1
|
Li Y, Chen J, Sun Z. N6-methyladenosine (m6A) modification: Emerging regulators in plant-virus interactions. Virology 2025; 603:110373. [PMID: 39729962 DOI: 10.1016/j.virol.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
N6-methyladenosine (m6A), a reversible epigenetic modification, is widely present on both cellular and viral RNAs. This modification undergoes catalysis by methyltransferases (writers), removal by demethylases (erasers), and recognition by m6A-binding proteins (readers), ultimately influencing the fate and function of modified RNA molecules. With recent advances in sequencing technologies, the genome-wide mapping of m6A has become possible, enabling a deeper exploration of its roles during viral infections. So far, while the significance of m6A in regulating virus-host interactions has been well-established in animal viruses, research on its involvement in plant viruses remains in its early stages. In this review, we summarize the current knowledge regarding the functions and molecular mechanisms of m6A in plant-virus interactions. A better understanding of these complex interactions may provide valuable insights for developing novel antiviral strategies, potentially leading to more effective control of plant viral diseases in the field.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Li Y, Yin M, Wang J, Zhao X, Xu J, Wang W, Fu B. Epitranscriptome profiles reveal participation of the RNA methyltransferase gene OsMTA1 in rice seed germination and salt stress response. BMC PLANT BIOLOGY 2025; 25:115. [PMID: 39865266 PMCID: PMC11771074 DOI: 10.1186/s12870-025-06134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type. RESULTS The knockout of OsMTA1 resulted in a decreased level of m6A methylation and delayed seed germination, together with increased oxidative damage in the osmta1-1 mutant, especially under salt stress, indicating that OsMTA1 performs a crucial function in rice seed germination and salt stress response. Comparative analysis of m6A profiling using methylated RNA immunoprecipitation sequencing revealed that a unique set of genes that functioned in seed germination, cell growth, and development, including OsbZIP78 and OsA8, were hypomethylated in osmta1-1 embryos and germinating seeds. Numerous genes involved in plant growth and stress response were hypomethylated in the osmta1-1 mutant during seed germination under salt stress. Further combined analysis of the m6A methylome and transcriptome revealed that the loss of function of OsMTA1 had a more complex impact on gene expression in osmta1-1. Several hypomethylated genes with a negative role in growth and development, such as OsHsfA7 and OsHDAC3, were highly up-regulated in the osmta1-1 mutant under the control condition. In contrast, several hypomethylated genes positively associated with stress response were down-regulated, whereas a different set of hypomethylated genes that functioned as negative regulators of growth and stress response were up-regulated in the osmta1-1 mutant under salt stress. These results further demonstrated that OsMTA1-mediated m6A methylation modulated rice seed germination and salt stress response by regulating transcription of a unique set of genes with diverse functions. CONCLUSION Our results reveal a crucial role for the m6A methyltransferase gene OsMTA1 in regulating rice seed germination and salt stress response, and provide candidate genes to assist in breeding new stress-tolerant rice varieties.
Collapse
Affiliation(s)
- Yingbo Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Juan Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
| |
Collapse
|
3
|
Zheng H, Dang Y, Gao Y, Li S, Wu F, Zhang F, Wang X, Du X, Wang L, Song J, Sui N. An mRNA methylase and demethylase regulate sorghum salt tolerance by mediating N6-methyladenosine modification. PLANT PHYSIOLOGY 2024; 196:3048-3070. [PMID: 39405192 DOI: 10.1093/plphys/kiae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 12/14/2024]
Abstract
N 6-methyladenosine (m6A) modification is a crucial and widespread molecular mechanism governing plant development and stress tolerance. The specific impact of m6A regulation on plants with inherently high salt tolerance remains unclear. Existing research primarily focuses on the overexpression or knockout of individual writer or eraser components to alter m6A levels. However, a comprehensive study simultaneously altering overall m6A modification levels within the same experiment is lacking. Such an investigation is essential to determine whether opposing changes in m6A modification levels exert entirely different effects on plant salt tolerance. In this study, we identified the major writer member mRNA adenosine methylase A (SbMTA) in sorghum (Sorghum bicolor) as critical for sorghum survival. The sbmta mutant exhibits a phenotype characterized by reduced overall m6A, developmental arrest, and, ultimately, lethality. Overexpression of SbMTA increased m6A levels and salt tolerance, while overexpression of the m6A eraser alkylated DNA repair protein AlkB homolog 10B (SbALKBH10B) in sorghum showed the opposite phenotype. Comparative analyses between sorghum with different m6A levels reveal that SbMTA- and SbALKBH10B-mediated m6A alterations significantly impact the stability and expression levels of genes related to the abscisic acid signaling pathway and growth under salt stress. In summary, this study unveils the intricate relationship between m6A modifications and salt tolerance in sorghum, providing valuable insights into how m6A modification levels on specific transcripts influence responses to salt stress.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - FengHui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Gao Z, Yang Q, Shen H, Guo P, Xie Q, Chen G, Hu Z. The knockout of SlMTC impacts tomato seed size and reduces resistance to salt stress in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112228. [PMID: 39218307 DOI: 10.1016/j.plantsci.2024.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Members of the MT-A70 family are key catalytic proteins involved in m6A methylation modifications in plants. They play diverse roles at the posttranscriptional level by regulating RNA secondary structure, selective splicing, stability, and translational efficiency, which collectively affect plant growth, development, and stress responses. In this study, we explored the function of the gene SlMTC, a Class C member of the MT-A70 family, in tomatoes by using CRISPR/Cas9 technology. Compared with the wild-type (WT), the CR-slmtc mutants exhibited decreased seed size and slower growth rates during the seedling stage, along with weaker salt tolerance and significant downregulation of stress-related genes, such as PR1, PR5, and P5CS. The qRT-PCR results revealed that the expression levels of genes involved in auxin biosynthesis (FZY1, FZY3, and FZY4) and polar transport (PIN1, PIN4, and PIN8) were lower in CR-slmtc plants than in the WT plants. In addition, yeast two-hybrid assays showed that SlMTC could interact with SlMTA, a Class A member of the MT-A70 family, providing insights into the potential mode of action of SlMTC in tomatoes. Overall, our findings indicate the critical role of SlMTC in plant growth and development as well as in response to salt stress.
Collapse
Affiliation(s)
- Zihan Gao
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Qingling Yang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Hui Shen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Pengyu Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
5
|
Hu J, Xu T, Kang H. Crosstalk between RNA m 6A modification and epigenetic factors in plant gene regulation. PLANT COMMUNICATIONS 2024; 5:101037. [PMID: 38971972 PMCID: PMC11573915 DOI: 10.1016/j.xplc.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification observed in eukaryotic mRNAs. Advances in transcriptome-wide m6A mapping and sequencing technologies have enabled the identification of several conserved motifs in plants, including the RRACH (R = A/G and H = A/C/U) and UGUAW (W = U or A) motifs. However, the mechanisms underlying deposition of m6A marks at specific positions in the conserved motifs of individual transcripts remain to be clarified. Evidence from plant and animal studies suggests that m6A writer or eraser components are recruited to specific genomic loci through interactions with particular transcription factors, 5-methylcytosine DNA methylation marks, and histone marks. In addition, recent studies in animal cells have shown that microRNAs play a role in depositing m6A marks at specific sites in transcripts through a base-pairing mechanism. m6A also affects the biogenesis and function of chromatin-associated regulatory RNAs and long noncoding RNAs. Although we have less of an understanding of the link between m6A modification and epigenetic factors in plants than in animals, recent progress in identifying the proteins that interact with m6A writer or eraser components has provided insights into the crosstalk between m6A modification and epigenetic factors, which plays a crucial role in transcript-specific methylation and regulation of m6A in plants.
Collapse
Affiliation(s)
- Jianzhong Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Tao Xu
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Hunseung Kang
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
6
|
Huang J, Jia Y, Pan Y, Lin H, Lv S, Nawaz M, Song B, Nie X. Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat. PLANT CELL REPORTS 2024; 43:254. [PMID: 39373738 DOI: 10.1007/s00299-024-03339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
KEY MESSAGE The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.
Collapse
Affiliation(s)
- Jiaqian Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Yanze Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiyuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuzuo Lv
- Luoyang Academy of Agriculture and Forestry Science, Luoyang Key Laboratory of Crop Molecular Biology and Germplasm Enhancement, Luoyang, 471000, Henan, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Baoxing Song
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Pan Y, Jia Y, Liu W, Zhao Q, Pan W, Jia Y, Lv S, Liu X, Nie X. Transcriptome-wide m6A methylation profile reveals its potential role underlying drought response in wheat (Triticum aestivum L.). PLANTA 2024; 260:65. [PMID: 39073585 DOI: 10.1007/s00425-024-04491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
MAIN CONCLUSION This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.
Collapse
Affiliation(s)
- Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhe Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Wenxin Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Qinlong Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Yongpeng Jia
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 743004, Henan, China
| | - Shuzuo Lv
- Luoyang Academy of Agricultural and Forestry Sciences, 471027, Luoyang, Henan, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Science, 261325, Weifang, Shandong, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Pioneering Innovation Center for Wheat Stress Tolerance Improvement, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Liu F, Wodajo B, Zhao K, Tang S, Xie Q, Xie P. Unravelling sorghum functional genomics and molecular breeding: past achievements and future prospects. J Genet Genomics 2024:S1673-8527(24)00194-2. [PMID: 39053846 DOI: 10.1016/j.jgg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Sorghum, renowned for its substantial biomass production and remarkable tolerance to various stresses, possesses extensive gene resources and phenotypic variations. A comprehensive understanding of the genetic basis underlying complex agronomic traits is essential for unlocking the potential of sorghum in addressing food and feed security and utilizing marginal lands. In this context, we provide an overview of the major trends in genomic resource studies focusing on key agronomic traits over the past decade, accompanied by a summary of functional genomic platforms. We also delve into the molecular functions and regulatory networks of impactful genes for important agricultural traits. Lastly, we discuss and synthesize the current challenges and prospects for advancing molecular design breeding by gene-editing and polymerization of the excellent alleles, with the aim of accelerating the development of desired sorghum varieties.
Collapse
Affiliation(s)
- Fangyuan Liu
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Baye Wodajo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Natural and Computational Science, Woldia University, Woldia, Po.box-400, Ethiopia.
| | - Kangxu Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Xie
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
9
|
Liu P, Liu H, Zhao J, Yang T, Guo S, Chang L, Xiao T, Xu A, Liu X, Zhu C, Gan L, Chen M. Genome-wide identification and functional analysis of mRNA m 6A writers in soybean under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1446591. [PMID: 39055358 PMCID: PMC11269220 DOI: 10.3389/fpls.2024.1446591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
N6-methyladenosine (m6A), a well-characterized RNA modification, is involved in regulating multiple biological processes; however, genome-wide identification and functional characterization of the m6A modification in legume plants, including soybean (Glycine max (L.) Merr.), remains lacking. In this study, we utilized bioinformatics tools to perform comprehensive analyses of molecular writer candidates associated with the RNA m6A modification in soybean, characterizing their conserved domains, motifs, gene structures, promoters, and spatial expression patterns. Thirteen m6A writer complex genes in soybean were identified, which were assigned to four families: MT-A70, WTAP, VIR, and HAKAI. It also can be identified that multiple cis elements in the promoters of these genes, which were classified into five distinct groups, including elements responsive to light, phytohormone regulation, environmental stress, development, and others, suggesting that these genes may modulate various cellular and physiological processes in plants. Importantly, the enzymatic activities of two identified m6A writers, GmMTA1 and GmMTA2, were confirmed in vitro. Furthermore, we analyzed the expression patterns of the GmMTAs and GmMTBs under different abiotic stresses, revealing their potential involvement in stress tolerance, especially in the response to alkalinity or darkness. Overexpressing GmMTA2 and GmMTB1 in soybean altered the tolerance of the plants to alkalinity and long-term darkness, further confirming their effect on the stress response. Collectively, our findings identified the RNA m6A writer candidates in leguminous plants and highlighted the potential roles of GmMTAs and GmMTBs in the response to abiotic stress in soybean.
Collapse
Affiliation(s)
- Peng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huijie Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengfeng Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sichao Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Luo Chang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tianyun Xiao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Anjie Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Police University, Nanjing, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Liu H, Lin M, Zhou D, Liu B, Li X, Wang H, Bi X. Characterization of the m 6A gene family in switchgrass and functional analysis of PvALKBH10 during flowering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108781. [PMID: 38820914 DOI: 10.1016/j.plaphy.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
N6-methyladenosine (m6A), a nucleotide modification that is frequently seen in RNA, plays a crucial role in plant growth, development and stress resistance. However, the m6A regulatory machinery in switchgrass (Panicum virgatum L.), a model plant for cellulose-to-ethanol conversion, remains largely unknown. In this study, we identified 57 candidate genes involved in m6A-regulation in the switchgrass genome, and analyzed their chromosomal distribution, evolutionary relationships, and functions. Notably, we observed distinct gene expression patterns under salt and drought stress, with salt stress inducing writer and eraser genes, alongside drought stress predominantly affecting reader genes. Additionally, we knocked out PvALKBH10, an m6A demethylase gene, via CRISPR/Cas9 and found its potential function in controlling flowering time. This study provides insight into the genomic organization and evolutionary features of m6A-associated putative genes in switchgrass, and therefore serves as the basis for further functional studies.
Collapse
Affiliation(s)
- Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengzhuo Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Die Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bowen Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Song M, Zhao J, Zhang C, Jia C, Yang J, Zhao H, Zhai J, Lei B, Tao S, Chen S, Su R, Ma C. PEA-m6A: an ensemble learning framework for accurately predicting N6-methyladenosine modifications in plants. PLANT PHYSIOLOGY 2024; 195:1200-1213. [PMID: 38428981 DOI: 10.1093/plphys/kiae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
N 6-methyladenosine (m6A), which is the mostly prevalent modification in eukaryotic mRNAs, is involved in gene expression regulation and many RNA metabolism processes. Accurate prediction of m6A modification is important for understanding its molecular mechanisms in different biological contexts. However, most existing models have limited range of application and are species-centric. Here we present PEA-m6A, a unified, modularized and parameterized framework that can streamline m6A-Seq data analysis for predicting m6A-modified regions in plant genomes. The PEA-m6A framework builds ensemble learning-based m6A prediction models with statistic-based and deep learning-driven features, achieving superior performance with an improvement of 6.7% to 23.3% in the area under precision-recall curve compared with state-of-the-art regional-scale m6A predictor WeakRM in 12 plant species. Especially, PEA-m6A is capable of leveraging knowledge from pretrained models via transfer learning, representing an innovation in that it can improve prediction accuracy of m6A modifications under small-sample training tasks. PEA-m6A also has a strong capability for generalization, making it suitable for application in within- and cross-species m6A prediction. Overall, this study presents a promising m6A prediction tool, PEA-m6A, with outstanding performance in terms of its accuracy, flexibility, transferability, and generalization ability. PEA-m6A has been packaged using Galaxy and Docker technologies for ease of use and is publicly available at https://github.com/cma2015/PEA-m6A.
Collapse
Affiliation(s)
- Minggui Song
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiawen Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chujun Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengchao Jia
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haonan Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Zhai
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Beilei Lei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Chen
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Ran Su
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Zhao Y, Han KJ, Tian YT, Jia KH, El-Kassaby YA, Wu Y, Liu J, Si HY, Sun YH, Li Y. N 6-methyladenosine mRNA methylation positively regulated the response of poplar to salt stress. PLANT, CELL & ENVIRONMENT 2024; 47:1797-1812. [PMID: 38314665 DOI: 10.1111/pce.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
As the most abundant form of methylation modification in messenger RNA (mRNA), the distribution of N6-methyladenosine (m6A) has been preliminarily revealed in herbaceous plants under salt stress, but its function and mechanism in woody plants were still unknown. Here, we showed that global m6A levels increased during poplar response to salt stress. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that m6A significantly enriched in the coding sequence region and 3'-untranslated regions in poplar, by recognising the conserved motifs, AGACU, GGACA and UGUAG. A large number of differential m6A transcripts have been identified, and some have been proved involving in salt response and plant growth and development. Further combined analysis of MeRIP-seq and RNA-seq revealed that the m6A hypermethylated and enrich in the CDS region preferred to positively regulate expression abundance. Writer inhibitor, 3-deazaneplanocin A treatment increased the sensitivity of poplar to salt stress by reducing mRNA stability to regulate the expression of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Furthermore, we verified that the methyltransferase PagFIP37 plays a positively role in the response of poplar to salt stress, overexpressed lines have stronger salt tolerance, while RNAi lines were more sensitive to salt, which relied on regulating mRNA stability in an m6A manner of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Collectively, these results revealed the regulatory role of m6A methylation in poplar response to salt stress, and revealed the importance and mechanism of m6A methylation in the response of woody plants to salt stress for the first time.
Collapse
Affiliation(s)
- Ye Zhao
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kun-Jin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yan-Ting Tian
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yue Wu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Liu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hua-Yu Si
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Han Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Song P, Cai Z, Jia G. Principles, functions, and biological implications of m 6A in plants. RNA (NEW YORK, N.Y.) 2024; 30:491-499. [PMID: 38531642 PMCID: PMC11019739 DOI: 10.1261/rna.079951.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Over the past decade, N 6-methyladenosine (m6A) has emerged as a prevalent and dynamically regulated modification across the transcriptome; it has been reversibly installed, removed, and interpreted by specific binding proteins, and has played crucial roles in molecular and biological processes. Within this scope, we consolidate recent advancements of m6A research in plants regarding gene expression regulation, diverse physiologic and pathogenic processes, as well as crop trial implications, to guide discussions on challenges associated with and leveraging epitranscriptome editing for crop improvement.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- PKU-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
He S, Wang H, Lv M, Li S, Song J, Wang R, Jiang S, Jiang L, Zhang S, Li X. Nanopore Direct RNA Sequencing Reveals the Short-Term Salt Stress Response in Maize Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:405. [PMID: 38337938 PMCID: PMC10857558 DOI: 10.3390/plants13030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Transcriptome analysis, relying on the cutting-edge sequencing of cDNA libraries, has become increasingly prevalent within functional genome studies. However, the dependence on cDNA in most RNA sequencing technologies restricts their ability to detect RNA base modifications. To address this limitation, the latest Oxford Nanopore Direct RNA Sequencing (ONT DRS) technology was employed to investigate the transcriptome of maize seedling roots under salt stress. This approach aimed to unveil both the RNA transcriptional profiles and alterations in base modifications. The analysis of the differential expression revealed a total of 1398 genes and 2223 transcripts that exhibited significant variation within the maize root system following brief exposure to salt stress. Enrichment analyses, such as the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway assessments, highlighted the predominant involvement of these differentially expressed genes (DEGs) in regulating ion homeostasis, nitrogen metabolism, amino acid metabolism, and the phytohormone signaling pathways. The protein-protein interaction (PPI) analysis showed the participation of various proteins related to glycolytic metabolism, nitrogen metabolism, amino acid metabolism, abscisic acid signaling, and the jasmonate signaling pathways. It was through this intricate molecular network that these proteins collaborated to safeguard root cells against salt-induced damage. Moreover, under salt stress conditions, the occurrence of variable shear events (AS) in RNA modifications diminished, the average length of poly(A) tails underwent a slight decrease, and the number of genes at the majority of the variable polyadenylation (APA) sites decreased. Additionally, the levels of N5-methylcytosine (m5C) and N6-methyladenosine (m6A) showed a reduction. These results provide insights into the mechanisms of early salt tolerance in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (S.H.); (H.W.); (M.L.); (S.L.); (J.S.); (R.W.); (S.J.); (L.J.)
| | - Xiang Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (S.H.); (H.W.); (M.L.); (S.L.); (J.S.); (R.W.); (S.J.); (L.J.)
| |
Collapse
|
15
|
Wei J, Li H, Gui Y, Zhou H, Zhang R, Zhu K, Liu X. Coordination of m 6A mRNA Methylation and Gene Transcriptome in Sugarcane Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3668. [PMID: 37960025 PMCID: PMC10650135 DOI: 10.3390/plants12213668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The N6-methyladenosine (m6A) methylation of mRNA is involved in biological processes essential for plant growth. To explore the m6A modification of sugarcane and reveal its regulatory function, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was used to construct the m6A map of sugarcane. In this study, m6A sites of sugarcane transcriptome were significantly enriched around the stop codon and within 3'-untranslated regions (3'UTR). Gene ontology (GO) analysis showed that the m6A modification genes are associated with metabolic biosynthesis. In addition, the m6A modification of drought-resistant transcript mRNA increased significantly under drought (DR) treatment, resulting in enhanced mRNA stability, which is involved in regulating sugarcane drought resistance. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that differentially methylated peak (DMP) modification of differentially expressed genes (DEGs) in DR were particularly associated with abscisic acid (ABA) biosynthesis. The upregulated genes were significantly enriched in the ABA metabolism, ethylene response, fatty acid metabolism, and negative regulation of the abscisic acid activation signaling pathway. These findings provide a basis and resource for sugarcane RNA epigenetic studies and further increase our knowledge of the functions of m6A modifications in RNA under abiotic stress.
Collapse
Affiliation(s)
- Jinju Wei
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (J.W.); (Y.G.); (H.Z.); (R.Z.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Haibi Li
- Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 532415, China;
| | - Yiyun Gui
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (J.W.); (Y.G.); (H.Z.); (R.Z.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hui Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (J.W.); (Y.G.); (H.Z.); (R.Z.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ronghua Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (J.W.); (Y.G.); (H.Z.); (R.Z.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Kai Zhu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (J.W.); (Y.G.); (H.Z.); (R.Z.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xihui Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (J.W.); (Y.G.); (H.Z.); (R.Z.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
16
|
Li J, Wang J, Pang Q, Yan X. Analysis of N 6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111794. [PMID: 37459955 DOI: 10.1016/j.plantsci.2023.111794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
Salinity is an important environmental factor in crop growth and development. N6-methyladenosine (m6A) is an essential epigenetic modification that regulates plant-environment interaction. Sugar beet is a major sugar-yielding crop that has a certain tolerance to salt, but the dynamic response elicited by the m6A modification of transcripts under salt stress remains unknown. In this study, sugar beet was exposed to 300 mM NaCl to investigate its physiological response to high salinity and transcriptome-wide m6A modification profile. After the salt treatment, 7737 significantly modified m6A sites and 4981 differentially expressed genes (DEGs) were identified. Among the 312 m6A-modified DEGs, 113 hypomethylated DEGs were up-regulated and 99 hypermethylated DEGs were down-regulated, indicating a negative correlation between m6A modification and gene expression. Well-known salt tolerance genes (e.g., sodium/hydrogen exchanger 1, choline monooxygenase, and nucleoredoxin 2) and phospholipid signaling pathway genes (phosphoinositol-specific phospholipase C, phospholipase D, diacylglycerol kinase 1, etc.) were also among the m6A-modified genes. Further analysis showed that m6A modification may regulate salt-tolerant related gene expression by controlling mRNA stability. Therefore, changes in m6A modification may negatively regulate the expression of the salt-resistant genes in sugar beet, at least in part by modulating the stability of the mRNA via demethylase BvAlkbh10B. These findings could provide a better understanding of the epigenetic mechanisms of salt tolerance in sugar beets and uncover new candidate genes for improving the production of sugar beets planted in high-salinity soil.
Collapse
Affiliation(s)
- Junliang Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China; Post-doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| | - Qiuying Pang
- Post-doctoral Research Stations, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China.
| |
Collapse
|
17
|
Dhingra Y, Gupta S, Gupta V, Agarwal M, Katiyar-Agarwal S. The emerging role of epitranscriptome in shaping stress responses in plants. PLANT CELL REPORTS 2023; 42:1531-1555. [PMID: 37481775 DOI: 10.1007/s00299-023-03046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
KEY MESSAGE RNA modifications and editing changes constitute 'epitranscriptome' and are crucial in regulating the development and stress response in plants. Exploration of the epitranscriptome and associated machinery would facilitate the engineering of stress tolerance in crops. RNA editing and modifications post-transcriptionally decorate almost all classes of cellular RNAs, including tRNAs, rRNAs, snRNAs, lncRNAs and mRNAs, with more than 170 known modifications, among which m6A, Ψ, m5C, 8-OHG and C-to-U editing are the most abundant. Together, these modifications constitute the "epitranscriptome", and contribute to changes in several RNA attributes, thus providing an additional structural and functional diversification to the "cellular messages" and adding another layer of gene regulation in organisms, including plants. Numerous evidences suggest that RNA modifications have a widespread impact on plant development as well as in regulating the response of plants to abiotic and biotic stresses. High-throughput sequencing studies demonstrate that the landscapes of m6A, m5C, Am, Cm, C-to-U, U-to-G, and A-to-I editing are remarkably dynamic during stress conditions in plants. GO analysis of transcripts enriched in Ψ, m6A and m5C modifications have identified bonafide components of stress regulatory pathways. Furthermore, significant alterations in the expression pattern of genes encoding writers, readers, and erasers of certain modifications have been documented when plants are grown in challenging environments. Notably, manipulating the expression levels of a few components of RNA editing machinery markedly influenced the stress tolerance in plants. We provide updated information on the current understanding on the contribution of RNA modifications in shaping the stress responses in plants. Unraveling of the epitranscriptome has opened new avenues for designing crops with enhanced productivity and stress resilience in view of global climate change.
Collapse
Affiliation(s)
- Yashika Dhingra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007, India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
18
|
Zhu C, Zhang S, Zhou C, Tian C, Shi B, Xu K, Huang L, Sun Y, Lin Y, Lai Z, Guo Y. RNA Methylome Reveals the m 6A-mediated Regulation of Flavor Metabolites in Tea Leaves under Solar-withering. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:769-787. [PMID: 36791953 PMCID: PMC10787128 DOI: 10.1016/j.gpb.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/20/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
The epitranscriptomic mark N6-methyladenosine (m6A), which is the predominant internal modification in RNA, is important for plant responses to diverse stresses. Multiple environmental stresses caused by the tea-withering process can greatly influence the accumulation of specialized metabolites and the formation of tea flavor. However, the effects of the m6A-mediated regulatory mechanism on flavor-related metabolic pathways in tea leaves remain relatively uncharacterized. We performed an integrated RNA methylome and transcriptome analysis to explore the m6A-mediated regulatory mechanism and its effects on flavonoid and terpenoid metabolism in tea (Camellia sinensis) leaves under solar-withering conditions. Dynamic changes in global m6A level in tea leaves were mainly controlled by two m6A erasers (CsALKBH4A and CsALKBH4B) during solar-withering treatments. Differentially methylated peak-associated genes following solar-withering treatments with different shading rates were assigned to terpenoid biosynthesis and spliceosome pathways. Further analyses indicated that CsALKBH4-driven RNA demethylation can directly affect the accumulation of volatile terpenoids by mediating the stability and abundance of terpenoid biosynthesis-related transcripts and also indirectly influence the flavonoid, catechin, and theaflavin contents by triggering alternative splicing-mediated regulation. Our findings revealed a novel layer of epitranscriptomic gene regulation in tea flavor-related metabolic pathways and established a link between the m6A-mediated regulatory mechanism and the formation of tea flavor under solar-withering conditions.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biying Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linjie Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Lin H, Shi T, Zhang Y, He C, Zhang Q, Mo Z, Pan W, Nie X. Genome-Wide Identification, Expression and Evolution Analysis of m6A Writers, Readers and Erasers in Aegilops_tauschii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2747. [PMID: 37514361 PMCID: PMC10385245 DOI: 10.3390/plants12142747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
N6-methyladenosine modifications (m6A) is one of the most abundant and prevalent post-transcriptional RNA modifications in plants, playing the crucial role in plant growth and development and stress adaptation. However, the m6A regulatory machinery in Aegilops_tauschii, the D genome progenitor of common wheat, is not well understood at present. Here, we systematically identified the m6A-related genes in Aegilops with a genome-wide search approach. In total, 25 putative m6A genes composed of 5 writers, 13 readers and 7 erasers were obtained. A phylogenetic analysis clearly grouped them into three subfamilies with the same subfamily showing similar gene structures and conserved domains. These m6A genes were found to contain a large number of cis-acting elements associating with plant hormones, regulation of growth and development as well as stress response, suggesting their widespread regulation function. Furthermore, the expression profiling of them was investigated using RNA-seq data to obtain stress-responsive candidates, of which 5 were further validated with a qPCR analysis. Finally, the genetic variation of m6A-related genes was investigated between Aegilops and D subgenome of wheat based on re-sequencing data, and an obvious genetic bottleneck occurred on them during the wheat domestication process. The promising haplotype association with domestication and agronomic traits was also detected. This study provided some insights on the genomic organization and evolutionary features of m6A-related genes in Aegilops, which will facilitate the further functional study and also contribute to broaden the genetic basis for genetic improvement in wheat and other crops.
Collapse
Affiliation(s)
- Huiyuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Ying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Chuyang He
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Qiying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Zhiping Mo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling 712100, China
| |
Collapse
|
20
|
Li J, Pang Q, Yan X. Unique Features of the m 6A Methylome and Its Response to Salt Stress in the Roots of Sugar Beet ( Beta vulgaris). Int J Mol Sci 2023; 24:11659. [PMID: 37511417 PMCID: PMC10380635 DOI: 10.3390/ijms241411659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Salt is one of the most important environmental factors in crop growth and development. N6-methyladenosine (m6A) is an epigenetic modification that regulates plant-environment interaction at transcriptional and translational levels. Sugar beet is a salt-tolerant sugar-yielding crop, but how m6A modification affects its response to salt stress remains unknown. In this study, m6A-seq was used to explore the role of m6A modification in response to salt stress in sugar beet (Beta vulgaris). Transcriptome-wide m6A methylation profiles and physiological responses to high salinity were investigated in beet roots. After treatment with 300 mM NaCl, the activities of peroxidase and catalase, the root activity, and the contents of Na+, K+, and Ca2+ in the roots were significantly affected by salt stress. Compared with the control plants, 6904 differentially expressed genes (DEGs) and 566 differentially methylated peaks (DMPs) were identified. Association analysis revealed that 243 DEGs contained DMP, and 80% of these DEGs had expression patterns that were negatively correlated with the extent of m6A modification. Further analysis verified that m6A methylation may regulate the expression of some genes by controlling their mRNA stability. Functional analysis revealed that m6A modifications primarily affect the expression of genes involved in energy metabolism, transport, signal transduction, transcription factors, and cell wall organization. This study provides evidence that a post-transcriptional regulatory mechanism mediates gene expression during salt stress by affecting the stability of mRNA in the root.
Collapse
Affiliation(s)
- Junliang Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
- Post-Doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
| | - Qiuying Pang
- Post-Doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| |
Collapse
|
21
|
Zhang Y, Han X, Su D, Liu C, Chen Q, Qi Z. An analysis of differentially expressed and differentially m6A-modified transcripts in soybean roots treated with lead. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131370. [PMID: 37043855 DOI: 10.1016/j.jhazmat.2023.131370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Lead is one of the most common toxic heavy metal pollutants in nature, and exposure to lead can cause serious toxicity to many organisms. In this study, we collected root growth data from soybean plants exposed to lead for seven days and confirmed that lead significantly inhibited root growth. We performed a transcriptome-wide m6A methylation analysis to study the response of soybean RNA methylation groups to lead. The m6A modified regions were enriched near the 3'UTR region and stop codon, and m6A methylation was positively correlated with transcript abundance. In the presence of lead, the transcriptome range of m6A RNA methylation peaks increased, and we identified 1144 m6A modification peaks and 1094 differentially expressed genes. The integration of m6A methylation and transcriptomic results enabled us to identify 16 candidate genes whose transcripts were differentially methylated and differentially expressed under lead stress. Annotation results suggest that these genes may promote abiotic stress tolerance by impacting lead uptake, transport, and accumulation through ROS pathways, enzymes, transporters, and hormones. These results provide candidate genes for future studies of lead stress tolerance mechanisms in soybean roots and provide genetic resources for studying plant heavy metal stress in soybean breeding.
Collapse
Affiliation(s)
- Yu Zhang
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Han
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Daiqun Su
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chunyan Liu
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingshan Chen
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhaoming Qi
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
22
|
Li B, Zhang M, Sun W, Yue D, Ma Y, Zhang B, Duan L, Wang M, Lindsey K, Nie X, Zhang X, Yang X. N6-methyladenosine RNA modification regulates cotton drought response in a Ca 2+ and ABA-dependent manner. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1270-1285. [PMID: 36949572 DOI: 10.1111/pbi.14036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
N6 -methyladenosine (m6 A) is the most prevalent internal modification present in mRNAs, and is considered to participate in a range of developmental and biological processes. Drought response is highly regulated at the genomic, transcriptional and post-transcriptional levels. However, the biological function and regulatory mechanism of m6 A modification in the drought stress response is still poorly understood. We generated a transcriptome-wide m6 A map using drought-resistant and drought-sensitive varieties of cotton under different water deficient conditions to uncover patterns of m6 A methylation in cotton response to drought stress. The results reveal that m6 A represents a common modification and exhibit dramatic changes in distribution during drought stress. More 5'UTR m6 A was deposited in the drought-resistant variety and was associated with a positive effect on drought resistance by regulating mRNA abundance. Interestingly, we observed that increased m6 A abundance was associated with increased mRNA abundance under drought, contributing to drought resistance, and vice versa. The demethylase GhALKBH10B was found to decrease m6 A levels, facilitating the mRNA decay of ABA signal-related genes (GhZEP, GhNCED4 and GhPP2CA) and Ca2+ signal-related genes (GhECA1, GhCNGC4, GhANN1 and GhCML13), and mutation of GhALKBH10B enhanced drought resistance at seedling stage in cotton. Virus-induced gene silencing (VIGS) of two Ca2+ -related genes, GhECA1 and GhCNGC4, reduced drought resistance with the decreased m6 A enrichment on silenced genes in cotton. Collectively, we reveal a novel mechanism of post-transcriptional modification involved in affecting drought response in cotton, by mediating m6 A methylation on targeted transcripts in the ABA and Ca2+ signalling transduction pathways.
Collapse
Affiliation(s)
- Baoqi Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mengmeng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Boyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingfeng Duan
- College of Engineering, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, Agricultural College, Shihezi University, Xinjiang, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Wang S, Wang H, Xu Z, Jiang S, Shi Y, Xie H, Wang S, Hua J, Wu Y. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:1466-1482. [PMID: 36810961 PMCID: PMC10231368 DOI: 10.1093/plphys/kiad112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 05/16/2023]
Abstract
N 6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotes, is an emerging player of gene regulation at transcriptional and translational levels. Here, we explored the role of m6A modification in response to low temperature in Arabidopsis (Arabidopsis thaliana). Knocking down mRNA adenosine methylase A (MTA), a key component of the modification complex, by RNA interference (RNAi) led to drastically reduced growth at low temperature, indicating a critical role of m6A modification in the chilling response. Cold treatment reduced the overall m6A modification level of mRNAs especially at the 3' untranslated region. Joint analysis of the m6A methylome, transcriptome and translatome of the wild type (WT) and the MTA RNAi line revealed that m6A-containing mRNAs generally had higher abundance and translation efficiency than non-m6A-containing mRNAs under normal and low temperatures. In addition, reduction of m6A modification by MTA RNAi only moderately altered the gene expression response to low temperature but led to dysregulation of translation efficiencies of one third of the genes of the genome in response to cold. We tested the function of the m6A-modified cold-responsive gene ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) whose translation efficiency but not transcript level was reduced in the chilling-susceptible MTA RNAi plant. The dgat1 loss-of-function mutant exhibited reduced growth under cold stress. These results reveal a critical role of m6A modification in regulating growth under low temperature and suggest an involvement of translational control in chilling responses in Arabidopsis.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Haiyan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Zhihui Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Shasha Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Yucheng Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Hairong Xie
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Shu Wang
- Gene Sequencing Center, Jiangbei New Area Biopharmaceutical Public Service Platform Co., Ltd., Nanjing 210000, Jiangsu, China
| | - Jian Hua
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca 14850, NY, USA
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| |
Collapse
|
24
|
Prall W, Ganguly DR, Gregory BD. The covalent nucleotide modifications within plant mRNAs: What we know, how we find them, and what should be done in the future. THE PLANT CELL 2023; 35:1801-1816. [PMID: 36794718 PMCID: PMC10226571 DOI: 10.1093/plcell/koad044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 05/30/2023]
Abstract
Although covalent nucleotide modifications were first identified on the bases of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), a number of these epitranscriptome marks have also been found to occur on the bases of messenger RNAs (mRNAs). These covalent mRNA features have been demonstrated to have various and significant effects on the processing (e.g. splicing, polyadenylation, etc.) and functionality (e.g. translation, transport, etc.) of these protein-encoding molecules. Here, we focus our attention on the current understanding of the collection of covalent nucleotide modifications known to occur on mRNAs in plants, how they are detected and studied, and the most outstanding future questions of each of these important epitranscriptomic regulatory signals.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Diep R Ganguly
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Tang J, Chen S, Jia G. Detection, regulation, and functions of RNA N 6-methyladenosine modification in plants. PLANT COMMUNICATIONS 2023; 4:100546. [PMID: 36627844 DOI: 10.1016/j.xplc.2023.100546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 05/11/2023]
Abstract
N6-Methyladenosine (m6A) is the most abundant internal chemical modification in eukaryotic mRNA and plays important roles in gene expression regulation, including transcriptional and post-transcriptional regulation. m6A is a reversible modification that is installed, removed, and recognized by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers), respectively. Recently, the breadth of research on m6A in plants has expanded, and the vital roles of m6A in plant development, biotic and abiotic stress responses, and crop trait improvement have been investigated. In this review, we discuss recent developments in research on m6A and highlight the detection methods, distribution, regulatory proteins, and molecular and biological functions of m6A in plants. We also offer some perspectives on future investigations, providing direction for subsequent research on m6A in plants.
Collapse
Affiliation(s)
- Jun Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuyan Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
26
|
Shen L, Ma J, Li P, Wu Y, Yu H. Recent advances in the plant epitranscriptome. Genome Biol 2023; 24:43. [PMID: 36882788 PMCID: PMC9990323 DOI: 10.1186/s13059-023-02872-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/12/2023] [Indexed: 03/09/2023] Open
Abstract
Chemical modifications of RNAs, known as the epitranscriptome, are emerging as widespread regulatory mechanisms underlying gene regulation. The field of epitranscriptomics advances recently due to improved transcriptome-wide sequencing strategies for mapping RNA modifications and intensive characterization of writers, erasers, and readers that deposit, remove, and recognize RNA modifications, respectively. Herein, we review recent advances in characterizing plant epitranscriptome and its regulatory mechanisms in post-transcriptional gene regulation and diverse physiological processes, with main emphasis on N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We also discuss the potential and challenges for utilization of epitranscriptome editing in crop improvement.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| | - Jinqi Ma
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Ping Li
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Yujin Wu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
27
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
28
|
Han X, Wang J, Zhang Y, Kong Y, Dong H, Feng X, Li T, Zhou C, Yu J, Xin D, Chen Q, Qi Z. Changes in the m6A RNA methylome accompany the promotion of soybean root growth by rhizobia under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129843. [PMID: 36113351 DOI: 10.1016/j.jhazmat.2022.129843] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is the most widely distributed heavy metal pollutant in soil and has significant negative effects on crop yields and human health. Rhizobia can enhance soybean growth in the presence of heavy metals, and the legume-rhizobia symbiosis has been used to promote heavy-metal phytoremediation, but much remains to be learned about the molecular networks that underlie these effects. Here, we demonstrated that soybean root growth was strongly suppressed after seven days of Cd exposure but that the presence of rhizobia largely eliminated this effect, even prior to nodule development. Moreover, rhizobia did not appear to promote root growth by limiting plant Cd uptake: seedlings with and without rhizobia had similar root Cd concentrations. Previous studies have demonstrated a role for m6A RNA methylation in the response of rice and barley to Cd stress. We therefore performed transcriptome-wide m6A methylation profiling to investigate changes in the soybean RNA methylome in response to Cd with and without rhizobia. Here, we provide some of the first data on transcriptome-wide m6a RNA methylation patterns in soybean; m6A modifications were concentrated at the 3' UTR of transcripts and showed a positive relationship with transcript abundance. Transcriptome-wide m6A RNA methylation peaks increased in the presence of Cd, and the integration of m6A methylome and transcriptome results enabled us to identify 154 genes whose transcripts were both differentially methylated and differentially expressed in response to Cd stress. Annotation results suggested that these genes were associated with Ca2+ homeostasis, ROS pathways, polyamine metabolism, MAPK signaling, hormones, and biotic stress responses. There were 176 differentially methylated and expressed transcripts under Cd stress in the presence of rhizobia. In contrast to the Cd-only gene set, they were also enriched in genes related to auxin, jasmonic acid, and brassinosteroids, as well as abiotic stress tolerance. They contained fewer genes related to Ca2+ homeostasis and also included candidates with known functions in the legume-rhizobia symbiosis. These findings offer new insights into how rhizobia promote soybean root growth under Cd stress; they provide candidate genes for research on plant heavy metal responses and for the use of legumes in phytoremediation.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Jialin Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Youlin Kong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Huiying Dong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Xuezhen Feng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Tianshu Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, People's Republic of China
| | - Jidong Yu
- Daqing Branch, Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, People's Republic of China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China.
| | - Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
29
|
Zheng H, Gao Y, Sui Y, Dang Y, Wu F, Wang X, Zhang F, Du X, Sui N. R2R3 MYB transcription factor SbMYBHv33 negatively regulates sorghum biomass accumulation and salt tolerance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:5. [PMID: 36656365 DOI: 10.1007/s00122-023-04292-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
SbMYBHv33 negatively regulated biomass accumulation and salt tolerance in sorghum and Arabidopsis by regulating reactive oxygen species accumulation and ion levels. Salt stress is one of the main types of environmental stress leading to a reduction in crop yield worldwide. Plants have also evolved a variety of corresponding regulatory pathways to resist environmental stress damage. This study aimed to identify a SbMYBHv33 transcription factor that downregulates in salt, drought, and abscisic acid (ABA) in the salt-tolerant inbred line sorghum M-81E. The findings revealed that overexpression of SbMYBHv33 in sorghum significantly reduced sorghum biomass accumulation at the seedling stage and also salinity tolerance. Meanwhile, a heterologous transformation of Arabidopsis with SbMYBHv33 produced a similar phenotype. The loss of function of the Arabidopsis homolog of SbMYBHv33 resulted in longer roots and increased salt tolerance. Under normal conditions, SbMYBHV33 overexpression promoted the expression of ABA pathway genes in sorghum and inhibited growth. Under salt stress conditions, the gene expression of SbMYBHV33 decreased in the overexpressed lines, and the promotion of these genes in the ABA pathway was attenuated. This might be an important reason for the difference in growth and stress resistance between SbMYBHv33-overexpressed sorghum and ectopic expression Arabidopsis. Hence, SbMYBHv33 is an important component of sorghum growth and development and the regulation of salt stress response, and it could negatively regulate salt tolerance and biomass accumulation in sorghum.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
30
|
Amara U, Shoaib Y, Kang H. ALKBH9C, a potential RNA m 6 A demethylase, regulates the response of Arabidopsis to abiotic stresses and abscisic acid. PLANT, CELL & ENVIRONMENT 2022; 45:3566-3581. [PMID: 36148771 DOI: 10.1111/pce.14447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Although several studies have shown that AlkB homolog (ALKBH) proteins are potential RNA demethylases (referred to as 'erasers'), biological functions of only a few ALKBH proteins have been characterized to date. In this study, we determined the function of ALKBH9C (At4g36090) in seed germination and seedling growth of Arabidopsis thaliana in response to abiotic stress and abscisic acid (ABA). Seed germination of the alkbh9c mutant was delayed in response to salt, drought, cold and ABA. Moreover, seedling growth of the mutant was repressed under salt stress or ABA but enhanced under drought conditions. Notably, the stress-responsive phenotypes were associated with the altered expression of several m6 A-modified transcripts related to salt, drought or ABA response. Global m6 A levels were increased in the alkbh9c mutant, and ALKBH9C bound to m6 A-modified RNAs and had in vitro m6 A demethylase activity, suggesting its potential role as an m6 A eraser. The m6 A levels in several stress-responsive genes were increased in the alkbh9c mutant, and the stability of m6 A-modified transcripts was altered in the mutant. Collectively, our results suggest that m6 A eraser ALKBH9C is crucial for seed germination and seedling growth of Arabidopsis in response to abiotic stresses or ABA via affecting the stability of stress-responsive transcripts.
Collapse
Affiliation(s)
- Umme Amara
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Yasira Shoaib
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
31
|
Hu J, Cai J, Xu T, Kang H. Epitranscriptomic mRNA modifications governing plant stress responses: underlying mechanism and potential application. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2245-2257. [PMID: 36002976 PMCID: PMC9674322 DOI: 10.1111/pbi.13913] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/01/2023]
Abstract
Plants inevitably encounter environmental adversities, including abiotic and biotic stresses, which significantly impede plant growth and reduce crop yield. Thus, fine-tuning the fate and function of stress-responsive RNAs is indispensable for plant survival under such adverse conditions. Recently, post-transcriptional RNA modifications have been studied as a potent route to regulate plant gene expression under stress. Among over 160 mRNA modifications identified to date, N6 -methyladenosine (m6 A) in mRNAs is notable because of its multifaceted roles in plant development and stress response. Recent transcriptome-wide mapping has revealed the distribution and patterns of m6 A in diverse stress-responsive mRNAs in plants, building a foundation for elucidating the molecular link between m6 A and stress response. Moreover, the identification and characterization of m6 A writers, readers and erasers in Arabidopsis and other model crops have offered insights into the biological roles of m6 A in plant abiotic stress responses. Here, we review the recent progress of research on mRNA modifications, particularly m6 A, and their dynamics, distribution, regulation and biological functions in plant stress responses. Further, we posit potential strategies for breeding stress-tolerant crops by engineering mRNA modifications and propose the future direction of research on RNA modifications to gain a much deeper understanding of plant stress biology.
Collapse
Affiliation(s)
- Jianzhong Hu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouJiangsu ProvinceChina
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouJiangsu ProvinceChina
| | - Hunseung Kang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouJiangsu ProvinceChina
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| |
Collapse
|
32
|
Shi M, Wang C, Wang P, Zhang M, Liao W. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111431. [PMID: 36028071 DOI: 10.1016/j.plantsci.2022.111431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Flowering is the most critical transition period in the whole lifecycle of plants, and it is a highly sensitive period to stress. New combinations of temperature, drought stress, carbon dioxide and other abiotic/biotic conditions resulting from contemporary climate change affect the flowering process. Plants have evolved several strategies to deal with environmental stresses, including epigenetic modifications. Numerous studies show that environmental stresses trigger methylation/demethylation during flowering to preserve/accelerate plant lifecycle. What's more, histone and DNA methylation can be induced to respond to stresses, resulting in changes of flowering gene expression and enhancing stress tolerance in plants. Furthermore, RNA methylation may influence stress-regulated flowering by regulating mRNA stability and antioxidant mechanism. Our review presents the involvement of methylation in stress-repressed and stress-induced flowering. The crosstalk between methylation and small RNAs, phytohormones and exogenous substances (such as salicylic acid, nitric oxide) during flowering under different stresses were discussed. The latest regulatory evidence of RNA methylation in stress-regulated flowering was collected for the first time. Meanwhile, the limited evidences of methylation in biotic stress-induced flowering were summarized. Thus, the review provides insights into understanding of methylation mechanism in stress-regulated flowering and makes use for the development of regulating plant flowering at epigenetic level in the future.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
33
|
Zhang A, Xu J, Xu X, Wu J, Li P, Wang B, Fang H. Genome-wide identification and characterization of the KCS gene family in sorghum ( Sorghum bicolor (L.) Moench). PeerJ 2022; 10:e14156. [PMID: 36225907 PMCID: PMC9549899 DOI: 10.7717/peerj.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023] Open
Abstract
The aboveground parts of plants are covered with cuticle, a hydrophobic layer composed of cutin polyester and cuticular wax that can protect plants from various environmental stresses. β-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. Although the properties of KCS family genes have been investigated in many plant species, the understanding of this gene family in sorghum is still limited. Here, a total of 25 SbKCS genes were identified in the sorghum genome, which were named from SbKCS1 to SbKCS25. Evolutionary analysis among different species divided the KCS family into five subfamilies and the SbKCSs were more closely related to maize, implying a closer evolutionary relationship between sorghum and maize. All SbKCS genes were located on chromosomes 1, 2, 3, 4, 5, 6, 9 and 10, respectively, while Chr 1 and Chr 10 contained more KCS genes than other chromosomes. The prediction results of subcellular localization showed that SbKCSs were mainly expressed in the plasma membrane and mitochondria. Gene structure analysis revealed that there was 0-1 intron in the sorghum KCS family and SbKCSs within the same subgroup were similar. Multiple cis-acting elements related to abiotic stress, light and hormone response were enriched in the promoters of SbKCS genes, which indicated the functional diversity among these genes. The three-dimensional structure analysis showed that a compact spherical space structure was formed by various secondary bonds to maintain the stability of SbKCS proteins, which was necessary for their biological activity. qRT-PCR results revealed that nine randomly selected SbKCS genes expressed differently under drought and salt treatments, among which SbKCS8 showed the greatest fold of expression difference at 12 h after drought and salt stresses, which suggested that the SbKCS genes played a potential role in abiotic stress responses. Taken together, these results provided an insight into investigating the functions of KCS family in sorghum and in response to abiotic stress.
Collapse
Affiliation(s)
- Aixia Zhang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jingjing Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Xin Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Junping Wu
- Nantong Changjiang Seed Co., Ltd, Nantong, Jiangsu, China
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
34
|
Zhao Y, Guo Q, Cao S, Tian Y, Han K, Sun Y, Li J, Yang Q, Ji Q, Sederoff R, Li Y. Genome-wide identification of the AlkB homologs gene family, PagALKBH9B and PagALKBH10B regulated salt stress response in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:994154. [PMID: 36204058 PMCID: PMC9530910 DOI: 10.3389/fpls.2022.994154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The AlkB homologs (ALKBH) gene family regulates N6-methyladenosine (m6A) RNA methylation and is involved in plant growth and the abiotic stress response. Poplar is an important model plant for studying perennial woody plants. Poplars typically have a long juvenile period of 7-10 years, requiring long periods of time for studies of flowering or mature wood properties. Consequently, functional studies of the ALKBH genes in Populus species have been limited. Based on AtALKBHs sequence similarity with Arabidopsis thaliana, 23 PagALKBHs were identified in the genome of the poplar 84K hybrid genotype (P. alba × P. tremula var. glandulosa), and gene structures and conserved domains were confirmed between homologs. The PagALKBH proteins were classified into six groups based on conserved sequence compared with human, Arabidopsis, maize, rice, wheat, tomato, barley, and grape. All homologs of PagALKBHs were tissue-specific; most were highly expressed in leaves. ALKBH9B and ALKBH10B are m6A demethylases and overexpression of their homologs PagALKBH9B and PagALKBH10B reduced m6A RNA methylation in transgenic lines. The number of adventitious roots and the biomass accumulation of transgenic lines decreased compared with WT. Therefore, PagALKBH9B and PagALKBH10B mediate m6A RNA demethylation and play a regulatory role in poplar growth and development. Overexpression of PagALKBH9B and PagALKBH10B can reduce the accumulation of H2O2 and oxidative damage by increasing the activities of SOD, POD, and CAT, and enhancing protection for Chl a/b, thereby increasing the salt tolerance of transgenic lines. However, overexpression lines were more sensitive to drought stress due to reduced proline content. This research revealed comprehensive information about the PagALKBH gene family and their roles in growth and development and responsing to salt stress of poplar.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qi Guo
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Sen Cao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yanting Tian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Kunjin Han
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yuhan Sun
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Juan Li
- Natural Resources and Planning Bureau of Yanshan County, Cangzhou, Hebei, China
| | - Qingshan Yang
- Shandong Academy of Forestry, Jinan, Shandong, China
| | - Qingju Ji
- Cangzhou Municipal Forestry Seeding and Cutting Management Center, Cangzhou, China
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Yun Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
35
|
Zhou L, Gao G, Tang R, Wang W, Wang Y, Tian S, Qin G. m 6 A-mediated regulation of crop development and stress responses. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1447-1455. [PMID: 35178842 PMCID: PMC9342612 DOI: 10.1111/pbi.13792] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 05/12/2023]
Abstract
Dynamic chemical modifications in eukaryotic messenger RNAs (mRNAs) constitute an essential layer of gene regulation, among which N6 -methyladenosine (m6 A) was unveiled to be the most abundant. m6 A functionally modulates important biological processes in various mammals and plants through the regulation of mRNA metabolism, mainly mRNA degradation and translation efficiency. Physiological functions of m6 A methylation are diversified and affected by intricate sequence contexts and m6 A machineries. A number of studies have dissected the functional roles and the underlying mechanisms of m6 A modifications in regulating plant development and stress responses. Recently, it was demonstrated that the human FTO-mediated plant m6 A removal caused dramatic yield increases in rice and potato, indicating that modulation of m6 A methylation could be an efficient strategy for crop improvement. In this review, we summarize the current progress concerning the m6 A-mediated regulation of crop development and stress responses, and provide an outlook on the potential application of m6 A epitranscriptome in the future improvement of crops.
Collapse
Affiliation(s)
- Leilei Zhou
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesHaidian District, BeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guangtong Gao
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesHaidian District, BeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Renkun Tang
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesHaidian District, BeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weihao Wang
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesHaidian District, BeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuying Wang
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesHaidian District, BeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiping Tian
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesHaidian District, BeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guozheng Qin
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesHaidian District, BeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
36
|
Alvarado-Marchena L, Martínez-Pérez M, Aparicio F, Pallas V, Maumus F. Recent Acquisition of Functional m6A RNA Demethylase Domain in Orchid Ty3/Gypsy Elements. FRONTIERS IN PLANT SCIENCE 2022; 13:939843. [PMID: 35860540 PMCID: PMC9289625 DOI: 10.3389/fpls.2022.939843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Long terminal repeats (LTR) retrotransposons are transposable elements (TEs) representing major components of most plant genomes. The fixation of additional conserved protein domains in their genomes is considered a rare event in the course of their evolution. Such changes can bring novel functions and increase their fitness by playing a role in the regulation of their replicative cycle or by affecting their integration landscape so that the detection of new domains can in turn reveal important aspects of host-TE interactions. We have mined angiosperm genomes for the presence of additional domains in LTR retrotransposons. We report a lineage of large (25 kbp) Gypsy-type elements in the genomes of Phalaenopsis orchids that contain an additional open reading frame containing a 2-ODD domain with close similarity to those responsible for m6A RNA demethylase activity in AlkB proteins. By performing in vitro assays, we demonstrate the RNA binding capability and the demethylase activity of the Gypsy-encoded AlkB protein, suggesting it could be functional against cognate TE mRNA or any cellular RNA in planta. In line with recent literature, we propose that the fixation of an RNA demethylase in this lineage of LTR retrotransposons may reflect an important role for epitranscriptomic control in host surveillance against TEs.
Collapse
Affiliation(s)
- Luis Alvarado-Marchena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Mireya Martínez-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Frederic Aparicio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, Versailles, France
| |
Collapse
|
37
|
Genome-Wide Identification, Classification and Expression Analysis of m 6A Gene Family in Solanum lycopersicum. Int J Mol Sci 2022; 23:ijms23094522. [PMID: 35562913 PMCID: PMC9100520 DOI: 10.3390/ijms23094522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Advanced knowledge of messenger RNA (mRNA) N6-methyladenosine (m6A) and DNA N6-methyldeoxyadenosine (6 mA) redefine our understanding of these epigenetic modifications. Both m6A and 6mA carry important information for gene regulation, and the corresponding catalytic enzymes sometimes belong to the same gene family and need to be distinguished. However, a comprehensive analysis of the m6A gene family in tomato remains obscure. Here, 24 putative m6A genes and their family genes in tomato were identified and renamed according to BLASTP and phylogenetic analysis. Chromosomal location, synteny, phylogenetic, and structural analyses were performed, unravelling distinct evolutionary relationships between the MT-A70, ALKBH, and YTH protein families, respectively. Most of the 24 genes had extensive tissue expression, and 9 genes could be clustered in a similar expression trend. Besides, SlYTH1 and SlYTH3A showed a different expression pattern in leaf and fruit development. Additionally, qPCR data revealed the expression variation under multiple abiotic stresses, and LC-MS/MS determination exhibited that the cold stress decreased the level of N6 2′-O dimethyladenosine (m6Am). Notably, the orthologs of newly identified single-strand DNA (ssDNA) 6mA writer–eraser–reader also existed in the tomato genome. Our study provides comprehensive information on m6A components and their family proteins in tomato and will facilitate further functional analysis of the tomato N6-methyladenosine modification genes.
Collapse
|
38
|
Shoaib Y, Usman B, Kang H, Jung KH. Epitranscriptomics: An Additional Regulatory Layer in Plants' Development and Stress Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1033. [PMID: 35448761 PMCID: PMC9027318 DOI: 10.3390/plants11081033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Epitranscriptomics has added a new layer of regulatory machinery to eukaryotes, and the advancement of sequencing technology has revealed more than 170 post-transcriptional modifications in various types of RNAs, including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and long non-coding RNA (lncRNA). Among these, N6-methyladenosine (m6A) and N5-methylcytidine (m5C) are the most prevalent internal mRNA modifications. These regulate various aspects of RNA metabolism, mainly mRNA degradation and translation. Recent advances have shown that regulation of RNA fate mediated by these epitranscriptomic marks has pervasive effects on a plant's development and responses to various biotic and abiotic stresses. Recently, it was demonstrated that the removal of human-FTO-mediated m6A from transcripts in transgenic rice and potatoes caused a dramatic increase in their yield, and that the m6A reader protein mediates stress responses in wheat and apple, indicating that regulation of m6A levels could be an efficient strategy for crop improvement. However, changing the overall m6A levels might have unpredictable effects; therefore, the identification of precise m6A levels at a single-base resolution is essential. In this review, we emphasize the roles of epitranscriptomic modifications in modulating molecular, physiological, and stress responses in plants, and provide an outlook on epitranscriptome engineering as a promising tool to ensure food security by editing specific m6A and m5C sites through robust genome-editing technology.
Collapse
Affiliation(s)
- Yasira Shoaib
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (Y.S.); (B.U.)
| | - Babar Usman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (Y.S.); (B.U.)
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea;
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (Y.S.); (B.U.)
| |
Collapse
|
39
|
Han C, Zhang F, Qiao X, Zhao Y, Qiao Q, Huang X, Zhang S. Multi-Omics Analysis Reveals the Dynamic Changes of RNA N 6 -Methyladenosine in Pear ( Pyrus bretschneideri) Defense Responses to Erwinia amylovora Pathogen Infection. Front Microbiol 2022; 12:803512. [PMID: 35222304 PMCID: PMC8867029 DOI: 10.3389/fmicb.2021.803512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022] Open
Abstract
N6-methylated adenine (m6A) is the most prevalent modification of mRNA methylation and can regulate many biological processes in plants, such as mRNA processing, development, and stress response. Some studies have increased our understanding of its various roles in model plants in recent years. Nevertheless, the distribution of m6A and the impact of m6A on the regulation of plant defense responses against pathogen inoculation are virtually unknown in pear. In this study, MeRIP-seq and RNA-seq data from healthy and inoculated plants were analyzed to assess the changes in the transcript levels and posttranscriptional modification of pear in response to the fire blight pathogen Erwinia amylovora. Following the analysis of 97,261 m6A peaks, we found that m6A preferred to modify duplicate genes rather than singleton genes and that m6A-methylated genes underwent stronger purifying selection. A total of 2,935 specific m6A sites were detected at the transcriptome level after inoculation, which may increase defense-related transcript abundance to enhance pear resistance. In addition, 1,850 transcripts were detected only in the mock-inoculated groups. The hypomethylated transcripts were mainly related to transcriptional regulation and various biological processes, such as chloroplast organization and sucrose biosynthetic processes. In addition, we found that the extent of m6A methylation was significantly positively correlated with the transcript level, suggesting a regulatory role for m6A in the plant response.
Collapse
Affiliation(s)
- Chenyang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qinhai Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Chen C, Shang X, Sun M, Tang S, Khan A, Zhang D, Yan H, Jiang Y, Yu F, Wu Y, Xie Q. Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Salt Tolerance Abilities to Reveal the Mechanism of Salt Tolerance. Int J Mol Sci 2022; 23:2272. [PMID: 35216389 PMCID: PMC8877675 DOI: 10.3390/ijms23042272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
Sweet sorghum is a C4 crop that can be grown for silage forage, fiber, syrup and fuel production. It is generally considered a salt-tolerant plant. However, the salt tolerance ability varies among genotypes, and the mechanism is not well known. To further uncover the salt tolerance mechanism, we performed comparative transcriptome analysis with RNA samples in two sweet sorghum genotypes showing different salt tolerance abilities (salt-tolerant line RIO and salt-sensitive line SN005) upon salt treatment. These response processes mainly focused on secondary metabolism, hormone signaling and stress response. The expression pattern cluster analysis showed that RIO-specific response genes were significantly enriched in the categories related to secondary metabolic pathways. GO enrichment analysis indicated that RIO responded earlier than SN005 in the 2 h after treatment. In addition, we identified more transcription factors (TFs) in RIO than SN005 that were specifically expressed differently in the first 2 h of salt treatment, and the pattern of TF change was obviously different. These results indicate that an early response in secondary metabolism might be essential for salt tolerance in sweet sorghum. In conclusion, we found that an early response, especially in secondary metabolism and hormone signaling, might be essential for salt tolerance in sweet sorghum.
Collapse
Affiliation(s)
- Chengxuan Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Shang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Meiyu Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Aimal Khan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongdong Yan
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (H.Y.); (Y.J.)
| | - Yanxi Jiang
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (H.Y.); (Y.J.)
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Wang Y, Du F, Li Y, Wang J, Zhao X, Li Z, Xu J, Wang W, Fu B. Global N 6-Methyladenosine Profiling Revealed the Tissue-Specific Epitranscriptomic Regulation of Rice Responses to Salt Stress. Int J Mol Sci 2022; 23:2091. [PMID: 35216209 PMCID: PMC8875919 DOI: 10.3390/ijms23042091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) methylation represents a new layer of the epitranscriptomic regulation of plant development and growth. However, the effects of m6A on rice responses to environmental stimuli remain unclear. In this study, we performed a methylated-RNA immunoprecipitation sequencing analysis and compared the changes in m6A methylation and gene expression in rice under salt stress conditions. Salt stress significantly increased the m6A methylation in the shoots (p value < 0.05). Additionally, 2537 and 2304 differential m6A sites within 2134 and 1997 genes were identified in the shoots and roots, respectively, under salt stress and control conditions. These differential m6A sites were largely regulated in a tissue-specific manner. A unique set of genes encoding transcription factors, antioxidants, and auxin-responsive proteins had increased or decreased m6A methylation levels only in the shoots or roots under salt stress, implying m6A may mediate salt tolerance by regulating transcription, ROS homeostasis, and auxin signaling in a tissue-specific manner. Integrating analyses of m6A modifications and gene expression changes revealed that m6A changes regulate the expression of genes controlling plant growth, stress responses, and ion transport under saline conditions. These findings may help clarify the regulatory effects of m6A modifications on rice salt tolerance.
Collapse
Affiliation(s)
- Yinxiao Wang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengping Du
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
| | - Yingbo Li
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
| | - Juan Wang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
| | - Xiuqin Zhao
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
| | - Zhikang Li
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Wensheng Wang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Binying Fu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (F.D.); (Y.L.); (J.W.); (X.Z.); (Z.L.); (J.X.)
| |
Collapse
|
42
|
Digital RNA-seq analysis of the cardiac transcriptome response to thermal stress in turbot Scophthalmus maximus. J Therm Biol 2021; 104:103141. [DOI: 10.1016/j.jtherbio.2021.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022]
|
43
|
Zhang G, Lv Z, Diao S, Liu H, Duan A, He C, Zhang J. Unique features of the m 6A methylome and its response to drought stress in sea buckthorn ( Hippophae rhamnoides Linn.). RNA Biol 2021; 18:794-803. [PMID: 34806556 DOI: 10.1080/15476286.2021.1992996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In plants, recent studies have revealed that N6-methyladenosine (m6A) methylation of mRNA has potential regulatory functions of this mRNA modification in many biological processes. m6A methyltransferase, m6A demethylase and m6A-binding proteins can cause differential phenotypes, indicating that m6A may have critical roles in the plant. In this study, we depicted the m6A map of sea buckthorn (Hippophae rhamnoides Linn.) transcriptome. Similar to A. thaliana, m6A sites of sea buckthorn transcriptome is significantly enriched around the stop codon and within 3'-untranslated regions (3'UTR). Gene ontology analysis shows that the m6A modification genes are associated with metabolic biosynthesis. In addition, we identified 13,287 different m6A peaks (DMPs) between leaf under drought (TR) and control (CK) treatment. It reveals that m6A has a high level of conservation and has a positive correlation with mRNA abundance in plants. GO and KEGG enrichment results showed that DMP modification DEGs in TR were particularly associated with ABA biosynthesis. Interestingly, our results showed three m6A demethylase (HrALKBH10B, HrALKBH10C and HrALKBH10D) genes were significantly increased following drought stress, which indicated that it may contributed the decreased m6A levels. This exhaustive m6A map provides a basis and resource for the further functional study of mRNA m6A modification in abiotic stress.
Collapse
Affiliation(s)
- Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zhongrui Lv
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Songfeng Diao
- Non-timber Forestry Research and Development Center, Chinese Academy of Forestry & Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Hong Liu
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
44
|
Shoaib Y, Hu J, Manduzio S, Kang H. Alpha-ketoglutarate-dependent dioxygenase homolog 10B, an N 6 -methyladenosine mRNA demethylase, plays a role in salt stress and abscisic acid responses in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 173:1078-1089. [PMID: 34309025 DOI: 10.1111/ppl.13505] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
N6 -methyladenosine (m6 A) is an abundant methylation mark in eukaryotic mRNAs. It is installed and removed by methyltransferases ("writers") and demethylases ("erasers"), respectively. A recent study has demonstrated that alpha-ketoglutarate-dependent dioxygenase homolog 10B (ALKBH10B) is an mRNA m6 A eraser affecting floral transition in Arabidopsis thaliana. However, the roles of m6 A eraser proteins, including ALKHB10B, in plant adaptation to abiotic stresses are largely unknown. In this study, we aimed to determine the role of ALKBH10B in the response of A. thaliana to abiotic stresses and abscisic acid (ABA). The m6 A level increased in response to salt stress, and m6 A levels in alkbh10b mutants were higher than those in the wild-type under both normal and salt stress conditions. Germination of alkbh10b mutant seeds was markedly delayed under salt stress but not under dehydration, cold, or ABA conditions. Seedling growth and survival rate of alkbh10b mutants were enhanced under salt stress. Notably, salt-tolerant phenotypes of alkbh10b mutants were correlated with decreased levels of several m6 A-modified genes, including ATAF1, BGLU22, and MYB73, which are negative effectors of salt stress tolerance. In response to ABA, both seedling and root growth of alkbh10b mutants were inhibited via upregulating ABA signaling-related genes, including ABI3 and ABI4. Collectively, these findings indicate that ALKBH10B-mediated m6 A demethylation affects the transcript levels of stress-responsive genes, which are important for seed germination, seedling growth, and survival of Arabidopsis thaliana in response to salt stress or ABA.
Collapse
Affiliation(s)
- Yasira Shoaib
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Stefano Manduzio
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
45
|
Cheng Q, Wang P, Wu G, Wang Y, Tan J, Li C, Zhang X, Liu S, Huang S, Huang T, Yang M, He H, Bian J. Coordination of m 6A mRNA methylation and gene transcriptome in rice response to cadmium stress. RICE (NEW YORK, N.Y.) 2021; 14:62. [PMID: 34224034 PMCID: PMC8257850 DOI: 10.1186/s12284-021-00502-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 05/19/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification present in the mRNAs of all higher eukaryotes. However, the role of the m6A methylomes in rice is still poorly understood. With the development of the MeRIP-seq technique, the in-depth identification of mRNAs with m6A modification has become feasible. A study suggested that m6A modification is crucial for posttranscriptional regulation related to Cd2+-induced malignant transformation, but the association between m6A modification in plants and Cd tolerance has not been reported. We investigated the m6A methylomes in the roots of a cadmium (Cd)-treated group and compared them with the roots in the control (CK) group by m6A sequencing of cv. 9311 and cv. Nipponbare (NIP) plants. The results indicated that Cd leads to an altered modification profile in 3,406 differential m6A peaks in cv. 9311 and 2,065 differential m6A peaks in cv. NIP. KEGG pathway analysis of the genes with differentially modified m6A peaks indicated that the "phenylalanine", "tyrosine and tryptophan biosynthesis", "glycine", "adherens junctions", "glycerophospholipid metabolism" and "threonine metabolism" signalling pathways may be associated with the abnormal root development of cv. 9311 rice due to exposure to Cd. The "arginine", "proline metabolism", "glycerolipid", and "protein processing in endoplasmic reticulum" metabolism pathways were significantly enriched in genes with differentially modified m6A peaks in cv. NIP. Unlike that in Arabidopsis, the m6A-modified nucleotide position on mRNAs (m6A peak) distribution in rice exhibited a preference towards both the stop codon and 3' untranslated regions (3' UTRs). These findings provide a resource for plant RNA epitranscriptomic studies and further increase our knowledge on the function of m6A modification in RNA in plants.
Collapse
Affiliation(s)
- Qin Cheng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Yanning Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jingai Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Xiangyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shilei Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| |
Collapse
|
46
|
Hu J, Cai J, Park SJ, Lee K, Li Y, Chen Y, Yun JY, Xu T, Kang H. N 6 -Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1759-1775. [PMID: 33843075 DOI: 10.1111/tpj.15270] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 05/16/2023]
Abstract
As the most abundant internal modification of mRNA, N6 -methyladenosine (m6 A) methylation of RNA is emerging as a new layer of epitranscriptomic gene regulation in cellular processes, including embryo development, flowering-time control, microspore generation and fruit ripening, in plants. However, the cellular role of m6 A in plant responses to environmental stimuli remains largely unexplored. In this study, we show that m6 A methylation plays an important role in salt stress tolerance in Arabidopsis. All mutants of m6 A writer components, including MTA, MTB, VIRILIZER (VIR) and HAKAI, displayed salt-sensitive phenotypes in an m6 A-dependent manner. The vir mutant, in which the level of m6 A was most highly reduced, exhibited salt-hypersensitive phenotypes. Analysis of the m6 A methylome in the vir mutant revealed a transcriptome-wide loss of m6 A modification in the 3' untranslated region (3'-UTR). We demonstrated further that VIR-mediated m6 A methylation modulates reactive oxygen species homeostasis by negatively regulating the mRNA stability of several salt stress negative regulators, including ATAF1, GI and GSTU17, through affecting 3'-UTR lengthening linked to alternative polyadenylation. Our results highlight the important role played by epitranscriptomic mRNA methylation in the salt stress response of Arabidopsis and indicate a strong link between m6 A methylation and 3'-UTR length and mRNA stability during stress adaptation.
Collapse
Affiliation(s)
- Jianzhong Hu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Yuxia Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yao Chen
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jae-Young Yun
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Hunseung Kang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|