1
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of Horseradish Peroxidase on Ca Alginate-Starch Hybrid Support: Biocatalytic Properties and Application in Biodegradation of Phenol Red Dye. Appl Biochem Biotechnol 2024; 196:4759-4792. [PMID: 37950796 DOI: 10.1007/s12010-023-04772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
In this study, horseradish peroxidase was extracted, purified, and immobilized on a calcium alginate-starch hybrid support by covalent bonding and entrapment. The immobilized HRP was used for the biodegradation of phenol red dye. A 3.74-fold purification was observed after precipitation with ammonium sulfate and dialysis. An immobilization yield of 88.33%, efficiency of 56.89%, and activity recovery of 50.26% were found. The optimum pH and temperature values for immobilized and free HRP were 5.0 and 50 °C and 6.5 and 60 °C, respectively. The immobilized HRP showed better thermal stability than its free form, resulting in a considerable increase in half-life time (t1/2) and deactivation energy (Ed). The immobilized HRP maintained 93.71% of its initial activity after 45 days of storage at 4 °C. Regarding the biodegradation of phenol red, immobilized HRP resulted in 63.57% degradation after 90 min. After 10 cycles of reuse, the immobilized HRP was able to maintain 43.06% of its initial biodegradative capacity and 42.36% of its enzymatic activity. At the end of 15 application cycles, a biodegradation rate of 8.34% was observed. In conclusion, the results demonstrate that the immobilized HRP is a promising option for use as an industrial biocatalyst in various biotechnological applications.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Jéssica Samara Herek Dos Santos
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil.
| |
Collapse
|
2
|
Wang L, Hamouda HI, Dong Y, Jiang H, Quan Y, Chen Y, Liu Y, Wang J, Balah MA, Mao X. High-level and reusable preparation of sulforaphane by yeast cells expressing myrosinase. Food Chem X 2023; 18:100668. [PMID: 37091516 PMCID: PMC10114154 DOI: 10.1016/j.fochx.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Myrosinase is a key tool for the fast and efficient preparation of sulforaphane which is one of the prominent natural ingredients found in brassicaceous vegetables. Here, the glucoraphanin-hydrolyzing activity of a Yarrowia lipolytica 20-8 harboring myrosinase reached 73.28 U/g dry cell weight, indicating that it had a potential application in sulforaphane preparation from glucoraphanin. An efficient and reusable process for sulforaphane preparation via myrosinase produced by Y. lipolytica 20-8 was constructed. In detail, as high as 10.32 mg sulforaphane could be produced from 1 g broccoli seed under the reaction of 40 U yeast whole-cell catalyst within 15 min with the conversion efficiency of 99.86%. Moreover, when the yeast whole-cell catalyst was reused 7 and 10 times, as high as 92.53% and 87.56% of sulforaphene yield of the initial level could be retained, respectively. Therefore, this yeast whole-cell is a potent biocatalyst for the efficient and reusable preparation of sulforaphane.
Collapse
Affiliation(s)
- Lili Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Hamed I. Hamouda
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Yueyang Dong
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Hong Jiang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
- Corresponding author at: Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yongyi Quan
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Yimiao Chen
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Yan Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiaqi Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Mohamed A. Balah
- Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| |
Collapse
|
3
|
Gao YQ, Jimenez-Sandoval P, Tiwari S, Stolz S, Wang J, Glauser G, Santiago J, Farmer EE. Ricca's factors as mobile proteinaceous effectors of electrical signaling. Cell 2023; 186:1337-1351.e20. [PMID: 36870332 PMCID: PMC10098372 DOI: 10.1016/j.cell.2023.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as β-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jing Wang
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Chen W, Dong Y, Zheng L, Lai Y, Li F, Zhou L, Wang B, You M, He W. An inducible gene from glycoside hydrolase one family of Plutella xylostella decreases larval survival when feeding on host plant. Front Physiol 2022; 13:1013092. [PMID: 36338470 PMCID: PMC9632345 DOI: 10.3389/fphys.2022.1013092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Glycoside hydrolase family 1 (GH1) members exhibit a broad substrate spectrum and play important roles in insect-plant interactions, such as the defensive β-glucosidase and β-thioglucosidase (so-called myrosinase). However, knowledge about the expression profiling and function of glycoside hydrolase family 1 members in a specialist pest of crucifers Plutella xylostella is still limited. In this study, 13 putative glycoside hydrolase family 1 members of P. xylostella were identified based on the sequence characteristics, while no myrosinase activity was detectable in P. xylostella using gas chromatography-mass spectrometry (GC-MS). Expression profiling of these glycoside hydrolase family 1 members identified the midgut-specific gene Px008848 that is induced by host plant. Further experiments revealed that the in vitro expressed Px008848 protein had β-glucosidase activity and the survival rate of the larvae feeding on wounded Arabidopsis thaliana leaves declined when leaves were treated with purified Px008848 protein. When CRISPR/Cas9-based homozygous mutant larvae of Px008848 and wild-type larvae were respectively transferred onto the A. thaliana, the larval survival rate of the mutant larvae was significantly higher than that of the wild-type individuals. Our work showed that certain insect glycoside hydrolase family 1 gene may have negative effect on the development of larvae feeding on the host plant, which broadened our understandings on the evolutionary function of this gene family in the insect-plant interaction.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ganzhou Key Laboratory of Greenhouse Vegetable/College of Life Sciences, Gannan Normal University, Ganzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ganzhou Key Laboratory of Greenhouse Vegetable/College of Life Sciences, Gannan Normal University, Ganzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingfang Lai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feifei Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Beibei Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Minsheng You, ; Weiyi He,
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Minsheng You, ; Weiyi He,
| |
Collapse
|
5
|
Characterization of a Novel Myrosinase with High Activity from Marine Bacterium Shewanella baltica Myr-37. Int J Mol Sci 2022; 23:ijms231911258. [PMID: 36232557 PMCID: PMC9569522 DOI: 10.3390/ijms231911258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Myrosinase can hydrolyze glucosinolates to generate isothiocyanates, which have cancer prevention and anti-cancer properties. The main sources of myrosinase are cruciferous plants. To further improve the efficiency of isothiocyanates preparation, it is necessary to explore novel sources of myrosinases. In this study, we described a bacterium, Shewanella baltica Myr-37, isolated from marine mud, capable of producing a novel myrosinase (Smyr37) with a molecular weight of 100 kDa. The crude enzyme of Smyr37 showed the highest activity at 50 °C and pH 8.0. The sinigrin- and glucoraphanin-hydrolyzing activities of Smyr37 were 6.95 and 5.87 U/mg, respectively. Moreover, when the reaction temperature was 40 °C and pH was 7.0, the crude enzyme of Smyr37 could efficiently degrade glucoraphanin into sulforaphane within 25 min with a yield of 0.57 mg/mL. The corresponding conversion efficiency of sulforaphane from glucoraphanin was 89%. In summary, S. baltica Myr-37 myrosinase Smyr37, a novel myrosinase, can be used in the preparation of isothiocyanates.
Collapse
|
6
|
Youseif SH, Abdel-Fatah HMK, Khalil MS. A new source of bacterial myrosinase isolated from endophytic Bacillus sp. NGB-B10, and its relevance in biological control activity. World J Microbiol Biotechnol 2022; 38:215. [PMID: 36056962 PMCID: PMC9440883 DOI: 10.1007/s11274-022-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Plant metabolism interacts strongly with the plant microbiome. Glucosinolates, secondary metabolites synthesized by Brassica plants, are hydrolyzed by myrosinase into bioactive compounds of great importance in human health and plant protection. Compared with myrosinase from plant sources, myrosinase enzymes of microbial origin have not been extensively investigated. Therefore, seven endophytic strains corresponding to Bacillus sp. were isolated from Eruca vesicaria ssp. sativa plants that could hydrolyse glucosinolates (sinigrin) in the culture medium and showed myrosinase activity (0.08–19.92 U mL−1). The bglA myrosinase-related gene encoding the 6-phospho-β-glucosidase (GH 1) from Bacillus sp. NGB-B10, the most active myrosinase-producing bacterium, was successfully identified. Response surface methodology (RSM) was applied to statistically optimize culture conditions for myrosinase production from Bacillus sp. strain NGB-B10. The Plackett–Burman design indicated that nitrogen concentration, incubation period, and agitation speed were the significant parameters in myrosinase production. The application of the Box–Behnken design of RSM resulted in a 10.03-fold increase in enzyme activity as compared to the non-optimized culture conditions. The myrosinase was partially purified by 40% fractionation followed by SDS-PAGE analysis which yielded two subunits that had a molecular weight of 38.6 and 35.0 KDa. The purified enzyme was stable under a broad range of pH (5.5–10) and temperatures (10–65 °C). The hydrolysis products released by bacterial myrosinase from some glucosinolate extracts had higher and/or equivalent in vitro antagonistic activity against several phytopathogenic fungi compared to the nystatin (a broad-spectrum antifungal agent). This study provides original information about a new source of bacterial myrosinase and affords an optimized method to enhance myrosinase production.
Collapse
Affiliation(s)
- Sameh H Youseif
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza, 12619, Egypt. .,Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th October, Giza, 12451, Egypt.
| | - Hanan M K Abdel-Fatah
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mary S Khalil
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
7
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Interactions of fungi with non-isothiocyanate products of the plant glucosinolate pathway: A review on product formation, antifungal activity, mode of action and biotransformation. PHYTOCHEMISTRY 2022; 200:113245. [PMID: 35623473 DOI: 10.1016/j.phytochem.2022.113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The glucosinolate pathway, which is present in the order Brassicales, is one of the most researched defensive natural product biosynthesis pathways. Its core molecules, the glucosinolates are broken down upon pathogen challenge or tissue damage to yield an array of natural products that may help plants defend against the stressor. Though the most widely known glucosinolate decomposition products are the antimicrobial isothiocyanates, there is a wide range of other volatile and non-volatile natural products that arise from this biosynthetic pathway. This review summarizes our current knowledge on the interaction of these much less examined, non-isothiocyanate products with fungi. It deals with compounds including (1) glucosinolates and their biosynthesis precursors; (2) glucosinolate-derived nitriles (e.g. derivatives of 1H-indole-3-acetonitrile), thiocyanates, epithionitriles and oxazolidine-2-thiones; (3) putative isothiocyanate downstream products such as raphanusamic acid, 1H-indole-3-methanol (= indole-3-carbinol) and its oligomers, 1H-indol-3-ylmethanamine and ascorbigen; (4) 1H-indole-3-acetonitrile downstream products such as 1H-indole-3-carbaldehyde (indole-3-carboxaldehyde), 1H-indole-3-carboxylic acid and their derivatives; and (5) indole phytoalexins including brassinin, cyclobrassinin and brassilexin. Herein, a literature review on the following aspects is provided: their direct antifungal activity and the proposed mechanisms of antifungal action, increased biosynthesis after fungal challenge, as well as data on their biotransformation/detoxification by fungi, including but not limited to fungal myrosinase activity.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
8
|
Kinetic Study and Modeling of Wild-Type and Recombinant Broccoli Myrosinase Produced in E. coli and S. cerevisiae as a Function of Substrate Concentration, Temperature, and pH. Catalysts 2022. [DOI: 10.3390/catal12070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The myrosinase enzyme hydrolyzes glucosinolates, among which is glucoraphanin, the precursor of the anticancer isothiocyanate sulforaphane (SFN). The main source of glucoraphanin is Brassicaceae; however, its natural concentration is relatively low, limiting the availability of SFN. An option to obtain SFN is its exogenous production, through enzymatic processes and under controlled conditions, allowing complete conversion of glucoraphanin to SFN. We characterized the kinetics of wild-type (BMYR) and recombinant broccoli myrosinases produced in E. coli (EMYR) and S. cerevisiae (SMYR) in terms of the reaction conditions. Kinetics was adjusted using empirical and mechanistic models that describe reaction rate as a function of substrate concentration, temperature, and pH, resulting in R2 values higher than 90%. EMYR kinetics differed significantly from those of BMYR and SMYR probably due to the absence of glycosylations in the enzyme produced in E. coli. BMYR and SMYR were subjected to substrate inhibition but followed different kinetic mechanisms attributed to different glycosylation patterns. EMYR (inactivation Ea = 76.1 kJ/mol) was more thermolabile than BMYR and SMYR. BMYR showed the highest thermostability (inactivation Ea = 52.8 kJ/mol). BMYR and EMYR showed similar behavior regarding pH, with similar pK1 (3.4 and 3.1, respectively) and pK2 (5.4 and 5.0, respectively), but differed considerably from SMYR.
Collapse
|
9
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
10
|
Galádová H, Polozsányi Z, Breier A, Šimkovič M. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules 2022; 12:biom12030406. [PMID: 35327598 PMCID: PMC8945721 DOI: 10.3390/biom12030406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane and other natural isothiocyanates released from the respective plant glucosinolates by the plant enzyme myrosinase (β-thioglucoside glucohydrolase) show extensive anticancer and antimicrobial effects. In this study, myrosinase from garden cress (Lepidium sativum) seeds was purified to electrophoretic homogeneity by a fast and easy strategy consisting of fractionation by isoelectric precipitation with ammonium sulphate (AS) and affinity chromatography using sulforaphane (SFN) attached to cellulose resin. The overall purification of enzyme with respect to crude extract was 169-fold and recovery of 37%. Under non-reducing conditions, two protein bands exhibiting myrosinase activity with masses of about 114 and 122 kDa, respectively, and a 58 kDa protein band with no activity were detected by SDS-PAGE and zymography on polyacrylamide gel. MALDI-Tof/Tof of tryptic fragments obtained from the respective protein bands detected sequence motifs homologous to the regions responsible for glycoside-substrate binding and similarities to members of the enzyme subfamilies β-glucosidases and myrosinases GH. The enzyme hydrolyzed both the natural (sinigrin, sinalbin, glucoraphanin) and the synthetic (p-nitrophenol-β-D-glucopyranoside (pNPG)) substrates. The highest catalytic activity of purified enzyme was achieved against sinigrin. The KM and Vmax values of the enzyme for sinigrin were found to be 0.57 mM, and 1.3 mM/s, respectively. The enzyme was strongly activated by 30 μM ascorbic acid. The optimum temperature and pH for enzyme was 50 °C and pH 6.0, respectively. The purified enzyme could be stored at 4 °C and slightly acidic pH for at least 45 days without a significant decrease in specific activity.
Collapse
Affiliation(s)
- Helena Galádová
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Zoltán Polozsányi
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Albert Breier
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Correspondence:
| |
Collapse
|
11
|
Wang L, Jiang H, Qiu Y, Dong Y, Hamouda HI, Balah MA, Mao X. Biochemical Characterization of a Novel Myrosinase Rmyr from Rahnella inusitata for High-Level Preparation of Sulforaphene and Sulforaphane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2303-2311. [PMID: 35112855 DOI: 10.1021/acs.jafc.1c07646] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Myrosinase is a biotechnological tool for the preparation of sulforaphane and sulforaphene with a variety of excellent biological activities. In this study, a gene encoding the novel glycoside hydrolase family 3 (GH3) myrosinase Rmyr from Rahnella inusitata was heterologously expressed in Escherichia coli BL21 (DE3). The purified Rmyr shows the highest activity at 40 °C and pH 7.0; meanwhile, its half-life at 30 °C reaches 12 days, indicating its excellent stability. Its sinigrin-, glucoraphenin-, and glucoraphanin-hydrolyzing activities were 12.73, 4.81, and 6.99 U/mg, respectively. Rmyr could efficiently degrade the radish seed-derived glucoraphenin and the broccoli seed-derived glucoraphanin into sulforaphene and sulforaphane within 10 min with the highest yields of 5.07 mg/g radish seeds and 9.56 mg/g broccoli seeds, respectively. The highest conversion efficiencies of sulforaphane from glucoraphanin and sulforaphene from glucoraphenin reached up to 92.48 and 97.84%, respectively. Therefore, Rmyr is a promising and potent biocatalyst for efficient and large-scale preparation of sulforaphane and sulforaphene.
Collapse
Affiliation(s)
- Lili Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanjun Qiu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yueyang Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hamed I Hamouda
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mohamed A Balah
- Soil Chemistry and Physics Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
12
|
Broccoli Myrosinase cDNA Expression in Escherichia coli and Saccharomyces cerevisiae. Biomolecules 2022; 12:biom12020233. [PMID: 35204734 PMCID: PMC8961631 DOI: 10.3390/biom12020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Myrosinases (EC 3.2.1.147) are enzymes known for the generation of hydrolysis products that have a potential beneficial effect on human health. Their reaction mechanisms are widely studied, in order to improve and optimize secondary metabolite production processes. In this work, kinetic and biochemical properties of the broccoli myrosinase enzyme produced from its cDNA cloned in Escherichia coli and Saccharomyces cerevisiae were investigated. The results revealed that the thermal stability of the enzyme produced in S. cerevisiae was slightly higher (30 to 60 °C) than that of myrosinase produced in E. coli (20 to 50 °C). The effect of pH on the enzymatic activity was similar in both enzymes, with pH 3 being the optimum value under the reaction conditions used. The kinetic behavior of both enzymes was adjusted to the Michaelis–Menten model. The catalytic efficiency was up to 4 times higher in myrosinase produced in S. cerevisiae, compared to myrosinase produced in E. coli. The glycosylations present in the enzyme would be related to the formation of a dimeric quaternary structure and would not play an essential role in enzymatic activity, since both enzymes were biologically active. These results will probably allow the development of strategies for the production of bioactive metabolites of medical interest.
Collapse
|
13
|
Cebeci F, Mayer MJ, Rossiter JT, Mithen R, Narbad A. Molecular Cloning, Expression and Characterisation of a Bacterial Myrosinase from Citrobacter Wye1. Protein J 2022; 41:131-140. [PMID: 35031980 DOI: 10.1007/s10930-021-10034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Glucosinolates are plant natural products which on degradation by myrosinases give rise to the beneficial bioactive isothiocyanates. Recently, a myrosinase activity was detected in a Citrobacter strain isolated from soil. This enzyme was purified enabling its amino acid sequence and gene sequence (cmyr) to be determined. In order to study this myrosinase it was necessary to establish an expression system that would enable future work such as a structural determination of the protein to be carried out. The myrosinase gene was amplified, cloned and expressed in Escherichia coli with a 6XHis-tag. The heterologous expression of cmyr enabled relatively large amounts of myrosinase to be produced (3.4 mg cmyr/100 ml culture). Myrosinase activity was determined by mixing substrate and enzyme and determining glucose release. Optimum pH and temperature were determined to be pH 6.0 and 25 °C for the Ni-NTA purified protein. The kinetic parameters of the purified myrosinase were determined using sinigrin as a substrate. Km and Vmax were estimated as 0.18 mM and 0.033 mmol/min/mg respectively for sinigrin under optimum conditions and compared to other kinetic data for myrosinases. The substrate specificity of myrosinase was determined having the highest affinity for sinigrin followed by glucoiberin, progoitrin, glucoerucin, glucoraphanin and glucotropaeolin.
Collapse
Affiliation(s)
- Fatma Cebeci
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK. .,Department of Nutrition and Dietetics, Bayburt University, Bayburt, Turkey.
| | - Melinda J Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - John T Rossiter
- Department of Life Sciences, Imperial College London, London, UK
| | - Richard Mithen
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Arjan Narbad
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK.,Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
14
|
Miklavčič Višnjevec A, Tamayo Tenorio A, Steenkjær Hastrup AC, Hansen NML, Peeters K, Schwarzkopf M. Glucosinolates and Isothiocyantes in Processed Rapeseed Determined by HPLC-DAD-qTOF. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112548. [PMID: 34834911 PMCID: PMC8622084 DOI: 10.3390/plants10112548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Glucosinolates are well known as natural antimicrobials and anticarcinogenic agents. However, these compounds can lose their properties and transform into antinutrients, depending on processing conditions. In addition, the bitterness of some glucosinolate in rapeseed meal can affect the likability of the final product. Therefore, it is important to identify and determine each glucosinolate and its derived form, not just the total glucosinolate content, in order to evaluate the potential of the final rapeseed protein product. This study provides a comprehensive report of the types and quantities of glucosinolates and their derived forms (isothiocyanates) associated with different rapeseed processing conditions. Glucosinolates and isothiocyanates were determined by HPLC-DAD-qTOF. In our study, the enzymatic degradation of glucosinolates by myrosinase was the main factor affecting either glucosinolate or isothiocyanate content. Other factors such as pH seemed to influence the concentration and the presence of glucosinolates. In addition, process parameters, such as extraction time and separation technology, seemed to affect the amount and type of isothiocyanates in the final protein extracts. Overall, both determined intact glucosinolates and their derived forms of isothiocyanates can give different types of biological effects. More studies should be performed to evaluate the impact of glucosinolates and isothiocyanates on human health.
Collapse
Affiliation(s)
- Ana Miklavčič Višnjevec
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (K.P.); (M.S.)
| | - Angelica Tamayo Tenorio
- Center for Bioresources, AgroTech, Danish Technological Institute Gregersensvej, 2630 Taastrup, Denmark; (A.T.T.); (A.C.S.H.); (N.M.L.H.)
| | - Anne Christine Steenkjær Hastrup
- Center for Bioresources, AgroTech, Danish Technological Institute Gregersensvej, 2630 Taastrup, Denmark; (A.T.T.); (A.C.S.H.); (N.M.L.H.)
| | - Natanya Majbritt Louie Hansen
- Center for Bioresources, AgroTech, Danish Technological Institute Gregersensvej, 2630 Taastrup, Denmark; (A.T.T.); (A.C.S.H.); (N.M.L.H.)
| | - Kelly Peeters
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (K.P.); (M.S.)
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia
| | - Matthew Schwarzkopf
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (K.P.); (M.S.)
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia
| |
Collapse
|
15
|
Horseradish Essential Oil as a Promising Anti-Algal Product for Prevention of Phytoplankton Proliferation and Biofouling. PLANTS 2021; 10:plants10081550. [PMID: 34451595 PMCID: PMC8400301 DOI: 10.3390/plants10081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
Increased proliferation of algae is a current problem in natural and artificial water bodies. Controlling nutrients is the most sustainable treatment of increased algal proliferation, however in certain cases, it is not sufficiently available, or it does not provide results fast enough. Chemicals derived from natural sources, which could be effective in low concentrations and are biodegradable, may have an advantage over conventional chemical treatments. The main aim of the present study was to investigate the anti-cyanobacterial and anti-algal properties of allyl-isothiocyanate-containing essential oil produced from horseradish roots with a complex approach of the topic: on laboratory strains of cyanobacteria and eukaryotic algae, on microcosms containing natural phytoplankton assemblages, and on semi-natural biofilms. The results show that acute treatment can significantly reduce the viability of all the tested cyanobacteria and eukaryotic algae. Results of microcosm experiments with natural phytoplankton assemblages show that horseradish essential oil from 7.1 × 10−6% (v/v) is applicable to push back phytoplankton proliferation even in natural assemblages. The individual number in the biofilm was dropped down to one-fifth of the original individual number, so 7.1 × 10−6% (v/v) and higher concentration of the essential oil can be considered as a successful treatment against biofouling.
Collapse
|
16
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications. J Fungi (Basel) 2021; 7:539. [PMID: 34356918 PMCID: PMC8305656 DOI: 10.3390/jof7070539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022] Open
Abstract
Plants heavily rely on chemical defense systems against a variety of stressors. The glucosinolates in the Brassicaceae and some allies are the core molecules of one of the most researched such pathways. These natural products are enzymatically converted into isothiocyanates (ITCs) and occasionally other defensive volatile organic constituents (VOCs) upon fungal challenge or tissue disruption to protect the host against the stressor. The current review provides a comprehensive insight on the effects of the isothiocyanates on fungi, including, but not limited to mycorrhizal fungi and pathogens of Brassicaceae. In the review, our current knowledge on the following topics are summarized: direct antifungal activity and the proposed mechanisms of antifungal action, QSAR (quantitative structure-activity relationships), synergistic activity of ITCs with other agents, effects of ITCs on soil microbial composition and allelopathic activity. A detailed insight into the possible applications is also provided: the literature of biofumigation studies, inhibition of post-harvest pathogenesis and protection of various products including grains and fruits is also reviewed herein.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| |
Collapse
|
17
|
Almuhayawi SM, Almuhayawi MS, Al Jaouni SK, Selim S, Hassan AHA. Effect of Laser Light on Growth, Physiology, Accumulation of Phytochemicals, and Biological Activities of Sprouts of Three Brassica Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6240-6250. [PMID: 34033484 DOI: 10.1021/acs.jafc.1c01550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brassica sprouts are known as a good source of antimicrobial bioactive compounds such as phenolics and glucosinolates (GLs). We aim at understanding how He-Ne laser light treatment (632 nm, 5 mW) improves sprout growth and physiology and stimulates the accumulation of bioactive metabolites in three Brassica spp., i.e., mustard, cauliflower, and turnip. Moreover, how these changes consequently promote their biological activities. Laser light improved growth, photosynthesis, and respiration, which induced the accumulation of primary and secondary metabolites. Laser light boosted the levels of pigments, phenolics, and indole and aromatic precursors of GLs, which resulted in increased total GLs and glucoraphanin contents. Moreover, laser light induced the myrosinase activity to provoke GLs hydrolysis to bioactive sulforaphane. Interestingly, laser light also reduced the anti-nutrient content and enhanced the overall biological activities of treated sprouts including antioxidant, antibacterial, anti-inflammatory, and anticancer activities. Accordingly, laser light is a promising approach for boosting the accumulation of beneficial metabolites in Brassica sprouts and, subsequently, their biological activities.
Collapse
Affiliation(s)
- Saad M Almuhayawi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. 2014, Sakaka, Saudi Arabia
| | - Abdelrahim H A Hassan
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
18
|
Rashmi, More SK, Wang Q, Vomhof-DeKrey EE, Porter JE, Basson MD. ZINC40099027 activates human focal adhesion kinase by accelerating the enzymatic activity of the FAK kinase domain. Pharmacol Res Perspect 2021; 9:e00737. [PMID: 33715263 PMCID: PMC7955952 DOI: 10.1002/prp2.737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Focal adhesion kinase (FAK) regulates gastrointestinal epithelial restitution and healing. ZINC40099027 (Zn27) activates cellular FAK and promotes intestinal epithelial wound closure in vitro and in mice. However, whether Zn27 activates FAK directly or indirectly remains unknown. We evaluated Zn27 potential modulation of the key phosphatases, PTP-PEST, PTP1B, and SHP2, that inactivate FAK, and performed in vitro kinase assays with purified FAK to assess direct Zn27-FAK interaction. In human Caco-2 cells, Zn27-stimulated FAK-Tyr-397 phosphorylation despite PTP-PEST inhibition and did not affect PTP1B-FAK interaction or SHP2 activity. Conversely, in vitro kinase assays demonstrated that Zn27 directly activates both full-length 125 kDa FAK and its 35 kDa kinase domain. The ATP-competitive FAK inhibitor PF573228 reduced basal and ZN27-stimulated FAK phosphorylation in Caco-2 cells, but Zn27 increased FAK phosphorylation even in cells treated with PF573228. Increasing PF573228 concentrations completely prevented activation of 35 kDa FAK in vitro by a normally effective Zn27 concentration. Conversely, increasing Zn27 concentrations dose-dependently activated kinase activity and overcame PF573228 inhibition of FAK, suggesting the direct interactions of Zn27 with FAK may be competitive. Zn27 increased the maximal activity (Vmax ) of FAK. The apparent Km of the substrate also increased under laboratory conditions less relevant to intracellular ATP concentrations. These results suggest that Zn27 is highly potent and enhances FAK activity via allosteric interaction with the FAK kinase domain to increase the Vmax of FAK for ATP. Understanding Zn27 enhancement of FAK activity will be important to redesign and develop a clinical drug that can promote mucosal wound healing.
Collapse
Affiliation(s)
- Rashmi
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Shyam K More
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Emilie E Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Marc D Basson
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
19
|
Lv X, Wang Q, Wang X, Zheng X, Fan D, Espinoza‐Pinochet CA, Cespedes‐Acuña CL. Selection and microencapsulation of myrosinase enzyme from broccoli sprouts of different varieties and characteristics evaluation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingang Lv
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Qilei Wang
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Xiao Wang
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Xiaohua Zheng
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Xi'an PR China
| | | | - Carlos L. Cespedes‐Acuña
- Chemistry and Biotechnology of Bioactive Natural Products, Department of Basic Sciences Faculty of Sciences, Universidad del Bio Bio Chillan Chile
| |
Collapse
|
20
|
Lopez-Rodriguez NA, Gaytán-Martínez M, de la Luz Reyes-Vega M, Loarca-Piña G. Glucosinolates and Isothiocyanates from Moringa oleifera: Chemical and Biological Approaches. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:447-457. [PMID: 32909179 DOI: 10.1007/s11130-020-00851-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Alternative therapies, such as phytotherapy, are considered to improve the health status of people with chronic non-communicable diseases (CNCDs). In this regard, Moringa oleifera is currently being studied for its nutritional value and its total phenolic content. Besides phenolic compounds, the phytochemical composition is also of great interest. This composition is characterized by the presence of glucosinolates and isothiocyanates. Isothiocyanates formed by the biotransformation of Moringa glucosinolates contain an additional sugar in their chemical structure, which provides stability to these bioactive compounds over other isothiocyanates found in other crops. Both glucosinolates and isothiocyanates have been described as beneficial for the prevention and improvement of some chronic diseases. The content of glucosinolates in Moringa tissues can be enhanced by certain harvesting methods which in turn alters their final yield after extraction. This review aims to highlight certain features of glucosinolates and isothiocyanates from M. oleifera, such as their chemical structure, functionality, and main extraction and harvesting methods. Some of their health-promoting effects will also be addressed.
Collapse
Affiliation(s)
- Norma A Lopez-Rodriguez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - María de la Luz Reyes-Vega
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico.
| |
Collapse
|
21
|
Latronico T, Larocca M, Milella S, Fasano A, Rossano R, Liuzzi GM. Neuroprotective potential of isothiocyanates in an in vitro model of neuroinflammation. Inflammopharmacology 2020; 29:561-571. [PMID: 33196947 PMCID: PMC7997826 DOI: 10.1007/s10787-020-00772-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Isothiocyanates (ITCs), present as glucosinolate precursors in cruciferous vegetables, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of three different ITCs on ROS production and on the expression of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of various neurological diseases. Primary cultures of rat astrocytes were activated by LPS and simultaneously treated with different doses of Allyl isothiocyanate (AITC), 2-Phenethyl isothiocyanate (PEITC) and 2-Sulforaphane (SFN). Results showed that SFN and PEITC were able to counteract ROS production induced by H2O2. The zymographic analysis of cell culture supernatants evidenced that PEITC and SFN were the most effective inhibitors of MMP-9, whereas, only SFN significantly inhibited MMP-2 activity. PCR analysis showed that all the ITCs used significantly inhibited both MMP-2 and MMP-9 expression. The investigation on the mitogen-activated protein kinase (MAPK) signaling pathway demonstrated that ITCs modulate MMP transcription by inhibition of extracellular-regulated protein kinase (ERK) activity. Results of this study suggest that ITCs could be promising nutraceutical agents for the prevention and complementary treatment of neurological diseases associated with MMP involvement.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| | - Marilena Larocca
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Serafina Milella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Fasano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
22
|
Low pH Enhances the Glucosinolate-Mediated Yellowing of Takuan-zuke under Low Salt Conditions. Foods 2020; 9:foods9111524. [PMID: 33114067 PMCID: PMC7690678 DOI: 10.3390/foods9111524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
This study was performed to clarify the enhancement of the 4-methylthio-3-butenyl isothiocyanate induced yellowing of salted radish root (takuan-zuke) by low pH during short-term salt-aging at low temperature and low salinity. We used two different methods to prepare the dehydrated daikon prior to salt-aging: air-drying outdoors (hoshi takuan-zuke) or salting with a stone press (shio-oshi takuan-zuke). Low salt-aging at low temperature was carried out under pH control with citrate-phosphate buffer. The yellowing of both types of takuan-zuke was accelerated below pH 5, and the color of air-dried takuan-zuke was deeper than that of salt-pressed takuan-zuke. To elucidate this phenomenon, several previously reported yellowing-related compounds were analyzed by high-performance liquid chromatography. The result showed that the production of the primary pigment, 2-[3-(2-thioxopyrrolidin-3-ylidene)methyl]-tryptophan, was low compared with that in previous reports. Therefore, we suggest that an unknown pigment was generated through a previously unreported pathway.
Collapse
|
23
|
Effect of Ultrasound-Assisted Blanching on Myrosinase Activity and Sulforaphane Content in Broccoli Florets. Catalysts 2020. [DOI: 10.3390/catal10060616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sulforaphane (SFN) is a health-promoting compound occurring in broccoli. It is formed by action of myrosinase in a two-step reaction that also yields undesirable compounds such as nitriles and isothionitriles. Different techniques affecting enzyme activity and tissue integrity were proposed to increase SFN content in the edible parts and discards of broccoli. Ultrasound processing is an emerging technology that produces these effects in foods, but has been poorly explored in broccoli so far. The aim of this work was to study the effect of ultrasound-assisted blanching on myrosinase activity and SFN content in broccoli florets. Myrosinase showed first-order inactivation kinetics in blanching at different temperatures with and without ultrasound processing. The inactivation rate was faster using ultrasound, with kinetic constants two orders of magnitude higher than without ultrasound. The activation energy (Ea) in traditional blanching (57.3 kJ mol−1) was higher than in ultrasound-assisted blanching (15.8 kJ mol−1). Accordingly, ultrasound accelerates myrosinase inactivation. The blanching time and temperature significantly affected myrosinase activity and SFN content. At 60 °C and 4 min of ultrasound-assisted blanching, myrosinase activity was minimum and SFN content was the highest. These findings may help to design SFN enrichment processes and will contribute to the valorization of agro-industrial wastes.
Collapse
|
24
|
Almuhayawi MS, AbdElgawad H, Al Jaouni SK, Selim S, Hassan AHA, Khamis G. Elevated CO 2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts. Food Chem 2020; 328:127102. [PMID: 32512468 DOI: 10.1016/j.foodchem.2020.127102] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Sprouting process enhances plant bioactive compounds. Broccoli (Brassica oleracea L) sprouts are well known for their high levels of glucosinolates (GLs), amino acids, and antioxidants, which offer outstanding biological activities with positive impacts on plant metabolism. Elevated CO2 (eCO2, 620 ppm) was applied for 9 days to further improve nutritive and health-promoting values of three cultivars of broccoli sprouts i.e., Southern star, Prominence and Monotop. eCO2 improved sprouts growth and induced GLs accumulation e.g., glucoraphanin, possibly through amino acids production e.g., high methionine and tryptophan. There were increases in myrosinase activity, which stimulated GLs hydrolysis to yield health-promoting sulforaphane. Interestingly, low levels of ineffective sulforaphane nitrile were detected and positively correlated with reduced epithiospecifier protein after eCO2 treatment. High glucoraphanin and sulforaphane levels in eCO2 treated sprouts improved the anticarcinogenic and anti-inflammatory properties of their extracts. In conclusion, eCO2 treatment enriches broccoli sprouts with health-promoting metabolites and bioactivities.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Department of Clinical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt.
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. 2014, Saudi Arabia; Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Abdelrahim H A Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Galal Khamis
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Covalent immobilization of thioglucosidase from radish seeds for continuous preparation of sulforaphene. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Bertóti R, Böszörményi A, Alberti Á, Béni S, M-Hamvas M, Szőke É, Vasas G, Gonda S. Variability of Bioactive Glucosinolates, Isothiocyanates and Enzyme Patterns in Horseradish Hairy Root Cultures Initiated from Different Organs. Molecules 2019; 24:E2828. [PMID: 31382520 PMCID: PMC6696319 DOI: 10.3390/molecules24152828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Horseradish hairy root cultures are suitable plant tissue organs to study the glucosinolate-myrosinase-isothiocyanate system and also to produce the biologically active isothiocyanates and horseradish peroxidase, widely used in molecular biology. Fifty hairy root clones were isolated after Agrobacterium rhizogenes infection of surface sterilized Armoracia rusticana petioles and leaf blades, from which 21 were viable after antibiotic treatment. Biomass properties (e.g. dry weight %, daily growth index), glucosinolate content (analyzed by liquid chromatography-electronspray ionization-mass spectrometry (LC-ESI-MS/MS)), isothiocyanate and nitrile content (analyzed by gas chromatography-mass spectrometry (GC-MS)), myrosinase (on-gel detection) and horseradish peroxidase enzyme patterns (on-gel detection and spectrophotometry), and morphological features were examined with multi-variable statistical analysis. In addition to the several positive and negative correlations, the most outstanding phenomenon was many parameters of the hairy root clones showed dependence on the organ of origin. Among others, the daily growth index, sinigrin, glucobrassicin, 3-phenylpropionitrile, indole-3-acetonitrile and horseradish peroxidase values showed significantly higher levels in horseradish hairy root cultures initiated from leaf blades.
Collapse
Affiliation(s)
- Regina Bertóti
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Andrea Böszörményi
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Ágnes Alberti
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Márta M-Hamvas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Éva Szőke
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary.
| |
Collapse
|
27
|
Bhat R, Vyas D. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions. Crit Rev Biotechnol 2019; 39:508-523. [PMID: 30939944 DOI: 10.1080/07388551.2019.1576024] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucosinolate-myrosinase is a substrate-enzyme defense mechanism present in Brassica crops. This binary system provides the plant with an efficient system against herbivores and pathogens. For humans, it is well known for its anti-carcinogenic, anti-inflammatory, immunomodulatory, anti-bacterial, cardio-protective, and central nervous system protective activities. Glucosinolate and myrosinase are spatially present in different cells that upon tissue disruption come together and result in the formation of a variety of hydrolysis products with diverse physicochemical and biological properties. The myrosinase-catalyzed reaction starts with cleavage of the thioglucosidic linkage resulting in release of a D-glucose and an unstable thiohydroximate-O-sulfate. The outcome of this thiohydroximate-O-sulfate has been shown to depend on the structure of the glucosinolate side chain, the presence of supplementary proteins known as specifier proteins and/or on the physiochemical condition. Myrosinase was first reported in mustard seed during 1939 as a protein responsible for release of essential oil. Until this date, myrosinases have been characterized from more than 20 species of Brassica, cabbage aphid, and many bacteria residing in the human intestine. All the plant myrosinases are reported to be activated by ascorbic acid while aphid and bacterial myrosinases are found to be either neutral or inhibited. Myrosinase catalyzes hydrolysis of the S-glycosyl bond, O-β glycosyl bond, and O-glycosyl bond. This review summarizes information on myrosinase, an essential component of this binary system, including its structural and molecular properties, mechanism of action, and its regulation and will be beneficial for the research going on the understanding and betterment of the glucosinolate-myrosinase system from an ecological and nutraceutical perspective.
Collapse
Affiliation(s)
- Rohini Bhat
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| | - Dhiraj Vyas
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| |
Collapse
|
28
|
A Simple Method for On-Gel Detection of Myrosinase Activity. Molecules 2018; 23:molecules23092204. [PMID: 30200303 PMCID: PMC6225493 DOI: 10.3390/molecules23092204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Myrosinase is an enzyme present in many functional foods and spices, particularly in Cruciferous vegetables. It hydrolyses glucosinolates which thereafter rearrange into bioactive volatile constituents (isothiocyanates, nitriles). We aimed to develop a simple reversible method for on-gel detection of myrosinase. Reagent composition and application parameters for native PAGE and SDS-PAGE gels were optimized. The proposed method was successfully applied to detect myrosinase (or sulfatase) on-gel: the detection solution contains methyl red which gives intensive red bands where the HSO₄- is enzymatically released from the glucosinolates. Subsequently, myrosinase was successfully distinguished from sulfatase by incubating gel bands in a derivatization solution and examination by LC-ESI-MS: myrosinase produced allyl isothiocyanate (detected in conjugate form) while desulfo-sinigrin was released by sulfatase, as expected. After separation of 80 µg protein of crude extracts of Cruciferous vegetables, intensive color develops within 10 min. On-gel detection was found to be linear between 0.031⁻0.25 U (pure Sinapis alba myrosinase, R² = 0.997). The method was successfully applied to detection of myrosinase isoenzymes from horseradish, Cruciferous vegetables and endophytic fungi of horseradish as well. The method was shown to be very simple, rapid and efficient. It enables detection and partial characterization of glucosinolate decomposing enzymes without protein purification.
Collapse
|
29
|
Román J, Castillo A, Cottet L, Mahn A. Kinetic and structural study of broccoli myrosinase and its interaction with different glucosinolates. Food Chem 2018; 254:87-94. [PMID: 29548477 DOI: 10.1016/j.foodchem.2018.01.179] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 11/17/2022]
Abstract
Myrosinase is a glycosylated enzyme present in the Brassicaceae family that catalyzes the hydrolysis of glucoraphanin to yield sulforaphane, recognized as a health-promoting compound found in cruciferous foods. Broccoli myrosinase has been poorly characterized. In this work, the enzyme was purified from broccoli florets and its kinetic behaviour was analyzed. The cDNA of broccoli myrosinase was isolated and sequenced to obtain the amino acids sequence of the enzyme. A three-dimensional structural model of a broccoli myrosinase subunit was built and used to perform molecular docking simulations with glucoraphanin and other glucosinolates. Kinetic data were adjusted to the Two-Binding Sites Model that describes substrate inhibition, obtaining R2 higher than 97%. The docking simulations confirmed the existence of two substrate-binding sites in the monomer, and allowed identifying the residues that interact with the substrate in each site. Our findings will help to design strategies to better exploit the health-promoting properties of broccoli.
Collapse
Affiliation(s)
- Juan Román
- Doctorate Program in Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Chile.
| | - Antonio Castillo
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile.
| | - Luis Cottet
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile.
| | - Andrea Mahn
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Chile.
| |
Collapse
|
30
|
Glucoraphenin, sulforaphene, and antiproliferative capacity of radish sprouts in germinating and thermal processes. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2764-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Gonda S, Kiss-Szikszai A, Szűcs Z, Nguyen NM, Vasas G. Myrosinase Compatible Simultaneous Determination of Glucosinolates and Allyl Isothiocyanate by Capillary Electrophoresis Micellar Electrokinetic Chromatography (CE-MEKC). PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:191-8. [PMID: 27313156 DOI: 10.1002/pca.2615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 05/05/2023]
Abstract
INTRODUCTION The functional food Cruciferous vegetables contain glucosinolates which are decomposed by the myrosinase enzyme upon tissue damage. The isothiocyanates are the most frequent decomposition products. Because of their various bioactivities, these compounds and the myrosinase is of high interest to many scientific fields. OBJECTIVE Development of a capillary electrophoresis method capable of myrosinase-compatible, simultaneous quantification of glucosinolates and isothiocyanates. METHODS Capillary electrochromatography parameters were optimised, followed by optimisation of a myrosinase-compatible derivatisation procedure for isothiocyanates. Vegetable extracts (Brussels sprouts, horseradish, radish and watercress) were tested for myrosinase activity, glucosinolate content and isothiocyanate conversion rate. Allyl isothiocyanate was quantified in some food products. RESULTS The method allows quantification of sinigrin, gluonasturtiin and allyl isothiocyanate after myrosinase compatible derivatisation in-vial by mercaptoacetic acid. The chromatograhpic separation takes 2.5 min (short-end injection) or 15 min (long-end injection). For the tested vegetables, measured myrosinase activity was between 0.960-27.694 and 0.461-26.322 µmol/min/mg protein, glucosinolate content was between 0-2291.8 and 0-248.5 µg/g fresh weight for sinigrin and gluconastrutiin, respectively. The possible specificity of plants to different glucosinolates was also shown. Allyl isothiocyanate release rate was different in different vegetables (73.13 - 102.13%). The method could also be used for quantification of allyl isothiocyanate from food products. CONCLUSIONS The presented capillary electrophoresis method requires a minimal amount of sample and contains only a few sample preparation steps, and can be used in several applications (glucosinolate determination, myrosinase activity measurement, isothiocyanate release estimation). Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Division of Instrumental Analysis, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Nhat Minh Nguyen
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| |
Collapse
|
32
|
Platz S, Kühn C, Schiess S, Schreiner M, Kemper M, Pivovarova O, Pfeiffer AFH, Rohn S. Bioavailability and metabolism of benzyl glucosinolate in humans consuming Indian cress (Tropaeolum majus L.). Mol Nutr Food Res 2015; 60:652-60. [PMID: 26610401 DOI: 10.1002/mnfr.201500633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022]
Abstract
SCOPE Benzyl isothiocyanate (BITC), which occurs in Brassicales, has demonstrated chemopreventive potency and cancer treatment properties in cell and animal studies. However, fate of BITC in human body is not comprehensively studied. Therefore, the present human intervention study investigates the metabolism of the glucosinolate (GSL) glucotropaeolin and its corresponding BITC metabolites. Analyzing BITC metabolites in plasma and urine should reveal insights about resorption, metabolism, and excretion. METHODS AND RESULTS Fifteen healthy men were randomly recruited for a cross-over study and consumed 10 g freeze-dried Indian cress as a liquid preparation containing 1000 μmol glucotropaeolin. Blood and urine samples were taken at several time points and investigated by LC-ESI-MS/MS after sample preparation using SPE. Plasma contained high levels of BITC-glutathione (BITC-GSH), BITC-cysteinylglycine (BITC-CysGly), and BITC-N-acetyl-L-cysteine (BITC-NAC) 1-5 h after ingestion, with BITC-CysGly appearing as the main metabolite. Compared to human plasma, the main urinary metabolites were BITC-NAC and BITC-Cys, determined 4-6 h after ingestion. CONCLUSION This study confirms that consumption of Indian cress increases the concentration of BITC metabolites in human plasma and urine. The outcome of this human intervention study supports clinical research dealing with GSL-containing innovative food products or pharmaceutical preparations.
Collapse
Affiliation(s)
- Stefanie Platz
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Carla Kühn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Sonja Schiess
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Monika Schreiner
- Department Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren/Erfurt e.V, Großbeeren, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Olga Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
33
|
Bhat R, Kaur T, Khajuria M, Vyas R, Vyas D. Purification and Characterization of a Novel Redox-Regulated Isoform of Myrosinase (β-Thioglucoside Glucohydrolase) from Lepidium latifolium L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10218-10226. [PMID: 26527478 DOI: 10.1021/acs.jafc.5b04468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Myrosinase (ExPASy entry EC 3.2.1.147) is involved in the hydrolysis of glucosinolates to isothiocyanates, nitriles, and thiocyanates that are responsible for various ecological and health benefits. Myrosinase was purified from the leaves of Lepidium latifolium, a high-altitude plant, to homogeneity in a three-step purification process. Purified enzyme exists as dimer in native form (∼160 kDa) with a subunit size of ∼70 kDa. The enzyme exhibited maximum activity at pH 6.0 and 50 °C. With sinigrin as substrate, the enzyme showed Km and Vmax values of 171 ± 23 μM and 0.302 μmol min(-1) mg(-1), respectively. The enzyme was found to be redox-regulated, with an increase in Vmax and Kcat in the presence of GSH. Reduced forms of the enzyme were found to be more active. This thiol-regulated kinetic behavior of myrosinase signifies enzyme's strategy to fine-tune its activity in different redox environments, thus regulating its biological effects.
Collapse
Affiliation(s)
- Rohini Bhat
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Tarandeep Kaur
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Manu Khajuria
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Ruchika Vyas
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| |
Collapse
|
34
|
Yin L, Chen C, Chen G, Cao B, Lei J. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey). Molecules 2015; 20:20254-67. [PMID: 26569208 PMCID: PMC6332273 DOI: 10.3390/molecules201119688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/18/2023] Open
Abstract
Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.
Collapse
Affiliation(s)
- Ling Yin
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| | - Changming Chen
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| | - Guoju Chen
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| | - Bihao Cao
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| | - Jianjun Lei
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Estevam EC, Griffin S, Nasim MJ, Zieliński D, Aszyk J, Osowicka M, Dawidowska N, Idroes R, Bartoszek A, Jacob C. Inspired by Nature: The use of Plant-derived Substrate/Enzyme Combinations to Generate Antimicrobial Activity in situ. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The last decade has witnessed a renewed interest in antimicrobial agents. Plants have received particular attention and frequently rely on the spontaneous enzymatic conversion of an inactive precursor to an active agent. Such two-component substrate/enzyme defence systems can be reconstituted ex vivo. Here, the alliin/alliinase system from garlic seems to be rather effective against Saccharomyces cerevisiae, whilst the glucosinolate/myrosinase system from mustard appears to be more active against certain bacteria. Studies with myrosinase also confirm that enzyme and substrate can be added sequentially. Ultimately, such binary systems hold considerable promise and may be employed in a medical or agricultural context.
Collapse
Affiliation(s)
| | - Sharoon Griffin
- Bioorganic Chemistry, Department of Pharmacy, Saarland University, Saarbruecken, Saarland, Germany
| | - Muhammad Jawad Nasim
- Bioorganic Chemistry, Department of Pharmacy, Saarland University, Saarbruecken, Saarland, Germany
| | - Dariusz Zieliński
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Justyna Aszyk
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Magdalena Osowicka
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Dawidowska
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Rinaldi Idroes
- Pharmacy Department, Chemistry Department, Syiah Kuala University, Banda Aceh, Indonesia
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Claus Jacob
- Bioorganic Chemistry, Department of Pharmacy, Saarland University, Saarbruecken, Saarland, Germany
| |
Collapse
|
36
|
Antonious GF. Glucosinolates in collard greens grown under three soil management practices. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:368-373. [PMID: 25826105 DOI: 10.1080/03601234.2015.1000185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glucosinolates (GSLs, β-D-thioglucoside-N-hydroxysulfates) are polar compounds present in varying amounts in members of the Brassicaceae family. They suppress soil-borne pests due to the biofumigant properties of the highly toxic isothiocyanates present in Brassica vegetables. The objectives of this investigation were to: (1) assess variation in GSLs concentrations among collard plants grown under three soil management practices: sewage sludge (SS) mixed with native soil, chicken manure (CM) mixed with native soil, and no-mulch (NM) native soil, (2) quantify GSLs concentrations in collard roots, leaves, and stems at harvest for potential use of their crude extracts in plant protection, and (3) assess myrosinase activity in soil amended with CM and SS mixed with native soil. Separation of GSLs was accomplished by adsorption on a DEAE-Sephadex ion exchange resin using disposable pipette tips filled with DEAE, a weak base, with a net positive charge when ionized and exchange anions such as GSLs (hydrophilic plant secondary metabolites). Quantification of total GSLs was based on inactivation of collard endogenous myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase and colorimetric determination of the liberated glucose moiety. Across all treatments, SS and CM increased soil organic matter content from 2.2% in native soil to 4.2 and 6.5%, respectively. GSLs concentrations were significantly greater in collard leaves (30.9 µmoles g(-1) fresh weight) compared to roots and stems (7.8 and 1.2 µmoles g(-1) fresh weight), respectively. Leaves of collard grown in soil amended with SS contained the greatest concentrations of GSLs compared to leaves of plants grown in CM and NM treatments. Accordingly, leaves of collard plants grown in soil amended with SS could play a significant role in sustainable agriculture as alternative tools for soil-borne disease management in conventional and organic agriculture.
Collapse
Affiliation(s)
- George F Antonious
- a Division of Environmental Studies, College of Agriculture, Food Science, and Sustainable Systems , Kentucky State University , Frankfort , Kentucky , USA
| |
Collapse
|
37
|
Mahn A, Angulo A, Cabañas F. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11666-11671. [PMID: 25390544 DOI: 10.1021/jf504957c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myrosinase (β-thioglucosidase glucohydrolase, EC 3.2.1.147) from broccoli (Brassica oleracea var. italica) was purified by ammonium sulfate precipitation followed by concanavalin A affinity chromatography, with an intermediate dialysis step, resulting in 88% recovery and 1318-fold purification. These are the highest values reported for the purification of any myrosinase. The subunits of broccoli myrosinase have a molecular mass of 50-55 kDa. The native molecular mass of myrosinase was 157 kDa, and accordingly, it is composed of three subunits. The maximum activity was observed at 40 °C and at pH below 5.0. Kinetic assays demonstrated that broccoli myrosinase is subjected to substrate (sinigrin) inhibition. The Michaelis-Menten model, considering substrate inhibition, gave Vmax equal to 0.246 μmol min(-1), Km equal to 0.086 mM, and K(I) equal to 0.368 mM. This is the first study about purification and characterization of broccoli myrosinase.
Collapse
Affiliation(s)
- Andrea Mahn
- Department of Chemical Engineering, University of Santiago of Chile , Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | | | | |
Collapse
|
38
|
Olaimat AN, Sobhi B, Holley RA. Influence of temperature, glucose, and iron on sinigrin degradation by Salmonella and Listeria monocytogenes. J Food Prot 2014; 77:2133-8. [PMID: 25474062 DOI: 10.4315/0362-028x.jfp-14-210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Factors, including pH, temperature, glucose concentration, and iron compounds, affect the activity of plant myrosinase and, consequently, endogenous glucosinolate degradation. These factors also may affect glucosinolate degradation by bacterial myrosinase. Therefore, this study examined the effect of temperature (4 to 21°C), glucose (0.05 to 1.0%), and iron (10 mM ferrous or ferric) on sinigrin degradation by Salmonella or Listeria monocytogenes cocktails in Mueller-Hinton broth and the effect of sinigrin degradation on bacterial viability. The degradation of sinigrin by both pathogens increased with higher temperatures (21 > 10 > 4°C). Salmonella and L. monocytogenes cocktails hydrolyzed 59.1 and 53.2% of sinigrin, respectively, at 21°C up to 21 days. Both iron compounds significantly enhanced sinigrin degradation by the pathogens. On day 7, sinigrin was not detected when the Salmonella cocktail was cultured with ferrous iron or when the L. monocytogenes cocktail was cultured in Mueller-Hinton broth containing ferric iron. In contrast, ferric and ferrous iron inhibited the activity of 0.002 U/ml myrosinase from white mustard by 63 and 35%, respectively, on day 1. Salmonella and L. monocytogenes cocktails were able to degrade >80% of sinigrin at 0.05 and 0.1% glucose; however, 0.25 to 1.0% glucose significantly reduced sinigrin degradation. Although both pathogens significantly degraded sinigrin, the allyl isothiocyanate (AITC) recoverable was ≤6.2 ppm, which is not inhibitory to Salmonella or L. monocytogenes. It is probable that the gradual hydrolysis of sinigrin to form AITC either did not produce an inhibitory level of AITC or the AITC formed was unstable in the aqueous medium and rapidly decomposed to new compounds that were less bactericidal against the pathogens.
Collapse
Affiliation(s)
- Amin N Olaimat
- Department of Food Science, Faculty of Agriculture and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Babak Sobhi
- Department of Food Science, Faculty of Agriculture and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Richard A Holley
- Department of Food Science, Faculty of Agriculture and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.
| |
Collapse
|
39
|
Gafrikova M, Galova E, Sevcovicova A, Imreova P, Mucaji P, Miadokova E. Extract from Armoracia rusticana and its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide. Molecules 2014; 19:3160-72. [PMID: 24637991 PMCID: PMC6271614 DOI: 10.3390/molecules19033160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
DNA damage prevention is an important mechanism involved in cancer prevention by dietary compounds. Armoracia rusticana is cultivated mainly for its roots that are used in the human diet as a pungent spice. The roots represent rich sources of biologically active phytocompounds, which are beneficial for humans. In this study we investigated the modulation of H₂O₂ genotoxicity using the A. rusticana root aqueous extract (AE) and two flavonoids (kaempferol or quercetin). Human lymphocytes pre-treated with AE, kaempferol and quercetin were challenged with H₂O₂ and the DNA damage was assessed by the comet assay. At first we assessed a non-genotoxic concentration of AE and flavonoids, respectively. In lymphocytes challenged with H₂O₂ we proved that the 0.0025 mg·mL⁻¹ concentration of AE protected human DNA. It significantly reduced H₂O₂-induced oxidative damage (from 78% to 35.75%). Similarly, a non-genotoxic concentration of kaempferol (5 μg·mL⁻¹) significantly diminished oxidative DNA damage (from 83.3% to 19.4%), and the same concentration of quercetin also reduced the genotoxic effect of H₂O₂ (from 83.3% to 16.2%). We conclude that AE, kaempferol and quercetin probably act as antimutagens. The molecular mechanisms underlying their antimutagenic activity might be explained by their antioxidant properties.
Collapse
Affiliation(s)
- Michala Gafrikova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| | - Petronela Imreova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| | - Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojárov 10, Bratislava 832 32, Slovakia.
| | - Eva Miadokova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| |
Collapse
|
40
|
Loebers A, Müller-Uri F, Kreis W. A young root-specific gene (ArMY2) from horseradish encoding a MYR II myrosinase with kinetic preference for the root-specific glucosinolate gluconasturtiin. PHYTOCHEMISTRY 2014; 99:26-35. [PMID: 24333031 DOI: 10.1016/j.phytochem.2013.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
The pungent taste of horseradish is caused by isothiocyanates which are released from glucosinolates by myrosinases. These enzymes are encoded by genes belonging to one of two subfamilies, termed MYR I and MYR II, respectively. A MYR II-type myrosinase gene was identified for the first time in horseradish. The gene termed ArMY2 was only expressed in young roots. A full-length cDNA encoding a myrosinase termed ArMy2 was isolated and heterologously expressed in Pichia pastoris. The recombinant His-tagged enzyme was characterized biochemically. Substrate affinity was 5 times higher towards gluconasturtiin than towards sinigrin. Gluconasturtiin was found to be the most abundant glucosinolate in young horseradish roots while sinigrin dominated in storage roots and leaves. This indicates that a specialized glucosinolate-myrosinase defense system might be active in young roots.
Collapse
Affiliation(s)
- Andreas Loebers
- Department Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Frieder Müller-Uri
- Department Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Wolfgang Kreis
- Department Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany; ECROPS, Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossplatz 4, D-91054 Erlangen, Germany.
| |
Collapse
|
41
|
Wang Y, Pan Y, Liu Z, Zhu X, Zhai L, Xu L, Yu R, Gong Y, Liu L. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. BMC Genomics 2013; 14:836. [PMID: 24279309 PMCID: PMC4046679 DOI: 10.1186/1471-2164-14-836] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022] Open
Abstract
Background Radish (Raphanus sativus L.), is an important root vegetable crop worldwide. Glucosinolates in the fleshy taproot significantly affect the flavor and nutritional quality of radish. However, little is known about the molecular mechanisms underlying glucosinolate metabolism in radish taproots. The limited availability of radish genomic information has greatly hindered functional genomic analysis and molecular breeding in radish. Results In this study, a high-throughput, large-scale RNA sequencing technology was employed to characterize the de novo transcriptome of radish roots at different stages of development. Approximately 66.11 million paired-end reads representing 73,084 unigenes with a N50 length of 1,095 bp, and a total length of 55.73 Mb were obtained. Comparison with the publicly available protein database indicates that a total of 67,305 (about 92.09% of the assembled unigenes) unigenes exhibit similarity (e –value ≤ 1.0e-5) to known proteins. The functional annotation and classification including Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the main activated genes in radish taproots are predominately involved in basic physiological and metabolic processes, biosynthesis of secondary metabolite pathways, signal transduction mechanisms and other cellular components and molecular function related terms. The majority of the genes encoding enzymes involved in glucosinolate (GS) metabolism and regulation pathways were identified in the unigene dataset by targeted searches of their annotations. A number of candidate radish genes in the glucosinolate metabolism related pathways were also discovered, from which, eight genes were validated by T-A cloning and sequencing while four were validated by quantitative RT-PCR expression profiling. Conclusions The ensuing transcriptome dataset provides a comprehensive sequence resource for molecular genetics research in radish. It will serve as an important public information platform to further understanding of the molecular mechanisms involved in biosynthesis and metabolism of the related nutritional and flavor components during taproot formation in radish. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-836) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P,R, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nguyen NM, Gonda S, Vasas G. A Review on the Phytochemical Composition and Potential Medicinal Uses of Horseradish (Armoracia rusticana) Root. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2013.790047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Tian M, Bi W, Row KH. Multi-phase extraction of glycoraphanin from broccoli using aminium ionic liquid-based silica. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:81-86. [PMID: 22777845 DOI: 10.1002/pca.2386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Glucosinolates, a class of phytochemicals found in broccoli, have attracted recent interest due to the potential health benefits associated with their dietary intake. Glucoraphanin, the most common glucosinolate in broccoli can be converted to a known cancer chemopreventive agent. Multi-phase extraction in solid-phase extraction cartridges was developed to simultaneously extract and separate this compound. OBJECTIVE Multi-phase extraction with functionalised ionic liquid-based silica as a sorbent was used to simultaneously extract and separate glucoraphanin from broccoli. METHODOLOGY The sorbent and broccoli sample were packed into a single cartridge, and a fixed volume of water was then used to extract and remove the target compound from the sample to the sorbent over 15 repetitions. The sorbent was then washed with n-hexane to remove any interference and the target compound was eluted with water-1% acetic acid (vol.). RESULTS Under the optimised condition, 0.038 mg/g of glucoraphanin was obtained by multi-phase extraction with 0.2 g of sorbent. CONCLUSION The adsorption isotherm allowed investigation of the interactions between the sorbent and target compound and provided evidence for the accuracy of this method. The low deviation error, small amount of solvents required, highly selective separation and stability of the method justify further research.
Collapse
Affiliation(s)
- Minglei Tian
- Department of Chemical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Ku, Incheon 402-751, Korea
| | | | | |
Collapse
|
44
|
Miranda Rossetto MR, Shiga TM, Vianello F, Pereira Lima GP. Analysis of total glucosinolates and chromatographically purified benzylglucosinolate in organic and conventional vegetables. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Nong H, Zhang JM, Li DQ, Wang M, Sun XP, Zhu YJ, Meijer J, Wang QH. Characterization of a novel β-thioglucosidase CpTGG1 in Carica papaya and its substrate-dependent and ascorbic acid-independent O-β-glucosidase activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:879-90. [PMID: 20883440 DOI: 10.1111/j.1744-7909.2010.00988.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant thioglucosidases are the only known S-glycosidases in the large superfamily of glycosidases. These enzymes evolved more recently and are distributed mainly in Brassicales. Thioglucosidase research has focused mainly on the cruciferous crops due to their economic importance and cancer preventive benefits. In this study, we cloned a novel myrosinase gene, CpTGG1, from Carica papaya Linnaeus. and showed that it was expressed in the aboveground tissues in planta. The recombinant CpTGG1 expressed in Pichia pastoris catalyzed the hydrolysis of both sinigrin and glucotropaeolin (the only thioglucoside present in papaya), showing that CpTGG1 was indeed a functional myrosinase gene. Sequence alignment analysis indicated that CpTGG1 contained all the motifs conserved in functional myrosinases from crucifers, except for two aglycon-binding motifs, suggesting substrate priority variation of the non-cruciferous myrosinases. Using sinigrin as substrate, the apparent K(m) and V(max) values of recombinant CpTGG1 were 2.82 mM and 59.9 μmol min⁻¹ mg protein⁻¹ , respectively. The K(cat) /K(m) value was 23 s⁻¹ mM⁻¹ . O-β-glucosidase activity towards a variety of substrates were tested, CpTGG1 displayed substrate-dependent and ascorbic acid-independent O-β-glucosidase activity towards 2-nitrophenyl-β-D-glucopyranoside and 4-nitrophenyl-β-D-glucopyranoside, but was inactive towards glucovanillin and n-octyl-β-D-glucopyranoside. Phylogenetic analysis indicated CpTGG1 belongs to the MYR II subfamily of myrosinases.
Collapse
Affiliation(s)
- Han Nong
- National Center for Tropical Crops Engineering and Technology Research, Spice and Beverage Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wannin, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chankhamjon K, Petsom A, Sawasdipuksa N, Sangvanich P. Hemagglutinating activity of proteins from Parkia speciosa seeds. PHARMACEUTICAL BIOLOGY 2010; 48:81-88. [PMID: 20645760 DOI: 10.3109/13880200903046195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins from Parkia speciosa Hassk. (Fabaceae) seeds were extracted and stepwise precipitated using ammonium sulfate. Proteins precipitated with 25% ammonium sulfate were separated by affinity chromatography on Affi-Gel Blue gel followed by protein liquid chromatography on Superdex 200. The protein Gj, which was identified as a protein similar to putative aristolochene synthase, 3'-partial from Oryza sativa L. (Poaceae), had hemagglutinating activity of 0.39 mug/muL. Moreover, fraction C2 from the proteins precipitated with 60% ammonium sulfate, separated by lectin-specific adsorption chromatography using Con A Sepharose, had hemagglutinating activity of 1.17 mug/muL. Using gel electrophoresis, two proteins C2a and C2b were separated, having molecular weights of 45 kDa and 23 kDa, respectively. From protein identification, C2a was found to be similar to the hypothetical protein B1342F01.11 from Oryza sativa, and C2b was similar to the hypothetical protein At1g51560 from Arabidopsis thaliana (L.) Heynh. (Brassicaceae).
Collapse
Affiliation(s)
- Kanokwan Chankhamjon
- Research Center for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
47
|
Andersson D, Chakrabarty R, Bejai S, Zhang J, Rask L, Meijer J. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. PHYTOCHEMISTRY 2009; 70:1345-54. [PMID: 19703694 DOI: 10.1016/j.phytochem.2009.07.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 05/20/2023]
Abstract
Myrosinases (EC 3.2.1.147) are beta-thioglucoside glucosidases present in Brassicaceae plants. These enzymes serve to protect plants against pathogens and insect pests by initiating breakdown of the secondary metabolites glucosinolates into toxic products. Several forms of myrosinases are present in plants but the properties and role of different isoenzymes are not well understood. The dicot plant model organism Arabidopsis thaliana seems to contain six myrosinase genes (TGG1-TGG6). In order to compare the different myrosinases, cDNAs corresponding to TGG1 from leaves and TGG4 and TGG5 from roots were cloned and overexpressed in Pichia pastoris. The His-tagged recombinant proteins were purified using affinity chromatography and the preparations were homogenous according to SDS-PAGE analysis. Myrosinase activity was confirmed for all forms and compared with respect to catalytic activity towards the allyl-glucosinolate sinigrin. There was a 22-fold difference in basal activity among the myrosinases. The enzymes were active in a broad pH range, are rather thermostable and active in a wide range of salt concentrations but sensitive to high salt concentrations. The myrosinases showed different activation-inhibition responses towards ascorbic acid with maximal activity around 0.7-1 mM. No activity was registered towards desulphosinigrin and this compound did not inhibit myrosinase activity towards sinigrin. All myrosinases also displayed O-beta-glucosidase activity, although with lower efficiency compared to the myrosinase activity. The differences in catalytic properties among myrosinase isozymes for function in planta are discussed.
Collapse
Affiliation(s)
- Derek Andersson
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Box 7080, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Islam MM, Tani C, Watanabe-Sugimoto M, Uraji M, Jahan MS, Masuda C, Nakamura Y, Mori IC, Murata Y. Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells. PLANT & CELL PHYSIOLOGY 2009; 50:1171-5. [PMID: 19433491 DOI: 10.1093/pcp/pcp066] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Thioglucoside glucohydrolase (myrosinase), TGG1, is a strikingly abundant protein in Arabidopsis guard cells. We investigated responses of tgg1-3, tgg2-1 and tgg1-3 tgg2-1 mutants to abscisic acid (ABA) and methyl jasmonate (MeJA) to clarify whether two myrosinases, TGG1 and TGG2, function during stomatal closure. ABA, MeJA and H(2)O(2) induced stomatal closure in wild type, tgg1-3 and tgg2-1, but failed to induce stomatal closure in tgg1-3 tgg2-1. All mutants and wild type showed Ca(2+)-induced stomatal closure and ABA-induced reactive oxygen species (ROS)production. A model is discussed in which two myrosinases redundantly function downstream of ROS production and upstream of cytosolic Ca(2+) elevation in ABA and MeJA signaling in guard cells.
Collapse
Affiliation(s)
- Mohammad Mahbub Islam
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pang Q, Chen S, Li L, Yan X. Characterization of glucosinolate--myrosinase system in developing salt cress Thellungiella halophila. PHYSIOLOGIA PLANTARUM 2009; 136:1-9. [PMID: 19508363 DOI: 10.1111/j.1399-3054.2009.01211.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Glucosinolates are specialized plant metabolites derived from amino acids. They can be hydrolyzed by myrosinases into different degradation products, which have a variety of biological activities. In this study, the compositions and contents of glucosinolates in salt cress (Thellungiella halophila) at different developmental stages were analyzed by high performance liquid chromatography and mass spectrometry (HPLC-MS). Myrosinase activities were also measured. Seven glucosinolates were identified in T. halophila throughout its life cycle. The glucosinolate profiles varied significantly among different tissues. The roots at stage 4 contained the highest concentrations of total, aromatic and indole glucosinolates among all tissues. Whereas roots, flowers and siliques contained all seven glucosinolates, seeds contained only four aliphatic glucosinolates. During development, the concentrations also displayed significant changes. From seeds to cotyledons and from stage 4 roots to stage 5 roots, there were dramatic declines of glucosinolates, which correlated well with changes in myrosinase activities. In other tissues, myrosinase activity alone could not explain the glucosinolate concentration changes. Certain tissues of T. halophila contained Arabidopsis myrosinase TGG1 and TGG2 orthologs. The molecular basis and functional significance of our findings are discussed here.
Collapse
Affiliation(s)
- Qiuying Pang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | | | | | | |
Collapse
|
50
|
Antonious GF, Bomford M, Vincelli P. Screening Brassica species for glucosinolate content. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2009; 44:311-6. [PMID: 19280485 DOI: 10.1080/03601230902728476] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Glucosinolates (GSLs), a group of compounds found in Brassica plants, are toxic to some soil-borne plant pathogens because of the toxicity of their hydrolysis products, isothiocyanates. Other phytochemicals found in Brassica plants, such as phenols and ascorbic acid, may compliment the activity of GSLs. A survey of Brassica accessions from the national germplasm repository was conducted to identify potential cover crops that could be soil-incorporated for use as biofumigants. Ten Brassica accessions that demonstrated relative cold tolerance, rapid maturity, and superior biomass production were selected. The selected accessions were grown under three climatic conditions (fall greenhouse, winter high tunnel, and spring field) to investigate whether growing conditions affect their GSL, phenol, and ascorbic acid content. The selected accessions included seven accessions of Brassica juncea (Indian mustard), one of Brassica napus (oil seed rape), one of Brassica campestris (field mustard), and one of Eruca sativa (arugula). Separation of GSLs from the selected Brassica accessions was achieved using ion-exchange sephadex in disposable pipette tips. Quantification of total GSLs was based on inactivation of the endogenous thioglucosidase and liberation of the glucose moiety from the GSL molecule by addition of standardized thioglucosidase (myrosinase) and colorimetry. GSL concentration of greenhouse, high tunnel, and field-grown shoots (leaves and stems) averaged 24, 40 and 76 micromoles g(-1) fresh weight, respectively. Accessions of B. juncea generally had the highest GSL content. A comparison of accessions revealed that Ames 8887 of B. juncea contained the greatest GSL concentration, but had the lowest biomass yield and ascorbic acid concentration, in part because phytochemical concentration tended to be negatively correlated with biomass yield. More promising was B. juncea accession 'Pacific Gold' which coupled high biomass yield with above-average GSL production, but had low phenol and ascorbic acid concentration. We concluded that environmental stress on growing plants can increase the concentration of GSLs, ascorbic acid, and total phenols in Brassica shoots, but does not increase yields of these phytochemicals per unit area.
Collapse
Affiliation(s)
- George F Antonious
- Department of Plant and Soil Science, Land Grant Program, Atwood Research Center, Kentucky State University, Frankfort, Kentucky 40601-2355, USA.
| | | | | |
Collapse
|