1
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
2
|
Li X, Liu L, Chu J, Wei G, Li J, Sun X, Fan H. Functional characterization of terpene synthases SmTPS1 involved in floral scent formation in Salvia miltiorrhiza. PHYTOCHEMISTRY 2024; 221:114045. [PMID: 38460781 DOI: 10.1016/j.phytochem.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Plants attract beneficial insects and promote pollination by releasing floral scents. Salvia miltiorrhiza, as an insect-pollinated flowering plant, which has been less studied for its floral aroma substances. This study revealed that S. miltiorrhiza flowers produce various volatile terpenoids, including five monoterpenes and ten sesquiterpenes, with the sesquiterpene compound (E)-β-caryophyllene being the most abundant, accounting for 28.1% of the total volatile terpenoids. Y-tube olfactometer experiments were conducted on the primary pollinator of S. miltiorrhiza, the Apis ceranas. The results indicated that (E)-β-caryophyllene compound had an attractive effect on the Apis ceranas. By comparing the homologous sequences with the genes of (E)-β-caryophyllene terpene synthases in other plants, the SmTPS1 gene was selected for further experiment. Subcellular localization experiments showed SmTPS1 localized in the cytoplasm, and its in vitro enzyme assay revealed that it could catalyze FPP into β-Elemene, (E)-β-caryophyllene and α-Humulene. Overexpression of SmTPS1 in S. miltiorrhiza resulted in a 5.29-fold increase in gene expression. The GC-MS analysis revealed a significant increase in the concentration of (E)-β-caryophyllene in the transgenic plants, with levels 2.47-fold higher compared to the empty vector plants. Furthermore, Y-tube olfactometer experiments showed that the transgenic plants were significantly more attractive to Apis ceranas compared to the empty vector plants. Co-expression analysis suggested that four SmMYCs (SmMYC1, SmMYC5, SmMYC10, and SmMYC11) may be involved in the transcriptional regulation of SmTPS1. The yeast one-hybrid screen and the Dual luciferase assay indicated that SmMYC10 positively regulates the expression of SmTPS1. In conclusion, this study lays a foundation for the functional analysis and transcriptional regulation of terpene synthase genes in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaohong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Chu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiaxue Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Xiao J, Zhou Y, Xie Y, Li T, Su X, He J, Jiang Y, Zhu H, Qu H. ATP homeostasis and signaling in plants. PLANT COMMUNICATIONS 2024; 5:100834. [PMID: 38327057 PMCID: PMC11009363 DOI: 10.1016/j.xplc.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
ATP is the primary form of energy for plants, and a shortage of cellular ATP is generally acknowledged to pose a threat to plant growth and development, stress resistance, and crop quality. The overall metabolic processes that contribute to the ATP pool, from production, dissipation, and transport to elimination, have been studied extensively. Considerable evidence has revealed that in addition to its role in energy supply, ATP also acts as a regulatory signaling molecule to activate global metabolic responses. Identification of the eATP receptor DORN1 contributed to a better understanding of how plants cope with disruption of ATP homeostasis and of the key points at which ATP signaling pathways intersect in cells or whole organisms. The functions of SnRK1α, the master regulator of the energy management network, in restoring the equilibrium of the ATP pool have been demonstrated, and the vast and complex metabolic network mediated by SnRK1α to adapt to fluctuating environments has been characterized. This paper reviews recent advances in understanding the regulatory control of the cellular ATP pool and discusses possible interactions among key regulators of ATP-pool homeostasis and crosstalk between iATP/eATP signaling pathways. Perception of ATP deficit and modulation of cellular ATP homeostasis mediated by SnRK1α in plants are discussed at the physiological and molecular levels. Finally, we suggest future research directions for modulation of plant cellular ATP homeostasis.
Collapse
Affiliation(s)
- Jiaqi Xiao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Yunyun Xie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinguo Su
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Gutkowska M, Buszewicz D, Zajbt-Łuczniewska M, Radkiewicz M, Nowakowska J, Swiezewska E, Surmacz L. Medium-chain-length polyprenol (C45-C55) formation in chloroplasts of Arabidopsis is brassinosteroid-dependent. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154126. [PMID: 37948907 DOI: 10.1016/j.jplph.2023.154126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Brassinosteroids are important plant hormones influencing, among other processes, chloroplast development, the electron transport chain during light reactions of photosynthesis, and the Calvin-Benson cycle. Medium-chain-length polyprenols built of 9-11 isoprenoid units (C45-C55 carbons) are a class of isoprenoid compounds present in abundance in thylakoid membranes. They are synthetized in chloroplast by CPT7 gene from Calvin cycle derived precursors on MEP (methylerythritol 4-phosphate) isoprenoid biosynthesis pathway. C45-C55 polyprenols affect thylakoid membrane ultra-structure and hence influence photosynthetic apparatus performance in plants such as Arabidopsis and tomato. So far nothing is known about the hormonal or environmental regulation of CPT7 gene expression. The aim of our study was to find out if medium-chain-length polyprenol biosynthesis in plants may be regulated by hormonal cues.We found that the CPT7 gene in Arabidopsis has a BZR1 binding element (brassinosteroid dependent) in its promoter. Brassinosteroid signaling mutants in Arabidopsis accumulate a lower amount of medium-chain-length C45-C55 polyprenols than control plants. At the same time carotenoid and chlorophyll content is increased, and the amount of PsbD1A protein coming from photosystem II does not undergo a significant change. On contrary, treatment of WT plants with epi-brassinolide increases C45-C55 polyprenols content. We also report decreased transcription of MEP enzymes (besides C45-C55 polyprenols, precursors of numerous isoprenoids, e.g. phytol, carotenoids are derived from this pathway) and genes encoding biosynthesis of medium-chain-length polyprenol enzymes in brassinosteroid perception mutant bri1-116. Taken together, we document that brassinosteroids affect biosynthetic pathway of C45-C55 polyprenols.
Collapse
Affiliation(s)
- Małgorzata Gutkowska
- Institute of Biology, Warsaw University of Life Sciences, ul. Nowoursynowska 159, bldg. 37, 02-776, Warsaw, Poland.
| | - Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marta Zajbt-Łuczniewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Mateusz Radkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Julita Nowakowska
- Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
5
|
Basallo O, Perez L, Lucido A, Sorribas A, Marin-Saguino A, Vilaprinyo E, Perez-Fons L, Albacete A, Martínez-Andújar C, Fraser PD, Christou P, Capell T, Alves R. Changing biosynthesis of terpenoid percursors in rice through synthetic biology. FRONTIERS IN PLANT SCIENCE 2023; 14:1133299. [PMID: 37465386 PMCID: PMC10350630 DOI: 10.3389/fpls.2023.1133299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Many highly valued chemicals in the pharmaceutical, biotechnological, cosmetic, and biomedical industries belong to the terpenoid family. Biosynthesis of these chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing plants for use as a platform to use IPP/DMAPP and produce high value terpenoids is an important biotechnological goal. Still, IPP/DMAPP are the precursors to many plant developmental hormones. This creates severe challenges in redirecting IPP/DMAPP towards production of non-cognate plant metabolites. A potential solution to this problem is increasing the IPP/DMAPP production flux in planta. Here, we aimed at discovering, understanding, and predicting the effects of increasing IPP/DMAPP production in plants through modelling. We used synthetic biology to create rice lines containing an additional ectopic MVA biosynthetic pathway for producing IPP/DMAPP. The rice lines express three alternative versions of the additional MVA pathway in the plastid, in addition to the normal endogenous pathways. We collected data for changes in macroscopic and molecular phenotypes, gene expression, isoprenoid content, and hormone abundance in those lines. To integrate the molecular and macroscopic data and develop a more in depth understanding of the effects of engineering the exogenous pathway in the mutant rice lines, we developed and analyzed data-centric, line-specific, multilevel mathematical models. These models connect the effects of variations in hormones and gene expression to changes in macroscopic plant phenotype and metabolite concentrations within the MVA and MEP pathways of WT and mutant rice lines. Our models allow us to predict how an exogenous IPP/DMAPP biosynthetic pathway affects the flux of terpenoid precursors. We also quantify the long-term effect of plant hormones on the dynamic behavior of IPP/DMAPP biosynthetic pathways in seeds, and predict plant characteristics, such as plant height, leaf size, and chlorophyll content from molecular data. In addition, our models are a tool that can be used in the future to help in prioritizing re-engineering strategies for the exogenous pathway in order to achieve specific metabolic goals.
Collapse
Affiliation(s)
- Orio Basallo
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Perez
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
| | - Abel Lucido
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Albert Sorribas
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Alberto Marin-Saguino
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Ester Vilaprinyo
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, United Kingdom
| | - Alfonso Albacete
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Murcia, Murcia, Spain
- Department of Plant Production and Agrotechnology, Institute for Agri-Food Research and Development of Murcia, Murcia, Spain
| | - Cristina Martínez-Andújar
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Murcia, Murcia, Spain
| | - Paul D. Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, United Kingdom
| | - Paul Christou
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Teresa Capell
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
| | - Rui Alves
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
6
|
Krause T, Wiesinger P, González-Cabanelas D, Lackus N, Köllner TG, Klüpfel T, Williams J, Rohwer J, Gershenzon J, Schmidt A. HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants. PLANT PHYSIOLOGY 2023; 192:767-788. [PMID: 36848194 DOI: 10.1093/plphys/kiad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
Dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) serves as the universal C5 precursors of isoprenoid biosynthesis in plants. These compounds are formed by the last step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, catalyzed by (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (HDR). In this study, we investigated the major HDR isoforms of two woody plant species, Norway spruce (Picea abies) and gray poplar (Populus × canescens), to determine how they regulate isoprenoid formation. Since each of these species has a distinct profile of isoprenoid compounds, they may require different proportions of DMADP and IDP with proportionally more IDP being needed to make larger isoprenoids. Norway spruce contained two major HDR isoforms differing in their occurrence and biochemical characteristics. PaHDR1 produced relatively more IDP than PaHDR2 and it encoding gene was expressed constitutively in leaves, likely serving to form substrate for production of carotenoids, chlorophylls, and other primary isoprenoids derived from a C20 precursor. On the other hand, Norway spruce PaHDR2 produced relatively more DMADP than PaHDR1 and its encoding gene was expressed in leaves, stems, and roots, both constitutively and after induction with the defense hormone methyl jasmonate. This second HDR enzyme likely forms a substrate for the specialized monoterpene (C10), sesquiterpene (C15), and diterpene (C20) metabolites of spruce oleoresin. Gray poplar contained only one dominant isoform (named PcHDR2) that produced relatively more DMADP and the gene of which was expressed in all organs. In leaves, where the requirement for IDP is high to make the major carotenoid and chlorophyll isoprenoids derived from C20 precursors, excess DMADP may accumulate, which could explain the high rate of isoprene (C5) emission. Our results provide new insights into the biosynthesis of isoprenoids in woody plants under conditions of differentially regulated biosynthesis of the precursors IDP and DMADP.
Collapse
Affiliation(s)
- Toni Krause
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Piera Wiesinger
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Diego González-Cabanelas
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Nathalie Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Thomas Klüpfel
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Jonathan Williams
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Johann Rohwer
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
7
|
Darnet E, Teixeira B, Schaller H, Rogez H, Darnet S. Elucidating the Mesocarp Drupe Transcriptome of Açai ( Euterpe oleracea Mart.): An Amazonian Tree Palm Producer of Bioactive Compounds. Int J Mol Sci 2023; 24:ijms24119315. [PMID: 37298279 DOI: 10.3390/ijms24119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Euterpe oleracea palm, endemic to the Amazon region, is well known for açai, a fruit violet beverage with nutritional and medicinal properties. During E. oleracea fruit ripening, anthocyanin accumulation is not related to sugar production, contrarily to grape and blueberry. Ripened fruits have a high content of anthocyanins, isoprenoids, fibers, and proteins, and are poor in sugars. E. oleracea is proposed as a new genetic model for metabolism partitioning in the fruit. Approximately 255 million single-end-oriented reads were generated on an Ion Proton NGS platform combining fruit cDNA libraries at four ripening stages. The de novo transcriptome assembly was tested using six assemblers and 46 different combinations of parameters, a pre-processing and a post-processing step. The multiple k-mer approach with TransABySS as an assembler and Evidential Gene as a post-processer have shown the best results, with an N50 of 959 bp, a read coverage mean of 70x, a BUSCO complete sequence recovery of 36% and an RBMT of 61%. The fruit transcriptome dataset included 22,486 transcripts representing 18 Mbp, of which a proportion of 87% had significant homology with other plant sequences. Approximately 904 new EST-SSRs were described, and were common and transferable to Phoenix dactylifera and Elaeis guineensis, two other palm trees. The global GO classification of transcripts showed similar categories to that in P. dactylifera and E. guineensis fruit transcriptomes. For an accurate annotation and functional description of metabolism genes, a bioinformatic pipeline was developed to precisely identify orthologs, such as one-to-one orthologs between species, and to infer multigenic family evolution. The phylogenetic inference confirmed an occurrence of duplication events in the Arecaceae lineage and the presence of orphan genes in E. oleracea. Anthocyanin and tocopherol pathways were annotated entirely. Interestingly, the anthocyanin pathway showed a high number of paralogs, similar to in grape, whereas the tocopherol pathway exhibited a low and conserved gene number and the prediction of several splicing forms. The release of this exhaustively annotated molecular dataset of E. oleracea constitutes a valuable tool for further studies in metabolism partitioning and opens new great perspectives to study fruit physiology with açai as a model.
Collapse
Affiliation(s)
- Elaine Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
| | - Bruno Teixeira
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Hubert Schaller
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Sylvain Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
8
|
Di X, Ortega-Alarcon D, Kakumanu R, Iglesias-Fernandez J, Diaz L, Baidoo EEK, Velazquez-Campoy A, Rodríguez-Concepción M, Perez-Gil J. MEP pathway products allosterically promote monomerization of deoxy-D-xylulose-5-phosphate synthase to feedback-regulate their supply. PLANT COMMUNICATIONS 2023; 4:100512. [PMID: 36575800 DOI: 10.1016/j.xplc.2022.100512] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 05/11/2023]
Abstract
Isoprenoids are a very large and diverse family of metabolites required by all living organisms. All isoprenoids derive from the double-bond isomers isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are produced by the methylerythritol 4-phosphate (MEP) pathway in bacteria and plant plastids. It has been reported that IPP and DMAPP feedback-regulate the activity of deoxyxylulose 5-phosphate synthase (DXS), a dimeric enzyme that catalyzes the main flux-controlling step of the MEP pathway. Here we provide experimental insights into the underlying mechanism. Isothermal titration calorimetry and dynamic light scattering approaches showed that IPP and DMAPP can allosterically bind to DXS in vitro, causing a size shift. In silico ligand binding site analysis and docking calculations identified a potential allosteric site in the contact region between the two monomers of the active DXS dimer. Modulation of IPP and DMAPP contents in vivo followed by immunoblot analyses confirmed that high IPP/DMAPP levels resulted in monomerization and eventual aggregation of the enzyme in bacterial and plant cells. Loss of the enzymatically active dimeric conformation allows a fast and reversible reduction of DXS activity in response to a sudden increase or decrease in IPP/DMAPP supply, whereas aggregation and subsequent removal of monomers that would otherwise be available for dimerization appears to be a more drastic response in the case of persistent IPP/DMAPP overabundance (e.g., by a blockage in their conversion to downstream isoprenoids). Our results represent an important step toward understanding the regulation of the MEP pathway and rational design of biotechnological endeavors aimed at increasing isoprenoid contents in microbial and plant systems.
Collapse
Affiliation(s)
- Xueni Di
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - David Ortega-Alarcon
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ramu Kakumanu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Lucia Diaz
- Nostrum Biodiscovery SL, 08029 Barcelona, Spain
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adrian Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Rodríguez-Concepción
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain.
| | - Jordi Perez-Gil
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
9
|
Isolation of Salvia miltiorrhiza Kaurene Synthase-like ( KSL) Gene Promoter and Its Regulation by Ethephon and Yeast Extract. Genes (Basel) 2022; 14:genes14010054. [PMID: 36672795 PMCID: PMC9859234 DOI: 10.3390/genes14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The presented study describes the regulation of the promoter region of the Salvia miltiorrhiza kaurene synthase-like gene (SmKSL) by ethylene and yeast extract. The isolated fragment is 897 bp and is composed of a promoter (763 bp), 5'UTR (109 bp), and a short CDS (25 bp). The initial in silico analysis revealed the presence of numerous putative cis-active sites for trans-factors responding to different stress conditions. However, this study examines the influence of ethylene and yeast extract on SmKSL gene expression and tanshinone biosynthesis regulation. The results of 72h RT-PCR indicate an antagonistic interaction between ethylene, provided as ethephon (0.05, 0.10, 0.25, and 0.50 mM), and yeast extract (0.5%) on SmKSL gene expression in callus cultures of S. miltiorrhiza. A similar antagonistic effect was observed on total tanshinone concentration for up to 60 days. Ethylene provided as ethephon (0.05, 0.10, 0.25, and 0.50 mM) is a weak inducer of total tanshinone biosynthesis, increasing them only up to the maximum value of 0.67 ± 0.04 mg g-1 DW (60-day induction with 0.50 mM ethephon). Among the tanshinones elicited by ethephon, cryptotanshinone (52.21%) dominates, followed by dihydrotanshinone (45.00%) and tanshinone IIA (3.79%). In contrast, the 0.5% yeast extract strongly increases the total tanshinone concentration up to a maximum value of 13.30 ± 1.09 mg g-1 DW, observed after 50 days of induction. Yeast extract and ethylene appear to activate different fragments of the tanshinone biosynthesis route; hence the primary tanshinones induced by yeast extract were cryptotanshinone (81.42%), followed by dihydrotanshinone (17.06%) and tanshinone IIA (1.52%).
Collapse
|
10
|
A Comparative Transcriptomic with UPLC-Q-Exactive MS Reveals Differences in Gene Expression and Components of Iridoid Biosynthesis in Various Parts of Gentiana macrophylla. Genes (Basel) 2022; 13:genes13122372. [PMID: 36553639 PMCID: PMC9778098 DOI: 10.3390/genes13122372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Gentiana macrophylla Pall. (G. macrophylla)-a member of the family Gentianaceae-is a well-known traditional Chinese medical herb. Iridoids are the main active components of G. macrophylla, which has a wide range of pharmacological activities such as dispelling wind, eliminating dampness, clearing heat and asthenic fever, hepatoprotective and choleretic actions, and other medicinal effects. In this study, a total of 67,048 unigenes were obtained by transcriptomic sequencing analysis of G. macrophylla. A BLAST analysis showed that 48.21%, 33.66%, 46.32%, and 32.62% of unigenes were identified in the NR, Swiss-Prot, eggNOG, and KEGG databases, respectively. Twenty-five key enzymes were identified in the iridoid biosynthesis pathway. Most of the upregulated unigenes were enriched in flowers and leaves. The trustworthiness of the transcriptomic data was validated by real-time quantitative PCR (qRT-PCR). A total of 22 chemical constituents were identified by ultra-high performance liquid chromatography-quadrupole-electrostatic field Orbitrap mass spectrometry (UPLC-Q-Exactive MS), including 10 iridoids. A correlation analysis showed that the expression of 7-DLH and SLS was closely related to iridoids. The expression of 7-DLH and SLS was higher in flowers, indicating that flowers are important for iridoid biosynthesis in G. macrophylla.
Collapse
|
11
|
Ribeiro B, Erffelinck ML, Lacchini E, Ceulemans E, Colinas M, Williams C, Van Hamme E, De Clercq R, Perassolo M, Goossens A. Interference between ER stress-related bZIP-type and jasmonate-inducible bHLH-type transcription factors in the regulation of triterpene saponin biosynthesis in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:903793. [PMID: 36247618 PMCID: PMC9562455 DOI: 10.3389/fpls.2022.903793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/07/2022] [Indexed: 06/01/2023]
Abstract
Triterpene saponins (TS) are a structurally diverse group of metabolites that are widely distributed in plants. They primarily serve as defense compounds and their production is often triggered by biotic stresses through signaling cascades that are modulated by phytohormones such as the jasmonates (JA). Two JA-modulated basic helix-loop-helix (bHLH) transcription factors (TFs), triterpene saponin biosynthesis activating regulator 1 (TSAR1) and TSAR2, have previously been identified as direct activators of TS biosynthesis in the model legume Medicago truncatula. Here, we report on the involvement of the core endoplasmic reticulum (ER) stress-related basic leucine zipper (bZIP) TFs bZIP17 and bZIP60 in the regulation of TS biosynthesis. Expression and processing of M. truncatula bZIP17 and bZIP60 proteins were altered in roots with perturbed TS biosynthesis or treated with JA. Accordingly, such roots displayed an altered ER network structure. M. truncatula bZIP17 and bZIP60 proteins were shown to localize in the nucleus and appeared to be capable of interfering with the TSAR-mediated transactivation of TS biosynthesis genes. Furthermore, interference between ER stress-related bZIP and JA-modulated bHLH TFs in the regulation of JA-dependent terpene biosynthetic pathways may be widespread in the plant kingdom, as we demonstrate that it also occurs in the regulation of monoterpene indole alkaloid biosynthesis in the medicinal plant Catharanthus roseus.
Collapse
Affiliation(s)
- Bianca Ribeiro
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marie-Laure Erffelinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Maite Colinas
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Clara Williams
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Rebecca De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Maria Perassolo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
12
|
Isolation and Comprehensive in Silico Characterisation of a New 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase 4 (HMGR4) Gene Promoter from Salvia miltiorrhiza: Comparative Analyses of Plant HMGR Promoters. PLANTS 2022; 11:plants11141861. [PMID: 35890495 PMCID: PMC9318348 DOI: 10.3390/plants11141861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Salvia miltiorrhiza synthesises tanshinones with multidirectional therapeutic effects. These compounds have a complex biosynthetic pathway, whose first rate limiting enzyme is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). In the present study, a new 1646 bp fragment of the S. miltiorrhiza HMGR4 gene consisting of a promoter, 5′ untranslated region and part of a coding sequence was isolated and characterised in silico using bioinformatics tools. The results indicate the presence of a TATA box, tandem repeat and pyrimidine-rich sequence, and the absence of CpG islands. The sequence was rich in motifs recognised by specific transcription factors sensitive mainly to light, salicylic acid, bacterial infection and auxins; it also demonstrated many binding sites for microRNAs. Moreover, our results suggest that HMGR4 expression is possibly regulated during flowering, embryogenesis, organogenesis and the circadian rhythm. The obtained data were verified by comparison with microarray co-expression results obtained for Arabidopsis thaliana. Alignment of the isolated HMGR4 sequence with other plant HMGRs indicated the presence of many common binding sites for transcription factors, including conserved ones. Our findings provide valuable information for understanding the mechanisms that direct transcription of the S. miltiorrhiza HMGR4 gene.
Collapse
|
13
|
Zhao X, Yan Y, Zhou WH, Feng RZ, Shuai YK, Yang L, Liu MJ, He XY, Wei Q. Transcriptome and metabolome reveal the accumulation of secondary metabolites in different varieties of Cinnamomum longepaniculatum. BMC PLANT BIOLOGY 2022; 22:243. [PMID: 35585490 PMCID: PMC9116011 DOI: 10.1186/s12870-022-03637-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cinnamomum longepaniculatum (Gamble) N. Chao ex H. W. Li, whose leaves produce essential oils, is a traditional Chinese medicine and economically important tree species. In our study, two C. longepaniculatum varieties that have significantly different essential oil contents and leaf phenotypes were selected as the materials to investigate secondary metabolism. RESULT The essential oil content and leaf phenotypes were different between the two varieties. When the results of both transcriptome and metabolomic analyses were combined, it was found that the differences were related to phenylalanine metabolic pathways, particularly the metabolism of flavonoids and terpenoids. The transcriptome results based on KEGG pathway enrichment analysis showed that pathways involving phenylpropanoids, tryptophan biosynthesis and terpenoids significantly differed between the two varieties; 11 DEGs (2 upregulated and 9 downregulated) were associated with the biosynthesis of other secondary metabolites, and 12 DEGs (2 upregulated and 10 downregulated) were related to the metabolism of terpenoids and polyketides. Through further analysis of the leaves, we detected 196 metabolites in C. longepaniculatum. The abundance of 49 (26 downregulated and 23 upregulated) metabolites differed between the two varieties, which is likely related to the differences in the accumulation of these metabolites. We identified 12 flavonoids, 8 terpenoids and 8 alkaloids and identified 4 kinds of PMFs from the leaves of C. longepaniculatum. CONCLUSIONS The combined results of transcriptome and metabolomic analyses revealed a strong correlation between metabolite contents and gene expression. We speculate that light leads to differences in the secondary metabolism and phenotypes of leaves of different varieties of C. longepaniculatum. This research provides data for secondary metabolite studies and lays a solid foundation for breeding ideal C. longepaniculatum plants.
Collapse
Affiliation(s)
- Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Yue Yan
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Wan-hai Zhou
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Rui-zhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000 Sichuan People’s Republic of China
| | - Yong-kang Shuai
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000 Sichuan People’s Republic of China
| | - Li Yang
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000 Sichuan People’s Republic of China
| | - Meng-jie Liu
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Xiu-yan He
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000 Sichuan People’s Republic of China
| |
Collapse
|
14
|
Lee YJ, Kim JK, Baek SA, Yu JS, You MK, Ha SH. Differential Regulation of an OsIspH1, the Functional 4-Hydroxy-3-Methylbut-2-Enyl Diphosphate Reductase, for Photosynthetic Pigment Biosynthesis in Rice Leaves and Seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:861036. [PMID: 35498655 PMCID: PMC9044040 DOI: 10.3389/fpls.2022.861036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/10/2022] [Indexed: 06/02/2023]
Abstract
The methylerythritol 4-phosphate (MEP) pathway is responsible for providing common precursors for the biosynthesis of diverse plastidial terpenoids, including chlorophylls, carotenoids, and phytohormones, in plants. In rice (Oryza sativa), the last-step genes encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase [HDR/isoprenoid synthesis H (IspH)] have been annotated in two genes (OsIspH1 and OsIspH2) in the rice genome. The spatial transcript levels indicated that OsIspH1 is highly expressed in all tissues at different developmental stages, whereas OsIspH2 is barely expressed due to an early stop in exon 1 caused by splicing error. OsIspH1 localized into plastids and osisph1, a T-DNA inserted knockout mutant, showed an albino phenotype, indicating that OsIspH1 is the only functional gene. To elucidate the role of OsIspH1 in the MEP pathway, we created two single (H145P and K407R) and double (H145P/K407R) mutations and performed complementation tests in two hdr mutants, including Escherichia coli DLYT1 strains and osisph1 rice plants. The results showed that every single mutation retained HDR function, but a double mutation lost it, proposing that the complementary relations of two residues might be important for enzyme activity but not each residue. When overexpressed in rice plants, the double-mutated gene, OsIspH1MUT , reduced chlorophyll and carotenoid biosynthesis in the leaves and seeds. It confirmed the crucial role of OsIspH1 in plastidic terpenoid biosynthesis, revealing organ-specific differential regulation of OsIspH1 in rice plants.
Collapse
Affiliation(s)
- Yeo Jin Lee
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Bio-Resource and Environmental Center, Incheon National University, Incheon, South Korea
| | - Seung-A Baek
- Division of Life Sciences, Bio-Resource and Environmental Center, Incheon National University, Incheon, South Korea
| | - Ji-Su Yu
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Min Kyoung You
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
15
|
Szymczyk P, Szymańska G, Kuźma Ł, Jeleń A, Balcerczak E. Methyl Jasmonate Activates the 2C Methyl-D-erithrytol 2,4-cyclodiphosphate Synthase Gene and Stimulates Tanshinone Accumulation in Salvia miltiorrhiza Solid Callus Cultures. Molecules 2022; 27:molecules27061772. [PMID: 35335134 PMCID: PMC8950807 DOI: 10.3390/molecules27061772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 01/25/2023] Open
Abstract
The present study characterizes the 5′ regulatory region of the SmMEC gene. The isolated fragment is 1559 bp long and consists of a promoter, 5′UTR and 31 nucleotide 5′ fragments of the CDS region. In silico bioinformatic analysis found that the promoter region contains repetitions of many potential cis-active elements. Cis-active elements associated with the response to methyl jasmonate (MeJa) were identified in the SmMEC gene promoter. Co-expression studies combined with earlier transcriptomic research suggest the significant role of MeJa in SmMEC gene regulation. These findings were in line with the results of the RT-PCR test showing SmMEC gene expression induction after 72 h of MeJa treatment. Biphasic total tanshinone accumulation was observed following treatment of S. miltiorrhiza solid callus cultures with 50–500 μM methyl jasmonate, with peaks observed after 10–20 and 50–60 days. An early peak of total tanshinone concentration (0.08%) occurred after 20 days of 100 μM MeJa induction, and a second, much lower one, was observed after 50 days of 50 μM MeJa stimulation (0.04%). The dominant tanshinones were cryptotanshinone (CT) and dihydrotanshinone (DHT). To better understand the inducing effect of MeJa treatment on tanshinone biosynthesis, a search was performed for methyl jasmonate-responsive cis-active motifs in the available sequences of gene proximal promoters associated with terpenoid precursor biosynthesis. The results indicate that MeJa has the potential to induce a significant proportion of the presented genes, which is in line with available transcriptomic and RT-PCR data.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
- Correspondence:
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland; (A.J.); (E.B.)
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland; (A.J.); (E.B.)
| |
Collapse
|
16
|
Pérez L, Alves R, Perez-Fons L, Albacete A, Farré G, Soto E, Vilaprinyó E, Martínez-Andújar C, Basallo O, Fraser PD, Medina V, Zhu C, Capell T, Christou P. Multilevel interactions between native and ectopic isoprenoid pathways affect global metabolism in rice. Transgenic Res 2022; 31:249-268. [PMID: 35201538 PMCID: PMC8993735 DOI: 10.1007/s11248-022-00299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering. We hypothesized that the strict regulation of the native MVA pathway could be circumvented by expressing an ectopic plastidial MVA pathway that increases the accumulation of IPP and DMAPP in plastids. We therefore introduced genes encoding the plastid-targeted enzymes HMGS, tHMGR, MK, PMK and MVD and the nuclear-targeted transcription factor WR1 into rice and evaluated the impact of their endosperm-specific expression on (1) endogenous metabolism at the transcriptomic and metabolomic levels, (2) the synthesis of phytohormones, carbohydrates and fatty acids, and (3) the macroscopic phenotype including seed morphology. We found that the ectopic plastidial MVA pathway enhanced the expression of endogenous cytosolic MVA pathway genes while suppressing the native plastidial MEP pathway, increasing the production of certain sterols and tocopherols. Plants carrying the ectopic MVA pathway only survived if WR1 was also expressed to replenish the plastid acetyl-CoA pool. The transgenic plants produced higher levels of fatty acids, abscisic acid, gibberellins and lutein, reflecting crosstalk between phytohormones and secondary metabolism.
Collapse
Affiliation(s)
- Lucía Pérez
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Rui Alves
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, UK
| | - Alfonso Albacete
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, 30100, Murcia, Espinardo, Spain
- Department of Plant Production and Agrotechnology, Institute for Agri-Food Research and Development of Murcia, Murcia, La Alberca, Spain
| | - Gemma Farré
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Erika Soto
- Department of Chemistry, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Ester Vilaprinyó
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- IRBLleida, Lleida, Catalunya, Spain
| | - Cristina Martínez-Andújar
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, 30100, Murcia, Espinardo, Spain
| | - Oriol Basallo
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, UK
| | - Vicente Medina
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
17
|
Wang D, Chen F, Wang CY, Han X, Dai CC. Early stem growth mutation alters metabolic flux changes enhance sesquiterpenoids biosynthesis in Atractylodes lancea (Thunb.) DC. PLANT CELL, TISSUE AND ORGAN CULTURE 2022; 149:467-483. [PMID: 35125570 PMCID: PMC8806136 DOI: 10.1007/s11240-022-02240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Atractylodes lancea (Thunb.) DC. is a well-known medicinal herb in China, containing abundant active components, including a variety of sesquiterpenoids. Owing to a shortage of wild resources, artificial cultivation has become the main breeding mode, leading to the germplasm degradation. In preliminary research, our research group found that a mutant tissue culture seedling of A. lancea is an excellent germplasm resource, characterized by early stem growth and higher sesquiterpenoid content than that of the wild type. In this study, the physiological and biochemical mechanisms underlying efficient sesquiterpenoids synthesis by this mutant A. lancea were systematically evaluated. The results showed that the photosynthetic efficiency, central carbon metabolism efficiency, and energy metabolism efficiency were significantly improved in mutant A. lancea compared with the wild type, and the content of endogenous hormones, such as gibberellin and jasmonic acid, changed significantly. In addition, levels of key metabolites and the expression level of key genes in the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways were significantly higher in mutant type than in wild type, resulting in elevated sesquiterpenoid synthesis in the mutant. These physiological and biochemical properties explain the rapid growth and high sesquiterpenoid content of mutant A. lancea. Supplementary Information The online version contains supplementary material available at 10.1007/s11240-022-02240-5.
Collapse
Affiliation(s)
- Di Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
- Nanjing Engineering Research Center for Functional Components Development of Featured Biological Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Fei Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
- Nanjing Engineering Research Center for Functional Components Development of Featured Biological Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Chun-Yan Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
- Nanjing Engineering Research Center for Functional Components Development of Featured Biological Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
- Nanjing Engineering Research Center for Functional Components Development of Featured Biological Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
18
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
19
|
Sun T, Zhou X, Rao S, Liu J, Li L. Protein–protein interaction techniques to investigate post-translational regulation of carotenogenesis. Methods Enzymol 2022; 671:301-325. [DOI: 10.1016/bs.mie.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Rey F, Rodrigo MJ, Diretto G, Zacarías L. Effect of fruit shading and cold storage on tocopherol biosynthesis and its involvement in the susceptibility of Star Ruby grapefruit to chilling injury. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100037. [PMID: 35415643 PMCID: PMC8991614 DOI: 10.1016/j.fochms.2021.100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022]
Abstract
Tocopherol content in the flavedo of grapefruit increase during fruit maturation. TAT1 and genes of the tocopherol-core pathway are up-regulated during fruit maturation. Light avoidance reduces γ-tocopherol and expression of GGDR and tocopherol-core pathway genes. Cold up-regulated genes involved in precursors supply but repressed those of the core pathway. Changes in tocopherols during storage appears to be cold-mediated and not related to CI tolerance.
The aim of this study was to investigate the role of tocopherols in the susceptibility of Star Ruby grapefruit to postharvest chilling injury (CI). Fruit exposed to normal sunlight (NC, non-covered) and deprived of light (C, covered) in the last stages of development were used. Tocopherol contents increased in the flavedo of both NC and C fruit during development, concomitantly with the up-regulation of TAT1 and most genes of the tocopherol-core pathway. Fruit shading reduced total contents by repressing γ-tocopherol accumulation, associated to a down-regulation of GGDR and VTE1 and, to a lesser extent, of VTE2, VTE3a and VTE4. During cold storage, total and α-tocopherol contents increased in NC and C fruit, and no direct relationship between tocopherol accumulation and CI tolerance was found. Cold stress up-regulated most genes involved in the synthesis of tocopherol precursors and down-regulated those of the tocopherol-core pathway, but changes seemed to be cold-mediated and not related to CI development.
Collapse
Affiliation(s)
- Florencia Rey
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
21
|
RNASeq analysis of drought-stressed guayule reveals the role of gene transcription for modulating rubber, resin, and carbohydrate synthesis. Sci Rep 2021; 11:21610. [PMID: 34732788 PMCID: PMC8566568 DOI: 10.1038/s41598-021-01026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
The drought-adapted shrub guayule (Parthenium argentatum) produces rubber, a natural product of major commercial importance, and two co-products with potential industrial use: terpene resin and the carbohydrate fructan. The rubber content of guayule plants subjected to water stress is higher compared to that of well-irrigated plants, a fact consistently reported in guayule field evaluations. To better understand how drought influences rubber biosynthesis at the molecular level, a comprehensive transcriptome database was built from drought-stressed guayule stem tissues using de novo RNA-seq and genome-guided assembly, followed by annotation and expression analysis. Despite having higher rubber content, most rubber biosynthesis related genes were down-regulated in drought-stressed guayule, compared to well-irrigated plants, suggesting post-transcriptional effects may regulate drought-induced rubber accumulation. On the other hand, terpene resin biosynthesis genes were unevenly affected by water stress, implying unique environmental influences over transcriptional control of different terpene compounds or classes. Finally, drought induced expression of fructan catabolism genes in guayule and significantly suppressed these fructan biosynthesis genes. It appears then, that in guayule cultivation, irrigation levels might be calibrated in such a regime to enable tunable accumulation of rubber, resin and fructan.
Collapse
|
22
|
Wang X, Chen J, Ni H, Mustafa G, Yang Y, Wang Q, Fu H, Zhang L, Yang B. Use Chou's 5-steps rule to identify protein post-translational modification and its linkage to secondary metabolism during the floral development of Lonicera japonica Thunb. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1035-1048. [PMID: 34600181 DOI: 10.1016/j.plaphy.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Lonicera japonica Thunb. is widely used in traditional medicine systems of East Asian and attracts a large amount of studies on the biosynthesis of its active components. Currently, there is little understanding regarding the regulatory mechanisms behind the accumulation of secondary metabolites during its developmental stages. In this study, published transcriptomic and proteomic data were mined to evaluate potential linkage between protein modification and secondary metabolism during the floral development. Stronger correlations were observed between differentially expressed genes (DEGs) and their corresponding differentially abundant proteins (DAPs) in the comparison of juvenile bud stage (JBS)/third green stage (TGS) vs. silver flowering stage (SFS). Seventy-five and 76 cor-rDEGs and cor-rDAPs (CDDs) showed opposite trends at both transcriptional and translational levels when comparing their levels at JBS and TGS relative to those at SFS. CDDs were mainly involved in elements belonging to the protein metabolism and the TCA cycle. Protein-protein interaction analysis indicated that the interacting proteins in the major cluster were primarily involved in TCA cycle and protein metabolism. In the simple phenylpropanoids biosynthetic pathway of SFS, both phospho-2-dehydro-3-deoxyheptonate aldolase (PDA) and glutamate/aspartate-prephenate aminotransferase (AAT) were decreased at the protein level, but increased at the gene level. A confirmatory experiment indicated that protein ubiquitination and succinylation were more prominent during the early floral developmental stages, in correlation with simple phenylpropanoids accumulation. Taken together, those data indicates that phenylpropanoids metabolism and floral development are putatively regulated through the ubiquitination and succinylation modifications of PDA, AAT, and TCA cycle proteins in L. japonica.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haofu Ni
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yuling Yang
- Wenshan Academy of Agricultural Sciences, Wenshan, 663000, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
23
|
Née G, Châtel-Innocenti G, Meimoun P, Leymarie J, Montrichard F, Satour P, Bailly C, Issakidis-Bourguet E. A New Role for Plastid Thioredoxins in Seed Physiology in Relation to Hormone Regulation. Int J Mol Sci 2021; 22:10395. [PMID: 34638735 PMCID: PMC8508614 DOI: 10.3390/ijms221910395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
In Arabidopsis seeds, ROS have been shown to be enabling actors of cellular signaling pathways promoting germination, but their accumulation under stress conditions or during aging leads to a decrease in the ability to germinate. Previous biochemical work revealed that a specific class of plastid thioredoxins (Trxs), the y-type Trxs, can fulfill antioxidant functions. Among the ten plastidial Trx isoforms identified in Arabidopsis, Trx y1 mRNA is the most abundant in dry seeds. We hypothesized that Trx y1 and Trx y2 would play an important role in seed physiology as antioxidants. Using reverse genetics, we found important changes in the corresponding Arabidopsis mutant seeds. They display remarkable traits such as increased longevity and higher and faster germination in conditions of reduced water availability or oxidative stress. These phenotypes suggest that Trxs y do not play an antioxidant role in seeds, as further evidenced by no changes in global ROS contents and protein redox status found in the corresponding mutant seeds. Instead, we provide evidence that marker genes of ABA and GAs pathways are perturbed in mutant seeds, together with their sensitivity to specific hormone inhibitors. Altogether, our results suggest that Trxs y function in Arabidopsis seeds is not linked to their previously identified antioxidant roles and reveal a new role for plastid Trxs linked to hormone regulation.
Collapse
Affiliation(s)
- Guillaume Née
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| | - Gilles Châtel-Innocenti
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| | - Patrice Meimoun
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Juliette Leymarie
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Françoise Montrichard
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, F-49071 Beaucouzé, France; (F.M.); (P.S.)
| | - Pascale Satour
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, F-49071 Beaucouzé, France; (F.M.); (P.S.)
| | - Christophe Bailly
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Emmanuelle Issakidis-Bourguet
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| |
Collapse
|
24
|
Yu Z, Zhang G, Teixeira da Silva JA, Zhao C, Duan J. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110952. [PMID: 34134848 DOI: 10.1016/j.plantsci.2021.110952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 05/22/2023]
Abstract
Linalool is an aromatic monoterpene produced in the Chinese medicinal plant Dendrobium officinale, but little information is available on the regulation of linalool biosynthesis. Here, a novel basic helix-loop-helix (bHLH) transcription factor, DobHLH4 from D. officinale, was identified and functionally characterized. The expression profile of DobHLH4 was positively correlated with that of DoTPS10 (R2 = 0.985, p < 0.01), which encodes linalool synthase that is responsible for linalool production, during floral development. DobHLH4 was highly expressed in petals, and was significantly induced by methyl jasmonate. Analysis of subcellular localization showed that DobHLH4 was located in the nucleus. Yeast one-hybrid and dual-luciferase assays indicated that DobHLH4 bound directly to the DoTPS10 promoter harboring the G-box element, and up-regulated DoTPS10 expression. A yeast two-hybrid screen confirmed that DobHLH4 physically interacted with DoJAZ1, suggesting that DobHLH4 might function in the jasmonic acid-mediated accumulation of linalool. Furthermore, transient overexpression of DobHLH4 in D. officinale petals significantly increased linalool production by triggering linalool biosynthetic pathway genes, especially DoTPS10. We suggest a hypothetical model that depicts how jasmonic acid signaling may regulate DoTPS10 by interacting with DobHLH4 and DoJAZ1. In doing so, the formation of linalool is controlled. Our results indicate that DobHLH4 is a positive regulator of linalool biosynthesis and may be a promising target for in vitro-based metabolic engineering to produce linalool.
Collapse
Affiliation(s)
- Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Guihua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
25
|
Pu X, Dong X, Li Q, Chen Z, Liu L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1211-1226. [PMID: 33538411 DOI: 10.1111/jipb.13076] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/02/2021] [Indexed: 05/29/2023]
Abstract
Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development, and plant responses to stress. The basic building block units for isoprenoid synthesis-isopentenyl diphosphate and its isomer dimethylallyl diphosphate-are generated by the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. Here, we summarize recent advances on the roles of the MEP and MVA pathways in plant growth, development and stress responses, and attempt to define the underlying gene networks that orchestrate the MEP and MVA pathways in response to developmental or environmental cues. Through phylogenomic analysis, we also provide a new perspective on the evolution of the plant isoprenoid pathway. We conclude that the presence of the MVA pathway in plants may be associated with the transition from aquatic to subaerial and terrestrial environments, as lineages for its core components are absent in green algae. The emergence of the MVA pathway has acted as a key evolutionary event in plants that facilitated land colonization and subsequent embryo development, as well as adaptation to new and varied environments.
Collapse
Affiliation(s)
- Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Xiumei Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Qing Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zexi Chen
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| |
Collapse
|
26
|
Therapeutic and Biomedical Potentialities of Terpenoids – A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.04] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Terpenoids are the most diverse and largest class of chemicals of the innumerable plant-based compounds. Plants carry out a number of essential growth and production functions using terpenoid metabolites. In contrast, most terpenoids are used in the abiotic and biotic systems for complex chemical interactions and defense. Terpenoids derived from plants mostly used humans for pharmaceutical, food, and chemical industries in the past. However, recently biofuel products have been developed by terpenoids. The metabolism of high-quality terpenoids in plants and microbes is facilitated in synthetic biology by genomic resources and emerging tools. Further focus has been given to the ecological value of terpenoids for establishing effective pesticide control approaches and abiotic stress protection. The awareness of the diverse metabolic and molecular regulatory networks for terpenoid biosynthesis needs to be increased continuously in all these efforts. This review gives an overview and highlights current improvements in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and discusses the prominent therapeutic roles of terpenoids. This review provides an overview and highlights recent literature in our understanding about the biomedical and therapeutic importance of terpenoids, regulation as well as the diversion of core and specialized metabolized terpenoid pathways.
Collapse
|
27
|
Navale GR, Dharne MS, Shinde SS. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:457-475. [PMID: 33394155 DOI: 10.1007/s00253-020-11040-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Isoprenoids, often called terpenoids, are the most abundant and highly diverse family of natural organic compounds. In plants, they play a distinct role in the form of photosynthetic pigments, hormones, electron carrier, structural components of membrane, and defence. Many isoprenoids have useful applications in the pharmaceutical, nutraceutical, and chemical industries. They are synthesized by various isoprenoid synthase enzymes by several consecutive steps. Recent advancement in metabolic engineering and synthetic biology has enabled the production of these isoprenoids in the heterologous host systems like Escherichia coli and Saccharomyces cerevisiae. Both heterologous systems have been engineered for large-scale production of value-added isoprenoids. This review article will provide the detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids. The review particularly highlighted the efforts taken for the production of C5-C20 isoprenoids by metabolic engineering techniques in E. coli and S. cerevisiae over a decade. The challenges and strategies are also discussed in detail for scale-up and engineering of isoprenoids in the heterologous host systems.Key points• Isoprenoids are beneficial and valuable natural products.• E. coli and S. cerevisiae are the promising host for isoprenoid biosynthesis.• Emerging techniques in synthetic biology enabled the improved production.• Need to expand the catalogue and scale-up of un-engineered isoprenoids. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Govinda R Navale
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
| | - Sandip S Shinde
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Department Industrial and Chemical Engineering, Institute of Chemical Technology Mumbai Marathwada Campus, Jalna, 431213, India.
| |
Collapse
|
28
|
Perreca E, Rohwer J, González-Cabanelas D, Loreto F, Schmidt A, Gershenzon J, Wright LP. Effect of Drought on the Methylerythritol 4-Phosphate (MEP) Pathway in the Isoprene Emitting Conifer Picea glauca. FRONTIERS IN PLANT SCIENCE 2020; 11:546295. [PMID: 33163010 PMCID: PMC7581940 DOI: 10.3389/fpls.2020.546295] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/17/2020] [Indexed: 05/27/2023]
Abstract
The methylerythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis produces chlorophyll side chains and compounds that function in resistance to abiotic stresses, including carotenoids, and isoprene. Thus we investigated the effects of moderate and severe drought on MEP pathway function in the conifer Picea glauca, a boreal species at risk under global warming trends. Although moderate drought treatment reduced the photosynthetic rate by over 70%, metabolic flux through the MEP pathway was reduced by only 37%. The activity of the putative rate-limiting step, 1-deoxy-D-xylulose-5-phosphate synthase (DXS), was also reduced by about 50%, supporting the key role of this enzyme in regulating pathway metabolic flux. However, under severe drought, as flux declined below detectable levels, DXS activity showed no significant decrease, indicating a much-reduced role in controlling flux under these conditions. Both MEP pathway intermediates and the MEP pathway product isoprene incorporate administered 13CO2 to high levels (75-85%) under well-watered control conditions indicating a close connection to photosynthesis. However, this incorporation declined precipitously under drought, demonstrating exploitation of alternative carbon sources. Despite the reductions in MEP pathway flux and intermediate pools, there was no detectable decline in most major MEP pathway products under drought (except for violaxanthin under moderate and severe stress and isoprene under severe stress) suggesting that the pathway is somehow buffered against this stress. The resilience of the MEP pathway under drought may be a consequence of the importance of the metabolites formed under these conditions.
Collapse
Affiliation(s)
- Erica Perreca
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Johann Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Francesco Loreto
- Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Bio-Agroalimentari, Roma, Italy
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
29
|
Lacchini E, Goossens A. Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annu Rev Cell Dev Biol 2020; 36:291-313. [PMID: 32559387 DOI: 10.1146/annurev-cellbio-011620-031429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
30
|
Li D, Wu Y, Wei P, Gao X, Li M, Zhang C, Zhou Z, Lu W. Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Zheng X, Giuliano G, Al-Babili S. Carotenoid biofortification in crop plants: citius, altius, fortius. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158664. [PMID: 32068105 DOI: 10.1016/j.bbalip.2020.158664] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022]
Abstract
Carotenoids are indispensable for human health, required as precursors of vitamin A and efficient antioxidants. However, these plant pigments that play a vital role in photosynthesis are represented at insufficient levels in edible parts of several crops, which creates a need for increasing their content or optimizing their composition through biofortification. In particular, vitamin A deficiency, a severe health problem affecting the lives of millions in developing countries, has triggered the development of a series of high-provitamin A crops, including Golden Rice as the best-known example. Further carotenoid-biofortified crops have been generated by using genetic engineering approaches or through classical breeding. In this review, we depict carotenoid metabolism in plants and provide an update on the development of carotenoid-biofortified plants and their potential to meet needs and expectations. Furthermore, we discuss the possibility of using natural variation for carotenoid biofortification and the potential of gene editing tools. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Xiongjie Zheng
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Center, Via Anguillarese 301, Roma 00123, Italy
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
32
|
On the Evolution and Functional Diversity of Terpene Synthases in the Pinus Species: A Review. J Mol Evol 2020; 88:253-283. [PMID: 32036402 DOI: 10.1007/s00239-020-09930-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
In the biosynthesis of terpenoids, the ample catalytic versatility of terpene synthases (TPS) allows the formation of thousands of different molecules. A steadily increasing number of sequenced plant genomes invariably show that the TPS gene family is medium to large in size, comprising from 30 to 100 functional members. In conifers, TPSs belonging to the gymnosperm-specific TPS-d subfamily produce a complex mixture of mono-, sesqui-, and diterpenoid specialized metabolites, which are found in volatile emissions and oleoresin secretions. Such substances are involved in the defence against pathogens and herbivores and can help to protect against abiotic stress. Oleoresin terpenoids can be also profitably used in a number of different fields, from traditional and modern medicine to fine chemicals, fragrances, and flavours, and, in the last years, in biorefinery too. In the present work, after summarizing the current views on the biosynthesis and biological functions of terpenoids, recent advances on the evolution and functional diversification of plant TPSs are reviewed, with a focus on gymnosperms. In such context, an extensive characterization and phylogeny of all the known TPSs from different Pinus species is reported, which, for such genus, can be seen as the first effort to explore the evolutionary history of the large family of TPS genes involved in specialized metabolism. Finally, an approach is described in which the phylogeny of TPSs in Pinus spp. has been exploited to isolate for the first time mono-TPS sequences from Pinus nigra subsp. laricio, an ecologically important endemic pine in the Mediterranean area.
Collapse
|
33
|
Wei H, Xu C, Movahedi A, Sun W, Li D, Zhuge Q. Characterization and Function of 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Populus trichocarpa: Overexpression of PtHMGR Enhances Terpenoids in Transgenic Poplar. FRONTIERS IN PLANT SCIENCE 2019; 10:1476. [PMID: 31803212 PMCID: PMC6872958 DOI: 10.3389/fpls.2019.01476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/24/2019] [Indexed: 05/26/2023]
Abstract
In the mevalonic acid (MVA) pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is considered the first rate-limiting enzyme in isoprenoid biosynthesis. In this study, we cloned a full-length cDNA from Populus trichocarpa with an open reading frame of 1,734 bp. The deduced PtHMGR sequence contained two HMG-CoA motifs and two NADPH motifs, which exhibited homology with HMGR proteins from other species. Subsequently, truncated PtHMGR was expressed in Escherichia coli BL21 (DE3) cells, and enzyme activity analysis revealed that the truncated PtHMGR protein could catalyze the reaction of HMG-CoA and NADPH to form MVA. Relative expression analysis suggests that PtHMGR expression varies among tissues and that PtHMGR responds significantly to abscisic acid (ABA), NaCl, PEG6000, hydrogen peroxide (H2O2), and cold stresses. We used polymerase chain reaction (PCR) analysis to select transgenic Nanlin 895 poplars (Populus× euramericana cv.) and quantitative reverse-transcription PCR (qRT-PCR) to show that PtHMGR expression levels were 3- to 10-fold higher in transgenic lines than in wild-type (WT) poplars. qRT-PCR was also used to determine transcript levels of methylerythritol phosphate (MEP)-, MVA-, and downstream-related genes, indicating that overexpression of PtHMGR not only affects expression levels of MVA-related genes, but also those of MEP-related genes. We also measured the content of terpenoids including ABA, gibberellic acid (GA), carotenes, and lycopene. PtHMGR overexpression significantly increased ABA, GA, carotene, and lycopene content, indicating that PtHMGR participates in the regulation of terpenoid compound synthesis.
Collapse
Affiliation(s)
- Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Chen Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
34
|
Maeda HA. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. J Biol Chem 2019; 294:16549-16566. [PMID: 31558606 DOI: 10.1074/jbc.rev119.006132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
35
|
Ward VCA, Chatzivasileiou AO, Stephanopoulos G. Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiol Lett 2019; 365:4953741. [PMID: 29718190 DOI: 10.1093/femsle/fny079] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/25/2018] [Indexed: 12/22/2022] Open
Abstract
Metabolic engineering is the practice of using directed genetic manipulations to rewire cellular metabolism primarily with the aim to transform the organism into a single-celled chemical factory. Using biological processes, we can produce more complex chemicals in a more sustainable way. This is particularly important for chemicals which are hard to synthesize using traditional chemistry. However, cells have evolved for growth and must be engineered to produce a single chemical at commercially viable levels. This review focuses on the strategies used to rewire cellular metabolism to produce chemicals using isoprenoid production in Escherichia coli as an example that illustrates many of the challenges faced in metabolic engineering.
Collapse
Affiliation(s)
- Valerie C A Ward
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | | | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Kainer D, Padovan A, Degenhardt J, Krause S, Mondal P, Foley WJ, Külheim C. High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus. THE NEW PHYTOLOGIST 2019; 223:1489-1504. [PMID: 31066055 DOI: 10.1111/nph.15887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
Terpenoid-based essential oils are economically important commodities, yet beyond their biosynthetic pathways, little is known about the genetic architecture of terpene oil yield from plants. Transport, storage, evaporative loss, transcriptional regulation and precursor competition may be important contributors to this complex trait. Here, we associate 2.39 million single nucleotide polymorphisms derived from shallow whole-genome sequencing of 468 Eucalyptus polybractea individuals with 12 traits related to the overall terpene yield, eight direct measures of terpene concentration and four biomass-related traits. Our results show that in addition to terpene biosynthesis, development of secretory cavities, where terpenes are both synthesized and stored, and transport of terpenes were important components of terpene yield. For sesquiterpene concentrations, the availability of precursors in the cytosol was important. Candidate terpene synthase genes for the production of 1,8-cineole and α-pinene, and β-pinene (which comprised > 80% of the total terpenes) were functionally characterized as a 1,8-cineole synthase and a β/α-pinene synthase. Our results provide novel insights into the genomic architecture of terpene yield and we provide candidate genes for breeding or engineering of crops for biofuels or the production of industrially valuable terpenes.
Collapse
Affiliation(s)
- David Kainer
- Center for BioEnergy Innovation, Bioscience Division, Oak Ridge National Laboratories, Oak Ridge, TN, 37831, USA
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Amanda Padovan
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- CSIRO, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - Joerg Degenhardt
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Sandra Krause
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Prodyut Mondal
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Carsten Külheim
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
37
|
Li YP, Yu P, Li JF, Tang YL, Bu QT, Mao XM, Li YQ. FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1. Appl Microbiol Biotechnol 2019; 103:7583-7596. [DOI: 10.1007/s00253-019-09949-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
|
38
|
The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci U S A 2019; 116:12810-12815. [PMID: 31186357 DOI: 10.1073/pnas.1821004116] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The more than 50,000 isoprenoids found in nature are all derived from the 5-carbon diphosphates isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Natively, IPP and DMAPP are generated by the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways, which have been engineered to produce compounds with numerous applications. However, as these pathways are inherently constrained by carbon, energy inefficiencies, and their roles in native metabolism, engineering for isoprenoid biosynthesis at high flux, titer, and yield remains a challenge. To overcome these limitations, here we develop an alternative synthetic pathway termed the isoprenoid alcohol (IPA) pathway that centers around the synthesis and subsequent phosphorylation of IPAs. We first established a lower IPA pathway for the conversion of IPAs to isoprenoid pyrophosphate intermediates that enabled the production of greater than 2 g/L geraniol from prenol as well as limonene, farnesol, diaponeurosporene, and lycopene. We then designed upper IPA pathways for the generation of (iso)prenol from central carbon metabolites with the development of a route to prenol enabling its synthesis at more than 2 g/L. Using prenol as the linking intermediate further facilitated an integrated IPA pathway that resulted in the production of nearly 0.6 g/L total monoterpenoids from glycerol as the sole carbon source. The IPA pathway provides an alternative route to isoprenoids that is more energy efficient than native pathways and can serve as a platform for targeting a repertoire of isoprenoid compounds with application as high-value pharmaceuticals, commodity chemicals, and fuels.
Collapse
|
39
|
de Souza VF, Niinemets Ü, Rasulov B, Vickers CE, Duvoisin Júnior S, Araújo WL, Gonçalves JFDC. Alternative Carbon Sources for Isoprene Emission. TRENDS IN PLANT SCIENCE 2018; 23:1081-1101. [PMID: 30472998 PMCID: PMC6354897 DOI: 10.1016/j.tplants.2018.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 05/07/2023]
Abstract
Isoprene and other plastidial isoprenoids are produced primarily from recently assimilated photosynthates via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. However, when environmental conditions limit photosynthesis, a fraction of carbon for MEP pathway can come from extrachloroplastic sources. The flow of extrachloroplastic carbon depends on the species and on leaf developmental and environmental conditions. The exchange of common phosphorylated intermediates between the MEP pathway and other metabolic pathways can occur via plastidic phosphate translocators. C1 and C2 carbon intermediates can contribute to chloroplastic metabolism, including photosynthesis and isoprenoid synthesis. Integration of these metabolic processes provide an example of metabolic flexibility, and results in the synthesis of primary metabolites for plant growth and secondary metabolites for plant defense, allowing effective use of environmental resources under multiple stresses.
Collapse
Affiliation(s)
- Vinícius Fernandes de Souza
- Laboratory of Plant Physiology and Biochemistry, National Institute for Amazonian Research (INPA), Manaus, AM 69011-970, Brazil; University of Amazonas State, Manaus, AM 69050-010, Brazil
| | - Ülo Niinemets
- Department of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, 10130 Tallinn, Estonia
| | - Bahtijor Rasulov
- Department of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu 51006, Estonia; Institute of Technology, University of Tartu, Tartu, Estonia
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, EcoSciences Precinct, Brisbane, QLD 4001, Australia
| | | | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | | |
Collapse
|
40
|
Startek JB, Voets T, Talavera K. To flourish or perish: evolutionary TRiPs into the sensory biology of plant-herbivore interactions. Pflugers Arch 2018; 471:213-236. [PMID: 30229297 DOI: 10.1007/s00424-018-2205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
The interactions between plants and their herbivores are highly complex systems generating on one side an extraordinary diversity of plant protection mechanisms and on the other side sophisticated consumer feeding strategies. Herbivores have evolved complex, integrative sensory systems that allow them to distinguish between food sources having mere bad flavors from the actually toxic ones. These systems are based on the senses of taste, olfaction and somatosensation in the oral and nasal cavities, and on post-ingestive chemosensory mechanisms. The potential ability of plant defensive chemical traits to induce tissue damage in foragers is mainly encoded in the latter through chemesthetic sensations such as burning, pain, itch, irritation, tingling, and numbness, all of which induce innate aversive behavioral responses. Here, we discuss the involvement of transient receptor potential (TRP) channels in the chemosensory mechanisms that are at the core of complex and fascinating plant-herbivore ecological networks. We review how "sensory" TRPs are activated by a myriad of plant-derived compounds, leading to cation influx, membrane depolarization, and excitation of sensory nerve fibers of the oronasal cavities in mammals and bitter-sensing cells in insects. We also illustrate how TRP channel expression patterns and functionalities vary between species, leading to intriguing evolutionary adaptations to the specific habitats and life cycles of individual organisms.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium. .,VIB Center for Brain & Disease Research, Leuven, Belgium.
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
41
|
Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, Kessler SA, Bohlmann J, Noel JP, Dudareva N. Contribution of isopentenyl phosphate to plant terpenoid metabolism. NATURE PLANTS 2018; 4:721-729. [PMID: 30127411 DOI: 10.1038/s41477-018-0220-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/13/2018] [Indexed: 05/24/2023]
Abstract
Plant genomes encode isopentenyl phosphate kinases (IPKs) that reactivate isopentenyl phosphate (IP) via ATP-dependent phosphorylation, forming the primary metabolite isopentenyl diphosphate (IPP) used generally for isoprenoid/terpenoid biosynthesis. Therefore, the existence of IPKs in plants raises unanswered questions concerning the origin and regulatory roles of IP in plant terpenoid metabolism. Here, we provide genetic and biochemical evidence showing that IP forms during specific dephosphorylation of IPP catalysed by a subset of Nudix superfamily hydrolases. Increasing metabolically available IP by overexpression of a bacterial phosphomevalonate decarboxylase (MPD) in Nicotiana tabacum resulted in significant enhancement in both monoterpene and sesquiterpene production. These results indicate that perturbing IP metabolism results in measurable changes in terpene products derived from both the methylerythritol phosphate (MEP) and mevalonate (MVA) pathways. Moreover, the unpredicted peroxisomal localization of bacterial MPD led us to discover that the step catalysed by phosphomevalonate kinase (PMK) imposes a hidden constraint on flux through the classical MVA pathway. These complementary findings fundamentally alter conventional views of metabolic regulation of terpenoid metabolism in plants and provide new metabolic engineering targets for the production of high-value terpenes in plants.
Collapse
Affiliation(s)
- Laura K Henry
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Suzanne T Thomas
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Thomas C Davis
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Sharon A Kessler
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Joseph P Noel
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
42
|
Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 2018; 70:62-93. [PMID: 29679619 DOI: 10.1016/j.plipres.2018.04.004] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.
Collapse
Affiliation(s)
| | - Javier Avalos
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Albert Boronat
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lourdes Gomez-Gomez
- Instituto Botánico, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Damaso Hornero-Mendez
- Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain
| | - M Carmen Limon
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio J Meléndez-Martínez
- Food Color & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain
| | | | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Maria J Rodrigo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Lorenzo Zacarias
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, Universitat de Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
43
|
Liao P, Chen X, Wang M, Bach TJ, Chye M. Improved fruit α-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-HYDROXY-3-METHYLGLUTARYL-COA SYNTHASE1 in transgenic tomato. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:784-796. [PMID: 28881416 PMCID: PMC5814594 DOI: 10.1111/pbi.12828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/20/2017] [Accepted: 08/26/2017] [Indexed: 05/20/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild-type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up-regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10-fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE-S359A over OE-wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA-derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)-derived α-tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS-OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up-regulated. In OE-S359A tomato fruits, increased squalene and phytosterol contents over OE-wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE-wtBjHMGS1 and OE-S359A fruits, the up-regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α-tocopherol and carotenoid accumulation indicated cross-talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health-promoting squalene, phytosterols, α-tocopherol and carotenoids in tomato, an edible fruit.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
- Partner State Key Laboratory of AgrobiotechnologyCUHKShatinHong KongChina
| | - Xinjian Chen
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
| | - Mingfu Wang
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
| | - Thomas J. Bach
- Centre National de la Recherche ScientifiqueUPR 2357Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | - Mee‐Len Chye
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
- Partner State Key Laboratory of AgrobiotechnologyCUHKShatinHong KongChina
| |
Collapse
|
44
|
Dalla Costa L, Emanuelli F, Trenti M, Moreno-Sanz P, Lorenzi S, Coller E, Moser S, Slaghenaufi D, Cestaro A, Larcher R, Gribaudo I, Costantini L, Malnoy M, Grando MS. Induction of Terpene Biosynthesis in Berries of Microvine Transformed with VvDXS1 Alleles. FRONTIERS IN PLANT SCIENCE 2018; 8:2244. [PMID: 29387072 PMCID: PMC5776104 DOI: 10.3389/fpls.2017.02244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/20/2017] [Indexed: 05/30/2023]
Abstract
Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1), the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system "microvine" and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral) VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat) VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.
Collapse
Affiliation(s)
- Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, Genomics and Biology of Fruit Crop Department, San Michele all'Adige, Italy
| | - Francesco Emanuelli
- Research and Innovation Centre, Fondazione Edmund Mach, Genomics and Biology of Fruit Crop Department, San Michele all'Adige, Italy
| | - Massimiliano Trenti
- Research and Innovation Centre, Fondazione Edmund Mach, Genomics and Biology of Fruit Crop Department, San Michele all'Adige, Italy
| | - Paula Moreno-Sanz
- Research and Innovation Centre, Fondazione Edmund Mach, Genomics and Biology of Fruit Crop Department, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Genomics and Biology of Fruit Crop Department, San Michele all'Adige, Italy
| | - Emanuela Coller
- Research and Innovation Centre, Fondazione Edmund Mach, Computational Biology Platform, San Michele all'Adige, Italy
| | - Sergio Moser
- Technology Transfer Centre, Fondazione Edmund Mach, Experiment and Technological Services Department, San Michele all'Adige, Italy
| | - Davide Slaghenaufi
- Technology Transfer Centre, Fondazione Edmund Mach, Experiment and Technological Services Department, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, Computational Biology Platform, San Michele all'Adige, Italy
| | - Roberto Larcher
- Technology Transfer Centre, Fondazione Edmund Mach, Experiment and Technological Services Department, San Michele all'Adige, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection—CNR, Grugliasco, Italy
| | - Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, Genomics and Biology of Fruit Crop Department, San Michele all'Adige, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Genomics and Biology of Fruit Crop Department, San Michele all'Adige, Italy
| | - M. Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, Genomics and Biology of Fruit Crop Department, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
45
|
Eberl F, Perreca E, Vogel H, Wright LP, Hammerbacher A, Veit D, Gershenzon J, Unsicker SB. Rust Infection of Black Poplar Trees Reduces Photosynthesis but Does Not Affect Isoprene Biosynthesis or Emission. FRONTIERS IN PLANT SCIENCE 2018; 9:1733. [PMID: 30538714 PMCID: PMC6277707 DOI: 10.3389/fpls.2018.01733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 05/13/2023]
Abstract
Poplar (Populus spp.) trees are widely distributed and play an important role in ecological communities and in forestry. Moreover, by releasing high amounts of isoprene, these trees impact global atmospheric chemistry. One of the most devastating diseases for poplar is leaf rust, caused by fungi of the genus Melampsora. Despite the wide distribution of these biotrophic pathogens, very little is known about their effects on isoprene biosynthesis and emission. We therefore infected black poplar (P. nigra) trees with the rust fungus M. larici-populina and monitored isoprene emission and other physiological parameters over the course of infection to determine the underlying mechanisms. We found an immediate and persistent decrease in photosynthesis during infection, presumably caused by decreased stomatal conductance mediated by increased ABA levels. At the same time, isoprene emission remained stable during the time course of infection, consistent with the stability of its biosynthesis. There was no detectable change in the levels of intermediates or gene transcripts of the methylerythritol 4-phosphate (MEP) pathway in infected compared to control leaves. Rust infection thus does not affect isoprene emission, but may still influence the atmosphere via decreased fixation of CO2.
Collapse
Affiliation(s)
- Franziska Eberl
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica Perreca
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Louwrance P. Wright
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Zeiselhof Research Farm, Pretoria, South Africa
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Sybille B. Unsicker,
| |
Collapse
|
46
|
Zhang J, Huo YB, Liu Y, Feng JT, Ma ZQ, Zhu CS, Zhang X. Differential expressed analysis of Tripterygium wilfordii unigenes involved in terpenoid backbone biosynthesis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:823-832. [PMID: 27649810 DOI: 10.1080/10286020.2016.1232713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tripterygium wilfordii Hook. f. is the traditional medicinal plants in China. Triptolide, wilforgine, and wilforine are the bioactive compounds in T. wilfordii. In this study, the contents of three metabolites and transcription levels of 21 genes involved in three metabolites biosynthesis in T. wilfordii were examined using high-performance liquid chromatography and reverse transcription PCR after application of methyl jasmonate (MeJA) on hairy roots in time course experiment (3-24 h). The results indicated that application of MeJA inhibited triptolide accumulation and promoted wilforgine and wilforine metabolites biosynthesis. In hairy roots, wilforgine content reached 693.36 μg/g at 6 h after adding MeJA, which was 2.23-fold higher than control. The accumulation of triptolide and wilforine in hairy roots increased the maximum at 9 h, which was 1.3- and 1.6-folds more than the control. Most of the triptolide secretes into the medium, but wilforgine and wilforine cannot secrete into the medium. The expression levels of unigenes which involved terpenoid backbone biosynthesis exist the correlation with marker metabolites (triptolide, wilforgine and wilforine) after induction by MeJA, and can be then used to infer flux bottlenecks in T. wilfordii secondary metabolites accumulation. These results showed that these genes may have potential applications in the metabolic engineering of T. wilfordii metabolites production.
Collapse
Affiliation(s)
- Jing Zhang
- a Research & Development Center of Biorational Pesticides, Northwest A & F University , Yangling 712100 , China
- b Research Center of Biopesticide Technology & Engineering Center Shaanxi Province , Yangling 712100 , China
| | - Yan-Bo Huo
- a Research & Development Center of Biorational Pesticides, Northwest A & F University , Yangling 712100 , China
| | - Yan Liu
- a Research & Development Center of Biorational Pesticides, Northwest A & F University , Yangling 712100 , China
| | - Jun-Tao Feng
- a Research & Development Center of Biorational Pesticides, Northwest A & F University , Yangling 712100 , China
- b Research Center of Biopesticide Technology & Engineering Center Shaanxi Province , Yangling 712100 , China
| | - Zhi-Qing Ma
- a Research & Development Center of Biorational Pesticides, Northwest A & F University , Yangling 712100 , China
- b Research Center of Biopesticide Technology & Engineering Center Shaanxi Province , Yangling 712100 , China
| | - Chuan-Shu Zhu
- a Research & Development Center of Biorational Pesticides, Northwest A & F University , Yangling 712100 , China
- b Research Center of Biopesticide Technology & Engineering Center Shaanxi Province , Yangling 712100 , China
| | - Xing Zhang
- a Research & Development Center of Biorational Pesticides, Northwest A & F University , Yangling 712100 , China
- b Research Center of Biopesticide Technology & Engineering Center Shaanxi Province , Yangling 712100 , China
| |
Collapse
|
47
|
Costantini L, Kappel CD, Trenti M, Battilana J, Emanuelli F, Sordo M, Moretto M, Camps C, Larcher R, Delrot S, Grando MS. Drawing Links from Transcriptome to Metabolites: The Evolution of Aroma in the Ripening Berry of Moscato Bianco ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2017; 8:780. [PMID: 28559906 PMCID: PMC5432621 DOI: 10.3389/fpls.2017.00780] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/25/2017] [Indexed: 05/29/2023]
Abstract
Monoterpenes confer typical floral notes to "Muscat" grapevine varieties and, to a lesser extent, to other aromatic non-Muscat varieties. Previous studies have led to the identification and functional characterization of some enzymes and genes in this pathway. However, the underlying genetic map is still far from being complete. For example, the specific steps of monoterpene metabolism and its regulation are largely unknown. With the aim of identifying new candidates for the missing links, we applied an integrative functional genomics approach based on the targeted metabolic and genome-wide transcript profiling of Moscato Bianco ripening berries. In particular, gas chromatography-mass spectrometry analysis of free and bound terpenoid compounds was combined with microarray analysis in the skins of berries collected at five developmental stages from pre-veraison to over-ripening. Differentially expressed metabolites and probes were identified in the pairwise comparison between time points by using the early stage as a reference. Metabolic and transcriptomic data were integrated through pairwise correlation and clustering approaches to discover genes linked with particular metabolites or groups of metabolites. These candidate transcripts were further checked for co-localization with quantitative trait loci (QTLs) affecting aromatic compounds. Our findings provide insights into the biological networks of grapevine secondary metabolism, both at the catalytic and regulatory levels. Examples include a nudix hydrolase as component of a terpene synthase-independent pathway for monoterpene biosynthesis, genes potentially involved in monoterpene metabolism (cytochrome P450 hydroxylases, epoxide hydrolases, glucosyltransferases), transport (vesicle-associated proteins, ABCG transporters, glutathione S-transferases, amino acid permeases), and transcriptional control (transcription factors of the ERF, MYB and NAC families, intermediates in light- and circadian cycle-mediated regulation with supporting evidence from the literature and additional regulatory genes with a previously unreported association to monoterpene accumulation).
Collapse
Affiliation(s)
- Laura Costantini
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Christian D. Kappel
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Massimiliano Trenti
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Juri Battilana
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Francesco Emanuelli
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Maddalena Sordo
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Marco Moretto
- Computational Biology Platform, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Céline Camps
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Roberto Larcher
- Experiment and Technological Services Department, Technology Transfer Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Serge Delrot
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Maria S. Grando
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- Center Agriculture Food Environment, University of TrentoSan Michele all'Adige, Italy
| |
Collapse
|
48
|
Mewalal R, Rai DK, Kainer D, Chen F, Külheim C, Peter GF, Tuskan GA. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels. Trends Biotechnol 2017; 35:227-240. [DOI: 10.1016/j.tibtech.2016.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 01/15/2023]
|
49
|
Arendt P, Pollier J, Callewaert N, Goossens A. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:16-37. [PMID: 26867713 DOI: 10.1111/tpj.13138] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 05/04/2023]
Abstract
With tens of thousands of characterized members, terpenoids constitute the largest class of natural compounds that are synthesized by all living organisms. Several terpenoids play primary roles in the maintenance of cell membrane fluidity, as pigments or as phytohormones, but most of them function as specialized metabolites that are involved in plant resistance to herbivores or plant-environment interactions. Terpenoids are an essential component of human nutrition, and many are economically important pharmaceuticals, aromatics and potential next-generation biofuels. Because of the often low abundance in their natural source, as well as the demand for novel terpenoid structures with new or improved bioactivities, terpenoid biosynthesis has become a prime target for metabolic engineering and synthetic biology projects. In this review we focus on the creation of new-to-nature or tailor-made plant-derived terpenoids in photosynthetic organisms, in particular by means of combinatorial biosynthesis and the activation of silent metabolism. We reflect on the characteristics of different potential photosynthetic host organisms and recent advances in synthetic biology and discuss their utility for the (heterologous) production of (novel) terpenoids.
Collapse
Affiliation(s)
- Philipp Arendt
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
- VIB Medical Biotechnology Center, B-9000, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nico Callewaert
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
- VIB Medical Biotechnology Center, B-9000, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| |
Collapse
|
50
|
Lipko A, Swiezewska E. Isoprenoid generating systems in plants - A handy toolbox how to assess contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthetic process. Prog Lipid Res 2016; 63:70-92. [PMID: 27133788 DOI: 10.1016/j.plipres.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/07/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022]
Abstract
Isoprenoids comprise an astonishingly diverse group of metabolites with numerous potential and actual applications in medicine, agriculture and the chemical industry. Generation of efficient platforms producing isoprenoids is a target of numerous laboratories. Such efforts are generally enhanced if the native biosynthetic routes can be identified, and if the regulatory mechanisms responsible for the biosynthesis of the compound(s) of interest can be determined. In this review a critical summary of the techniques applied to establish the contribution of the two alternative routes of isoprenoid production operating in plant cells, the mevalonate and methylerythritol pathways, with a focus on their co-operation (cross-talk) is presented. Special attention has been paid to methodological aspects of the referred studies, in order to give the reader a deeper understanding for the nuances of these powerful techniques. This review has been designed as an organized toolbox, which might offer the researchers comments useful both for project design and for interpretation of results obtained.
Collapse
Affiliation(s)
- Agata Lipko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|