1
|
Gao C, Wu P, Wang Y, Wen P, Guan X, Wang T. Drought and rewatering practices improve adaptability of seedling maize to drought stress by a super-compensate effect. Heliyon 2024; 10:e39602. [PMID: 39497990 PMCID: PMC11533651 DOI: 10.1016/j.heliyon.2024.e39602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Periodic drought adversely affects the growth and yield of summer crops in the Huang-Huai-Hai Plain. Drought-rewatering practice as one of the important agronomic measures to improve crop drought resistance. A field experiment was conducted to investigate practice physiological, biochemical, and molecular responses of maize seedling after two rounds of repeated drought and rewatering treatments. The results demonstrated that rewatering following repeated drought events had a compensatory effect on the photosynthetic rate (Pn) and on osmotic and antioxidant regulation. Specifically, the Pn and stomatal conductance (Gs) increased by 10.12 % and 5.61 %, respectively, compared to the control (CK) during the second round of treatment. Additionally, soluble protein (sPro) and proline (Pro) content rose significantly, with increases of 26.12 % and 343.49 % observed on day 5 of the second round, leading to a gradual reduction in leaf water content and osmosis. Following drought exposure, the activities of superoxide dismutase (SOD) and peroxidase (POD) contributed to the decreased levels of malondialdehyde (MDA), with both enzymes recovering during rewatering. In contrast, plant height, leaf area, and biomass were significantly reduced in the CK group. Notably, root length increased by 21.05 % after the drought-rewatering practice, enhancing the maize seedlings' ability to adapt to drought stress. Overall, maize seedlings exhibited enhanced adaptability to drought conditions following two cycles of drought-rewatering treatments.
Collapse
Affiliation(s)
- Chenkai Gao
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Pengnian Wu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yanli Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Pengfei Wen
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiaokang Guan
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Tongchao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| |
Collapse
|
2
|
Giovenali G, Di Romana ML, Capoccioni A, Riccardi V, Kuzmanović L, Ceoloni C. Exploring Thinopyrum spp. Group 7 Chromosome Introgressions to Improve Durum Wheat Performance under Intense Daytime and Night-Time Heat Stress at Anthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2605. [PMID: 39339580 PMCID: PMC11434826 DOI: 10.3390/plants13182605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Durum wheat (DW) is one of the major crops grown in the Mediterranean area, a climate-vulnerable region where the increase in day/night (d/n) temperature is severely threatening DW yield stability. In order to improve DW heat tolerance, the introgression of chromosomal segments derived from the wild gene pool is a promising strategy. Here, four DW-Thinopyrum spp. near-isogenic recombinant lines (NIRLs) were assessed for their physiological response and productive performance after intense heat stress (IH, 37/27 °C d/n) had been applied for 3 days at anthesis. The NIRLs included two primary types (R5, R112), carriers (+) of a differently sized Th. ponticum 7el1L segment on the DW 7AL arm, and two corresponding secondary types (R69-9/R5, R69-9/R112), possessing a Th. elongatum 7EL segment distally inserted into the 7el1L ones. Their response to the IH stress was compared to that of corresponding non-carrier sib lines (-) and the heat-tolerant cv. Margherita. Overall, the R112+, R69-9/R5+ and R69-9/R112+ NIRLs exhibited a tolerant behaviour towards the applied stress, standing out for the maintenance of leaf relative water content but also for the accumulation of proline and soluble sugars in the flag leaf and the preservation of photosynthetic efficiency. As a result, all the above three NIRLs (R112+ > R69-9/R5+ > R69-9/R112+) displayed good yield stability under the IH, also in comparison with cv. Margherita. R112+ particularly relied on the strength of spike fertility/grain number traits, while R69-9/R5+ benefited from efficient compensation by the grain weight increase. This work largely confirmed and further substantiated the value of exploiting the wild germplasm of Thinopyrum species as a useful source for the improvement of DW tolerance to even extreme abiotic stress conditions, such as the severe heat treatment throughout day- and night-time applied here.
Collapse
Affiliation(s)
| | | | | | | | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (G.G.); (M.L.D.R.); (A.C.); (V.R.)
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (G.G.); (M.L.D.R.); (A.C.); (V.R.)
| |
Collapse
|
3
|
Singh S, Viswanath A, Chakraborty A, Narayanan N, Malipatil R, Jacob J, Mittal S, Satyavathi TC, Thirunavukkarasu N. Identification of key genes and molecular pathways regulating heat stress tolerance in pearl millet to sustain productivity in challenging ecologies. FRONTIERS IN PLANT SCIENCE 2024; 15:1443681. [PMID: 39239194 PMCID: PMC11374647 DOI: 10.3389/fpls.2024.1443681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Pearl millet is a nutri-cereal that is mostly grown in harsh environments, making it an ideal crop to study heat tolerance mechanisms at the molecular level. Despite having a better-inbuilt tolerance to high temperatures than other crops, heat stress negatively affects the crop, posing a threat to productivity gain. Hence, to understand the heat-responsive genes, the leaf and root samples of two contrasting pearl millet inbreds, EGTB 1034 (heat tolerant) and EGTB 1091 (heat sensitive), were subjected to heat-treated conditions and generated genome-wide transcriptomes. We discovered 13,464 differentially expressed genes (DEGs), of which 6932 were down-regulated and 6532 up-regulated in leaf and root tissues. The pairwise analysis of the tissue-based transcriptome data of the two genotypes demonstrated distinctive genotype and tissue-specific expression of genes. The root exhibited a higher number of DEGs compared to the leaf, emphasizing different adaptive strategies of pearl millet. A large number of genes encoding ROS scavenging enzymes, WRKY, NAC, enzymes involved in nutrient uptake, protein kinases, photosynthetic enzymes, and heat shock proteins (HSPs) and several transcription factors (TFs) involved in cross-talking of temperature stress responsive mechanisms were activated in the stress conditions. Ribosomal proteins emerged as pivotal hub genes, highly interactive with key genes expressed and involved in heat stress response. The synthesis of secondary metabolites and metabolic pathways of pearl millet were significantly enriched under heat stress. Comparative synteny analysis of HSPs and TFs in the foxtail millet genome demonstrated greater collinearity with pearl millet compared to proso millet, rice, sorghum, and maize. In this study, 1906 unannotated DEGs were identified, providing insight into novel participants in the molecular response to heat stress. The identified genes hold promise for expediting varietal development for heat tolerance in pearl millet and similar crops, fostering resilience and enhancing grain yield in heat-prone environments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Jinu Jacob
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| |
Collapse
|
4
|
Yu J, Li P, Tu S, Feng N, Chang L, Niu Q. Integrated Analysis of the Transcriptome and Metabolome of Brassica rapa Revealed Regulatory Mechanism under Heat Stress. Int J Mol Sci 2023; 24:13993. [PMID: 37762295 PMCID: PMC10531312 DOI: 10.3390/ijms241813993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Affected by global warming; heat stress is the main limiting factor for crop growth and development. Brassica rapa prefers cool weather, and heat stress has a significant negative impact on its growth, development, and metabolism. Understanding the regulatory patterns of heat-resistant and heat-sensitive varieties under heat stress can help deepen understanding of plant heat tolerance mechanisms. In this study, an integrative analysis of transcriptome and metabolome was performed on the heat-tolerant ('WYM') and heat-sensitive ('AJH') lines of Brassica rapa to reveal the regulatory networks correlated to heat tolerance and to identify key regulatory genes. Heat stress was applied to two Brassica rapa cultivars, and the leaves were analyzed at the transcriptional and metabolic levels. The results suggest that the heat shock protein (HSP) family, plant hormone transduction, chlorophyll degradation, photosynthetic pathway, and reactive oxygen species (ROS) metabolism play an outstanding role in the adaptation mechanism of plant heat tolerance. Our discovery lays the foundation for future breeding of horticultural crops for heat resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (P.L.); (S.T.); (N.F.) (L.C.)
| |
Collapse
|
5
|
Li J, Li Z, Li X, Tang X, Liu H, Li J, Song Y. Effects of Spraying KH 2PO 4 on Flag Leaf Physiological Characteristics and Grain Yield and Quality under Heat Stress during the Filling Period in Winter Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091801. [PMID: 37176859 PMCID: PMC10181080 DOI: 10.3390/plants12091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
As one of the most important wheat-producing areas in China, wheat is prone to heat stress during the grain filling period in the Huang-Huai-Hai Plain (3HP), which lowers yields and degrades the grain quality of wheat. To assess the effects of spraying potassium dihydrogen phosphate (KH2PO4) on the physiological traits in flag leaves and grain yield (GY) and quality under heat stress during the filling period, we conducted a two-year field experiment in the winter wheat growing seasons of 2020-2022. In this study, spraying water combined with heat stress (HT), 0.3% KH2PO4 (KDP), and 0.3% KH2PO4 combined with heat stress (PHT) were designed, and spraying water alone was used as a control (CK). The dates for the spraying were the third and eleventh day after anthesis, and a plastic film shed was used to impose heat stress on the wheat plants during the grain filling period. The results showed that spraying KH2PO4 significantly improved the chlorophyll content and net photosynthesis rate (Pn) in flag leaves compared with the non-sprayed treatments. Compared with CK, the Pn in HT decreased by 8.97% after heat stress, while Pn in PHT decreased by 7.44% compared to that of KDP. The activities of superoxide dismutase, catalase, and peroxidase in flag leaves were significantly reduced when the wheat was subjected to heat stress, while malonaldehyde content increased, and the enzyme activities were significantly enhanced when KH2PO4 was sprayed. Heat stress significantly decreased the contribution rate of dry matter accumulation (DM) after anthesis of wheat to grain (CRAA), whereas spraying KH2PO4 significantly increased the CRAA and harvest index. At maturity, the DM in CK was significantly higher than that in HT, KDP was significantly higher than PHT, and KDP had the highest DM. Compared with CK, the GY in KDP significantly increased by 9.85% over the two years, while the GY in HT decreased by 11.44% compared with that of CK, and the GY in PHT decreased by 6.31% compared to that of KDP. Spraying KH2PO4 after anthesis primarily helped GY by maintaining a high thousand grain weight to lessen the negative effects of heat stress on wheat. Moreover, heat stress significantly reduced protein concentration, wet gluten content, dough development time, and hardness index in grains of mature, while spraying KH2PO4 maintained a sufficient grain quality under the conditions of achieving higher yields. Overall, spraying KH2PO4 after anthesis could enhance the heat stress resistance of wheat and maintain the photosynthetic capacity of flag leaves, ensuring the dry matter production and reducing the negative effects on grain yield and quality in the 3HP.
Collapse
Affiliation(s)
- Jinpeng Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwei Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xinyue Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xiuqiao Tang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Huilian Liu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jincai Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Teng Z, Chen Y, Meng S, Duan M, Zhang J, Ye N. Environmental Stimuli: A Major Challenge during Grain Filling in Cereals. Int J Mol Sci 2023; 24:2255. [PMID: 36768575 PMCID: PMC9917212 DOI: 10.3390/ijms24032255] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Light, temperature, water, and fertilizer are arguably the most important environmental factors regulating crop growth and productivity. Environmental stimuli, including low light, extreme temperatures, and water stresses caused by climate change, affect crop growth and production and pose a growing threat to sustainable agriculture. Furthermore, soil salinity is another major environmental constraint affecting crop growth and threatening global food security. The grain filling stage is the final stage of growth and is also the most important stage in cereals, directly determining the grain weight and final yield. However, the grain filling process is extremely vulnerable to different environmental stimuli, especially for inferior spikelets. Given the importance of grain filling in cereals and the deterioration of environmental problems, understanding environmental stimuli and their effects on grain filling constitutes a major focus of crop research. In recent years, significant advances made in this field have led to a good description of the intricate mechanisms by which different environmental stimuli regulate grain filling, as well as approaches to adapt cereals to changing climate conditions and to give them better grain filling. In this review, the current environmental stimuli, their dose-response effect on grain filling, and the physiological and molecular mechanisms involved are discussed. Furthermore, what we can do to help cereal crops adapt to environmental stimuli is elaborated. Overall, we call for future research to delve deeper into the gene function-related research and the commercialization of gene-edited crops. Meanwhile, smart agriculture is the development trend of the future agriculture under environmental stimuli.
Collapse
Affiliation(s)
- Zhenning Teng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yinke Chen
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Shuan Meng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
8
|
Wheat Proteomics for Abiotic Stress Tolerance and Root System Architecture: Current Status and Future Prospects. Proteomes 2022; 10:proteomes10020017. [PMID: 35645375 PMCID: PMC9150004 DOI: 10.3390/proteomes10020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Wheat is an important staple cereal for global food security. However, climate change is hampering wheat production due to abiotic stresses, such as heat, salinity, and drought. Besides shoot architectural traits, improving root system architecture (RSA) traits have the potential to improve yields under normal and stressed environments. RSA growth and development and other stress responses involve the expression of proteins encoded by the trait controlling gene/genes. Hence, mining the key proteins associated with abiotic stress responses and RSA is important for improving sustainable yields in wheat. Proteomic studies in wheat started in the early 21st century using the two-dimensional (2-DE) gel technique and have extensively improved over time with advancements in mass spectrometry. The availability of the wheat reference genome has allowed the exploration of proteomics to identify differentially expressed or abundant proteins (DEPs or DAPs) for abiotic stress tolerance and RSA improvement. Proteomics contributed significantly to identifying key proteins imparting abiotic stress tolerance, primarily related to photosynthesis, protein synthesis, carbon metabolism, redox homeostasis, defense response, energy metabolism and signal transduction. However, the use of proteomics to improve RSA traits in wheat is in its infancy. Proteins related to cell wall biogenesis, carbohydrate metabolism, brassinosteroid biosynthesis, and transportation are involved in the growth and development of several RSA traits. This review covers advances in quantification techniques of proteomics, progress in identifying DEPs and/or DAPs for heat, salinity, and drought stresses, and RSA traits, and the limitations and future directions for harnessing proteomics in wheat improvement.
Collapse
|
9
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|
10
|
Zhou R, Jiang F, Niu L, Song X, Yu L, Yang Y, Wu Z. Increase Crop Resilience to Heat Stress Using Omic Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:891861. [PMID: 35656008 PMCID: PMC9152541 DOI: 10.3389/fpls.2022.891861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Varieties of various crops with high resilience are urgently needed to feed the increased population in climate change conditions. Human activities and climate change have led to frequent and strong weather fluctuation, which cause various abiotic stresses to crops. The understanding of crops' responses to abiotic stresses in different aspects including genes, RNAs, proteins, metabolites, and phenotypes can facilitate crop breeding. Using multi-omics methods, mainly genomics, transcriptomics, proteomics, metabolomics, and phenomics, to study crops' responses to abiotic stresses will generate a better, deeper, and more comprehensive understanding. More importantly, multi-omics can provide multiple layers of information on biological data to understand plant biology, which will open windows for new opportunities to improve crop resilience and tolerance. However, the opportunities and challenges coexist. Interpretation of the multidimensional data from multi-omics and translation of the data into biological meaningful context remained a challenge. More reasonable experimental designs starting from sowing seed, cultivating the plant, and collecting and extracting samples were necessary for a multi-omics study as the first step. The normalization, transformation, and scaling of single-omics data should consider the integration of multi-omics. This review reports the current study of crops at abiotic stresses in particular heat stress using omics, which will help to accelerate crop improvement to better tolerate and adapt to climate change.
Collapse
Affiliation(s)
- Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lifei Niu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Lu Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuwen Yang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Li M, Feng J, Zhou H, Najeeb U, Li J, Song Y, Zhu Y. Overcoming Reproductive Compromise Under Heat Stress in Wheat: Physiological and Genetic Regulation, and Breeding Strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:881813. [PMID: 35646015 PMCID: PMC9137415 DOI: 10.3389/fpls.2022.881813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 05/27/2023]
Abstract
The reproductive compromise under heat stress is a major obstacle to achieve high grain yield and quality in wheat worldwide. Securing reproductive success is the key solution to sustain wheat productivity by understanding the physiological mechanism and molecular basis in conferring heat tolerance and utilizing the candidate gene resources for breeding. In this study, we examined the performance on both carbon supply source (as leaf photosynthetic rate) and carbon sink intake (as grain yields and quality) in wheat under heat stress varying with timing, duration, and intensity, and we further surveyed physiological processes from source to sink and the associated genetic basis in regulating reproductive thermotolerance; in addition, we summarized the quantitative trait loci (QTLs) and genes identified for heat stress tolerance associated with reproductive stages. Discovery of novel genes for thermotolerance is made more efficient via the combination of transcriptomics, proteomics, metabolomics, and phenomics. Gene editing of specific genes for novel varieties governing heat tolerance is also discussed.
Collapse
Affiliation(s)
- Min Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jiming Feng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Han Zhou
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Ullah Najeeb
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Jincai Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Youhong Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yulei Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Fei L, Chu J, Zhang X, Dong S, Dai X, He M. Physiological and Proteomic Analyses Indicate Delayed Sowing Improves Photosynthetic Capacity in Wheat Flag Leaves Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:848464. [PMID: 35401629 PMCID: PMC8988879 DOI: 10.3389/fpls.2022.848464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Climate warming has become an indisputable fact, and wheat is among the most heat-sensitive cereal crops. Heat stress during grain filling threatens global wheat production and food security. Here, we analyzed the physiological and proteomic changes by delayed sowing on the photosynthetic capacity of winter wheat leaves under heat stress. Our aim is to provide a new cultivation way for the heat stress resistance in wheat. METHODS Through 2 years field experiment and an open warming simulation system, we compared the changes in wheat grain weight, yield, photosynthetic rate, and chlorophyll fluorescence parameters under heat stress at late grain-filling stage during normal sowing and delayed sowing. At the same time, based on the iTRAQ proteomics, we compared the changes of differentially expressed proteins (DEPs) during the two sowing periods under high temperature stress. KEY RESULTS In our study, compared with normal sowing, delayed sowing resulted in a significantly higher photosynthetic rate during the grain-filling stage under heat stress, as well as significantly increased grain weight and yield at maturity. The chlorophyll a fluorescence transient (OJIP) analysis showed that delayed sowing significantly reduced the J-step and I-step. Moreover, OJIP parameters, including RC/CSm, TRo/CSm, ETo/CSm, DIo/CSm and ΦPo, ψo, ΦEo, were significantly increased; DIo/CSm and ΦDo, were significantly reduced. GO biological process and KEGG pathway enrichment analyses showed that, among DEPs, proteins involved in photosynthetic electron transport were significantly increased and among photosynthetic metabolic pathways, we have observed upregulated proteins, such as PsbH, PsbR, and PetB. CONCLUSION Physiological and proteomic analyses indicate delaying the sowing date of winter wheat reduced heat dissipation by enhancing the scavenging capacity of reactive oxygen species (ROS) in flag leaves, and ensuring energy transmission along the photosynthetic electron transport chain; this increased the distribution ratio of available energy in photochemical reactions and maintained a high photosynthetic system assimilation capacity, which supported a high photosynthetic rate. Hence, delayed sowing may represent a new cultivation strategy for promoting heat stress tolerance in winter wheat.
Collapse
Affiliation(s)
- Liwei Fei
- National Key Laboratory of Crop Biology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Agronomy College, Shandong Agricultural University, Taian, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinpeng Chu
- National Key Laboratory of Crop Biology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Agronomy College, Shandong Agricultural University, Taian, China
| | - Xiu Zhang
- National Key Laboratory of Crop Biology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Agronomy College, Shandong Agricultural University, Taian, China
| | - Shuxin Dong
- National Key Laboratory of Crop Biology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Agronomy College, Shandong Agricultural University, Taian, China
| | - Xinglong Dai
- National Key Laboratory of Crop Biology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Agronomy College, Shandong Agricultural University, Taian, China
| | - Mingrong He
- National Key Laboratory of Crop Biology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Agronomy College, Shandong Agricultural University, Taian, China
| |
Collapse
|
13
|
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M, Gupta S, Jatwa TK, Kumar R, Yadav AK, Prasad PVV. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci 2022; 23:2838. [PMID: 35269980 PMCID: PMC8911405 DOI: 10.3390/ijms23052838] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Collapse
Affiliation(s)
- Malu Ram Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia;
| | - Jogendra Singh
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla 171001, India;
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
| | - Pushpika Udawat
- Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur 313001, India;
| | - Narendra Kumar Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Nitin Kumar Garg
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Chirag Maheshwari
- Division of Biochemistry, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Muzaffar Hasan
- Division of Agro Produce Processing, Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sunita Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Tarun Kumar Jatwa
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Rakesh Kumar
- Division of Agronomy, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal 132001, India;
| | - Arvind Kumar Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
14
|
Saini N, Nikalje GC, Zargar SM, Suprasanna P. Molecular insights into sensing, regulation and improving of heat tolerance in plants. PLANT CELL REPORTS 2022; 41:799-813. [PMID: 34676458 DOI: 10.1007/s00299-021-02793-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Climate-change-mediated increase in temperature extremes has become a threat to plant productivity. Heat stress-induced changes in growth pattern, sensitivity to pests, plant phonologies, flowering, shrinkage of maturity period, grain filling, and increased senescence result in significant yield losses. Heat stress triggers multitude of cellular, physiological and molecular responses in plants beginning from the early sensing followed by signal transduction, osmolyte synthesis, antioxidant defense, and heat stress-associated gene expression. Several genes and metabolites involved in heat perception and in the adaptation response have been isolated and characterized in plants. Heat stress responses are also regulated by the heat stress transcription factors (HSFs), miRNAs and transcriptional factors which together form another layer of regulatory circuit. With the availability of functionally validated candidate genes, transgenic approaches have been applied for developing heat-tolerant transgenic maize, tobacco and sweet potato. In this review, we present an account of molecular mechanisms of heat tolerance and discuss the current developments in genetic manipulation for heat tolerant crops for future sustainable agriculture.
Collapse
Affiliation(s)
- Nupur Saini
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vidyalaya, Raipur, 492012, India
| | - Ganesh Chandrakant Nikalje
- PG Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Ulhasnagar, 421003, India.
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190019, India
| | - Penna Suprasanna
- Ex-Scientist, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, 400085, India.
| |
Collapse
|
15
|
Lal MK, Tiwari RK, Gahlaut V, Mangal V, Kumar A, Singh MP, Paul V, Kumar S, Singh B, Zinta G. Physiological and molecular insights on wheat responses to heat stress. PLANT CELL REPORTS 2022; 41:501-518. [PMID: 34542670 DOI: 10.1007/s00299-021-02784-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Increasing temperature is a key component of global climate change, affecting crop growth and productivity worldwide. Wheat is a major cereal crop grown in various parts of the globe, which is affected severely by heat stress. The morphological parameters affected include germination, seedling establishment, source-sink activity, leaf area, shoot and root growth. The physiological parameters such as photosynthesis, respiration, leaf senescence, water and nutrient relation are also affected by heat. At the cellular level, heat stress leads to the generation of reactive oxygen species that disrupt the membrane system of thylakoid, chloroplast and plasma membrane. The deactivation of the photosystem, reduction in photosynthesis and inactivation of rubisco affect the production of photoassimilates and their allocation. This ultimately affects anthesis, grain filling, size, number and maturity of wheat grains, which hamper crop productivity. The interplay of various systems comprising antioxidants and hormones plays a crucial role in imparting heat stress tolerance in wheat. Thus, implementation of various omics technologies could foster in-depth insights on heat stress effects, eventually devising heat stress mitigation strategies by conventional and modern breeding to develop heat-tolerant wheat varieties. This review provides an integrative view of heat stress responses in wheat and also discusses approaches to develop heat-tolerant wheat varieties.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Gahlaut
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Gaurav Zinta
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
16
|
Li C, Ma M, Zhang T, Feng P, Chen X, Liu Y, Brestic M, Galal TM, Al-Yasi HM, Yang X. Comparison of photosynthetic activity and heat tolerance between near isogenic lines of wheat with different photosynthetic rates. PLoS One 2021; 16:e0255896. [PMID: 34898627 PMCID: PMC8668138 DOI: 10.1371/journal.pone.0255896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in the world, but the yield and quality of wheat are highly susceptible to heat stress, especially during the grain-filling stage. Therefore, it is crucial to select high-yield and high-temperature-resistant varieties for food cultivation. There is a positive correlation between the yield and photosynthetic rate of wheat during the entire grain-filling stage, but few studies have shown that lines with high photosynthetic rates can maintain higher thermotolerance at the same time. In this study, two pairs of wheat near isogenic lines (NILs) with different photosynthetic rates were used for all experiments. Our results indicated that under heat stress, lines with a high photosynthetic rate could maintain the activities of photosystem II (PSII) and key Calvin cycle enzymes in addition to their higher photosynthetic rates. The protein levels of D1 and HSP70 were significantly increased in the highly photosynthetic lines, which contributed to maintaining high photosynthetic rates and ensuring the stability of the Calvin cycle under heat stress. Furthermore, we found that lines with a high photosynthetic rate could maintain high antioxidant enzyme activity to scavenge reactive oxygen species (ROS) and reduce ROS accumulation better than lines with a low photosynthetic rate under high-temperature stress. These findings suggest that lines with high photosynthetic rates can maintain a higher photosynthetic rate despite heat stress and are more thermotolerant than lines with low photosynthetic rates.
Collapse
Affiliation(s)
- Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Mingyang Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Pengwen Feng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xiao Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Tarek M. Galal
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hatim M. Al-Yasi
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- * E-mail: ,
| |
Collapse
|
17
|
Makonya GM, Ogola JBO, Gabier H, Rafudeen MS, Muasya AM, Crespo O, Maseko S, Valentine AJ, Ottosen CO, Rosenqvist E, Chimphango SBM. Proteome changes and associated physiological roles in chickpea (Cicer arietinum) tolerance to heat stress under field conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:13-24. [PMID: 34794539 DOI: 10.1071/fp21148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Interrogative proteome analyses are used to identify and quantify the expression of proteins involved in heat tolerance and to identify associated physiological processes in heat-stressed plants. The objectives of the study were to identify and quantify the expression of proteins involved in heat tolerance and to identify associated physiological processes in chickpea (Cicer arietinum L.) heat-tolerant (Acc#7) and sensitive genotype (Acc#8) from a field study. Proteomic and gene ontological analyses showed an upregulation in proteins related to protein synthesis, intracellular traffic, defence and transport in the heat-tolerant genotype compared to the susceptible one at the warmer site. Results from KEGG analyses indicate the involvement of probable sucrose-phosphate synthase (EC 2.4.1.14) and sucrose-phosphate phosphatase (EC 3.1.3.24) proteins, that were upregulated in the heat-tolerant genotype at the warmer site, in the starch and sucrose pathway. The presence of these differentially regulated proteins including HSP70, ribulose bisphosphate carboxylase/oxygenase activase, plastocyanin and protoporphyrinogen oxidase suggests their potential role in heat tolerance, at flowering growth stage, in field-grown chickpea. This observation supports unaltered physiological and biochemical performance of the heat-tolerant genotypes (Acc#7) relative to the susceptible genotype (Acc#8) in related studies (Makonya et al. 2019). Characterisation of the candidate proteins identified in the current study as well as their specific roles in the tolerance to heat stress in chickpea are integral to further crop improvement initiatives.
Collapse
Affiliation(s)
- Givemore M Makonya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - John B O Ogola
- Department of Plant Production, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Hawwa Gabier
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Mohammed S Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Olivier Crespo
- Climate System Analysis Group, Environmental and Geographical Science Department, University of Cape Town, Rondebosch, Private Bag X3, Cape Town 7701, South Africa
| | - Sipho Maseko
- Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Alex J Valentine
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, Section for Crop Science, University of Copenhagen, Hoejbakkegaard Allé 9, 2630 Taastrup, Denmark
| | - Samson B M Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| |
Collapse
|
18
|
Wen Z, Wang Y, Xia C, Zhang Y, Zhang H. Chloroplastic SaNADP-ME4 of C 3-C 4 Woody Desert Species Salsola laricifolia Confers Drought and Salt Stress Resistance to Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1827. [PMID: 34579361 PMCID: PMC8471237 DOI: 10.3390/plants10091827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
The NADP-malic enzyme (NADP-ME) catalyzes the reversible decarboxylation of L-malate to produce pyruvate, CO2, and NADPH in the presence of a bivalent cation. In addition, this enzyme plays crucial roles in plant developmental and environment responses, especially for the plastidic isoform. However, this isoform is less studied in C3-C4 intermediate species under drought and salt stresses than in C3 and C4 species. In the present study, we characterized SaNADP-ME4 from the intermediate woody desert species Salsola laricifolia. SaNADP-ME4 encoded a protein of 646 amino acids, which was found to be located in the chloroplasts based on confocal imaging. Quantitative real-time PCR analysis showed that SaNADP-ME4 was highly expressed in leaves, followed by stems and roots, and SaNADP-ME4 expression was improved and reached its maximum under the 200 mm mannitol and 100 mm NaCl treatments, respectively. Arabidopsis overexpressing SaNADP-ME4 showed increased root length and fresh weight under mannitol and salt stress conditions at the seedling stage. In the adult stage, SaNADP-ME4 could alleviate the decreased in chlorophyll contents and PSII photochemical efficiency, as well as improve the expression of superoxide dismutase, peroxidase, and pyrroline-5-carboxylate synthase genes to enhance reactive oxygen species scavenging capability and proline levels. Our results suggest that SaNADP-ME4 overexpression in Arabidopsis increases drought and salt stress resistance.
Collapse
Affiliation(s)
- Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlan Xia
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxiang Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zhu T, De Lima CFF, De Smet I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab308. [PMID: 34185832 DOI: 10.1093/jxb/erab308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants are exposed to a wide range of temperatures during their life cycle and need to continuously adapt. These adaptations need to deal with temperature changes on a daily and seasonal level and with temperatures affected by climate change. Increasing global temperatures negatively impact crop performance, and several physiological, biochemical, morphological and developmental responses to increased temperature have been described that allow plants to mitigate this. In this review, we assess various growth, development, and yield-related responses of crops to extreme and moderate high temperature, focusing on knowledge gained from both monocot (e.g. wheat, barley, maize, rice) and dicot crops (e.g. soybean and tomato) and incorporating information from model plants (e.g. Arabidopsis and Brachypodium). This revealed common and different responses between dicot and monocot crops, and defined different temperature thresholds depending on the species, growth stage and organ.
Collapse
Affiliation(s)
- Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
20
|
Shenoda JE, Sanad MNME, Rizkalla AA, El-Assal S, Ali RT, Hussein MH. Effect of long-term heat stress on grain yield, pollen grain viability and germinability in bread wheat ( Triticum aestivum L.) under field conditions. Heliyon 2021; 7:e07096. [PMID: 34141912 PMCID: PMC8187965 DOI: 10.1016/j.heliyon.2021.e07096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023] Open
Abstract
Frequent episodes of heat threaten sustainable agriculture in Egypt. This study is an urgent call to select tolerant genotypes of heat and discover the predicted screening phenotypic parameters. Here, twenty spring wheat genotypes were exposed to heat stress under field conditions for screening heat tolerance. Stress environments were simulated by delaying the sowing date by 53 and 58 days than the normal environments for two successive seasons. Stressed plants received the highest peak of heat during the reproductive growth stage. Eight phenotypic parameters were measured to evaluate genotype tolerance. Mean performance, reduction percentage/trait, and heat susceptibility index parameters were calculated. Additionally, the pollen grain viability during spike emergence and the germinability of producing grains were investigated. Results demonstrated: (1) Highly significant differences (P < 0.01) between genotypes, treatments and genotypes by treatments in grain yield and other traits in both studied seasons, (2) significant reduction in all studied traits compared to the non-stress environment, (3) the overall yield reduction, based on grain yield/m2, was 40.17, 41.19 % in the first and second seasons, respectively, and the most tolerant genotypes were Masr2, Sids1, Giza 171 and Line 9, (4) limited impact of heat has detected on pollen grains viability and germinability, and (5) grain yield as a selection criterion for heat stress remains the most reliable yardstick.
Collapse
Affiliation(s)
- J E Shenoda
- Genetic Engineering and Biotechnology Research Division, Genetics and Cytology Department, National Research Center (NRC), Egypt
| | - Marwa N M E Sanad
- Genetic Engineering and Biotechnology Research Division, Genetics and Cytology Department, National Research Center (NRC), Egypt
| | - Aida A Rizkalla
- Genetic Engineering and Biotechnology Research Division, Genetics and Cytology Department, National Research Center (NRC), Egypt
| | - S El-Assal
- Genetics Department, Faculty of Agriculture, Cairo University, Egypt
| | - Rania T Ali
- Genetic Engineering and Biotechnology Research Division, Genetics and Cytology Department, National Research Center (NRC), Egypt
| | - Mona H Hussein
- Genetics Department, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
21
|
Chunduri V, Kaur A, Kaur S, Kumar A, Sharma S, Sharma N, Singh P, Kapoor P, Kaur S, Kumari A, Roy J, Kaur J, Garg M. Gene Expression and Proteomics Studies Suggest an Involvement of Multiple Pathways Under Day and Day-Night Combined Heat Stresses During Grain Filling in Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:660446. [PMID: 34135923 PMCID: PMC8200777 DOI: 10.3389/fpls.2021.660446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Recent weather fluctuations imposing heat stress at the time of wheat grain filling cause frequent losses in grain yield and quality. Field-based studies for understanding the effect of terminal heat stress on wheat are complicated by the effect of multiple confounding variables. In the present study, the effect of day and day-night combined heat stresses during the grain-filling stage was studied using gene expression and proteomics approaches. The gene expression analysis was performed by using real-time quantitative PCR (RT-qPCR). The expression of genes related to the starch biosynthetic pathway, starch transporters, transcription factors, and stress-responsive and storage proteins, at four different grain developmental stages, indicated the involvement of multiple pathways. Under the controlled conditions, their expression was observed until 28 days after anthesis (DAA). However, under the day stress and day-night stress, the expression of genes was initiated earlier and was observed until 14 DAA and 7 DAA, respectively. The protein profiles generated using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS/MS) showed a differential expression of the proteins belonging to multiple pathways that included the upregulation of proteins related to the translation, gliadins, and low-molecular-weight (LMW) glutenins and the downregulation of proteins related to the glycolysis, photosynthesis, defense, and high-molecular-weight (HMW) glutenins. Overall, the defense response to the day heat stress caused early gene expression and day-night heat stress caused suppression of gene expression by activating multiple pathways, which ultimately led to the reduction in grain-filling duration, grain weight, yield, and processing quality.
Collapse
Affiliation(s)
- Venkatesh Chunduri
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Amandeep Kaur
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Shubhpreet Kaur
- Department of Immunopathology, Post Graduate Institute of Medical and Education and Research, Chandigarh, India
| | - Aman Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Saloni Sharma
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Natasha Sharma
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Pargat Singh
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Joy Roy
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Jaspreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Monika Garg
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
22
|
Khan A, Ahmad M, Ahmed M, Iftikhar Hussain M. Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. PLANTS 2020; 10:plants10010043. [PMID: 33375473 PMCID: PMC7823633 DOI: 10.3390/plants10010043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Temperature across the globe is increasing continuously at the rate of 0.15–0.17 °C per decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore, thermotolerance strategies are needed to have sustainability in crop yield under higher temperature. However, improving thermotolerance in the crop is a challenging task for crop scientists. Therefore, this review work was conducted with the aim of providing information on the wheat response in three research areas, i.e., physiology, breeding, and advances in genetics, which could assist the researchers in improving thermotolerance. The optimum temperature for wheat growth at the heading, anthesis, and grain filling duration is 16 ± 2.3 °C, 23 ± 1.75 °C, and 26 ± 1.53 °C, respectively. The high temperature adversely influences the crop phenology, growth, and development. The pre-anthesis high temperature retards the pollen viability, seed formation, and embryo development. The post-anthesis high temperature declines the starch granules accumulation, stem reserve carbohydrates, and translocation of photosynthates into grains. A high temperature above 40 °C inhibits the photosynthesis by damaging the photosystem-II, electron transport chain, and photosystem-I. Our review work highlighted that genotypes which can maintain a higher accumulation of proline, glycine betaine, expression of heat shock proteins, stay green and antioxidant enzymes activity viz., catalase, peroxidase, super oxide dismutase, and glutathione reductase can tolerate high temperature efficiently through sustaining cellular physiology. Similarly, the pre-anthesis acclimation with heat treatment, inorganic fertilizer such as nitrogen, potassium nitrate and potassium chloride, mulches with rice husk, early sowing, presoaking of a 6.6 mM solution of thiourea, foliar application of 50 ppm dithiothreitol, 10 mg per kg of silicon at heading and zinc ameliorate the crop against the high temperature. Finally, it has been suggested that modern genomics and omics techniques should be used to develop thermotolerance in wheat.
Collapse
Affiliation(s)
- Adeel Khan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.K.); (M.A.)
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.K.); (M.A.)
| | - Mukhtar Ahmed
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
- Correspondence:
| | - M. Iftikhar Hussain
- Department of Plant Biology & Soil Science, Faculty of Biology, University of Vigo, Campus As Lagoas Marcosende, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
| |
Collapse
|
23
|
Phytotoxicity and Effect of Ionic Liquids on Antioxidant Parameters in Spring Barley Seedlings: The Impact of Exposure Time. Processes (Basel) 2020. [DOI: 10.3390/pr8091175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The influence of the ionic liquids (ILs) tetrabutylammonium bromide [TBA][Br], 1-butyl-3-methylimidazole bromide [BMIM][Br], and tetrabutylphosphonium bromide [TBP][Br] added at different concentrations to the soil were studied for the growth and development of spring barley seedlings. Samples were harvested at three different time points: day 7, 14, and 21 after addition of ILs. The results show that [TBP][Br] was the most toxic. The introduction of this IL at the dose of 100 mg kg−1 of soil DM decreased the growth of seedlings at all test dates. The addition of the studied ILs to the soil in higher doses resulted in an increase in peroxidase and catalase activity, which may indicate the occurrence of oxidative stress in plants. An increase in the content of plant dry matter weight, contents of H2O2 and proline and a decrease in the content of photosynthetic pigments in barley seedlings were also observed. The malondialdehyde content and superoxide dismutase activity fluctuated randomly during the experiment. As a result, it was found that the phytotoxicity of ILs and the magnitude of oxidative stress in seedlings depended more on the added doses of these compounds than on the measurement date.
Collapse
|
24
|
Ding H, Mo S, Qian Y, Yuan G, Wu X, Ge C. Integrated proteome and transcriptome analyses revealed key factors involved in tomato (
Solanum lycopersicum
) under high temperature stress. Food Energy Secur 2020. [DOI: 10.1002/fes3.239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Haidong Ding
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Shuangrong Mo
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Ying Qian
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Guibo Yuan
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Xiaoxia Wu
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Cailin Ge
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| |
Collapse
|
25
|
Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3780-3802. [PMID: 31970395 PMCID: PMC7316970 DOI: 10.1093/jxb/eraa034] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/20/2020] [Indexed: 05/21/2023]
Abstract
To ensure the food security of future generations and to address the challenge of the 'no hunger zone' proposed by the FAO (Food and Agriculture Organization), crop production must be doubled by 2050, but environmental stresses are counteracting this goal. Heat stress in particular is affecting agricultural crops more frequently and more severely. Since the discovery of the physiological, molecular, and genetic bases of heat stress responses, cultivated plants have become the subject of intense research on how they may avoid or tolerate heat stress by either using natural genetic variation or creating new variation with DNA technologies, mutational breeding, or genome editing. This review reports current understanding of the genetic and molecular bases of heat stress in crops together with recent approaches to creating heat-tolerant varieties. Research is close to a breakthrough of global relevance, breeding plants fitter to face the biggest challenge of our time.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola, Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- Lincoln University, Jefferson City, MO, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
- CINSA Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
26
|
Identification of CIMMYT spring bread wheat germplasm maintaining superior grain yield and quality under heat-stress. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Kino RI, Pellny TK, Mitchell RAC, Gonzalez-Uriarte A, Tosi P. High post-anthesis temperature effects on bread wheat (Triticum aestivum L.) grain transcriptome during early grain-filling. BMC PLANT BIOLOGY 2020; 20:170. [PMID: 32299364 PMCID: PMC7164299 DOI: 10.1186/s12870-020-02375-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/31/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND High post-anthesis (p.a) temperatures reduce mature grain weights in wheat and other cereals. However, the causes of this reduction are not entirely known. Control of grain expansion by the maternally derived pericarp of the grain has previously been suggested, although this interaction has not been investigated under high p.a. temperatures. Down-regulation of pericarp localised genes that regulate cell wall expansion under high p.a. temperatures may limit expansion of the encapsulated endosperm due to a loss of plasticity in the pericarp, reducing mature grain weight. Here the effect of high p.a. temperatures on the transcriptome of the pericarp and endosperm of the wheat grain during early grain-filling was investigated via RNA-Seq and is discussed alongside grain moisture dynamics during early grain development and mature grain weight. RESULTS High p.a. temperatures applied from 6-days after anthesis (daa) and until 18daa reduced the grain's ability to accumulate water, with total grain moisture and percentage grain moisture content being significantly reduced from 14daa onwards. Mature grain weight was also significantly reduced by the same high p.a. temperatures applied from 6daa for 4-days or more, in a separate experiment. Comparison of our RNA-Seq data from whole grains, with existing data sets from isolated pericarp and endosperm tissues enabled the identification of subsets of genes whose expression was significantly affected by high p.a. temperature and predominantly expressed in either tissue. Hierarchical clustering and gene ontology analysis resulted in the identification of a number of genes implicated in the regulation of cell wall expansion, predominantly expressed in the pericarp and significantly down-regulated under high p.a. temperatures, including endoglucanase, xyloglucan endotransglycosylases and a β-expansin. An over-representation of genes involved in the 'cuticle development' functional pathway that were expressed in the pericarp and affected by high p.a. temperatures was also observed. CONCLUSIONS High p.a. temperature induced down-regulation of genes involved in regulating pericarp cell wall expansion. This concomitant down-regulation with a reduction in total grain moisture content and grain weight following the same treatment period, adds support to the theory that high p.a. temperatures may cause a reduction in mature grain weight as result of decreased pericarp cell wall expansion.
Collapse
Affiliation(s)
- Richard I. Kino
- School of Agriculture Policy and Development, University of Reading, Whiteknights, PO Box 237, Reading, RG6 6AR UK
| | - Till K. Pellny
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ UK
| | | | - Asier Gonzalez-Uriarte
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ UK
- Current affiliation: European Bioinformatics Institute, Wellcome Genome Campus, Cambridgeshire, CB10 1SD UK
| | - Paola Tosi
- School of Agriculture Policy and Development, University of Reading, Whiteknights, PO Box 237, Reading, RG6 6AR UK
| |
Collapse
|
28
|
Hu Y, Xu W, Hu S, Lian L, Zhu J, Ren A, Shi L, Zhao MW. Glsnf1-mediated metabolic rearrangement participates in coping with heat stress and influencing secondary metabolism in Ganoderma lucidum. Free Radic Biol Med 2020; 147:220-230. [PMID: 31883976 DOI: 10.1016/j.freeradbiomed.2019.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023]
Abstract
The AMP-activated protein kinase (AMPK)/Sucrose-nonfermenting serine-threonine protein kinase 1 (Snf1) plays an important role in metabolic remodelling in response to energy stress. However, the role of AMPK/Snf1 in responding to other environmental stresses and metabolic remodelling in microorganisms was unclear. Heat stress (HS), which is one important environmental factor, could induce the production of reactive oxygen species and the accumulation of ganoderic acids (GAs) in Ganoderma lucidum. Here, the functions of AMPK/Snf1 were analysed under HS condition in G. lucidum. We observed that Glsnf1 was rapidly and strongly activated when G. lucidum was exposed to HS. HS significantly increased intracellular H2O2 levels (by approximately 1.6-fold) and decreased the dry weight of G. lucidum (by approximately 45.6%). The exogenous addition of N-acetyl-l-cysteine (NAC) and ascorbic acid (VC), which function as ROS scavengers, partially inhibited the HS-mediated reduction in biomass. Adding the AMPK/Snf1 inhibitor compound C (20 μM) under HS conditions increased the H2O2 content (by approximately 2.3-fold of that found in the strain without HS treatment and 1.5-fold of that found in the strain under HS treatment without compound C) and decreased the dry weight of G. lucidum (an approximately 28.5% decrease compared with that of the strain under HS conditions without compound C). Similar results were obtained by silencing the Glsnf1 gene. Further study found that Glsnf1 meditated metabolite distribution from respiration to glycolysis, which is considered a protective mechanism against oxidative stress. In addition, Glsnf1 negatively regulated the biosynthesis of GA by removing ROS. In conclusion, our results suggest that Glsnf1-mediated metabolic remodelling is involved in heat stress adaptability and the biosynthesis of secondary metabolites in G. lucidum.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Wenzhao Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Shishan Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China
| | - Ming Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
29
|
Sharma JK, Sihmar M, Santal AR, Singh NP. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update. Biotechnol Genet Eng Rev 2019; 35:126-160. [PMID: 31478455 DOI: 10.1080/02648725.2019.1657682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abiotic stresses adversely affect the plant's growth and development leading to loss of crop plants and plant products in terms of both the quality and quantity. Two main strategies are adopted by plants to acclimatize to stresses; avoidance and tolerance. These adaptive strategies of plants at the cellular and metabolic level enable them to withstand such detrimental conditions. Acclimatization is associated with intensive changes in the proteome of plants and these changes are directly involved in plants response to stress. Proteome studies can be used to screen for these proteins and their involvement in plants response to various abiotic stresses evaluated. In this review, proteomic studies of different plants species under different abiotic stresses, particularly drought, salinity, heat, cold, and waterlogging, are discussed. From different proteomic studies, the stress response can be determined by an interaction between proteomic and physiological changes which occur in plants during such stress conditions. These identified proteins from different processes under different abiotic stress conditions definitely add to our understanding for exploiting them in various biotechnological applications in crop improvement.
Collapse
Affiliation(s)
| | - Monika Sihmar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - N P Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
30
|
Li S, Yu J, Li Y, Zhang H, Bao X, Bian J, Xu C, Wang X, Cai X, Wang Q, Wang P, Guo S, Miao Y, Chen S, Qin Z, Dai S. Heat-Responsive Proteomics of a Heat-Sensitive Spinach Variety. Int J Mol Sci 2019; 20:ijms20163872. [PMID: 31398909 PMCID: PMC6720816 DOI: 10.3390/ijms20163872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 01/20/2023] Open
Abstract
High temperatures seriously limit plant growth and productivity. Investigating heat-responsive molecular mechanisms is important for breeding heat-tolerant crops. In this study, heat-responsive mechanisms in leaves from a heat-sensitive spinach (Spinacia oleracea L.) variety Sp73 were investigated using two-dimensional gel electrophoresis (2DE)-based and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomics approaches. In total, 257 heat-responsive proteins were identified in the spinach leaves. The abundance patterns of these proteins indicated that the photosynthesis process was inhibited, reactive oxygen species (ROS) scavenging pathways were initiated, and protein synthesis and turnover, carbohydrate and amino acid metabolism were promoted in the spinach Sp73 in response to high temperature. By comparing this with our previous results in the heat-tolerant spinach variety Sp75, we found that heat inhibited photosynthesis, as well as heat-enhanced ROS scavenging, stress defense pathways, carbohydrate and energy metabolism, and protein folding and turnover constituting a conservative strategy for spinach in response to heat stress. However, the heat-decreased biosynthesis of chlorophyll and carotenoid as well as soluble sugar content in the variety Sp73 was quite different from that in the variety Sp75, leading to a lower capability for photosynthetic adaptation and osmotic homeostasis in Sp73 under heat stress. Moreover, the heat-reduced activities of SOD and other heat-activated antioxidant enzymes in the heat-sensitive variety Sp73 were also different from the heat-tolerant variety Sp75, implying that the ROS scavenging strategy is critical for heat tolerance.
Collapse
Affiliation(s)
- Shanshan Li
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Juanjuan Yu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ying Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuesong Bao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China
| | - Jiayi Bian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chenxi Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoli Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaofeng Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Quanhua Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475004, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475004, China
| | - Sixue Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
31
|
Contreras-Moreira B, Serrano-Notivoli R, Mohammed NE, Cantalapiedra CP, Beguería S, Casas AM, Igartua E. Genetic association with high-resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. Mol Ecol 2019; 28:1994-2012. [PMID: 30614595 PMCID: PMC6563438 DOI: 10.1111/mec.15009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
Landraces are local populations of crop plants adapted to a particular environment. Extant landraces are surviving genetic archives, keeping signatures of the selection processes experienced by them until settling in their current niches. This study intends to establish relationships between genetic diversity of barley (Hordeum vulgare L.) landraces collected in Spain and the climate of their collection sites. A high-resolution climatic data set (5 × 5 km spatial, 1-day temporal grid) was computed from over 2,000 temperature and 7,000 precipitation stations across peninsular Spain. This data set, spanning the period 1981-2010, was used to derive agroclimatic variables meaningful for cereal production at the collection sites of 135 barley landraces. Variables summarize temperature, precipitation, evapotranspiration, potential vernalization and frost probability at different times of the year and time scales (season and month). SNP genotyping of the landraces was carried out combining Illumina Infinium assays and genotyping-by-sequencing, yielding 9,920 biallelic markers (7,479 with position on the barley reference genome). The association of these SNPs with agroclimatic variables was analysed at two levels of genetic diversity, with and without taking into account population structure. The whole data sets and analysis pipelines are documented and available at https://eead-csic-compbio.github.io/barley-agroclimatic-association. We found differential adaptation of the germplasm groups identified to be dominated by reactions to cold temperature and late-season frost occurrence, as well as to water availability. Several significant associations pointing at specific adaptations to agroclimatic features related to temperature and water availability were observed, and candidate genes underlying some of the main regions are proposed.
Collapse
Affiliation(s)
- Bruno Contreras-Moreira
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain.,Fundación ARAID, Zaragoza, Spain
| | | | - Naheif E Mohammed
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain.,Faculty of Agriculture, Agronomy Department, Sohag University, Sohag, Egypt
| | | | | | - Ana M Casas
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
| | - Ernesto Igartua
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
32
|
Graziano S, Marando S, Prandi B, Boukid F, Marmiroli N, Francia E, Pecchioni N, Sforza S, Visioli G, Gullì M. Technological Quality and Nutritional Value of Two Durum Wheat Varieties Depend on Both Genetic and Environmental Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2384-2395. [PMID: 30742427 DOI: 10.1021/acs.jafc.8b06621] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Durum wheat ( Triticum turgidum L. subsp. durum (Desf.) Husn) is a major food source in Mediterranean countries since it is utilized for the production of pasta, leavened and unleavened breads, couscous, and other traditional foods. The technological and nutritional properties of durum wheat semolina depend mainly on the type of gluten proteins and on their amount, which is a genotype- and environment-dependent trait. Gluten proteins are also responsible for celiac disease (CD), an autoimmune enteropathy with a prevalence of about 0.7-2% in the human population. At this purpose, two Italian durum wheat cultivars, Saragolla and Cappelli, currently used for monovarietal pasta, were chosen to compare (i) the reserve and embryo proteome, (ii) the free and bound phenolics, antioxidant activity, and amino acid composition, and (iii) the content of immunogenic peptides produced after a simulated gastrointestinal digestion. The results obtained from 2 years of field cultivation on average showed a higher amount of gluten proteins, amino acids, and immunogenic peptides in Cappelli. Saragolla showed a higher abundance in bound phenolics, antioxidant enzymes, and stress response proteins in line with its higher antioxidant activity. However, the impact of the year of cultivation, largely depending on varying rainfall regimes through the wheat growth cycle, was significant for most of the parameters investigated. Differences in technological and nutritional characteristics observed between the two cultivars are discussed in relation to the influence of genetic and environmental factors.
Collapse
Affiliation(s)
- Sara Graziano
- Interdepartmental Center SITEIA.PARMA , University of Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Silvia Marando
- Interdepartmental Center SITEIA.PARMA , University of Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Barbara Prandi
- Department of Food and Drug , University of Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Fatma Boukid
- Interdepartmental Center SITEIA.PARMA , University of Parma , Parco Area delle Scienze , 43124 Parma , Italy
- Department of Food and Drug , University of Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA , University of Modena and Reggio Emilia , Piazzale Europa 1 , 42124 Reggio Emilia , Italy
| | - Nicola Pecchioni
- CREA, Council for Agricultural Research and Economics (CREA-CI) , S.S. 673 km 25,200 , I-71122 Foggia , Italy
| | - Stefano Sforza
- Interdepartmental Center SITEIA.PARMA , University of Parma , Parco Area delle Scienze , 43124 Parma , Italy
- Department of Food and Drug , University of Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA , University of Parma , Parco Area delle Scienze , 43124 Parma , Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| |
Collapse
|
33
|
Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PVV, Nayyar H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2018; 9:1705. [PMID: 30542357 PMCID: PMC6277783 DOI: 10.3389/fpls.2018.01705] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/02/2018] [Indexed: 05/17/2023]
Abstract
Drought (water deficits) and heat (high temperatures) stress are the prime abiotic constraints, under the current and climate change scenario in future. Any further increase in the occurrence, and extremity of these stresses, either individually or in combination, would severely reduce the crop productivity and food security, globally. Although, they obstruct productivity at all crop growth stages, the extent of damage at reproductive phase of crop growth, mainly the seed filling phase, is critical and causes considerable yield losses. Drought and heat stress substantially affect the seed yields by reducing seed size and number, eventually affecting the commercial trait '100 seed weight' and seed quality. Seed filling is influenced by various metabolic processes occurring in the leaves, especially production and translocation of photoassimilates, importing precursors for biosynthesis of seed reserves, minerals and other functional constituents. These processes are highly sensitive to drought and heat, due to involvement of array of diverse enzymes and transporters, located in the leaves and seeds. We highlight here the findings in various food crops showing how their seed composition is drastically impacted at various cellular levels due to drought and heat stresses, applied separately, or in combination. The combined stresses are extremely detrimental for seed yield and its quality, and thus need more attention. Understanding the precise target sites regulating seed filling events in leaves and seeds, and how they are affected by abiotic stresses, is imperative to enhance the seed quality. It is vital to know the physiological, biochemical and genetic mechanisms, which govern the various seed filling events under stress environments, to devise strategies to improve stress tolerance. Converging modern advances in physiology, biochemistry and biotechnology, especially the "omics" technologies might provide a strong impetus to research on this aspect. Such application, along with effective agronomic management system would pave the way in developing crop genotypes/varieties with improved productivity under drought and/or heat stresses.
Collapse
Affiliation(s)
| | - Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sailaja Bhogireddy
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | | | - P. V. Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
34
|
Waqas M, Feng S, Amjad H, Letuma P, Zhan W, Li Z, Fang C, Arafat Y, Khan MU, Tayyab M, Lin W. Protein Phosphatase ( PP2C9) Induces Protein Expression Differentially to Mediate Nitrogen Utilization Efficiency in Rice under Nitrogen-Deficient Condition. Int J Mol Sci 2018; 19:E2827. [PMID: 30235789 PMCID: PMC6163212 DOI: 10.3390/ijms19092827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
Nitrogen (N) is an essential element usually limiting in plant growth and a basic factor for increasing the input cost in agriculture. To ensure the food security and environmental sustainability it is urgently required to manage the N fertilizer. The identification or development of genotypes with high nitrogen utilization efficiency (NUE) which can grow efficiently and sustain yield in low N conditions is a possible solution. In this study, two isogenic rice genotypes i.e., wild-type rice kitaake and its transgenic line PP2C9TL overexpressed protein phosphatase gene (PP2C9) were used for comparative proteomics analysis at control and low level of N to identify specific proteins and encoding genes related to high NUE. 2D gel electrophoresis was used to perform the differential proteome analysis. In the leaf proteome, 30 protein spots were differentially expressed between the two isogenic lines under low N level which were involved in the process of energy, photosynthesis, N metabolism, signaling, and defense mechanisms. In addition, we have found that protein phosphatase enhances nitrate reductase activation by downregulation of SnRK1 and 14-3-3 proteins. Furthermore, we showed that PP2C9TL exhibits higher NUE than WT due to higher activity of nitrate reductase. This study provides new insights on the rice proteome which would be useful in the development of new strategies to increase NUE in cereal crops.
Collapse
Affiliation(s)
- Muhammad Waqas
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shizhong Feng
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Hira Amjad
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Puleng Letuma
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Wenshan Zhan
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Zhong Li
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Changxun Fang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Yasir Arafat
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Muhammad Umar Khan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Muhammad Tayyab
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenxiong Lin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| |
Collapse
|
35
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
36
|
Wang R, Mei Y, Xu L, Zhu X, Wang Y, Guo J, Liu L. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot. PLANTA 2018; 247:1109-1122. [PMID: 29368016 DOI: 10.1007/s00425-018-2846-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/09/2018] [Indexed: 05/21/2023]
Abstract
Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.
Collapse
Affiliation(s)
- Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Yi Mei
- Yancheng Academy of Agricultural Sciences, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jun Guo
- Yancheng Academy of Agricultural Sciences, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
37
|
Salehi H, Chehregani A, Lucini L, Majd A, Gholami M. Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1540-1551. [PMID: 29066204 DOI: 10.1016/j.scitotenv.2017.10.159] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 05/24/2023]
Abstract
Chemically synthesized nanoparticles (NPs) are widely used in industry and concern over their impact on the environment is rising. In this study, greenhouse grown bean (Phaseolus vulgaris L.) plants were treated with CeO2 NPs suspensions at 0, 250, 500, 1000, and 2000mgL-1 either aerially by spraying or via soil application. At 15days after treatment, plants were analyzed for Ce uptake, morphological and biochemical assays, as well as high-resolution mass spectrometry based metabolomics and proteomics. The results from ICP-MS assays showed a dose dependent absorption, uptake and translocation of Ce through both roots and leaves; Ce content increased from 0.68 up to 1894mgkg-1 following spray application, while concentrations were three orders lower following soil application (0.59 to 2.19mgkg-1). Electrolyte leakage increased with NPs rate, from 25.2% to 70.3% and from 24.8% to 32.9% following spray and soil application, respectively. Spraying lowered stomatal density (from 337 to 113 per mm2) and increased stomatal length (from 12.8 to 19.4μm), and altered photosynthesis and electron transport chain biochemical machinery. The increase in Ce content induced accumulation of osmolites (proline increased from 0.54 to 0.65mg/g under spray application), phytosiderophores (muconate and mugineate compounds showed increase fold-changes >16) and proteins involved in folding or turnover. NPs application induced membrane damage, as evidenced by the increase in membrane lipids degradates and by the increase in electrolyte leakage, and caused oxidative stress. Most of the responses were not linear but dose-dependent, whereas metabolic disruption is expected at the highest NPs dosage. Both proteomics and metabolomics highlighted a stronger effect of CeO2 NPs spraying, as compared to soil application. High concentrations of NPs in the environment have been confirmed to pose toxicity concern towards plants, although important differences could be highlighted between aerial deposition and soil contamination.
Collapse
Affiliation(s)
- Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu Ali Sina University, Hamedan, Iran
| | - Abdolkarim Chehregani
- Laboratory of Plant Cell Biology, Department of Biology, Bu Ali Sina University, Hamedan, Iran
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - Ahmad Majd
- Department of Biology, Faculty of Biology, Islamic Azad University, Tehran-North Branch, Tehran, Iran
| | - Mansour Gholami
- Department of Agricultural, Faculty of Horticulture, Bu Ali Sina University, Hamedan, Iran
| |
Collapse
|
38
|
Hoffman AM, Avolio ML, Knapp AK, Smith MD. Codominant grasses differ in gene expression under experimental climate extremes in native tallgrass prairie. PeerJ 2018; 6:e4394. [PMID: 29473008 PMCID: PMC5816582 DOI: 10.7717/peerj.4394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/30/2018] [Indexed: 01/01/2023] Open
Abstract
Extremes in climate, such as heat waves and drought, are expected to become more frequent and intense with forecasted climate change. Plant species will almost certainly differ in their responses to these stressors. We experimentally imposed a heat wave and drought in the tallgrass prairie ecosystem near Manhattan, Kansas, USA to assess transcriptional responses of two ecologically important C4 grass species, Andropogon gerardii and Sorghastrum nutans. Based on previous research, we expected that S. nutans would regulate more genes, particularly those related to stress response, under high heat and drought. Across all treatments, S. nutans showed greater expression of negative regulatory and catabolism genes while A. gerardii upregulated cellular and protein metabolism. As predicted, S. nutans showed greater sensitivity to water stress, particularly with downregulation of non-coding RNAs and upregulation of water stress and catabolism genes. A. gerardii was less sensitive to drought, although A. gerardii tended to respond with upregulation in response to drought versus S. nutans which downregulated more genes under drier conditions. Surprisingly, A. gerardii only showed minimal gene expression response to increased temperature, while S. nutans showed no response. Gene functional annotation suggested that these two species may respond to stress via different mechanisms. Specifically, A. gerardii tends to maintain molecular function while S. nutans prioritizes avoidance. Sorghastrum nutans may strategize abscisic acid response and catabolism to respond rapidly to stress. These results have important implications for success of these two important grass species under a more variable and extreme climate forecast for the future.
Collapse
Affiliation(s)
- Ava M. Hoffman
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States of America
| | - Meghan L. Avolio
- Department of Earth & Planetary Sciences, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Alan K. Knapp
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States of America
| | - Melinda D. Smith
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
39
|
Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
|
41
|
Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PVV, Nayyar H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 0 DOI: 10.2135/cropsci1989.0011183x002900010023x] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drought (water deficits) and heat (high temperatures) stress are the prime abiotic constraints, under the current and climate change scenario in future. Any further increase in the occurrence, and extremity of these stresses, either individually or in combination, would severely reduce the crop productivity and food security, globally. Although, they obstruct productivity at all crop growth stages, the extent of damage at reproductive phase of crop growth, mainly the seed filling phase, is critical and causes considerable yield losses. Drought and heat stress substantially affect the seed yields by reducing seed size and number, eventually affecting the commercial trait '100 seed weight' and seed quality. Seed filling is influenced by various metabolic processes occurring in the leaves, especially production and translocation of photoassimilates, importing precursors for biosynthesis of seed reserves, minerals and other functional constituents. These processes are highly sensitive to drought and heat, due to involvement of array of diverse enzymes and transporters, located in the leaves and seeds. We highlight here the findings in various food crops showing how their seed composition is drastically impacted at various cellular levels due to drought and heat stresses, applied separately, or in combination. The combined stresses are extremely detrimental for seed yield and its quality, and thus need more attention. Understanding the precise target sites regulating seed filling events in leaves and seeds, and how they are affected by abiotic stresses, is imperative to enhance the seed quality. It is vital to know the physiological, biochemical and genetic mechanisms, which govern the various seed filling events under stress environments, to devise strategies to improve stress tolerance. Converging modern advances in physiology, biochemistry and biotechnology, especially the "omics" technologies might provide a strong impetus to research on this aspect. Such application, along with effective agronomic management system would pave the way in developing crop genotypes/varieties with improved productivity under drought and/or heat stresses.
Collapse
Affiliation(s)
| | - Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sailaja Bhogireddy
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | | | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
42
|
Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X, Wang X, Wang Q, She Y, Chen S, Zhou Z, Dai S. Proteomics and Phosphoproteomics of Heat Stress-Responsive Mechanisms in Spinach. FRONTIERS IN PLANT SCIENCE 2018; 9:800. [PMID: 29997633 PMCID: PMC6029058 DOI: 10.3389/fpls.2018.00800] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
Elevated temperatures limit plant growth and reproduction and pose a growing threat to agriculture. Plant heat stress response is highly conserved and fine-tuned in multiple pathways. Spinach (Spinacia oleracea L.) is a cold tolerant but heat sensitive green leafy vegetable. In this study, heat adaptation mechanisms in a spinach sibling inbred heat-tolerant line Sp75 were investigated using physiological, proteomic, and phosphoproteomic approaches. The abundance patterns of 911 heat stress-responsive proteins, and phosphorylation level changes of 45 phosphoproteins indicated heat-induced calcium-mediated signaling, ROS homeostasis, endomembrane trafficking, and cross-membrane transport pathways, as well as more than 15 transcription regulation factors. Although photosynthesis was inhibited, diverse primary and secondary metabolic pathways were employed for defense against heat stress, such as glycolysis, pentose phosphate pathway, amino acid metabolism, fatty acid metabolism, nucleotide metabolism, vitamin metabolism, and isoprenoid biosynthesis. These data constitute a heat stress-responsive metabolic atlas in spinach, which will springboard further investigations into the sophisticated molecular mechanisms of plant heat adaptation and inform spinach molecular breeding initiatives.
Collapse
Affiliation(s)
- Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wenxin Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jiayi Bian
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Hao Xie
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Ying Li
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Chenxi Xu
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Jiaying Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaofeng Cai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Quanhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Yimin She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Sixue Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Zhiqiang Zhou
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Shaojun Dai, Zhiqiang Zhou,
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Shaojun Dai, Zhiqiang Zhou,
| |
Collapse
|
43
|
Xu L, Wang Y, Zhang F, Tang M, Chen Y, Wang J, Karanja BK, Luo X, Zhang W, Liu L. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.). PLANT & CELL PHYSIOLOGY 2017; 58:1901-1913. [PMID: 29016946 DOI: 10.1093/pcp/pcx131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a widespread heavy metal of particular concern with respect to the environment and human health. Although intensive studies have been conducted on Cd-exposed transcriptome profiling, little systematic proteome information is available on the molecular mechanism of Cd stress response in radish. In this study, the radish root proteome under Cd stress was investigated using a quantitative multiplexed proteomics approach. Seedlings were grown in nutrient solution without Cd (control) or with 10 or 50 μM CdCl2 for 12 h (Cd10 and Cd50, respectively). In total, 91 up- and 66 down-regulated proteins were identified in the control vs Cd10 comparison, while 340 up- and 286 down-regulated proteins were identified in the control vs Cd50 comparison. Functional annotation indicated that these differentially expressed proteins (DEPs) were mainly involved in carbohydrate and energy metabolism, stress and defense and signal transduction processes. Correlation analysis showed that 33 DEPs matched with their transcripts, indicating a relatively low correlation between transcript and protein levels under Cd stress. Quantitative real-time PCR evidenced the expression patterns of 12 genes encoding their corresponding DEPs. In particular, several pivotal proteins associated with carbohydrate metabolism, ROS scavenging, cell transport and signal transduction were involved in the coordinated regulatory network of the Cd stress response in radish. Root exposure to Cd2+ activated several key signaling molecules and metal-containing transcription factors, and subsequently some Cd-responsive functional genes were mediated to reduce Cd toxicity and re-establish redox homeostasis in radish. This is a first report on comprehensive proteomic characterization of Cd-exposed root proteomes in radish. These findings could facilitate unraveling of the molecular mechanism underlying the Cd stress response in radish and provide fundamental insights into the development of genetically engineered low-Cd-content radish cultivars.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Jin Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Bernard Kinuthia Karanja
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
44
|
Wang X, Xu C, Cai X, Wang Q, Dai S. Heat-Responsive Photosynthetic and Signaling Pathways in Plants: Insight from Proteomics. Int J Mol Sci 2017; 18:E2191. [PMID: 29053587 PMCID: PMC5666872 DOI: 10.3390/ijms18102191] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023] Open
Abstract
Heat stress is a major abiotic stress posing a serious threat to plants. Heat-responsive mechanisms in plants are complicated and fine-tuned. Heat signaling transduction and photosynthesis are highly sensitive. Therefore, a thorough understanding of the molecular mechanism in heat stressed-signaling transduction and photosynthesis is necessary to protect crop yield. Current high-throughput proteomics investigations provide more useful information for underlying heat-responsive signaling pathways and photosynthesis modulation in plants. Several signaling components, such as guanosine triphosphate (GTP)-binding protein, nucleoside diphosphate kinase, annexin, and brassinosteroid-insensitive I-kinase domain interacting protein 114, were proposed to be important in heat signaling transduction. Moreover, diverse protein patterns of photosynthetic proteins imply that the modulations of stomatal CO₂ exchange, photosystem II, Calvin cycle, ATP synthesis, and chlorophyll biosynthesis are crucial for plant heat tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
45
|
Lu Y, Li R, Wang R, Wang X, Zheng W, Sun Q, Tong S, Dai S, Xu S. Comparative Proteomic Analysis of Flag Leaves Reveals New Insight into Wheat Heat Adaptation. FRONTIERS IN PLANT SCIENCE 2017; 8:1086. [PMID: 28676819 PMCID: PMC5476934 DOI: 10.3389/fpls.2017.01086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 05/18/2023]
Abstract
Hexaploid wheat (Triticum aestivum L.) is an important food crop but it is vulnerable to heat. The heat-responsive proteome of wheat remains to be fully elucidated because of previous technical and genomic limitations, and this has hindered our understanding of the mechanisms of wheat heat adaptation and advances in improving thermotolerance. Here, flag leaves of wheat during grain filling stage were subjected to high daytime temperature stress, and 258 heat-responsive proteins (HRPs) were identified with iTRAQ analysis. Enrichment analysis revealed that chlorophyll synthesis, carbon fixation, protein turnover, and redox regulation were the most remarkable heat-responsive processes. The HRPs involved in chlorophyll synthesis and carbon fixation were significantly decreased, together with severe membrane damage, demonstrating the specific effects of heat on photosynthesis of wheat leaves. In addition, the decrease in chlorophyll content may result from the decrease in HRPs involved in chlorophyll precursor synthesis. Further analysis showed that the accumulated effect of heat stress played a critical role in photosynthesis reduction, suggested that improvement in heat tolerance of photosynthesis, and extending heat tolerant period would be major research targets. The significantly accumulation of GSTs and Trxs in response to heat suggested their important roles in redox regulation, and they could be the promising candidates for improving wheat thermotolerance. In summary, our results provide new insight into wheat heat adaption and provide new perspectives on thermotolerance improvement.
Collapse
Affiliation(s)
- Yunze Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Ruiqiong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Ruochen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Qixin Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| | - Shaoming Tong
- College of Life Sciences, Liaoning Normal UniversityDalian, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
46
|
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169:176-188. [PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement. SIGNIFICANCE Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
Collapse
Affiliation(s)
- Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Valluru R, Reynolds MP, Davies WJ, Sukumaran S. Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. THE NEW PHYTOLOGIST 2017; 214:271-283. [PMID: 27918628 DOI: 10.1111/nph.14367] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/26/2016] [Indexed: 05/19/2023]
Abstract
The gaseous phytohormone ethylene plays an important role in spike development in wheat (Triticum aestivum). However, the genotypic variation and the genomic regions governing spike ethylene (SET) production in wheat under long-term heat stress remain unexplored. We investigated genotypic variation in the production of SET and its relationship with spike dry weight (SDW) in 130 diverse wheat elite lines and landraces under heat-stressed field conditions. We employed an Illumina iSelect 90K single nucleotide polymorphism (SNP) genotyping array to identify the genetic loci for SET and SDW through a genome-wide association study (GWAS) in a subset of the Wheat Association Mapping Initiative (WAMI) panel. The SET and SDW exhibited appreciable genotypic variation among wheat genotypes at the anthesis stage. There was a strong negative correlation between SET and SDW. The GWAS uncovered five and 32 significant SNPs for SET, and 22 and 142 significant SNPs for SDW, in glasshouse and field conditions, respectively. Some of these SNPs closely localized to the SNPs for plant height, suggesting close associations between plant height and spike-related traits. The phenotypic and genetic elucidation of SET and its relationship with SDW supports future efforts toward gene discovery and breeding wheat cultivars with reduced ethylene effects on yield under heat stress.
Collapse
Affiliation(s)
- Ravi Valluru
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
- Plant Biology Department, Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
| | - William J Davies
- Plant Biology Department, Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Sivakumar Sukumaran
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
| |
Collapse
|
48
|
Kumar RR, Goswami S, Shamim M, Mishra U, Jain M, Singh K, Singh JP, Dubey K, Singh S, Rai GK, Singh GP, Pathak H, Chinnusamy V, Praveen S. Biochemical Defense Response: Characterizing the Plasticity of Source and Sink in Spring Wheat under Terminal Heat Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1603. [PMID: 28979274 PMCID: PMC5611565 DOI: 10.3389/fpls.2017.01603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 05/11/2023]
Abstract
Wheat is highly prone to terminal heat stress (HS) under late-sown conditions. Delayed- sowing is one of the preferred methods to screen the genotypes for thermotolerance under open field conditions. We investigated the effect of terminal HS on the thermotolerance of four popular genotypes of wheat i.e. WR544, HD2967, HD2932, and HD2285 under field condition. We observed significant variations in the biochemical parameters like protein content, antioxidant activity, proline and total reducing sugar content in leaf, stem, and spike under normal (26 ± 2°C) and terminal HS (36 ± 2°C) conditions. Maximum protein, sugars and proline was observed in HD2967, as compared to other cultivars under terminal HS. Wheat cv. HD2967 showed more adaptability to the terminal HS. Differential protein-profiling in leaves, stem and spike of HD2967 under normal (26 ± 2°C) and terminal HS (36 ± 2°C) showed expression of some unique protein spots. MALDI-TOF/MS analysis showed the DEPs as RuBisCO (Rub), RuBisCO activase (Rca), oxygen evolving enhancer protein (OEEP), hypothetical proteins, etc. Expression analysis of genes associated with photosynthesis (Rub and Rca) and starch biosynthesis pathway (AGPase, SSS and SBE) showed significant variations in the expression under terminal HS. HD2967 showed better performance, as compared to other cultivars under terminal HS. SSS activity observed in HD2967 showed more stability under terminal HS, as compared with other cultivars. Triggering of different biochemical parameters in response to terminal HS was observed to modulate the plasticity of carbon assimilatory pathway. The identified DEPs will enrich the proteomic resources of wheat and will provide a potential biochemical marker for screening wheat germplasm for thermotolerance. The model hypothesized will help the researchers to work in a more focused way to develop terminal heat tolerant wheat without compromising with the quality and quantity of grains.
Collapse
Affiliation(s)
- Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Ranjeet R. Kumar
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Mohammed Shamim
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural UniversityBhagalpur, India
| | - Upama Mishra
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Monika Jain
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Khushboo Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Jyoti P. Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Kavita Dubey
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Shweta Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Gyanendra K. Rai
- Sher-e-Kashmir University of Agricultural Sciences and TechnologyJammu, India
| | - Gyanendra P. Singh
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural ResearchKarnal, India
| | | | | | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
- Shelly Praveen
| |
Collapse
|
49
|
Du D, Gao X, Geng J, Li Q, Li L, Lv Q, Li X. Identification of Key Proteins and Networks Related to Grain Development in Wheat (Triticum aestivum L.) by Comparative Transcription and Proteomic Analysis of Allelic Variants in TaGW2-6A. FRONTIERS IN PLANT SCIENCE 2016; 7:922. [PMID: 27446152 PMCID: PMC4923154 DOI: 10.3389/fpls.2016.00922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/10/2016] [Indexed: 05/24/2023]
Abstract
In wheat, coding region allelic variants of TaGW2-6A are closely associated with grain width and weight, but the genetic mechanisms involved remain unclear. Thus, to obtain insights into the key functions regulated by TaGW2-6A during wheat grain development, we performed transcriptional and proteomic analyses of TaGW2-6A allelic variants. The transcription results showed that the TaGW2-6A allelic variants differed significantly by several orders of magnitude. Each allelic variant of TaGW2-6A reached its first transcription peak at 6 days after anthesis (DAA), but the insertion type TaGW2-6A allelic variant reached its second peak earlier than the normal type, i.e., at 12 DAA rather than 20 DAA. In total, we identified 228 differentially accumulated protein spots representing 138 unique proteins by two-dimensional gel electrophoresis and tandem MALDI-TOF/TOF-MS in these three stages. Based on the results, we found some key proteins that are closely related to wheat grain development. The results of this analysis improve our understanding of the genetic mechanisms related to TaGW2-6A during wheat grain development as well as providing insights into the biological processes involved in seed formation.
Collapse
|
50
|
Wang X, Xin C, Cai J, Zhou Q, Dai T, Cao W, Jiang D. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:501. [PMID: 27148324 PMCID: PMC4830833 DOI: 10.3389/fpls.2016.00501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/29/2016] [Indexed: 05/20/2023]
Abstract
Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.
Collapse
Affiliation(s)
- Xiao Wang
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Caiyun Xin
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Jian Cai
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Qin Zhou
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Dong Jiang, ; Qin Zhou,
| | - Tingbo Dai
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Weixing Cao
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Dong Jiang
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Dong Jiang, ; Qin Zhou,
| |
Collapse
|