomatal openness is poorly known. We studied the rapid (0-60 min after treatment) response of stomatal conductance (Gs), net assimilation rate (A), and LOX and methanol emissions to varying MeJA concentrations (0.2-50 mM) in cucumber (Cucumis sativus) leaves with partly open stomata and in leaves with reduced Gs due to drought and darkness. Exposure to MeJA led to initial opening of stomata due to an osmotic shock, followed by MeJA concentration-dependent reduction in Gs, whereas A initially decreased, followed by recovery for lower MeJA concentrations and time-dependent decline for higher MeJA concentrations. Methanol and LOX emissions were elicited in a MeJA concentration-dependent manner, whereas the peak methanol emissions (15-20 min after MeJA application) preceded LOX emissions (20-60 min after application). Furthermore, peak methanol emissions occurred earlier in treatments with higher MeJA concentration, while the opposite was observed for LOX emissions. This difference reflected the circumstance where the rise of methanol release partly coincided with MeJA-dependent stomatal opening, while stronger stomatal closure at higher MeJA concentrations progressively delayed peak LOX emissions. We further observed that drought-dependent reduction in Gs ameliorated MeJA effects on foliage physiological characteristics, underscoring that MeJA primarily penetrates through the stomata. However, despite reduced Gs, dark pretreatment amplified stress-volatile release upon MeJA treatment, suggesting that increased leaf oxidative status due to sudden illumination can potentiate the MeJA response. Taken together, these results collectively demonstrate that the MeJA dose response of volatile emission is controlled by stomata that alter MeJA uptake and volatile release kinetics and by leaf oxidative status in a complex manner.
Collapse
|
38
|
Ameye M, Van Meulebroek L, Meuninck B, Vanhaecke L, Smagghe G, Haesaert G, Audenaert K. Metabolomics Reveal Induction of ROS Production and Glycosylation Events in Wheat Upon Exposure to the Green Leaf Volatile Z-3-Hexenyl Acetate. FRONTIERS IN PLANT SCIENCE 2020; 11:596271. [PMID: 33343599 PMCID: PMC7744478 DOI: 10.3389/fpls.2020.596271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The activation and priming of plant defense upon perception of green leaf volatiles (GLVs) have often been reported. However, information as to which metabolic pathways in plants are affected by GLVs remains elusive. We report the production of reactive oxygen species in the tip of young wheat leaves followed by activation of antioxidant-related enzyme activity. In this study, we aimed to uncover metabolic signatures upon exposure to the GLV Z-3-hexenyl acetate (Z-3-HAC). By using an untargeted metabolomics approach, we observed changes in the phenylpropanoid pathways which yield metabolites that are involved in many anti-oxidative processes. Furthermore, exposure to GLV, followed by infection with Fusarium graminearum (Fg), induced significantly greater changes in the phenylpropanoid pathway compared to a sole Z-3-HAC treatment. Fragmentation of a selection of metabolites, which are significantly more upregulated in the Z-3-HAC + Fg treatment, showed D-glucose to be present as a substructure. This suggests that Z-3-HAC induces early glycosylation processes in plants. Additionally, we identified the presence of hexenyl diglycosides, which indicates that aerial Z-3-HAC is metabolized in the leaves by glycosyltransferases. Together these data indicate that GLV Z-3-HAC is taken up by leaves and incites oxidative stress. This subsequently results in the modulation of the phenylpropanoid pathway and an induction of glycosylation processes.
Collapse
Affiliation(s)
- Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- *Correspondence: Maarten Ameye,
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Bianca Meuninck
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Kris Audenaert,
| |
Collapse
|
39
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
40
|
Douma JC, Ganzeveld LN, Unsicker SB, Boeckler GA, Dicke M. What makes a volatile organic compound a reliable indicator of insect herbivory? PLANT, CELL & ENVIRONMENT 2019; 42:3308-3325. [PMID: 31330571 PMCID: PMC6972585 DOI: 10.1111/pce.13624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 05/22/2023]
Abstract
Plants that are subject to insect herbivory emit a blend of so-called herbivore-induced plant volatiles (HIPVs), of which only a few serve as cues for the carnivorous enemies to locate their host. We lack understanding which HIPVs are reliable indicators of insect herbivory. Here, we take a modelling approach to elucidate which physicochemical and physiological properties contribute to the information value of a HIPV. A leaf-level HIPV synthesis and emission model is developed and parameterized to poplar. Next, HIPV concentrations within the canopy are inferred as a function of dispersion, transport and chemical degradation of the compounds. We show that the ability of HIPVs to reveal herbivory varies from almost perfect to no better than chance and interacts with canopy conditions. Model predictions matched well with leaf-emission measurements and field and laboratory assays. The chemical class a compound belongs to predicted the signalling ability of a compound only to a minor extent, whereas compound characteristics such as its reaction rate with atmospheric oxidants, biosynthesis rate upon herbivory and volatility were much more important predictors. This study shows the power of merging fields of plant-insect interactions and atmospheric chemistry research to increase our understanding of the ecological significance of HIPVs.
Collapse
Affiliation(s)
- Jacob C. Douma
- Centre for Crop Systems Analysis, Department of Plant SciencesWageningen University6708PBWageningenThe Netherlands
- Laboratory of Entomology, Department of Plant SciencesWageningen University6708PBWageningenThe Netherlands
| | - Laurens N. Ganzeveld
- Meteorology and Air Quality, Department of Environmental SciencesWageningen University6708PBWageningenThe Netherlands
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical Ecology07745JenaGermany
| | - G. Andreas Boeckler
- Department of BiochemistryMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Marcel Dicke
- Laboratory of Entomology, Department of Plant SciencesWageningen University6708PBWageningenThe Netherlands
| |
Collapse
|
41
|
Volkov AG, Toole S, WaMaina M. Electrical signal transmission in the plant-wide web. Bioelectrochemistry 2019; 129:70-78. [DOI: 10.1016/j.bioelechem.2019.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/26/2022]
|
42
|
Kalske A, Shiojiri K, Uesugi A, Sakata Y, Morrell K, Kessler A. Insect Herbivory Selects for Volatile-Mediated Plant-Plant Communication. Curr Biol 2019; 29:3128-3133.e3. [DOI: 10.1016/j.cub.2019.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022]
|
43
|
Volkov AG, Shtessel YB. Electrical signal propagation within and between tomato plants. Bioelectrochemistry 2018; 124:195-205. [DOI: 10.1016/j.bioelechem.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/23/2022]
|
44
|
Tran D, Dauphin A, Meimoun P, Kadono T, Nguyen HTH, Arbelet-Bonnin D, Zhao T, Errakhi R, Lehner A, Kawano T, Bouteau F. Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco. ANNALS OF BOTANY 2018; 122:849-860. [PMID: 29579139 PMCID: PMC6215043 DOI: 10.1093/aob/mcy038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
Background and Aims Methanol is a volatile organic compound released from plants through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. However, molecular mechanisms that explain how methanol could affect plant defences remain poorly understood. Methods Using cultured cells and seedlings from Arabidopsis thaliana and tobacco BY2 expressing the apoaequorin gene, allowing quantification of cytosolic Ca2+, a reactive oxygen species (ROS) probe (CLA, Cypridina luciferin analogue) and electrophysiological techniques, we followed early plant cell responses to exogenously supplied methanol applied as a liquid or as volatile. Key Results Methanol induces cytosolic Ca2+ variations that involve Ca2+ influx through the plasma membrane and Ca2+ release from internal stores. Our data further suggest that these Ca2+ variations could interact with different ROS and support a signalling pathway leading to well known plant responses to pathogens such as plasma membrane depolarization through anion channel regulation and ethylene synthesis. Conclusions Methanol is not only a by-product of PME activities, and our data suggest that [Ca2+]cyt variations could participate in signalling processes induced by methanol upstream of plant defence responses.
Collapse
Affiliation(s)
- Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Department of Physiology & Cell Information Systems Group, McGill University, Montréal, Québec, Canada
| | - Aurélien Dauphin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Patrice Meimoun
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Sorbonne Université, UMR7622–IBPS, Paris, France
| | - Takashi Kadono
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Laboratory of Aquatic Environmental Science, Kochi University, Kochi, Japan
| | - Hieu T H Nguyen
- Graduate School of Environmental Engineering, University of Kitakyushu, Wakamatsu-ku, Kitakyushu, Japan
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Tingting Zhao
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Rafik Errakhi
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Eurofins Agriscience Service, Marocco
| | - Arnaud Lehner
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Normandie Université, UNIROUEN, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, SFR Normandie végétal, Rouen, France
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, University of Kitakyushu, Wakamatsu-ku, Kitakyushu, Japan
- LINV Kitakyushu Research Center, Kitakyushu, Japan
- Université Paris Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- LINV Kitakyushu Research Center, Kitakyushu, Japan
| |
Collapse
|
45
|
Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K. Green leaf volatile production by plants: a meta-analysis. THE NEW PHYTOLOGIST 2018; 220:666-683. [PMID: 28665020 DOI: 10.1111/nph.14671] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
666 I. Introduction 667 II. Biosynthesis 667 III. Meta-analysis 669 IV. The type of stress influences the total amount of GLVs released 669 V. Herbivores can modulate the wound-induced release of GLVs 669 VI. Fungal infection greatly induces GLV production 672 VII. Monocots and eudicots respond differentially to different types of stress 673 VIII. The type of stress does not influence the proportion of GLVs per chemical class 673 IX. The type of stress does influence the isomeric ratio within each chemical class 674 X. GLVs: from signal perception to signal transduction 676 XI. GLVs influence the C/N metabolism 677 XII. Interaction with plant hormones 678 XIII. General conclusions and unanswered questions 678 Acknowledgements 679 References 679 SUMMARY: Plants respond to stress by releasing biogenic volatile organic compounds (BVOCs). Green leaf volatiles (GLVs), which are abundantly produced across the plant kingdom, comprise an important group within the BVOCs. They can repel or attract herbivores and their natural enemies; and they can induce plant defences or prime plants for enhanced defence against herbivores and pathogens and can have direct toxic effects on bacteria and fungi. Unlike other volatiles, GLVs are released almost instantly upon mechanical damage and (a)biotic stress and could thus function as an immediate and informative signal for many organisms in the plant's environment. We used a meta-analysis approach in which data from the literature on GLV production during biotic stress responses were compiled and interpreted. We identified that different types of attackers and feeding styles add a degree of complexity to the amount of emitted GLVs, compared with wounding alone. This meta-analysis illustrates that there is less variation in the GLV profile than we presumed, that pathogens induce more GLVs than insects and wounding, and that there are clear differences in GLV emission between monocots and dicots. Besides the meta-analysis, this review provides an update on recent insights into the perception and signalling of GLVs in plants.
Collapse
Affiliation(s)
- Maarten Ameye
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Silke Allmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Jan Verwaeren
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Kris Audenaert
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| |
Collapse
|
46
|
Cofer TM, Seidl-Adams I, Tumlinson JH. From Acetoin to ( Z)-3-Hexen-1-ol: The Diversity of Volatile Organic Compounds that Induce Plant Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11197-11208. [PMID: 30293420 DOI: 10.1021/acs.jafc.8b03010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence that plants can respond to volatile organic compounds (VOCs) was first presented 35 years ago. Since then, over 40 VOCs have been found to induce plant responses. These include VOCs that are produced not only by plants but also by microbes and insects. Here, we summarize what is known about how these VOCs are produced and how plants detect and respond to them. In doing so, we highlight notable observations we believe are worth greater consideration. For example, the VOCs that induce plant responses appear to have little in common. They are derived from many different biosynthetic pathways and have few distinguishing chemical or structural features. Likewise, plants appear to use several mechanisms to detect VOCs rather than a single dedicated "olfactory" system. Considering these observations, we advocate for more discovery-oriented experiments and propose that future research take a fresh look at the ways plants detect and respond to VOCs.
Collapse
Affiliation(s)
- Tristan M Cofer
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James H Tumlinson
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
47
|
Agliassa C, Maffei ME. Origanum vulgare Terpenoids Induce Oxidative Stress and Reduce the Feeding Activity of Spodoptera littoralis. Int J Mol Sci 2018; 19:E2805. [PMID: 30231481 PMCID: PMC6165561 DOI: 10.3390/ijms19092805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/24/2022] Open
Abstract
Terpenoids are toxic compounds produced by plants as a defense strategy against insect herbivores. We tested the effect of Origanum vulgare terpenoids on the generalist herbivore Spodoptera littoralis and the response of the plant to herbivory. Terpenoids were analyzed by GC-FID and GC-MS and quantitative gene expression (qPCR) was evaluated on selected plant genes involved in both terpene biosynthesis. The insect detoxification response to terpenes was evaluated by monitoring antioxidant enzymes activity and expression of insect genes involved in terpene detoxification. O. vulgare terpenoid biosynthesis and gene expression was modulated by S. littoralis feeding. The herbivore-induced increased level of terpenoids (particularly carvacrol and p-cymene) interacted with the herbivore by decreasing larval survival and growth rate. The assimilation by S. littoralis of more than 50% of ingested terpenes correlated with the possible toxic effects of O. vulgare terpenoids. In choice test experiments, carvacrol and γ-terpinene mediated the larval feeding preferences, wherease the prolonged feeding on O. vulgare terpenoids (particularly on γ-terpinene) exerted relevant antinutritional effects on larvae. S. littoralis was found to react to O. vulgare terpenoids by increasing its antioxidant enzymes activities and gene expression, although this was not sufficient to sustain the toxicity of O. vulgare terpenoids.
Collapse
Affiliation(s)
- Chiara Agliassa
- Department Life Sciences and Systems Biology, University of Turin, Via G. Quarello 15/a, 10135 Turin, Italy.
| | - Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via G. Quarello 15/a, 10135 Turin, Italy.
| |
Collapse
|
48
|
Sharifi R, Ryu CM. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. ANNALS OF BOTANY 2018; 122:349-358. [PMID: 29982345 PMCID: PMC6110341 DOI: 10.1093/aob/mcy108] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bacterial volatile compounds (BVCs) are important mediators of beneficial plant-bacteria interactions. BVCs promote above-ground plant growth by stimulating photosynthesis and sugar accumulation and by modulating phytohormone signalling. These compounds also improve below-ground mineral uptake and modify root system architecture. SCOPE We review advances in our understanding of the mode of action and practical applications of BVCs since the discovery of BVC-mediated plant growth promotion in 2003. We also discuss unanswered questions about the identity of plant receptors, the effectiveness of combination of two or more BVCs on plant growth, and the potential side effects of these compounds for human and animal health. CONCLUSION BVCs have good potential for use as biostimulants and protectants to improve plant health. Further advances in the development of suitable technologies and preparing standards and guidelines will help in the application of BVCs in crop protection and health.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon, South Korea
- For correspondence. E-mail
| |
Collapse
|
49
|
Schuman MC, Baldwin IT. Field studies reveal functions of chemical mediators in plant interactions. Chem Soc Rev 2018; 47:5338-5353. [PMID: 29770376 DOI: 10.1039/c7cs00749c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plants are at the trophic base of most ecosystems, embedded in a rich network of ecological interactions in which they evolved. While their limited range and speed of motion precludes animal-typical behavior, plants are accomplished chemists, producing thousands of specialized metabolites which may function to convey information, or even to manipulate the physiology of other organisms. Plants' complex interactions and their underlying mechanisms are typically dissected within the controlled environments of growth chambers and glasshouses, but doing so introduces conditions alien to plants evolved in natural environments, such as being pot-bound, and receiving artificial light with a spectrum very different from sunlight. The mechanistic understanding gained from a reductionist approach provides the tools required to query and manipulate plant interactions in real-world settings. The few tests conducted in natural ecosystems and agricultural fields have highlighted the limitations of studying plant interactions only in artificial environments. Here, we focus on three examples of known or hypothesized chemical mediators of plants' interactions: the volatile phytohormone ethylene (ET), more complex plant volatile blends, and as-yet-unknown mediators transferred by common mycorrhizal networks (CMNs). We highlight how mechanistic knowledge has advanced research in all three areas, and the critical importance of field work if we are to put our understanding of chemical ecology on rigorous experimental and theoretical footing, and demonstrate function.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | | |
Collapse
|
50
|
Canales J, Henriquez-Valencia C, Brauchi S. The Integration of Electrical Signals Originating in the Root of Vascular Plants. FRONTIERS IN PLANT SCIENCE 2018; 8:2173. [PMID: 29375591 PMCID: PMC5767606 DOI: 10.3389/fpls.2017.02173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.
Collapse
Affiliation(s)
- Javier Canales
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Carlos Henriquez-Valencia
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Facultad de Medicina, Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases, Valdivia, Chile
| |
Collapse
|