1
|
Kovacik M, Nowicka A, Zwyrtková J, Strejčková B, Vardanega I, Esteban E, Pasha A, Kaduchová K, Krautsova M, Červenková M, Šafář J, Provart NJ, Simon R, Pecinka A. The transcriptome landscape of developing barley seeds. THE PLANT CELL 2024; 36:2512-2530. [PMID: 38635902 PMCID: PMC11218782 DOI: 10.1093/plcell/koae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4-32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.
Collapse
Affiliation(s)
- Martin Kovacik
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Anna Nowicka
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30 239 Kraków, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Beáta Strejčková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Isaia Vardanega
- Institute for Developmental Genetics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Kateřina Kaduchová
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Maryna Krautsova
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Marie Červenková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Lin Y, Xia Y, Hu Y, Wang Z, Ding Y, Chen L. Inferior spikelet filling is affected by T6P/SnRK1-mediated NSC remobilization in large-panicle rice (Oryza sativa L.). PHYSIOLOGIA PLANTARUM 2024; 176:e14469. [PMID: 39129660 DOI: 10.1111/ppl.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Poor grain filling in inferior spikelets (IS), which is influenced by the remobilization of nonstructural carbohydrates (NSC) stored in the sheath and internode of rice plants, limits the expected high yield of large-panicle rice. NSC remobilization from the sheath to the panicle is regulated by the T6P/SnRK1 pathway. However, in large-panicle rice, it is unclear whether IS grain filling is related to the NSC remobilization mediated by T6P/SnRK1 signaling. In this study, two large-panicle cultivars-W1844 and CJ03-with distinct differences in IS grain filling were used to explore the physiological mechanism mediating IS development. Compared to W1844, CJ03 IS showed lower expression of the genes related to sucrose uploading, later sucrose peaking, and delayed starch accumulation. In the CJ03, low OsSUTs expression and NSC output, transport rate, and contribution rate were detected in the sheaths and internodes. These results suggest that poor NSC remobilization results in insufficient assimilate supply for the IS, and consequently, poor IS grain filling. Furthermore, poor NSC remobilization coincided with the increased T6P content and decreased SnRK1 activity during grain filling in CJ03 IS. The expression levels of genes related to T6P metabolism and those encoding the catalytic subunit of SnRK1 were consistent with the observed T6P content and SnRK1 activity in the sheaths and internodes. Therefore, IS grain filling is potentially affected by T6P/SnRK1 signaling-mediated NSC remobilization in large-panicle rice.
Collapse
Affiliation(s)
- Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing, China
| | - Yongqing Xia
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing, China
| | - Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing, China
| | - Ziteng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| |
Collapse
|
3
|
Kaur N, Halford NG. How to switch on a master switch. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2773-2775. [PMID: 38764322 PMCID: PMC11103107 DOI: 10.1093/jxb/erae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
This article comments on:
Hu Y, Lin Y, Bai J, Xu X, Wang Z, Ding C, Ding Y, Chen L. 2024. AMPK activator 991 specifically activates SnRK1 and thereby affects seed germination in rice. Journal of Experimental Botany 75, 2917–2932.
Collapse
Affiliation(s)
- Navneet Kaur
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | |
Collapse
|
4
|
Kumar P, Madhawan A, Sharma A, Sharma V, Das D, Parveen A, Fandade V, Sharma D, Roy J. A sucrose non-fermenting-1-related protein kinase 1 gene from wheat, TaSnRK1α regulates starch biosynthesis by modulating AGPase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108407. [PMID: 38340690 DOI: 10.1016/j.plaphy.2024.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Major portion of wheat grain consist of carbohydrate, mainly starch. The proportion of amylose and amylopectin in starch greatly influence the end product quality. Advancement in understanding starch biosynthesis pathway and modulating key genes has enabled the genetic modification of crops resulting in enhanced starch quality. However, the regulation of starch biosynthesis genes still remains unexplored. So, to expand the limited knowledge, here, we characterized a Ser/Thr kinase, SnRK1α in wheat and determined its role in regulating starch biosynthesis. SnRK1 is an evolutionary conserved protein kinase and share homology to yeast SNF1. Yeast complementation assay suggests TaSnRK1α restores growth defect and promotes glycogen accumulation. Domain analysis and complementation assay with truncated domain proteins suggest the importance of ATP-binding and UBA domain in TaSnRK1α activity. Sub-cellular localization identified nuclear and cytoplasmic localization of TaSnRK1α in tobacco leaves. Further, heterologous over-expression (O/E) of TaSnRK1α in Arabidopsis not only led to increase in starch content but also enlarges the starch granules. TaSnRK1α was found to restore starch accumulation in Arabidopsis kin10. Remarkably, TaSnRK1α O/E increases the AGPase activity suggesting the direct regulation of rate limiting enzyme AGPase involved in starch biosynthesis. Furthermore, in vitro and in vivo interaction assay reveal that TaSnRK1α interacts with AGPase large sub-unit. Overall, our findings indicate that TaSnRK1α plays a role in starch biosynthesis by regulating AGPase activity.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Akshya Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Deepak Das
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
5
|
Son S, Park SR. The rice SnRK family: biological roles and cell signaling modules. FRONTIERS IN PLANT SCIENCE 2023; 14:1285485. [PMID: 38023908 PMCID: PMC10644236 DOI: 10.3389/fpls.2023.1285485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Stimulus-activated signaling pathways orchestrate cellular responses to control plant growth and development and mitigate the effects of adverse environmental conditions. During this process, signaling components are modulated by central regulators of various signal transduction pathways. Protein phosphorylation by kinases is one of the most important events transmitting signals downstream, via the posttranslational modification of signaling components. The plant serine and threonine kinase SNF1-related protein kinase (SnRK) family, which is classified into three subgroups, is highly conserved in plants. SnRKs participate in a wide range of signaling pathways and control cellular processes including plant growth and development and responses to abiotic and biotic stress. Recent notable discoveries have increased our understanding of how SnRKs control these various processes in rice (Oryza sativa). In this review, we summarize current knowledge of the roles of OsSnRK signaling pathways in plant growth, development, and stress responses and discuss recent insights. This review lays the foundation for further studies on SnRK signal transduction and for developing strategies to enhance stress tolerance in plants.
Collapse
Affiliation(s)
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Payne D, Li Y, Govindan G, Kumar A, Thomas J, Addo-Quaye CA, Pereira A, Sunkar R. High Daytime Temperature Responsive MicroRNA Profiles in Developing Grains of Rice Varieties with Contrasting Chalkiness. Int J Mol Sci 2023; 24:11631. [PMID: 37511395 PMCID: PMC10380806 DOI: 10.3390/ijms241411631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
High temperature impairs starch biosynthesis in developing rice grains and thereby increases chalkiness, affecting the grain quality. Genome encoded microRNAs (miRNAs) fine-tune target transcript abundances in a spatio-temporal specific manner, and this mode of gene regulation is critical for a myriad of developmental processes as well as stress responses. However, the role of miRNAs in maintaining rice grain quality/chalkiness during high daytime temperature (HDT) stress is relatively unknown. To uncover the role of miRNAs in this process, we used five contrasting rice genotypes (low chalky lines Cyp, Ben, and KB and high chalky lines LaGrue and NB) and compared the miRNA profiles in the R6 stage caryopsis samples from plants subjected to prolonged HDT (from the onset of fertilization through R6 stage of caryopsis development). Our small RNA analysis has identified approximately 744 miRNAs that can be grouped into 291 families. Of these, 186 miRNAs belonging to 103 families are differentially regulated under HDT. Only two miRNAs, Osa-miR444f and Osa-miR1866-5p, were upregulated in all genotypes, implying that the regulations greatly varied between the genotypes. Furthermore, not even a single miRNA was commonly up/down regulated specifically in the three tolerant genotypes. However, three miRNAs (Osa-miR1866-3p, Osa-miR5150-3p and canH-miR9774a,b-3p) were commonly upregulated and onemiRNA (Osa-miR393b-5p) was commonly downregulated specifically in the sensitive genotypes (LaGrue and NB). These observations suggest that few similarities exist within the low chalky or high chalky genotypes, possibly due to high genetic variation. Among the five genotypes used, Cypress and LaGrue are genetically closely related, but exhibit contrasting chalkiness under HDT, and thus, a comparison between them is most relevant. This comparison revealed a general tendency for Cypress to display miRNA regulations that could decrease chalkiness under HDT compared with LaGrue. This study suggests that miRNAs could play an important role in maintaining grain quality in HDT-stressed rice.
Collapse
Affiliation(s)
- David Payne
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yongfang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anuj Kumar
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Julie Thomas
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Charles A Addo-Quaye
- Department of Computer Science and Cybersecurity, Metropolitan State University, Saint Paul, MN 55106, USA
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
7
|
Kumar P, Mishra A, Rahim MS, Sharma V, Madhawan A, Parveen A, Fandade V, Sharma H, Roy J. Comparative transcriptome analyses revealed key genes involved in high amylopectin biosynthesis in wheat. 3 Biotech 2022; 12:295. [PMID: 36276458 PMCID: PMC9519823 DOI: 10.1007/s13205-022-03364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
High amylopectin starch is an important modified starch for food processing industries. Despite a thorough understanding of starch biosynthesis pathway, the regulatory mechanism responsible for amylopectin biosynthesis is not well explored. The present study utilized transcriptome sequencing approach to understand the molecular basis of high amylopectin content in three high amylopectin mutant wheat lines ('TAC 6', 'TAC 358', and 'TAC 846') along with parent variety 'C 306'. Differential scanning calorimetry (DSC) of high amylopectin starch identified a high thermal transition temperature and scanning electron microscopy (SEM) revealed more spherical starch granules in mutant lines compared to parent variety. A set of 4455 differentially expressed genes (DEGs) were identified at two-fold compared to the parent variety in high amylopectin wheat mutants. At ten-fold, 279 genes, including two starch branching genes (SBEIIa and SBEIIb), were up-regulated and only 30 genes, including the starch debranching enzyme (DBE), were down-regulated. Among the genes, different isoforms of sucrose non-fermenting-1-related protein kinase-1 (TaSnRK1α2-3B and TaSnRK1α2-3D) and its regulatory subunit, sucrose non-fermenting-4 (SNF-4-2A, SNF-4-2B, and SNF-4-5D), were found to be highly up-regulated. Further, expression of the DEGs related to starch biosynthesis pathway and TaSnRK1α2 and SNF-4 was performed using qRT-PCR. High expression of TaSnRK1α2, SNF-4, and SBEII isoforms suggests their probable role in high amylopectin starch biosynthesis in grain endosperm. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03364-3.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Ankita Mishra
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Mohammed Saba Rahim
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Himanshu Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| |
Collapse
|
8
|
Hu Y, Liu J, Lin Y, Xu X, Xia Y, Bai J, Yu Y, Xiao F, Ding Y, Ding C, Chen L. Sucrose nonfermenting-1-related protein kinase 1 regulates sheath-to-panicle transport of nonstructural carbohydrates during rice grain filling. PLANT PHYSIOLOGY 2022; 189:1694-1714. [PMID: 35294032 PMCID: PMC9237689 DOI: 10.1093/plphys/kiac124] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/05/2023]
Abstract
The remobilization of nonstructural carbohydrates (NSCs) reserved in rice (Oryza sativa) sheaths is essential for grain filling. This assimilate distribution between plant tissues and organs is determined by sucrose non-fermenting-1-related protein kinase 1 (SnRK1). However, the SnRK1-mediated mechanism regulating the sheath-to-panicle transport of NSCs in rice remains unknown. In this study, leaf cutting treatment was used to accelerate NSC transport in the rice sheaths. Accelerated NSC transport was accompanied by increased levels of OsSnRK1a mRNA expression, SnRK1a protein expression, catalytic subunit phosphorylation of SnRK1, and SnRK1 activity, indicating that SnRK1 activity plays an important role in sheath NSC transport. We also discovered that trehalose-6-phosphate, a signal of sucrose availability, slightly reduced SnRK1 activity in vitro. Since SnRK1 activity is mostly regulated by OsSnRK1a transcription in response to low sucrose content, we constructed an snrk1a mutant to verify the function of SnRK1 in NSC transport. NSCs accumulated in the sheaths of snrk1a mutant plants and resulted in a low seed setting rate and grain weight, verifying that SnRK1 activity is essential for NSC remobilization. Using phosphoproteomics and parallel reaction monitoring, we identified 20 SnRK1-dependent phosphosites that are involved in NSC transport. In addition, the SnRK1-mediated phosphorylation of the phosphosites directly affected starch degradation, sucrose metabolism, phloem transport, sugar transport across the tonoplast, and glycolysis in rice sheaths to promote NSC transport. Therefore, our findings reveal the importance, function, and possible regulatory mechanism of SnRK1 in the sheath-to-panicle transport of NSCs in rice.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongqing Xia
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongchao Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Feng Xiao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Lin Chen
- Authors for correspondence: (L.C); (C.D.)
| |
Collapse
|
9
|
Zhu Q, Tan J, Liu YG. Molecular farming using transgenic rice endosperm. Trends Biotechnol 2022; 40:1248-1260. [PMID: 35562237 DOI: 10.1016/j.tibtech.2022.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
Abstract
Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids. Here, we explore the use of molecular farming from producing medicines to developing functional food crops (biofortification). We review recent progress in producing pharmaceutical proteins and bioactive substances in rice endosperm and compare this platform with other plant expression systems. We describe how rice endosperm could be modified to design metabolic pathways and express and store stable products and discuss the factors restricting the commercialization of transgenic rice products and future prospects.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Sink Strength Promoting Remobilization of Non-Structural Carbohydrates by Activating Sugar Signaling in Rice Stem during Grain Filling. Int J Mol Sci 2022; 23:ijms23094864. [PMID: 35563255 PMCID: PMC9106009 DOI: 10.3390/ijms23094864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
The remobilization of non-structural carbohydrates (NSCs) in the stem is essential for rice grain filling so as to improve grain yield. We conducted a two-year field experiment to deeply investigate their relationship. Two large-panicle rice varieties with similar spikelet size, CJ03 and W1844, were used to conduct two treatments (removing-spikelet group and control group). Compared to CJ03, W1844 had higher 1000-grain weight, especially for the grain growth of inferior spikelets (IS) after removing the spikelet. These results were mainly ascribed to the stronger sink strength of W1844 than that of CJ03 contrasting in the same group. The remobilization efficiency of NSC in the stem decreased significantly after removing the spikelet for both CJ03 and W1844, and the level of sugar signaling in the T6P-SnRK1 pathway was also significantly changed. However, W1844 outperformed CJ03 in terms of the efficiency of carbon reserve remobilization under the same treatments. More precisely, there was a significant difference during the early grain-filling stage in terms of the conversion of sucrose and starch. Interestingly, the sugar signaling of the T6P and SnRK1 pathways also represented an obvious change. Hence, sugar signaling may be promoted by sink strength to remobilize the NSCs of the rice stem during grain filling to further advance crop yield.
Collapse
|
11
|
Chen Z, Zhou L, Jiang P, Lu R, Halford NG, Liu C. Genome-wide identification of sucrose nonfermenting-1-related protein kinase (SnRK) genes in barley and RNA-seq analyses of their expression in response to abscisic acid treatment. BMC Genomics 2021; 22:300. [PMID: 33902444 PMCID: PMC8074225 DOI: 10.1186/s12864-021-07601-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/11/2021] [Indexed: 01/21/2023] Open
Abstract
Background Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play important roles in regulating metabolism and stress responses in plants, providing a conduit for crosstalk between metabolic and stress signalling, in some cases involving the stress hormone, abscisic acid (ABA). The burgeoning and divergence of the plant gene family has led to the evolution of three subfamilies, SnRK1, SnRK2 and SnRK3, of which SnRK2 and SnRK3 are unique to plants. Therefore, the study of SnRKs in crops may lead to the development of strategies for breeding crop varieties that are more resilient under stress conditions. In the present study, we describe the SnRK gene family of barley (Hordeum vulgare), the widespread cultivation of which can be attributed to its good adaptation to different environments. Results The barley HvSnRK gene family was elucidated in its entirety from publicly-available genome data and found to comprise 50 genes. Phylogenetic analyses assigned six of the genes to the HvSnRK1 subfamily, 10 to HvSnRK2 and 34 to HvSnRK3. The search was validated by applying it to Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) genome data, identifying 50 SnRK genes in rice (four OsSnRK1, 11 OsSnRK2 and 35 OsSnRK3) and 39 in Arabidopsis (three AtSnRK1, 10 AtSnRK2 and 26 AtSnRK3). Specific motifs were identified in the encoded barley proteins, and multiple putative regulatory elements were found in the gene promoters, with light-regulated elements (LRE), ABA response elements (ABRE) and methyl jasmonate response elements (MeJa) the most common. RNA-seq analysis showed that many of the HvSnRK genes responded to ABA, some positively, some negatively and some with complex time-dependent responses. Conclusions The barley HvSnRK gene family is large, comprising 50 members, subdivided into HvSnRK1 (6 members), HvSnRK2 (10 members) and HvSnRK3 (34 members), showing differential positive and negative responses to ABA. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07601-6.
Collapse
Affiliation(s)
- Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Longhua Zhou
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Panpan Jiang
- Shenzhen RealOm ics (Biotech) Co., Ltd., Shenzhen, 518081, China
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China. .,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China.
| |
Collapse
|
12
|
Raffan S, Oddy J, Halford NG. The Sulphur Response in Wheat Grain and Its Implications for Acrylamide Formation and Food Safety. Int J Mol Sci 2020; 21:E3876. [PMID: 32485924 PMCID: PMC7312080 DOI: 10.3390/ijms21113876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/21/2023] Open
Abstract
Free (soluble, non-protein) asparagine concentration can increase many-fold in wheat grain in response to sulphur deficiency. This exacerbates a major food safety and regulatory compliance problem for the food industry because free asparagine may be converted to the carcinogenic contaminant, acrylamide, during baking and processing. Here, we describe the predominant route for the conversion of asparagine to acrylamide in the Maillard reaction. The effect of sulphur deficiency and its interaction with nitrogen availability is reviewed, and we reiterate our advice that sulphur should be applied to wheat being grown for human consumption at a rate of 20 kg per hectare. We describe the genetic control of free asparagine accumulation, including genes that encode metabolic enzymes (asparagine synthetase, glutamine synthetase, glutamate synthetase, and asparaginase), regulatory protein kinases (sucrose nonfermenting-1 (SNF1)-related protein kinase-1 (SnRK1) and general control nonderepressible-2 (GCN2)), and basic leucine zipper (bZIP) transcription factors, and how this genetic control responds to sulphur, highlighting the importance of asparagine synthetase-2 (ASN2) expression in the embryo. We show that expression of glutamate-cysteine ligase is reduced in response to sulphur deficiency, probably compromising glutathione synthesis. Finally, we describe unexpected effects of sulphur deficiency on carbon metabolism in the endosperm, with large increases in expression of sucrose synthase-2 (SuSy2) and starch synthases.
Collapse
Affiliation(s)
| | | | - Nigel G. Halford
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (S.R.); (J.O.)
| |
Collapse
|
13
|
Perochon A, Váry Z, Malla KB, Halford NG, Paul MJ, Doohan FM. The wheat SnRK1α family and its contribution to Fusarium toxin tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110217. [PMID: 31521211 DOI: 10.1016/j.plantsci.2019.110217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 05/09/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by phytopathogenic Fusarium fungi in cereal grain and plays a role as a disease virulence factor. TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhances wheat resistance to DON and it interacts with a sucrose non-fermenting-1 (SNF1)-related protein kinase 1 catalytic subunit α (SnRK1α). This protein kinase family is central integrator of stress and energy signalling, regulating plant metabolism and growth. Little is known regarding the role of SnRK1α in the biotic stress response, especially in wheat. In this study, 15 wheat (Triticum aestivum) SnRK1α genes (TaSnRK1αs) belonging to four homoeologous groups were identified in the wheat genome. TaSnRK1αs are expressed ubiquitously in all organs and developmental stages apart from two members predominantly detected in grain. While DON treatment had either no effect or downregulated the transcription of TaSnRK1αs, it increased both the kinase activity associated with SnRK1α and the level of active (phosphorylated) SnRK1α. Down-regulation of two TaSnRK1αs homoeolog groups using virus induced gene silencing (VIGS) increased the DON-induced damage of wheat spikelets. Thus, we demonstrate that TaSnRK1αs contribute positively to wheat tolerance of DON and conclude that this gene family may provide useful tools for the improvement of crop biotic stress resistance.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Zsolt Váry
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Keshav B Malla
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Matthew J Paul
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Curtis TY, Raffan S, Wan Y, King R, Gonzalez-Uriarte A, Halford NG. Contrasting gene expression patterns in grain of high and low asparagine wheat genotypes in response to sulphur supply. BMC Genomics 2019; 20:628. [PMID: 31370780 PMCID: PMC6676566 DOI: 10.1186/s12864-019-5991-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/23/2019] [Indexed: 01/09/2023] Open
Abstract
Background Free asparagine is the precursor for acrylamide formation during cooking and processing of grains, tubers, beans and other crop products. In wheat grain, free asparagine, free glutamine and total free amino acids accumulate to high levels in response to sulphur deficiency. In this study, RNA-seq data were acquired for the embryo and endosperm of two genotypes of bread wheat, Spark and SR3, growing under conditions of sulphur sufficiency and deficiency, and sampled at 14 and 21 days post anthesis (dpa). The aim was to provide new knowledge and understanding of the genetic control of asparagine accumulation and breakdown in wheat grain. Results There were clear differences in gene expression patterns between the genotypes. Sulphur responses were greater at 21 dpa than 14 dpa, and more evident in SR3 than Spark. TaASN2 was the most highly expressed asparagine synthetase gene in the grain, with expression in the embryo much higher than in the endosperm, and higher in Spark than SR3 during early development. There was a trend for genes encoding enzymes of nitrogen assimilation to be more highly expressed in Spark than SR3 when sulphur was supplied. TaASN2 expression in the embryo of SR3 increased in response to sulphur deficiency at 21 dpa, although this was not observed in Spark. This increase in TaASN2 expression was accompanied by an increase in glutamine synthetase gene expression and a decrease in asparaginase gene expression. Asparagine synthetase and asparaginase gene expression in the endosperm responded in the opposite way. Genes encoding regulatory protein kinases, SnRK1 and GCN2, both implicated in regulating asparagine synthetase gene expression, also responded to sulphur deficiency. Genes encoding bZIP transcription factors, including Opaque2/bZIP9, SPA/bZIP25 and BLZ1/OHP1/bZIP63, all of which contain SnRK1 target sites, were also expressed. Homeologues of many genes showed differential expression patterns and responses, including TaASN2. Conclusions Data on the genetic control of free asparagine accumulation in wheat grain and its response to sulphur supply showed grain asparagine levels to be determined in the embryo, and identified genes encoding signalling and metabolic proteins involved in asparagine metabolism that respond to sulphur availability. Electronic supplementary material The online version of this article (10.1186/s12864-019-5991-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanya Y Curtis
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.,Present Address: Curtis Analytics Ltd, Daniel Hall Building, Rothamsted RoCRE, Harpenden, AL5 2JQ, UK
| | - Sarah Raffan
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Yongfang Wan
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Robert King
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Asier Gonzalez-Uriarte
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.,Present Address: The European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
15
|
Midorikawa K, Kuroda M, Yamashita H, Tamura T, Abe K, Asakura T. Oryza sativa Brittle Culm 1-like 6 modulates β-glucan levels in the endosperm cell wall. PLoS One 2019; 14:e0217212. [PMID: 31120929 PMCID: PMC6532911 DOI: 10.1371/journal.pone.0217212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
The endosperm cell wall affects post-harvest grain quality by affecting the mechanical fragility and water absorption of the grain. Therefore, understanding the mechanism underlying endosperm cell wall synthesis is important for determining the growth and quality of cereals. However, the molecular machinery mediating endosperm cell wall biosynthesis is not well understood. In this study, we investigated the role of Oryza sativa Brittle Culm 1-like 6 (OsBC1L6), a member of the COBRA-like protein family, in cellulose synthesis in rice. OsBC1L6 mRNA was expressed in ripening seeds during endosperm enlargement. When OsBC1L6-RFP was expressed in Arabidopsis cell cultures, this fusion protein was transported to the plasma membrane. To investigate the target molecules of OsBC1L6, we analyzed the binding interactions of OsBC1L6 with cellohexaose and the analogs using surface plasmon resonance, determining that cellohexaose bound to OsBC1L6. The β-glucan contents were significantly reduced in OsBC1L6-RNAi calli and OsBC1L6-deficient seeds from a Tos insertion mutant, compared to their wild-type counterparts. These findings suggest that OsBC1L6 modulates β-glucan synthesis during endosperm cell wall formation by interacting with cellulose moieties on the plasma membrane during seed ripening.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaharu Kuroda
- Division of Crop Development, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Niigata, Japan
- * E-mail: (TA); (MK)
| | - Haruyuki Yamashita
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Tamura
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Life Science & Environmental Research Center (LiSE), Kanagawa, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (TA); (MK)
| |
Collapse
|
16
|
Ren Z, He S, Zhao N, Zhai H, Liu Q. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:21-32. [PMID: 29734529 PMCID: PMC6330544 DOI: 10.1111/pbi.12944] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 05/09/2023]
Abstract
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) is an essential energy-sensing regulator and plays a key role in the global control of carbohydrate metabolism. The SnRK1 gene has been found to increase starch accumulation in several plant species. However, its roles in improving starch quality have not been reported to date. In this study, we found that the IbSnRK1 gene was highly expressed in the storage roots of sweet potato and strongly induced by exogenous sucrose. Its expression followed the circandian rhythm. Its overexpression not only increased starch content, but also decreased proportion of amylose, enlarged granule size and improved degree of crystallinity and gelatinization in transgenic sweet potato, which revealed, for the first time, the important roles of SnRK1 in improving starch quality of plants. The genes involved in starch biosynthesis pathway were systematically up-regulated, and the content of ADP-glucose as an important precursor for starch biosynthesis and the activities of key enzymes were significantly increased in transgenic sweet potato. These findings indicate that IbSnRK1 improves starch content and quality through systematical up-regulation of the genes and the increase in key enzyme activities involved in starch biosynthesis pathway in transgenic sweet potato. This gene has the potential to improve starch content and quality in sweet potato and other plants.
Collapse
Affiliation(s)
- Zhitong Ren
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and BiotechnologyMinistry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and UtilizationMinistry of EducationCollege of Agronomy & BiotechnologyChina Agricultural UniversityBeijingChina
- College of AgronomyQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
17
|
Wang F, Ren G, Li F, Wang B, Yang Y, Ma X, Niu Y, Ye Y, Chen X, Fan S, Wang T, Zhou Q. Overexpression of GmSnRK1, a soybean sucrose non-fermenting-1 related protein kinase 1 gene, results in directional alteration of carbohydrate metabolism in transgenic Arabidopsis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1469431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Feibing Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Gaolei Ren
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Fengsheng Li
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Bowen Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yulin Yang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Xiaowei Ma
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yuan Niu
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yuxiu Ye
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Xinhong Chen
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Song Fan
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Tailin Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Qing Zhou
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| |
Collapse
|
18
|
Filipe O, De Vleesschauwer D, Haeck A, Demeestere K, Höfte M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Sci Rep 2018; 8:3864. [PMID: 29497084 PMCID: PMC5832823 DOI: 10.1038/s41598-018-22101-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) belongs to a family of evolutionary conserved kinases with orthologs in all eukaryotes, ranging from yeasts (SnF1) to mammals (AMP-Activated kinase). These kinases sense energy deficits caused by nutrient limitation or stress and coordinate the required adaptations to maintain energy homeostasis and survival. In plants, SnRK1 is a global regulator of plant metabolism and is also involved in abiotic stress responses. Its role in the response to biotic stress, however, is only starting to be uncovered. Here we studied the effect of altered SnRK1a expression on growth and plant defense in rice. OsSnRK1a overexpression interfered with normal growth and development and increased resistance against both (hemi)biotrophic and necrotrophic pathogens, while OsSnRK1a silencing in RNAi lines increased susceptibility. OsSnRK1a overexpression positively affected the salicylic acid pathway and boosted the jasmonate-mediated defense response after inoculation with the blast fungus Pyricularia oryzae. Together these findings strongly suggest OsSnRK1a to be involved in plant basal immunity and favor a model whereby OsSnRK1a acts as a master switch that regulates growth-immunity trade-offs.
Collapse
Affiliation(s)
- Osvaldo Filipe
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - David De Vleesschauwer
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bayer CropScience NV, Technologiepark 38, 9051, Zwijnaarde, Belgium
| | - Ashley Haeck
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
19
|
Wang F, Ye Y, Chen X, Wang J, Chen Z, Zhou Q. A sucrose non-fermenting-1-related protein kinase 1 gene from potato, StSnRK1, regulates carbohydrate metabolism in transgenic tobacco. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:933-943. [PMID: 29158640 PMCID: PMC5671455 DOI: 10.1007/s12298-017-0473-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/01/2017] [Accepted: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been shown to play an essential role in regulating saccharide metabolism and starch biosynthesis of plant. The regulatory role of StSnRK1 from potato in regulating carbohydrate metabolism and starch accumulation has not been investigated. In this work, a cDNA encoding the SnRK1 protein, named StSnRK1, was isolated from potato. The open reading frame contained 1545 nucleotides encoding 514 amino acids. Subcellular localization analysis in onion epidermal cells indicated that StSnRK1 protein was localized to the nucleus. The coding region of StSnRK1 was cloned into a binary vector under the control of 35S promoter and then transformed into tobacco to obtain transgenic plants. Transgenic tobacco plants expressing StSnRK1 were shown to have a significant increased accumulation of starch content, as well as sucrose, glucose and fructose content. Real-time quantitative PCR analysis indicated that overexpression of StSnRK1 up-regulated the expression of sucrose synthase (NtSUS), ADP-glucose pyrophosphorylase (NtAGPase) and soluble starch synthase (NtSSS III) genes involved in starch biosynthesis in the transgenic plants. In contrast, the expression of sucrose phosphate synthase (NtSPS) gene was decreased in the transgenic plants. Meanwhile, enzymatic analyses indicated that the activities of major enzymes (SUS, AGPase and SSS) involved in the starch biosynthesis were enhanced, whereas SPS activity was decreased in the transgenic plants compared to the wild-type. These results suggest that the manipulation of StSnRK1 expression might be used for improving quality of plants in the future.
Collapse
Affiliation(s)
- Feibing Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Yuxiu Ye
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Jizhong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Zhiyuan Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Qing Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| |
Collapse
|
20
|
Liu X, Li X, Zhang C, Dai C, Zhou J, Ren C, Zhang J. Phosphoenolpyruvate carboxylase regulation in C4-PEPC-expressing transgenic rice during early responses to drought stress. PHYSIOLOGIA PLANTARUM 2017; 159:178-200. [PMID: 27592839 DOI: 10.1111/ppl.12506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/14/2016] [Accepted: 08/05/2016] [Indexed: 05/11/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) has important functions in C4 photosynthesis and biosynthesis of intermediate metabolites. In this study, the drought resistance of C4-PEPC-expressing transgenic rice (Oryza sativa, line PC) plants was assessed using simulated drought conditions [i.e. polyethylene glycol (PEG)-6000 treatment]. The dry weight of PC plants was higher than that of wild-type (WT) plants following treatment with 15% PEG-6000 for 16 days. Furthermore, the water use efficiency, relative water content and proline content in PC plants were higher than those of WT plants, as were C4-PEPC activity and transcript levels following treatment with 5% PEG-6000 for 2 h. The protein kinase activities and transcript levels of sucrose non-fermenting-1-related protein kinases (SnRKs) genes, such as SnRK1a, OsK24 and OsK35 were also higher in PC plants than in WT plants following treatment with 5% PEG-6000 for 2 h. Additionally, phosphoenolpyruvate carboxylase kinase (PPCK, EC 4.1.1.32) activities and transcript levels (e.g. PPCK1 and PPCK2) increased following drought treatment. These changes were regulated by signaling molecules, such as calcium, nitric oxide and hydrogen peroxide. Furthermore, the -1095 to -416 region of the C4-PEPC promoter in PC plants was demethylated following exposure to drought conditions for 1 h. The demethylation coincided with an increase in C4-PEPC expression. Our data suggest that the demethylation of the C4-PEPC promoter and the phosphorylation catalyzed by PPCK have key roles in conferring drought tolerance to the transgenic rice plants.
Collapse
Affiliation(s)
- Xiaolong Liu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xia Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
| | - Chen Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jiayu Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chenggang Ren
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
| | - Jinfei Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
| |
Collapse
|
21
|
Selection of Reference Genes in Transcription Analysis of Gene Expression of the Mandarin Fish, Siniperca chuasti. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 31:141-6. [PMID: 20545003 DOI: 10.3724/sp.j.1141.2010.02141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
At present, transcription analysis of gene expression commonly uses housekeeping genes as control for normalization. In this study, the expression levels of three housekeeping genes including GAPDH, beta-actin, and 18S rRNA in six tissues and five developmental stages of the Mandarin fish Siniperca chuatsi were assayed with quantitative real-time PCR (qPCR). Differences in expression levels were analyzed using geNorm program. The results demonstrate that beta-actin is the most stable gene at developmental stages and GAPDH is the most stable in different tissues. While 18S rRNA expression during development is differentially regulated, which indicates it is suitable as an internal control for gene expression normalization at the developmental level. Overall, the data suggest that the two most stable housekeeping genes are enough to accurately calibrate gene expression in S. chuatsi. The significance of this study provided convincing references and methodology for housekeeping gene selection and normalization in gene expression analysis with regular PCR or qPCR.
Collapse
|
22
|
He D, Wang Q, Wang K, Yang P. Genome-Wide Dissection of the MicroRNA Expression Profile in Rice Embryo during Early Stages of Seed Germination. PLoS One 2015; 10:e0145424. [PMID: 26681181 PMCID: PMC4683037 DOI: 10.1371/journal.pone.0145424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The first 24 hours after imbibition (HAI) is pivotal for rice seed germination, during which embryo cells switch from a quiescent state to a metabolically active state rapidly. MicroRNAs (miRNAs) have increasingly been shown to play important roles in rice development. Nevertheless, limited knowledge about miRNA regulation has been obtained in the early stages of rice seed germination. In this study, the small RNAs (sRNAs) from embryos of 0, 12, and 24 HAI rice seeds were sequenced to investigate the composition and expression patterns of miRNAs. The bioinformatics analysis identified 289 miRNA loci, including 59 known and 230 novel miRNAs, and 35 selected miRNAs were confirmed by stem-loop real-time RT-PCR. Expression analysis revealed that the dry and imbibed seeds have unique miRNA expression patterns compared with other tissues, particularly for the dry seeds. Using three methods, Mireap, psRNATarget and degradome analyses, 1197 potential target genes of identified miRNAs involved in various molecular functions were predicted. Among these target genes, 39 had significantly negative correlations with their corresponding miRNAs as inferred from published transcriptome data, and 6 inversely expressed miRNA-target pairs were confirmed by 5'-RACE assay. Our work provides an inventory of miRNA expression profiles and miRNA-target interactions in rice embryos, and lays a foundation for further studies of miRNA-mediated regulation in initial seed germination.
Collapse
Affiliation(s)
- Dongli He
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qiong Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wang
- College of life science, Wuhan University, Wuhan 430072, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
23
|
Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN. Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. PLANT, CELL & ENVIRONMENT 2015; 38:1404-17. [PMID: 25474495 PMCID: PMC4949648 DOI: 10.1111/pce.12495] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 05/18/2023]
Abstract
Mature leaves of plants transferred from low to high light typically increase their photosynthetic capacity. In Arabidopsis thaliana, this dynamic acclimation requires expression of GPT2, a glucose 6-phosphate/phosphate translocator. Here, we examine the impact of GPT2 on leaf metabolism and photosynthesis. Plants of wild type and of a GPT2 knockout (gpt2.2) grown under low light achieved the same photosynthetic rate despite having different metabolic and transcriptomic strategies. Immediately upon transfer to high light, gpt2.2 plants showed a higher rate of photosynthesis than wild-type plants (35%); however, over subsequent days, wild-type plants acclimated photosynthetic capacity, increasing the photosynthesis rate by 100% after 7 d. Wild-type plants accumulated more starch than gpt2.2 plants throughout acclimation. We suggest that GPT2 activity results in the net import of glucose 6-phosphate from cytosol to chloroplast, increasing starch synthesis. There was clear acclimation of metabolism, with short-term changes typically being reversed as plants acclimated. Distinct responses to light were observed in wild-type and gpt2.2 leaves. Significantly higher levels of sugar phosphates were observed in gpt2.2. We suggest that GPT2 alters the distribution of metabolites between compartments and that this plays an essential role in allowing the cell to interpret environmental signals.
Collapse
Affiliation(s)
- Beth C Dyson
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - J William Allwood
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Yun Xu
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Matthew Miller
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline G Bowsher
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Royston Goodacre
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
24
|
Kim CY, Vo KTX, An G, Jeon JS. A rice sucrose non-fermenting-1 related protein kinase 1, OSK35, plays an important role in fungal and bacterial disease resistance. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0089-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Chen Z, Huang J, Muttucumaru N, Powers SJ, Halford NG. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley. J Cereal Sci 2013; 58:255-262. [PMID: 24748715 PMCID: PMC3990443 DOI: 10.1016/j.jcs.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 01/01/2023]
Abstract
The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two genes encoding SnRK1-type protein kinases. Both SnRK1 and SnRK2 phosphorylate AREBPs, but SnRK2 is activated by ABA whereas SnRK1 may be broken down. Multiple cereal AREBPs with two conserved SnRK1/2 target sites and another class of BZIP transcription factors with SnRK1/2 binding sites, including HvBLZ1, were identified. Barley grain (cv. Triumph) was sampled at 15, 20, 25 and 30 days post-anthesis (dpa). HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 were expressed highly in the endosperm but at much lower levels in the embryo. Conversely, HvPKABA1 and HvRCAR35_2538 were expressed at higher levels in the embryo than the endosperm, while HvSnRK2.6 was expressed at similar levels in both. HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 all peaked in expression in the endosperm at 20 dpa. A model is proposed in which ABA brings about a transition from a SnRK1-dominated state in the endosperm during grain filling to a SnRK2-dominated state during maturation. Components of ABA signalling pathway differ between endosperm and embryo in barley. ABA signalling pathway components are highly expressed in barley endosperm at 20 dpa. ABA may bring about change from SnRK1-dominated state to SnRK2-dominated state. This may play key role in transition from grain filling to maturation in barley. BLZ1/OHP1 class of bZIP transcription factors contain multiple SnRK1/2 target sites.
Collapse
Affiliation(s)
- Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Minhang District, Shanghai 201106, Peoples' Republic of China
| | - Jianhua Huang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Minhang District, Shanghai 201106, Peoples' Republic of China
| | - Nira Muttucumaru
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Stephen J. Powers
- Computational and Systems Biology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Nigel G. Halford
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
- Corresponding author. Tel.: +44 (0) 1582 763133x2203, +44 (0) 785 762 6662 (mobile); fax: +44 (0) 1582 763010.
| |
Collapse
|
26
|
O'Hara LE, Paul MJ, Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. MOLECULAR PLANT 2013; 6:261-74. [PMID: 23100484 DOI: 10.1093/mp/sss120] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant growth and development are tightly controlled in response to environmental conditions that influence the availability of photosynthetic carbon in the form of sucrose. Trehalose-6-phosphate (T6P), the precursor of trehalose in the biosynthetic pathway, is an important signaling metabolite that is involved in the regulation of plant growth and development in response to carbon availability. In addition to the plant's own pathway for trehalose synthesis, formation of T6P or trehalose by pathogens can result in the reprogramming of plant metabolism and development. Developmental processes that are regulated by T6P range from embryo development to leaf senescence. Some of these processes are regulated in interaction with phytohormones, such as auxin. A key interacting factor of T6P signaling in response to the environment is the protein kinase sucrose non-fermenting related kinase-1 (SnRK1), whose catalytic activity is inhibited by T6P. SnRK1 is most likely involved in the adjustment of metabolism and growth in response to starvation. The transcription factor bZIP11 has recently been identified as a new player in the T6P/SnRK1 regulatory pathway. By inhibiting SnRK1, T6P promotes biosynthetic reactions. This regulation has important consequences for crop production, for example, in the developing wheat grain and during the growth of potato tubers.
Collapse
Affiliation(s)
- Liam E O'Hara
- Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
27
|
Chang E, Shi S, Liu J, Cheng T, Xue L, Yang X, Yang W, Lan Q, Jiang Z. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) Using real-time PCR. PLoS One 2012; 7:e33278. [PMID: 22479379 PMCID: PMC3316566 DOI: 10.1371/journal.pone.0033278] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/06/2012] [Indexed: 11/25/2022] Open
Abstract
Platycladus orientalis is a tree species that is highly resistant, widely adaptable, and long-lived, with lifespans of even thousands of years. To explore the mechanisms underlying these characteristics, gene expressions have been investigated at the transcriptome level by RNA-seq combined with a digital gene expression (DGE) technique. So, it is crucial to have a reliable set of reference genes to normalize the expressions of genes in P. orientalis under various conditions using the most accurate and sensitive method of quantitative real-time PCR (qRT-PCR). In this study, we selected 10 reference gene candidates from transcriptome data of P. orientalis, and examined their expression profiles by qRT-PCR using 29 different samples of P. orientalis, which were collected from plants of different ages, different tissues, and plants subjected to different treatments including cold, heat, salinity, polyethylene glycol (PEG), and abscisic acid (ABA). Three analytical software packages (geNorm, Bestkeeper, and NormFinder) were used to assess the stability of gene expression. The results showed that ubiquitin-conjugating enzyme E2 (UBC) and alpha-tubulin (aTUB) were the optimum pair of reference genes at all developmental stages and under all stress conditions. ACT7 was the most stable gene across different tissues and cold-treated samples, while UBQ was the most stably expressed reference gene for NaCl- and ABA-treated samples. In parallel, aTUB and UBC were used singly or in combination as reference genes to examine the expression levels of NAC (a homolog of AtNAC2) in plants subjected to various treatments with qRT-PCR. The results further proved the reliability of the two selected reference genes. Our study will benefit future research on the expression of genes in response to stress/senescence in P. orientalis and other members of the Cupressaceae.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Tielong Cheng
- Sci-tech Management Division, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Liang Xue
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Xiuyan Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Wenjuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Qian Lan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
28
|
Peng T, Lv Q, Zhang J, Li J, Du Y, Zhao Q. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4943-54. [PMID: 21791435 DOI: 10.1093/jxb/err205] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. This work investigated miRNAs in rice (Oryza sativa), an important food crop. High-throughput sequencing technology was used to reveal expression differences in miRNAs between superior and inferior spikelets in rice (japonica cultivar Xinfeng 2) at 18 d after fertilization. Totals of 351 and 312 known miRNAs were obtained from the superior and inferior spikelets, respectively. Analysis of the expression profiles of these miRNAs showed that 189 miRNAs were differentially expressed between superior spikelets and inferior spikelets. In addition, 43 novel miRNAs were identified mostly by the accumulation of miRNA*s expressed differentially between the superior and inferior spikelets. Further analysis with bioinformatics software and comparison with existing databases showed that these differentially expressed miRNAs may individually participate in regulating hormone metabolism, carbohydrate metabolic pathways, and cell division during rice grain development. The results indicate that the slow grain-filling and low grain weight of rice inferior spikelets are attributed partly to differences in expression and function between superior and inferior spikelet miRNAs.
Collapse
Affiliation(s)
- Ting Peng
- Research Center for Rice Engineering and Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450002, China
| | | | | | | | | | | |
Collapse
|
29
|
Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 2009; 419:247-59. [PMID: 19309312 DOI: 10.1042/bj20082408] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phosphorylation and dephosphorylation of proteins, catalysed by protein kinases and phosphatases, is the major mechanism for the transduction of intracellular signals in eukaryotic organisms. Signalling pathways often comprise multiple phosphorylation/dephosphorylation steps and a long-standing hypothesis to explain this phenomenon is that of the protein kinase cascade, in which a signal is amplified as it is passed from one step in a pathway to the next. This review represents a re-evaluation of this hypothesis, using the signalling network in which the SnRKs [Snf1 (sucrose non-fermenting-1)-related protein kinases] function as an example, but drawing also on the related signalling systems involving Snf1 itself in fungi and AMPK (AMP-activated protein kinase) in animals. In plants, the SnRK family comprises not only SnRK1, but also two other subfamilies, SnRK2 and SnRK3, with a total of 38 members in the model plant Arabidopsis. This may have occurred to enable linking of metabolic and stress signalling. It is concluded that signalling pathways comprise multiple levels not to allow for signal amplification, but to enable linking between pathways to form networks in which key protein kinases, phosphatases and target transcription factors represent hubs on/from which multiple pathways converge and emerge.
Collapse
|
30
|
Sabelli PA, Larkins BA. The development of endosperm in grasses. PLANT PHYSIOLOGY 2009; 149:14-26. [PMID: 19126691 PMCID: PMC2613697 DOI: 10.1104/pp.108.129437] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/18/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Paolo A Sabelli
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
31
|
Jain M, Li QB, Chourey PS. Cloning and expression analyses of sucrose non-fermenting-1-related kinase 1 (SnRK1b) gene during development of sorghum and maize endosperm and its implicated role in sugar-to-starch metabolic transition. PHYSIOLOGIA PLANTARUM 2008; 134:161-73. [PMID: 18433416 DOI: 10.1111/j.1399-3054.2008.01106.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A full-length cDNA clone, SbSnRK1b (1530 bp, GenBank accession no. EF544393), encoding a putative serine/threonine protein kinase homologue of yeast (Saccharomyces cerevisiae) SNF1, was isolated from developing endosperm of sorghum [Sorghum bicolor (L.) Moench]. Multiple sequence alignment data showed a phylogenetic affiliation of the sorghum clone with the SnRK1b group of protein kinases that are highly expressed in cereal seed endosperm. The DNA gel blot analyses indicated that SbSnRK1b gene is present as a single- or low copy number gene in sorghum. The RNA and protein gel blot analyses confirmed the expression of SbSnRK1b in developing sorghum caryopses, overlapping with the starch biosynthesis phase, 12-24 days after fertilization. In situ hybridization and immunolocalization data resolved the spatial specificity of SbSnRK1b expression in the basal endosperm transfer cell layer, the unique port of assimilate unloading in the growing sorghum seed. Expression of SbSnRK1b was also evident in the developing sorghum microspores, coincident with the onset of starch deposition phase. As in sorghum, similar spatiotemporal specificity of SnRK1b expression was observed during maize (Zea mays L.) seed development. However, discordant in situ hybridization and immunolocalization data indicated that the expression of SbSnRK1b homologue in maize is under posttranscriptional control during endosperm development.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | | | | |
Collapse
|
32
|
Abstract
Endogenous small RNAs, including microRNAs (miRNAs) and short-interfering RNAs (siRNAs), function as post-transcriptional or transcriptional regulators in plants. miRNA function is essential for normal plant development and therefore is likely to be important in the growth of the rice grain. To investigate the roles of miRNAs in rice grain development, we carried out deep sequencing of the small RNA populations of rice grains at two developmental stages. In a data set of approximately 5.5 million sequences, we found representatives of all 20 conserved plant miRNA families. We used an approach based on the presence of miRNA and miRNA* sequences to identify 39 novel, nonconserved rice miRNA families expressed in grains. Cleavage of predicted target mRNAs was confirmed for a number of the new miRNAs. We identified a putative mirtron, indicating that plants may also use spliced introns as a source of miRNAs. We also identified a miRNA-like long hairpin that generates phased 21 nt small RNAs, strongly expressed in developing grains, and show that these small RNAs act in trans to cleave target mRNAs. Comparison of the population of miRNAs and miRNA-like siRNAs in grains to those in other parts of the rice plant reveals that many are expressed in an organ-specific manner.
Collapse
|
33
|
Lu CA, Lin CC, Lee KW, Chen JL, Huang LF, Ho SL, Liu HJ, Hsing YI, Yu SM. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. THE PLANT CELL 2007; 19:2484-99. [PMID: 17766403 PMCID: PMC2002608 DOI: 10.1105/tpc.105.037887] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sugars repress alpha-amylase expression in germinating embryos and cell cultures of rice (Oryza sativa) through a sugar response complex (SRC) in alpha-amylase gene promoters and its interacting transcription factor MYBS1. The Snf1 protein kinase is required for the derepression of glucose-repressible genes in yeast. In this study, we explored the role of the yeast Snf1 ortholog in rice, SnRK1, in sugar signaling and plant growth. Rice embryo transient expression assays indicated that SnRK1A and SnRK1B act upstream and relieve glucose repression of MYBS1 and alphaAmy3 SRC promoters. Both SnRK1s contain N-terminal kinase domains serving as activators and C-terminal regulatory domains as dominant negative regulators of SRC. The accumulation and activity of SnRK1A was regulated by sugars posttranscriptionally, and SnRK1A relieved glucose repression specifically through the TA box in SRC. A transgenic RNA interference approach indicated that SnRK1A is also necessary for the activation of MYBS1 and alphaAmy3 expression under glucose starvation. Two mutants of SnRK1s, snrk1a and snrk1b, were obtained, and the functions of both SnRK1s were further studied. Our studies demonstrated that SnRK1A is an important intermediate in the sugar signaling cascade, functioning upstream from the interaction between MYBS1 and alphaAmy3 SRC and playing a key role in regulating seed germination and seedling growth in rice.
Collapse
Affiliation(s)
- Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|