1
|
Saikia R, Kaldis A, Spetz CJ, Borah BK, Voloudakis A. Silencing of Putative Plasmodesmata-Associated Genes PDLP and SRC2 Reveals Their Differential Involvement during Plant Infection with Cucumber Mosaic Virus. PLANTS (BASEL, SWITZERLAND) 2025; 14:495. [PMID: 39943057 PMCID: PMC11819965 DOI: 10.3390/plants14030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Plant viruses utilize a subset of host plasmodesmata-associated proteins to establish infection in plants. In the present study, we aimed to understand the role of two plant genes, one encoding a putative plasmodesma located protein (PDLP) and a homolog of soybean gene regulated by cold 2 protein (SRC2) during Cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was used to silence PDLP and SRC2 genes in Nicotiana benthamiana and in two related solanaceous plants, N. tabacum and Capsicum chinense Jacq. (Bhut Jolokia). Up to 50% downregulation in the expression of the PDLP gene using the TRV2-PDLP VIGS construct was observed in N. benthamiana and N. tabacum while, using the same gene construct, 30% downregulation of the target mRNA was observed in C. chinense. Similarly, using the TRV2-SRC2 VIGS construct, a 60% downregulation of the SRC2 mRNA was observed in N. benthamiana, N. tabacum, and a 40% downregulation in C. chinense as confirmed by qRT-PCR analysis. Downregulation of the PDLP gene in N. benthamiana resulted in delayed symptom appearance up to 7-12 days post inoculation with reduced CMV accumulation compared to the control plants expressing TRV2-eGFP. In contrast, SRC2-silenced plants showed enhanced susceptibility to CMV infection compared to the control plants. Our data suggest that the PDLP gene might facilitate infection of CMV, thus being a susceptibility factor, while the SRC2 gene could play a role in resistance to CMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Richita Saikia
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
| | - Carl Jonas Spetz
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway;
| | - Basanta Kumar Borah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
| |
Collapse
|
2
|
Shen H, Chen H, Li W, He S, Liao B, Xiong W, Shen Y, Li Y, Gao Y, Li YQ, Zhang B. Development of a robust and efficient virus-induced gene silencing system for reverse genetics in recalcitrant Camellia drupifera capsules. PLANT METHODS 2025; 21:1. [PMID: 39754266 PMCID: PMC11697828 DOI: 10.1186/s13007-024-01320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues. RESULTS Herein, we initiated the Tobacco rattle virus (TRV)-elicited VIGS in Camellia drupifera capsules with an orthogonal analysis including three factors: silencing target, virus inoculation approach, and capsule developmental stage. To facilitate observation and statistical analysis, two genes predominantly involved in pericarp pigmentation were selected for silencing efficiency: CdCRY1 (coding for a key photoreceptor affecting light-responsive perceivable anthocyanin accumulation in exocarps) and CdLAC15 (coding for an oxidase catalyzing the oxidative polymerization of proanthocyanidins in mesocarps, resulting in unperceivable red-hued mesocarps). The infiltration efficiency achieved for each gene was ~ 93.94% by pericarp cutting immersion. The optimal VIGS effect for each gene was observed at early (~ 69.80% for CdCRY1) and mid stages (~ 90.91% for CdLAC15) of capsule development. CONCLUSIONS Using our optimized VIGS system, CdCRY1 and CdLAC15 expression was successfully knocked down in Camellia drupifera pericarps, leading to fading phenotypes in exocarps and mesocarps, respectively. The established VIGS system may facilitate functional genomic studies in tea oil camellia and other recalcitrant fruits of woody plants.
Collapse
Affiliation(s)
- Hongjian Shen
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huajie Chen
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weimeng Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shan He
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Boyong Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanyu Xiong
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yang Shen
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongjuan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanru Gao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yong Quan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Bipei Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
3
|
Baysal C, Kausch AP, Cody JP, Altpeter F, Voytas DF. Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17196. [PMID: 39661735 PMCID: PMC11771572 DOI: 10.1111/tpj.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in Sorghum bicolor. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting Phytoene desaturase (PDS), Magnesium-chelatase subunit I (MgCh), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, orthologs of maize Lemon white1 (Lw1) or GFP. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for in planta gene editing and functional genomics studies in sorghum.
Collapse
Affiliation(s)
- Can Baysal
- DOE Center for Advanced Bioenergy and Bioproducts InnovationSt. PaulMinnesota55108USA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Albert P. Kausch
- Department of Cell and Molecular BiologyUniversity of Rhode IslandSouth KingstownRhode Island02881USA
| | - Jon P. Cody
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology ProgramGenetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationGainesvilleFlorida32611USA
| | - Daniel F. Voytas
- DOE Center for Advanced Bioenergy and Bioproducts InnovationSt. PaulMinnesota55108USA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| |
Collapse
|
4
|
Yang Q, Fan Y, Luo S, Liu C, Yuan S. Virus-Induced Gene Silencing (VIGS) in Hydrangea macrophylla and Functional Analysis of HmF3'5'H. PLANTS (BASEL, SWITZERLAND) 2024; 13:3396. [PMID: 39683189 DOI: 10.3390/plants13233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Hydrangea macrophylla, renowned for its large inflorescences and a diverse range of colors, highlights a significant limitation in current gene function research, which is the lack of effective molecular genetic tools. This study utilized a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate gene function through posttranscriptional gene silencing in H. macrophylla for the first time. The ortholog of phytoene desaturase (PDS) in H. macrophylla, termed HmPDS, was identified. Infection of tissue-cultured seedlings with TRV-HmPDS led to photobleaching of the leaves. Additionally, infection with TRV containing the HmCHS1 fragment in the flowers resulted in decreased anthocyanin production in sepals and a lightening of sepal coloration in the infected flowers. The phenomena and RT-qPCR results proved that the PDS and CHS genes of hydrangea were successfully silenced via the vacuum infiltration method. Furthermore, the introduction of TRV-HmF3'5'H revealed a decrease in delphinidin-3-glucoside content in sepals and caused a color change in the sepals from blue to pink. This study demonstrated that the TRV-VIGS system was successfully established in H. macrophylla and effectively applied to the function analysis of HmF3'5'H.
Collapse
Affiliation(s)
- Qiyu Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youwei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuwen Luo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chun Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suxia Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Zhang R, Chen X, Wang Y, Hu X, Zhu Q, Yang L, Zhou M. Genome-wide identification of hormone biosynthetic and metabolism genes in the 2OGD family of tobacco and JOX genes silencing enhances drought tolerance in plants. Int J Biol Macromol 2024; 280:135731. [PMID: 39299420 DOI: 10.1016/j.ijbiomac.2024.135731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Phytohormones play crucial roles in regulation of plant growth and tolerance to abiotic stresses. The 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily responds to hormone biosynthesis and metabolism in plants. However, the Nt2OGD family in tobacco has not been fully explored. In this study, we identify 126 members of the Nt2OGD family, and 60 of them are involved in hormone biosynthesis and metabolism process (Nt2OGD-Hs), including 1-aminocyclopropane-1-carboxylic acid oxidases (ACO), dioxygenases for auxin oxidation (DAO), gibberellin (GA) 20-oxidases and 3-oxidases (GA20ox and GA3ox), carbon-19 and carbon-20 GA 2-oxidases (C19-GA2ox and C20-GA2ox), lateral branching oxidoreductases (LBO), jasmonate-induced oxygenases (JOX), downy mildew resistant 6, and DMR6-like oxygenases (DMR6/DLO). Gene duplication analysis suggests the segmental duplication and whole genome duplication (WGD) might be a potential mechanism for the expansion of this family. Expression analysis reveals that most of Nt2OGD-Hs show tissue-specific expression patterns, and some of them respond to environmental conditions. Of Nt2OGD-Hs, the expression of NtJOX3 and NtJOX5, which are involved in JA metabolism, exhibits remarkable changes during drought treatments. Silencing of NtJOX3 or NtJOX5 increases tobacco tolerance to drought stress. Furthermore, knocking out OsJOX3 and OsJOX4, respectively in rice, result in high tolerance to drought. Taken together, our work comprehensively identifies the Nt2OGD family in tobacco and provides new insights into roles of the JA pathway in drought tolerance in plants.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Chen
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaozhou Hu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingquan Zhu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaiyin, 223300, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Sang S, Liu Y, Li X, Ma J, Liu X, Yang Y. A novel gene silencing strategy based on tobacco rattle virus in Hibiscus mutabilis. PeerJ 2024; 12:e18211. [PMID: 39391825 PMCID: PMC11466215 DOI: 10.7717/peerj.18211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Background Hibiscus mutabilis L. is a popular regional characteristic plant in China, cultivated for its attractive flower colors, extended bloom time, and medicinal properties. To enhance molecular breeding and gene function studies, we conducted transcriptome analysis and identified valuable genes in previous research. Nonetheless, the current inefficient and labor-intensive transformation techniques have hindered their applications. Virus-induced gene silencing (VIGS) provides a precise and effective strategy for post-transcriptional down-regulation of endogenous gene expression. Methods We investigated the performance of tobacco rattle virus (TRV) as a tool for targeting and silencing the gene encoding the protein involved in chloroplast development, cloroplastos alterados 1 (altered chloroplast; CLA1), of H. mutabilis through Agrobacterium tumefaciens-mediated infiltration. Results By effectively suppressing the CLA1 gene associated with chloroplast development in H. mutabilis via the TRV-VIGS system, we have illustrated the inaugural implementation of VIGS in this species. Quantitative RT-PCR proved that HmCLA1 expression in agro-infiltrated plants was lower than in the mock-infiltrated (mock) and the control (CK) plants. Phenotypic observations corroborated the albino phenotype in leaves following successful HmCLA1 silencing. Conclusions Our study showcases TRV-VIGS as a potential gene silencing tool for H. mutabilis, facilitating functional genomics studies and molecular breeding efforts in this species.
Collapse
Affiliation(s)
- Shiye Sang
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Yiqiong Liu
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Xiu Li
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Jiao Ma
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Xiaoli Liu
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | | |
Collapse
|
7
|
Perdomo JA, Scales JC, Lee W, Kanyuka K, Carmo‐Silva E. Down-regulation of wheat Rubisco activase isoforms expression by virus-induced gene silencing. PLANT DIRECT 2024; 8:e583. [PMID: 38628621 PMCID: PMC11018489 DOI: 10.1002/pld3.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Rubisco activase (Rca) is an essential photosynthetic enzyme that removes inhibitors from the catalytic sites of the carboxylating enzyme Rubisco. In wheat, Rca is composed of one longer 46 kDa α-isoform and two shorter 42 kDa β-isoforms encoded by the genes TaRca1 and TaRca2. TaRca1 produces a single transcript from which a short 1β-isoform is expressed, whereas two alternative transcripts are generated from TaRca2 directing expression of either a long 2α-isoform or a short 2β-isoform. The 2β isoform is similar but not identical to 1β. Here, virus-induced gene silencing (VIGS) was used to silence the different TaRca transcripts. Abundance of the transcripts and the respective protein isoforms was then evaluated in the VIGS-treated and control plants. Remarkably, treatment with the construct specifically targeting TaRca1 efficiently decreased expression not only of TaRca1 but also of the two alternative TaRca2 transcripts. Similarly, specific targeting of the TaRca2 transcript encoding a long isoform TaRca2α resulted in silencing of both TaRca2 alternative transcripts. The corresponding protein isoforms decreased in abundance. These findings indicate concomitant down-regulation of TaRca1 and TaRca2 at both transcript and protein levels and may impact the feasibility of altering the relative abundance of Rca isoforms in wheat.
Collapse
Affiliation(s)
- Juan Alejandro Perdomo
- Lancaster Environment CentreLancaster UniversityLancasterUK
- School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
| | | | - Wing‐Sham Lee
- Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Kostya Kanyuka
- Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- NIABCambridgeUK
| | - Elizabete Carmo‐Silva
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Plant Biology and Crop SciencesRothamsted ResearchHarpendenUK
| |
Collapse
|
8
|
Liu Y, Gao Y, Cheng X, Bai Y. Production of Double-Stranded RNA in Planta by a Potato Mop-Top Virus (PMTV)-Based Vector for Inducing Gene Silencing. Methods Mol Biol 2024; 2771:119-126. [PMID: 38285398 DOI: 10.1007/978-1-0716-3702-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA silencing (also known as gene silencing) is an evolutionary conserved mechanism that is involved in regulating gene expression, suppressing mobile elements, and defensing virus infection. RNA silencing is triggered by double-stranded RNA via Dicer or Dicer-like riboendonucleases. DsRNAs are also the replication intermediates of all RNA viruses; as a result, plant RNA viruses are ideal candidates to induce RNA silencing. A large body of plant viruses have been modified into vectors for RNA silencing in varied plant species. Here, we described a simple, time-saving, and operable system for gene function and genetic breeding study of potato and Nicotiana benthamiana using a potato mop-top (MPTV)-based vector.
Collapse
Affiliation(s)
- Ye Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
- Potato Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yanlin Gao
- Potato Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Yanju Bai
- Potato Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Qi X, Mo Q, Li J, Zi Z, Xu M, Yue S, Zhao H, Zhu H, Wang G. Establishment of virus-induced gene silencing (VIGS) system in Luffa acutangula using Phytoene desaturase (PDS) and tendril synthesis related gene (TEN). PLANT METHODS 2023; 19:94. [PMID: 37653449 PMCID: PMC10470258 DOI: 10.1186/s13007-023-01064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Virus-induced gene silencing (VIGS) is a reverse genetics technology that can efficiently and rapidly identify plant gene functions. Although a variety of VIGS vectors have been successfully used in plants, only a few reports on VIGS technology in Luffa exist. RESULTS In the present study, a new cucumber green mottle mosaic virus (CGMMV)-based VIGS vector, pV190, was applied to establish the CGMMV-VIGS to investigate the feasibility of the silencing system for Luffa. Phytoene desaturase (PDS) gene was initially selected as a VIGS marker gene to construct a recombinant vector. Plants infected with Agrobacterium harboring pV190-PDS successfully induced effective silencing in Luffa, and an effective gene silencing phenotype with obvious photobleaching was observed. To further validate the efficiency, we selected TEN for gene-silencing, which encodes a CYC/TB1-like transcription factor and is involved in tendril development. Luffa plants inoculated with the pV190-TEN exhibited shorter tendril length and nodal positions where tendrils appear are higher compared to those of non-inoculated plants. RT-qPCR showed that the expression levels of PDS and TEN were significantly reduced in the CGMMV-VIGS plants. Moreover, we evaluated the CGMMV-VIGS efficiency in three cucurbits, including cucumber, ridge gourd, and bottle gourd. CONCLUSION We successfully established a CGMMV-based VIGS system on ridge gourd and used marker genes to identify the feasibility of the silencing system in Luffa leaves and stems.
Collapse
Affiliation(s)
- Xiaoyu Qi
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qiaoping Mo
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jing Li
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Tibet, 860000, Nyingchi, China
| | - Zhibo Zi
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Mengyun Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Suju Yue
- College of Life Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Haisheng Zhu
- Fujian Key Laboratory of Vegetable Genetics and Breeding/Crops Research Institute, Fujian Academy of Agricultural Sciences, Fujian, 350013, Fuzhou, China.
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
10
|
Zhang Y, Niu N, Li S, Liu Y, Xue C, Wang H, Liu M, Zhao J. Virus-Induced Gene Silencing (VIGS) in Chinese Jujube. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112115. [PMID: 37299093 DOI: 10.3390/plants12112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Virus-induced gene silencing (VIGS) is a fast and efficient method for assaying gene function in plants. At present, the VIGS system mediated by Tobacco rattle virus (TRV) has been successfully practiced in some species such as cotton and tomato. However, little research of VIGS systems has been reported in woody plants, nor in Chinese jujube. In this study, the TRV-VIGS system of jujube was firstly investigated. The jujube seedlings were grown in a greenhouse with a 16 h light/8 h dark cycle at 23 °C. After the cotyledon was fully unfolded, Agrobacterium mixture containing pTRV1 and pTRV2-ZjCLA with OD600 = 1.5 was injected into cotyledon. After 15 days, the new leaves of jujube seedlings showed obvious photo-bleaching symptoms and significantly decreased expression of ZjCLA, indicating that the TRV-VIGS system had successfully functioned on jujube. Moreover, it found that two injections on jujube cotyledon could induce higher silencing efficiency than once injection. A similar silencing effect was then also verified in another gene, ZjPDS. These results indicate that the TRV-VIGS system in Chinese jujube has been successfully established and can be applied to evaluate gene function, providing a breakthrough in gene function verification methods.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Nazi Niu
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Shijia Li
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Yin Liu
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
11
|
Resistance strategies for defense against Albugo candida causing white rust disease. Microbiol Res 2023; 270:127317. [PMID: 36805163 DOI: 10.1016/j.micres.2023.127317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Albugo candida, the causal organism of white rust, is an oomycete obligate pathogen infecting crops of Brassicaceae family occurred on aerial part, including vegetable and oilseed crops at all growth stages. The disease expression is characterized by local infection appearing on the abaxial region developing white or creamy yellow blister (sori) on leaves and systemic infections cause hypertrophy and hyperplasia leading to stag-head of reproductive organ. To overcome this problem, several disease management strategies like fungicide treatments were used in the field and disease-resistant varieties have also been developed using conventional and molecular breeding. Due to high variability among A. candida isolates, there is no single approach available to understand the diverse spectrum of disease symptoms. In absence of resistance sources against pathogen, repetitive cultivation of genetically-similar varieties locally tends to attract oomycete pathogen causing heavy yield losses. In the present review, a deep insight into the underlying role of the non-host resistance (NHR) defence mechanism available in plants, and the strategies to exploit available gene pools from plant species that are non-host to A. candida could serve as novel sources of resistance. This work summaries the current knowledge pertaining to the resistance sources available in non-host germ plasm, the understanding of defence mechanisms and the advance strategies covers molecular, biochemical and nature-based solutions in protecting Brassica crops from white rust disease.
Collapse
|
12
|
Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int J Mol Sci 2023; 24:ijms24065608. [PMID: 36982682 PMCID: PMC10057534 DOI: 10.3390/ijms24065608] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/17/2023] Open
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.
Collapse
|
13
|
Palmer L, Chuang L, Siegmund M, Kunert M, Yamamoto K, Sonawane P, O'Connor SE. In vivo characterization of key iridoid biosynthesis pathway genes in catnip (Nepeta cataria). PLANTA 2022; 256:99. [PMID: 36222913 PMCID: PMC9556426 DOI: 10.1007/s00425-022-04012-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Using virus-induced gene silencing, we demonstrated that the enzymes GES, ISY, and MLPL are responsible for nepetalactone biosynthesis in Nepeta cataria. Nepetalactone is the main iridoid that is found in the Nepeta genus and is well-known for its psychoactive effect on house cats. Moreover, there is a burgeoning interest into the effect of nepetalactone on insects. Although the enzymes for nepetalactone biosynthesis have been biochemically assayed in vitro, validation of the role that these enzymes have in planta has not been demonstrated. Virus-induced gene silencing (VIGS) is a silencing method that relies on transient transformation and is an approach that has been particularly successful when applied to a variety of non-model plants. Here, we use a recently designed visual-marker dependent VIGS system to demonstrate that the nepetalactone biosynthetic enzymes GES, ISY, and MLPL impact nepetalactone biosynthesis in Nepeta cataria.
Collapse
Affiliation(s)
- Lira Palmer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Ling Chuang
- Institute of Botany, Leibniz University Hannover, 30167, Hannover, Germany
| | - Marlen Siegmund
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Kotaro Yamamoto
- School of Science, Association of International Arts and Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Prashant Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany.
| |
Collapse
|
14
|
Zhao X, Wu T, Guo S, Hu J, Zhan Y. Ectopic Expression of AeNAC83, a NAC Transcription Factor from Abelmoschus esculentus, Inhibits Growth and Confers Tolerance to Salt Stress in Arabidopsis. Int J Mol Sci 2022; 23:ijms231710182. [PMID: 36077574 PMCID: PMC9456028 DOI: 10.3390/ijms231710182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
NAC transcription factors play crucial roles in plant growth, development and stress responses. Previously, we preliminarily identified that the transcription factor AeNAC83 gene was significantly up-regulated under salt stress in okra (Abelmoschus esculentus). Herein, we cloned the nuclear-localized AeNAC83 from okra and identified its possible role in salt stress response and plant growth. The down-regulation of AeNAC83 caused by virus-induced gene silencing enhanced plant sensitivity to salt stress and increased the biomass accumulation of okra seedlings. Meanwhile, AeNAC83-overexpression Arabidopsis lines improved salt tolerance and exhibited many altered phenotypes, including small rosette, short primary roots, and promoted crown roots and root hairs. RNA-seq showed numerous genes at the transcriptional level that changed significantly in the AeNAC83-overexpression transgenic and the wild Arabidopsis with or without NaCl treatment, respectively. The expression of most phenylpropanoid and flavonoid biosynthesis-related genes was largely induced by salt stress. While genes encoding key proteins involved in photosynthesis were almost declined dramatically in AeNAC83-overexpression transgenic plants, and NaCl treatment further resulted in the down-regulation of these genes. Furthermore, DEGs encoding various plant hormone signal pathways were also identified. These results indicate that AeNAC83 is involved in resistance to salt stress and plant growth.
Collapse
|
15
|
Link TI. Host-Induced Gene Silencing Using BPMV on Soybean to Study Genes in the Soybean Rust Fungus Phakopsora pachyrhizi. Methods Mol Biol 2022; 2523:79-91. [PMID: 35759192 DOI: 10.1007/978-1-0716-2449-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To obtain direct evidence for the influence of an effector on the virulence or pathogenicity of a pathogen, it is necessary to knock out, knock down, or silence the respective gene. Since genetic transformation is not yet possible for rust fungi, silencing the gene is the only option. Posttranscriptional gene silencing uses RNAi. RNAi in plant pathogens can be accomplished by introducing dsRNA either by direct application of in vitro synthesized dsRNA or through positive-strand or double-strand RNA plant viruses. For studying effectors in Phakopsora pachyrhizi, we have implemented a host-induced silencing procedure based on virus-induced gene silencing using the bean pod mottle virus system. Here, procedures and interpretations of results are described and limitations of the system are discussed.
Collapse
Affiliation(s)
- Tobias I Link
- Department of Phytopathology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
16
|
Qiao JH, Gao Q, Zang Y, Fang XD, Wang XB. A Versatile Expression Platform in Insects and Cereals Based on a Cytorhabdovirus. Methods Mol Biol 2022; 2400:163-170. [PMID: 34905200 DOI: 10.1007/978-1-0716-1835-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, plant virus-based vectors have been widely applied to express heterologous proteins for genomic studies and commercial production. Among these versatile RNA viral vectors, the barley yellow striate mosaic virus (BYSMV)-based expression vector system has outstanding capability to express large and multiple heterologous proteins. Here we describe a detailed protocol for expression of heterologous proteins using BYSMV expression systems in monocot plants and insects.
Collapse
Affiliation(s)
- Ji-Hui Qiao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Zang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Liu J, Mehari TG, Xu Y, Umer MJ, Hou Y, Wang Y, Peng R, Wang K, Cai X, Zhou Z, Liu F. GhGLK1 a Key Candidate Gene From GARP Family Enhances Cold and Drought Stress Tolerance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:759312. [PMID: 34992618 PMCID: PMC8725998 DOI: 10.3389/fpls.2021.759312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Drought and low-temperature stresses are the most prominent abiotic stresses affecting cotton. Wild cotton being exposed to harsh environments has more potential to cope with both biotic and abiotic stresses. Exploiting wild cotton material to induce resistant germplasm would be of greater interest. The candidate gene was identified in the BC2F2 population among Gossypium tomentosum and Gossypium hirsutum as wild male donor parent noted for its drought tolerance and the recurrent parent and a high yielding but drought susceptible species by genotyping by sequencing (GBS) mapping. Golden2-like (GLK) gene, which belongs to the GARP family, is a kind of plant-specific transcription factor (TF) that was silenced by virus-induced gene silencing (VIGS). Silencing of GhGLK1 in cotton results in more damage to plants under drought and cold stress as compared with wild type (WT). The overexpression of GhGLK1 in Arabidopsis thaliana showed that the overexpressing plants showed more adaptability than the WT after drought and cold treatments. The results of trypan blue and 3,3'-diaminobenzidine (DAB) staining showed that after drought and cold treatment, the leaf damage in GhGLK1 overexpressed plants was less as compared with the WT, and the ion permeability was also lower. This study suggested that the GhGLK1 gene may be involved in the regulation of drought and cold stress response in cotton. Our current research findings add significantly to the existing knowledge of cold and drought stress tolerance in cotton.
Collapse
Affiliation(s)
- Jiangna Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Li H, Zhang D, Xie K, Wang Y, Liao Q, Hong Y, Liu Y. Efficient and high-throughput pseudorecombinant-chimeric Cucumber mosaic virus-based VIGS in maize. PLANT PHYSIOLOGY 2021; 187:2865-2876. [PMID: 34606612 PMCID: PMC8644855 DOI: 10.1093/plphys/kiab443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/23/2021] [Indexed: 05/04/2023]
Abstract
Virus-induced gene silencing (VIGS) is a versatile and attractive approach for functional gene characterization in plants. Although several VIGS vectors for maize (Zea mays) have been previously developed, their utilities are limited due to low viral infection efficiency, insert instability, short maintenance of silencing, inadequate inoculation method, or abnormal requirement of growth temperature. Here, we established a Cucumber mosaic virus (CMV)-based VIGS system for efficient maize gene silencing that overcomes many limitations of VIGS currently available for maize. Using two distinct strains, CMV-ZMBJ and CMV-Fny, we generated a pseudorecombinant-chimeric (Pr) CMV. Pr CMV showed high infection efficacy but mild viral symptoms in maize. We then constructed Pr CMV-based vectors for VIGS, dubbed Pr CMV VIGS. Pr CMV VIGS is simply performed by mechanical inoculation of young maize leaves with saps of Pr CMV-infected Nicotiana benthamiana under normal growth conditions. Indeed, suppression of isopentenyl/dimethylallyl diphosphate synthase (ZmIspH) expression by Pr CMV VIGS resulted in non-inoculated leaf bleaching as early as 5 d post-inoculation (dpi) and exhibited constant and efficient systemic silencing over the whole maize growth period up to 105 dpi. Furthermore, utilizing a ligation-independent cloning (LIC) strategy, we developed a modified Pr CMV-LIC VIGS vector, allowing easy gene cloning for high-throughput silencing in maize. Thus, our Pr CMV VIGS system provides a much-improved toolbox to facilitate efficient and long-duration gene silencing for large-scale functional genomics in maize, and our pseudorecombination-chimera combination strategy provides an approach to construct efficient VIGS systems in plants.
Collapse
Affiliation(s)
- Huangai Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Danfeng Zhang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Xie
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
19
|
Tang J, Gu X, Liu J, He Z. Roles of small RNAs in crop disease resistance. STRESS BIOLOGY 2021; 1:6. [PMID: 37676520 PMCID: PMC10429495 DOI: 10.1007/s44154-021-00005-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Small RNAs (sRNAs) are a class of short, non-coding regulatory RNAs that have emerged as critical components of defense regulatory networks across plant kingdoms. Many sRNA-based technologies, such as host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS), virus-induced gene silencing (VIGS), artificial microRNA (amiRNA) and synthetic trans-acting siRNA (syn-tasiRNA)-mediated RNA interference (RNAi), have been developed as disease control strategies in both monocot and dicot plants, particularly in crops. This review aims to highlight our current understanding of the roles of sRNAs including miRNAs, heterochromatic siRNAs (hc-siRNAs), phased, secondary siRNAs (phasiRNAs) and natural antisense siRNAs (nat-siRNAs) in disease resistance, and sRNAs-mediated trade-offs between defense and growth in crops. In particular, we focus on the diverse functions of sRNAs in defense responses to bacterial and fungal pathogens, oomycete and virus in crops. Further, we highlight the application of sRNA-based technologies in protecting crops from pathogens. Further research perspectives are proposed to develop new sRNAs-based efficient strategies to breed non-genetically modified (GMO), disease-tolerant crops for sustainable agriculture.
Collapse
Affiliation(s)
- Jun Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueting Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
20
|
Zhang W, Qiu Y, Zhou L, Yin J, Wang L, Zhi H, Xu K. Development of a Viral RdRp-Assisted Gene Silencing System and Its Application in the Identification of Host Factors of Plant (+)RNA Virus. Front Microbiol 2021; 12:682921. [PMID: 34394029 PMCID: PMC8358433 DOI: 10.3389/fmicb.2021.682921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Gene silencing induced by hairpin RNA or virus infection expression is one of the major tools in genetics studies in plants. However, when dealing with essential genes, virus-induced gene silencing (VIGS) and transgenic expression of hairpin RNA could lead to plant death, while transient expression of hairpin RNA in leaves is often less competent in downregulating target gene mRNA levels. Here, we developed a transient double-stranded RNA (dsRNA) expression system assisted by a modified viral RNA-dependent RNA polymerase (RdRp) in plant leaves. We show that this system is more effective in inducing gene silencing than the intron-spliced hairpin RNA expression. Furthermore, by using this system, we tested the role of the early secretory pathway during infection of Soybean mosaic potyvirus (SMV). We found that key components of the coat protein complex II vesicles are required for the multiplication of SMV. Overall, this dsRNA-based gene silencing system is effective in downregulating plant gene expression and can be used to identify host genes involved in plant-virus interactions.
Collapse
Affiliation(s)
- Wang Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingyun Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
21
|
Shi G, Hao M, Tian B, Cao G, Wei F, Xie Z. A Methodological Advance of Tobacco Rattle Virus-Induced Gene Silencing for Functional Genomics in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:671091. [PMID: 34149770 PMCID: PMC8212136 DOI: 10.3389/fpls.2021.671091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
As a promising high-throughput reverse genetic tool in plants, virus-induced gene silencing (VIGS) has already begun to fulfill some of this promise in diverse aspects. However, review of the technological advancements about widely used VIGS system, tobacco rattle virus (TRV)-mediated gene silencing, needs timely updates. Hence, this article mainly reviews viral vector construction, inoculation method advances, important influential factors, and summarizes the recent applications in diverse plant species, thus providing a better understanding and advice for functional gene analysis related to crop improvements.
Collapse
Affiliation(s)
- Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengyuan Hao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Li Z, Hu Y, Chang M, Kashif MH, Tang M, Luo D, Cao S, Lu H, Zhang W, Huang Z, Yue J, Chen P. 5-azacytidine pre-treatment alters DNA methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.). CHEMOSPHERE 2021; 271:129562. [PMID: 33453481 DOI: 10.1016/j.chemosphere.2021.129562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 05/19/2023]
Abstract
Soil salinization is becoming a major threat to the sustainable development of global agriculture. Kenaf is an industrial fiber crop with high tolerance to salt stress and could be used for soil phytoremediation. However, the molecular mechanism of kenaf salt tolerance remains largely unknown. DNA methylation is an important epigenetic modifications phenomena and plays a key role in gene expression regulation under abiotic stress condition. In the present study, the kenaf seedlings were pre-treated or not with 50 μM 5-azacytidine (5-azaC, a DNA methylation inhibitor) and then subjected to different concentrations of NaCl. Results showed that the biomass and antioxidant activities (superoxide dismutase, peroxidase and catalase) of kenaf seedlings pre-treated with 5-azaC were significantly increased, while the contents of superoxide anion (O2-) and malondialdehyde (MDA) were decreased, indicating that 5-azaC pre-treatment could significantly alleviate salt stress injury. Furthermore, the methylation-sensitive amplified polymorphism (MSAP) analysis revealed that DNA methylation level of keanf seedlings pre-treated with 5-azaC significantly decreased. The expression of seven differentially methylated genes responsing to salt stress was significantly changed from real-time fluorescent quantitative (qRT-PCR) analysis. Finally, knocked-down of the l-ascorbate oxidase (L-AAO) gene by virus-induced gene silencing (VIGS) resulted in increased sensitivity of kenaf seedlings under salt stress. Overall, it was suggested that 5-azaC pre-treatment can significantly improve salt tolerance in kenaf by decreasing ROS content, raising anti-oxidant activities, and regulating DNA methylation and expression of stress-responsive genes.
Collapse
Affiliation(s)
- Zengqiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Yali Hu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Mengmeng Chang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad Haneef Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Meiqiong Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Dengjie Luo
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Shan Cao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Hai Lu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Wenxian Zhang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Zhen Huang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Jiao Yue
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China.
| |
Collapse
|
23
|
Tan Y, Bukys A, Molnár A, Hudson A. Rapid, high efficiency virus-mediated mutant complementation and gene silencing in Antirrhinum. PLANT METHODS 2020; 16:145. [PMID: 33117430 PMCID: PMC7590601 DOI: 10.1186/s13007-020-00683-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/07/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Antirrhinum (snapdragon) species are models for genetic and evolutionary research but recalcitrant to genetic transformation, limiting use of transgenic methods for functional genomics. Transient gene expression from viral vectors and virus-induced gene silencing (VIGS) offer transformation-free alternatives. Here we investigate the utility of Tobacco rattle virus (TRV) for homologous gene expression in Antirrhinum and VIGS in Antirrhinum and its relative Misopates. RESULTS A. majus proved highly susceptible to systemic TRV infection. TRV carrying part of the Phytoene Desaturase (PDS) gene triggered efficient PDS silencing, visible as tissue bleaching, providing a reporter for the extent and location of VIGS. VIGS was initiated most frequently in young seedlings, persisted into inflorescences and flowers and was not significantly affected by the orientation of the homologous sequence within the TRV genome. Its utility was further demonstrated by reducing expression of two developmental regulators that act either in the protoderm of young leaf primordia or in developing flowers. The effects of co-silencing PDS and the trichome-suppressing Hairy (H) gene from the same TRV genome showed that tissue bleaching provides a useful marker for VIGS of a second target gene acting in a different cell layer. The ability of TRV-encoded H protein to complement the h mutant phenotype was also tested. TRV carrying the native H coding sequence with PDS to report infection failed to complement h mutations and triggered VIGS of H in wild-type plants. However, a sequence with 43% synonymous substitutions encoding H protein, was able to complement the h mutant phenotype when expressed without a PDS VIGS reporter. CONCLUSIONS We demonstrate an effective method for VIGS in the model genus Antirrhinum and its relative Misopates that works in vegetative and reproductive tissues. We also show that TRV can be used for complementation of a loss-of-function mutation in Antirrhinum. These methods make rapid tests of gene function possible in these species, which are difficult to transform genetically, and opens up the possibility of using additional cell biological and biochemical techniques that depend on transgene expression.
Collapse
Affiliation(s)
- Ying Tan
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
- College of Life Sciences, Hunan Normal University, 136 Lushan Road, Changsha, 410006 China
| | - Alfredas Bukys
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Attila Molnár
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Andrew Hudson
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| |
Collapse
|
24
|
Virus-Induced Flowering by Apple Latent Spherical Virus Vector: Effective Use to Accelerate Breeding of Grapevine. Viruses 2020; 12:v12010070. [PMID: 31936111 PMCID: PMC7019355 DOI: 10.3390/v12010070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 01/23/2023] Open
Abstract
Apple latent spherical virus (ALSV) was successfully used in promoting flowering (virus-induced flowering, VIF) in apple and pear seedlings. In this paper, we report the use of ALSV vectors for VIF in seedlings and in vitro cultures of grapevine. After adjusting experimental conditions for biolistic inoculation of virus RNA, ALSV efficiently infected not only progeny seedlings of Vitis spp. ‘Koshu,’ but also in vitro cultures of V. vinifera ‘Neo Muscat’ without inducing viral symptoms. The grapevine seedlings and in vitro cultures inoculated with an ALSV vector expressing the ‘florigen’ gene (Arabidopsis Flowering locus T, AtFT) started to set floral buds 20–30 days after inoculation. This VIF technology was successfully used to promote flowering and produce grapes with viable seeds in in vitro cultures of F1 hybrids from crosses between V. ficifolia and V. vinifera and made it possible to analyze the quality of fruits within a year after germination. High-temperature (37 °C) treatment of ALSV-infected grapevine disabled virus movement to newly growing tissue to obtain ALSV-free shoots. Thus, the VIF using ALSV vectors can be used to shorten the generation time of grapevine seedlings and accelerate breeding of grapevines with desired traits.
Collapse
|
25
|
Broderick SR, Chapin LJ, Jones ML. Virus-Induced Gene Silencing for Functional Analysis of Flower Traits in Petunia. Methods Mol Biol 2020; 2172:199-222. [PMID: 32557371 DOI: 10.1007/978-1-0716-0751-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Virus-induced gene silencing (VIGS) uses recombinant viruses to knock down the expression of endogenous plant genes, allowing for rapid functional analysis without generating stable transgenic plants. The Tobacco rattle virus (TRV) is a popular vector for VIGS because it has a wide host range that includes Petunia × hybrida (petunia), and it induces minimal viral symptoms. Using reporter genes like chalcone synthase (CHS) in tandem with a gene of interest (GOI; pTRV2-PhCHS-GOI), it is possible to visually identify silenced flowers so that phenotyping is more accurate. Inoculation methods and environmental conditions need to be optimized for each host plant-virus interaction to maximize silencing efficiency. This chapter will provide detailed protocols for VIGS in petunia, with an emphasis on the investigation of flower phenotypes.
Collapse
Affiliation(s)
- Shaun R Broderick
- Department of Plant and Soil Sciences, Mississippi State University, Truck Crops Experiment Station, Crystal Springs, MS, USA
| | - Laura J Chapin
- Department of Horticulture and Crop Science, The Ohio State University, The Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Michelle L Jones
- Department of Horticulture and Crop Science, The Ohio State University, The Ohio Agricultural Research and Development Center, Wooster, OH, USA.
| |
Collapse
|
26
|
Kirungu JN, Magwanga RO, Pu L, Cai X, Xu Y, Hou Y, Zhou Y, Cai Y, Hao F, Zhou Z, Wang K, Liu F. Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) Dehydrin genes, Reveals their potential role in enhancing osmotic and salt tolerance in cotton. Genomics 2019; 112:1902-1915. [PMID: 31733270 DOI: 10.1016/j.ygeno.2019.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 01/17/2023]
Abstract
In this investigation, whole-genome identification and functional characterization of the cotton dehydrin genes was carried out. A total of 16, 7, and 7 dehydrin proteins were identified in G. hirsutum, G. arboreum and G. raimondii, respectively. Through RNA sequence data and RT-qPCR validation, Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) were highly upregulated, and knockdown of the two genes, significantly reduced the ability of the plants to tolerate the effects of osmotic and salt stress. The VIGS-plants recorded significantly higher concentration levels of oxidants, hydrogen peroxide (H2O2) and malondialdehyde (MDA), furthermore, the four stress responsive genes GhLEA2, Gh_D12G2017 (CDKF4), Gh_A07G0747 (GPCR) and a transcription factor, trihelix, Gh_A05G2067, were significantly downregulated in VIGS-plants, but upregulated in wild types under osmotic and salt stress condition. The result indicated that dehydrin proteins are vital for plants and can be exploited in developing a more osmotic and salt stress-resilient germplasm to boost and improve cotton production.
Collapse
Affiliation(s)
- Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China; School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo, Kenya
| | - Lu Pu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China.
| | - Yuanchao Xu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China.
| | - Yun Zhou
- School of Life Science, Henan University/State Key Laboratory of Cotton Biology/Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan 475004, China.
| | - Yingfan Cai
- School of Life Science, Henan University/State Key Laboratory of Cotton Biology/Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan 475004, China.
| | - Fushun Hao
- School of Life Science, Henan University/State Key Laboratory of Cotton Biology/Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan 475004, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
27
|
Gao Q, Xu WY, Yan T, Fang XD, Cao Q, Zhang ZJ, Ding ZH, Wang Y, Wang XB. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. THE NEW PHYTOLOGIST 2019; 223:2120-2133. [PMID: 31059138 DOI: 10.1111/nph.15889] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/28/2019] [Indexed: 05/19/2023]
Abstract
Plant viruses have been used as rapid and cost-effective expression vectors for heterologous protein expression in genomic studies. However, delivering large or multiple foreign proteins in monocots and insect pests is challenging. Here, we recovered a recombinant plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), for use as a versatile expression platform in cereals and the small brown planthopper (SBPH, Laodelphax striatellus) insect vector. We engineered BYSMV vectors to provide versatile expression platforms for simultaneous expression of three foreign proteins in barley plants and SBPHs. Moreover, BYSMV vectors could express the c. 600-amino-acid β-glucuronidase (GUS) protein and a red fluorescent protein stably in systemically infected leaves and roots of cereals, including wheat, barley, foxtail millet, and maize plants. Moreover, we have demonstrated that BYSMV vectors can be used in barley to analyze biological functions of gibberellic acid (GA) biosynthesis genes. In a major technical advance, BYSMV vectors were developed for simultaneous delivery of CRISPR/Cas9 nuclease and single guide RNAs for genomic editing in Nicotiana benthamiana leaves. Taken together, our results provide considerable potential for rapid screening of functional proteins in cereals and planthoppers, and an efficient approach for developing other insect-transmitted negative-strand RNA viruses.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Teng Yan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Wang Z, Xu X, Ni L, Guo J, Gu C. Efficient virus-induced gene silencing in Hibiscus hamabo Sieb. et Zucc. using tobacco rattle virus. PeerJ 2019; 7:e7505. [PMID: 31423365 PMCID: PMC6694781 DOI: 10.7717/peerj.7505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background Hibiscus hamabo Sieb. et Zucc. is a semi-mangrove plant used for the ecological restoration of saline-alkali land, coastal afforestation and urban landscaping. The genetic transformation H. hamabo is currently inefficient and laborious, restricting gene functional studies on this species. In plants, virus-induced gene silencing provides a pathway to rapidly and effectively create targeted gene knockouts for gene functional studies. Methods In this study, we tested the efficiency of a tobacco rattle virus vector in silencing the cloroplastos alterados 1 (CLA1) gene through agroinfiltration. Results The leaves of H. hamabo showed white streaks typical of CLA1 gene silencing three weeks after agroinfiltration. In agroinfiltrated H. hamabo plants, the CLA1 expression levels in leaves with white streaks were all significantly lower than those in leaves from mock-infected and control plants. Conclusions The system presented here can efficiently silence genes in H. hamabo and may be a powerful tool for large-scale reverse-genetic analyses of gene functions in H. hamabo.
Collapse
Affiliation(s)
- Zhiquan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Xiaoyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Longjie Ni
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.,College of Forest Sciences, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jinbo Guo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Chunsun Gu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Xie L, Zhang Q, Sun D, Yang W, Hu J, Niu L, Zhang Y. Virus-induced gene silencing in the perennial woody Paeonia ostii. PeerJ 2019; 7:e7001. [PMID: 31179188 PMCID: PMC6545099 DOI: 10.7717/peerj.7001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/21/2019] [Indexed: 11/24/2022] Open
Abstract
Tree peony is a perennial deciduous shrub with great ornamental and medicinal value. A limitation of its current functional genomic research is the lack of effective molecular genetic tools. Here, the first application of a Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) in the tree peony species Paeonia ostii is presented. Two different approaches, leaf syringe-infiltration and seedling vacuum-infiltration, were utilized for Agrobacterium-mediated inoculation. The vacuum-infiltration was shown to result in a more complete Agrobacterium penetration than syringe-infiltration, and thereby determined as an appropriate inoculation method. The silencing of reporter gene PoPDS encoding phytoene desaturase was achieved in TRV-PoPDS-infected triennial tree peony plantlets, with a typical photobleaching phenotype shown in uppermost newly-sprouted leaves. The endogenous PoPDS transcripts were remarkably down-regulated in VIGS photobleached leaves. Moreover, the green fluorescent protein (GFP) fluorescence was detected in leaves and roots of plants inoculated with TRV-GFP, suggesting the capability of TRV to silence genes in various tissues. Taken together, the data demonstrated that the TRV-based VIGS technique could be adapted for high-throughput functional characterization of genes in tree peony.
Collapse
Affiliation(s)
- Lihang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Weizong Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayuan Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Zhu F, Che Y, Xu F, Zhou Y, Qian K, Liao Y, Ji Z. Simultaneous silencing of two target genes using virus-induced gene silencing technology in Nicotiana benthamiana. Z NATURFORSCH C 2019; 74:151-159. [PMID: 30667369 DOI: 10.1515/znc-2018-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/30/2018] [Indexed: 11/15/2022]
Abstract
Virus-induced gene silencing (VIGS) is an effective strategy for rapid gene function analysis. It is well established that the NAC transcription factor and salicylic acid (SA) signal pathway play essential roles in response to biotic stresses. However, simultaneous silencing of two target genes using VIGS in plants has been rarely reported. Therefore, in this report, we performed VIGS to silence simultaneously the SA-binding protein 2 (NbSABP2) and NbNAC1 in Nicotiana benthamiana to investigate the gene silencing efficiency of simultaneous silencing of two genes. We first cloned the full-length NbNAC1 gene, and the characterization of NbNAC1 was also analysed. Overlap extension polymerase chain reaction (PCR) analysis showed that the combination of NbSABP2 and NbNAC1 was successfully amplified. Bacteria liquid PCR confirmed that the combination of NbSABP2 and NbNAC1 was successfully inserted into the tobacco rattle virus vector. The results showed that the leaves from the NbSABP2 and NbNAC1 gene-silenced plants collapsed slightly, with browning at the base of petiole or veina. Quantitative real-time PCR results showed that the expression of NbSABP2 and NbNAC1 were significantly reduced in 12 days post silenced plants after tobacco rattle virus infiltration compared with the control plants. Overall, our results suggest that VIGS can be used to silence simultaneously two target genes.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanping Che
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Xu
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan 430415, China
| | - Yangkai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yonghui Liao
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhaolin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
31
|
Kant R, Dasgupta I. Gene silencing approaches through virus-based vectors: speeding up functional genomics in monocots. PLANT MOLECULAR BIOLOGY 2019; 100:3-18. [PMID: 30850930 DOI: 10.1007/s11103-019-00854-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/02/2019] [Indexed: 05/20/2023]
Abstract
The design and use of existing VIGS vectors for revealing monocot gene functions are described and potential new vectors are discussed, which may expand their repertoire. Virus induced gene silencing (VIGS) is a method of transient gene silencing in plants, triggered by the use of modified viral vectors. VIGS has found widespread use in deciphering the functions of plant genes, mainly for dicots. In the last decade, however, its use in monocots has increased noticeably, involving not only previously described viruses for monocots, but also those described for dicots. Additional viruses have been modified for VIGS to bring a larger collection of monocots under the ambit of this method. For monocots, new methods of inoculation have been tried to obtain increased silencing efficiency. The issue of insert stability and duration of silencing have also been addressed by various research groups. VIGS has been used to unravel the functions of a fairly large collection of monocot genes. This review summarizes the above developments, bringing out some of the gaps in our understanding and identifies directions to develop this technology further in the coming years.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
32
|
Cai C, Wang X, Zhang B, Guo W. Tobacco Rattle Virus-Induced Gene Silencing in Cotton. Methods Mol Biol 2018; 1902:105-119. [PMID: 30543065 DOI: 10.1007/978-1-4939-8952-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Virus-induced gene silencing (VIGS), as a tool for plant reverse genetics, has been widely used in cotton for target gene function analysis. Compared with genetically transformed plants, the target gene expression level is reduced in the newly emerged leaves and can carry out phenotype identification after a few weeks of Agrobacterium infiltration. In this chapter, we describe a detailed protocol for Agrobacterium-mediated TRV-VIGS system for cotton gene function studies, with focus on designing primers, constructing TRV-target gene vectors via homologous recombination method, preparing and infiltrating Agrobacterium with TRV-VIGS, and identifying target gene silencing.
Collapse
Affiliation(s)
- Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
33
|
Singh B, Kukreja S, Goutam U. Milestones achieved in response to drought stress through reverse genetic approaches. F1000Res 2018; 7:1311. [PMID: 30631439 PMCID: PMC6290974 DOI: 10.12688/f1000research.15606.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 01/07/2023] Open
Abstract
Drought stress is the most important abiotic stress that constrains crop production and reduces yield drastically. The germplasm of most of the cultivated crops possesses numerous unknown drought stress tolerant genes. Moreover, there are many reports suggesting that the wild species of most of the modern cultivars have abiotic stress tolerant genes. Due to climate change and population booms, food security has become a global issue. To develop drought tolerant crop varieties knowledge of various genes involved in drought stress is required. Different reverse genetic approaches such as virus-induced gene silencing (VIGS), clustered regularly interspace short palindromic repeat (CRISPR), targeting induced local lesions in genomes (TILLING) and expressed sequence tags (ESTs) have been used extensively to study the functionality of different genes involved in response to drought stress. In this review, we described the contributions of different techniques of functional genomics in the study of drought tolerant genes.
Collapse
Affiliation(s)
- Baljeet Singh
- Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sarvjeet Kukreja
- Department of Botany, Ch. MRM Memorial College, Sriganganagar, Rajasthan, 335804, India
| | - Umesh Goutam
- Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
34
|
Taning CNT, Christiaens O, Li X, Swevers L, Casteels H, Maes M, Smagghe G. Engineered Flock House Virus for Targeted Gene Suppression Through RNAi in Fruit Flies ( Drosophila melanogaster) in Vitro and in Vivo. Front Physiol 2018; 9:805. [PMID: 30018564 PMCID: PMC6037854 DOI: 10.3389/fphys.2018.00805] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023] Open
Abstract
RNA interference (RNAi) is a powerful tool to study functional genomics in insects and the potential of using RNAi to suppress crop pests has made outstanding progress. However, the delivery of dsRNA is a challenging step in the development of RNAi bioassays. In this study, we investigated the ability of engineered Flock House virus (FHV) to induce targeted gene suppression through RNAi under in vitro and in vivo condition. As proxy for fruit flies of agricultural importance, we worked with S2 cells as derived from Drosophila melanogaster embryos, and with adult stages of D. melanogaster. We found that the expression level for all of the targeted genes were reduced by more than 70% in both the in vitro and in vivo bioassays. Furthermore, the cell viability and median survival time bioassays demonstrated that the recombinant FHV expressing target gene sequences caused a significantly higher mortality (60-73% and 100%) than the wild type virus (24 and 71%), in both S2 cells and adult insects, respectively. This is the first report showing that a single stranded RNA insect virus such as FHV, can be engineered as an effective in vitro and in vivo RNAi delivery system. Since FHV infects many insect species, the described method could be exploited to improve the efficiency of dsRNA delivery for RNAi-related studies in both FHV susceptible insect cell lines and live insects that are recalcitrant to the uptake of naked dsRNA.
Collapse
Affiliation(s)
- Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - XiuXia Li
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Entomology, China Agricultural University, Beijing, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences & Applications, NCSR “Demokritos”, Athens, Greece
| | - Hans Casteels
- Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Martine Maes
- Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus. Genes (Basel) 2017; 8:genes8100241. [PMID: 28954400 PMCID: PMC5664091 DOI: 10.3390/genes8100241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 11/17/2022] Open
Abstract
Magnaportheoryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M.oryzae-derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M.oryzae was examined by targeting three predicted pathogenicity genes, MoABC1,MoMAC1 and MoPMK1. Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M.oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.
Collapse
|
36
|
Kant R, Dasgupta I. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus. PLANT CELL REPORTS 2017; 36:1159-1170. [PMID: 28540496 DOI: 10.1007/s00299-017-2156-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/15/2017] [Indexed: 05/09/2023]
Abstract
Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v/F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
37
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
38
|
Kushwaha NK, Chakraborty S. Chilli leaf curl virus-based vector for phloem-specific silencing of endogenous genes and overexpression of foreign genes. Appl Microbiol Biotechnol 2017; 101:2121-2129. [PMID: 27878582 DOI: 10.1007/s00253-016-7964-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Geminiviruses are the largest and most devastating group of plant viruses which contain ssDNA as a genetic material. Geminivirus-derived virus-induced gene silencing (VIGS) vectors have emerged as an efficient and simple tool to study functional genomics in various plants. However, previously developed VIGS vectors have certain limitations, owing to their inability to be used in tissue-specific functional study. In the present study, we developed a Chilli leaf curl virus (ChiLCV)-based VIGS vector for its tissue-specific utilization by replacing the coat protein gene (open reading frame (ORF) AV1) with the gene of interest for phytoene desaturase (PDS) of Nicotiana benthamiana. Functional validation of ChiLCV-based VIGS in N. benthamiana resulted in systemic silencing of PDS exclusively in the phloem region of inoculated plants. Furthermore, expression of enhanced green fluorescence protein (EGFP) using the same ChiLCV vector was verified in the phloem region of the inoculated plants. Our results also suggested that, during the early phase of infection, ChiLCV was associated with the phloem region, but at later stage of pathogenesis, it can spread into the adjoining non-vascular tissues. Taken together, the newly developed ChiLCV-based vector provides an efficient and versatile tool, which can be exploited to unveil the unknown functions of several phloem-specific genes.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
39
|
Song J, Ye G, Qian Z, Ye Q. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum. BOTANICAL STUDIES 2016; 57:15. [PMID: 28597425 PMCID: PMC5430582 DOI: 10.1186/s40529-016-0135-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/13/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lpr), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lprc), and leaf cell hydraulic conductivity (Lplc) were investigated, using hydroponically grown Pea plants. RESULTS Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lpr and K leaf were reduced by 29 %, and Lprc and Lplc were reduced by 20 and 29 %, respectively. CONCLUSION Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.
Collapse
Affiliation(s)
- Juanjuan Song
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 Guangdong China
| | - Guoliang Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Zhengjiang Qian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 Guangdong China
| |
Collapse
|
40
|
Ben-Amar A, Daldoul S, Reustle GM, Krczal G, Mliki A. Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics. Curr Genomics 2016; 17:460-475. [PMID: 28217003 PMCID: PMC5282599 DOI: 10.2174/1389202917666160520102827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/12/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants.
Collapse
Affiliation(s)
- Anis Ben-Amar
- Department of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Tunisia
- AgroScience.GmbH, AlPlanta-Institute for Plant Research, Neustadt an der Weinstraße, Germany
| | - Samia Daldoul
- Department of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Tunisia
| | - Götz M. Reustle
- AgroScience.GmbH, AlPlanta-Institute for Plant Research, Neustadt an der Weinstraße, Germany
| | - Gabriele Krczal
- AgroScience.GmbH, AlPlanta-Institute for Plant Research, Neustadt an der Weinstraße, Germany
| | - Ahmed Mliki
- Department of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Tunisia
| |
Collapse
|
41
|
Mulot M, Boissinot S, Monsion B, Rastegar M, Clavijo G, Halter D, Bochet N, Erdinger M, Brault V. Comparative Analysis of RNAi-Based Methods to Down-Regulate Expression of Two Genes Expressed at Different Levels in Myzus persicae. Viruses 2016; 8:E316. [PMID: 27869783 PMCID: PMC5127030 DOI: 10.3390/v8110316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
With the increasing availability of aphid genomic data, it is necessary to develop robust functional validation methods to evaluate the role of specific aphid genes. This work represents the first study in which five different techniques, all based on RNA interference and on oral acquisition of double-stranded RNA (dsRNA), were developed to silence two genes, ALY and Eph, potentially involved in polerovirus transmission by aphids. Efficient silencing of only Eph transcripts, which are less abundant than those of ALY, could be achieved by feeding aphids on transgenic Arabidopsis thaliana expressing an RNA hairpin targeting Eph, on Nicotiana benthamiana infected with a Tobacco rattle virus (TRV)-Eph recombinant virus, or on in vitro-synthesized Eph-targeting dsRNA. These experiments showed that the silencing efficiency may differ greatly between genes and that aphid gut cells seem to be preferentially affected by the silencing mechanism after oral acquisition of dsRNA. In addition, the use of plants infected with recombinant TRV proved to be a promising technique to silence aphid genes as it does not require plant transformation. This work highlights the need to pursue development of innovative strategies to reproducibly achieve reduction of expression of aphid genes.
Collapse
Affiliation(s)
- Michaël Mulot
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
| | - Sylvaine Boissinot
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
| | - Baptiste Monsion
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
- INRA, UMR BGPI INRA-CIRAD-SupAgro, CIRAD TA-A54/K, Campus International de Baillarguet, 34398 Montpellier, France.
| | - Maryam Rastegar
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
- Plant Protection Department, Shiraz University, Shiraz, Iran.
| | - Gabriel Clavijo
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
| | - David Halter
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
| | - Nicole Bochet
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
| | - Monique Erdinger
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
| | - Véronique Brault
- Université de Strasbourg, INRA, SVQV UMR-A 1131, 28 rue de Herrlisheim, Colmar, 68021 Strasbourg, France.
| |
Collapse
|
42
|
Increasing a Stable Transformation Efficiency of Arabidopsis by Manipulating the Endogenous Gene Expression Using Virus-Induced Gene Silencing. Methods Mol Biol 2016. [PMID: 27770369 DOI: 10.1007/978-1-4899-7708-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Virus-induced gene silencing (VIGS) is a powerful epigenetic tool that allows in a relatively short period of time to down-regulate the expression of an endogenous gene in infected plants for either monitoring the resulting phenotype or enhancing/modifying a particular trait associated with the gene. Here, we describe the utilization of Tobacco rattle virus (TRV) as a vector for the VIGS technique in Arabidopsis plants. The unique ability of TRV to infect both somatic tissues and gametes allows deciphering the role of genes in these tissues simultaneously. As an example, we demonstrate the utilization of TRV to down-regulate the expression of AGO2 and NRPD1a genes in ovules of Arabidopsis plants in order to boost the stable transformation efficiency by floral dip.
Collapse
|
43
|
Baykal U, Liu H, Chen X, Nguyen HT, Zhang ZJ. Novel constructs for efficient cloning of sRNA-encoding DNA and uniform silencing of plant genes employing artificial trans-acting small interfering RNA. PLANT CELL REPORTS 2016; 35:2137-50. [PMID: 27417696 DOI: 10.1007/s00299-016-2024-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/03/2016] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE TAS atasiRNA-producing region swapping used one-step, high efficiency, and high fidelity directional TC-cloning. Uniform silencing was achieved without lethality using miRNA trigger- TAS overexpression fusion cassettes to generate 21-nt atasiRNA. Plant transgenic technologies are very important for basic plant research and biotechnology. Artificial trans-acting small interfering RNA (atasiRNA) represents an attractive platform with certain advantages over other silencing approaches, such as hairpin RNA, artificial microRNA (amiRNA), and virus-induced gene silencing (VIGS). In this study, we developed two types of constructs for atasiRNA-mediated gene silencing in plants. To functionally validate our constructs, we chose TAS1a as a test model. Type 1 constructs had miR173-precursor sequence fused with TAS1a locus driven by single promoter-terminator cassette, which simplified the expression cassette and resulted in uniform gene silencing. Type 2 constructs contained two separate cassettes for miR173 and TAS1a co-expression. The constructs in each type were further improved by deploying the XcmI-based TC-cloning system for highly efficient directional cloning of short DNA fragments encoding atasiRNAs into TAS1a locus. The effectiveness of the constructs was demonstrated by cloning an atasiRNA DNA into the TC site of engineered TAS1a and silencing of CHLORINA 42 (CH42) gene in Arabidopsis. Our results show that the directional TC-cloning of the atasiRNA DNA into the engineered TAS1a is highly efficient and the miR173-TAS1a fusion system provides an attractive alternative to achieve moderate but more uniform gene silencing without lethality, as compared to conventional two separate cassettes for miR173 and TAS locus co-expression system. The design principles described here should be applicable to other TAS loci such as TAS1b, TAS1c, TAS2, or TAS3, and cloning of amiRNA into amiRNA stem-loop.
Collapse
Affiliation(s)
- Ulku Baykal
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-33 Agriculture Building, Columbia, MO, 65211, USA
| | - Hua Liu
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-33 Agriculture Building, Columbia, MO, 65211, USA
| | - Xinlu Chen
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-33 Agriculture Building, Columbia, MO, 65211, USA
- Department of Plant Sciences, University of Tennessee, 347/359 Plant Biotech, Knoxville, TX, 37996, USA
| | - Henry T Nguyen
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-33 Agriculture Building, Columbia, MO, 65211, USA
| | - Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-33 Agriculture Building, Columbia, MO, 65211, USA.
| |
Collapse
|
44
|
Fekih R, Yamagishi N, Yoshikawa N. Apple latent spherical virus vector-induced flowering for shortening the juvenile phase in Japanese gentian and lisianthus plants. PLANTA 2016; 244:203-14. [PMID: 27016250 DOI: 10.1007/s00425-016-2498-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/29/2016] [Indexed: 05/02/2023]
Abstract
Infection by apple latent spherical virus (ALSV) vectors that promote the expression of Arabidopsis thaliana FLOWERING LOCUS T ( AtFT ) or Gentiana triflora GtFT s accelerates flowering in gentian and lisianthus plants. Apple latent spherical virus (ALSV) has isometric virus particles (25 nm in diameter) that contain two ssRNA species (RNA1 and RNA2) and three capsid proteins (Vp25, Vp20, and Vp24). ALSV vectors are used for foreign gene expression and virus-induced gene silencing in a broad range of plant species. Here, we report the infection by ALSV vectors that express FLOWERING LOCUS T (AtFT) from Arabidopsis thaliana or its homolog GtFT1 from Gentiana triflora in three gentian cultivars ('Iwate Yume Aoi' [early flowering], 'Iwate' [medium flowering], and 'Alta' [late flowering]), and two lisianthus cultivars ('Newlination Pink ver. 2' and 'Torukogikyou daburu mikkusu') promotes flowering within 90 days post-inoculation using particle bombardment. Additionally, seedlings from the progeny of the early-flowering plants were tested by tissue blot hybridization, and the results showed that ALSV was not transmitted to the next generation. The promotion of flowering in the family Gentianaceae by ALSV vectors shortened the juvenile phase from 1-3 years to 3-5 months, and thus, it could be considered as a new plant breeding technique in ornamental gentian and lisianthus plants.
Collapse
Affiliation(s)
- Rym Fekih
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Noriko Yamagishi
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.
| |
Collapse
|
45
|
Singh G, Tiwari M, Singh SP, Singh S, Trivedi PK, Misra P. Silencing of sterol glycosyltransferases modulates the withanolide biosynthesis and leads to compromised basal immunity of Withania somnifera. Sci Rep 2016; 6:25562. [PMID: 27146059 PMCID: PMC4857139 DOI: 10.1038/srep25562] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/22/2016] [Indexed: 11/10/2022] Open
Abstract
Sterol glycosyltransferases (SGTs) catalyse transfer of glycon moiety to sterols and their related compounds to produce diverse glyco-conjugates or steryl glycosides with different biological and pharmacological activities. Functional studies of SGTs from Withania somnifera indicated their role in abiotic stresses but details about role under biotic stress are still unknown. Here, we have elucidated the function of SGTs by silencing SGTL1, SGTL2 and SGTL4 in Withania somnifera. Down-regulation of SGTs by artificial miRNAs led to the enhanced accumulation of withanolide A, withaferin A, sitosterol, stigmasterol and decreased content of withanoside V in Virus Induced Gene Silencing (VIGS) lines. This was further correlated with increased expression of WsHMGR, WsDXR, WsFPPS, WsCYP710A1, WsSTE1 and WsDWF5 genes, involved in withanolide biosynthesis. These variations of withanolide concentrations in silenced lines resulted in pathogen susceptibility as compared to control plants. The infection of Alternaria alternata causes increased salicylic acid, callose deposition, superoxide dismutase and H2O2 in aMIR-VIGS lines. The expression of biotic stress related genes, namely, WsPR1, WsDFS, WsSPI and WsPR10 were also enhanced in aMIR-VIGS lines in time dependent manner. Taken together, our observations revealed that a positive feedback regulation of withanolide biosynthesis occurred by silencing of SGTLs which resulted in reduced biotic tolerance.
Collapse
Affiliation(s)
- Gaurav Singh
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India.,Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Tiwari
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Surendra Pratap Singh
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Surendra Singh
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pratibha Misra
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| |
Collapse
|
46
|
Zhao F, Lim S, Igori D, Yoo RH, Kwon SY, Moon JS. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants. Virology 2016; 492:166-78. [PMID: 26950504 DOI: 10.1016/j.virol.2016.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022]
Abstract
We report here the development of tobacco ringspot virus (TRSV)-based vectors for the transient expression of foreign genes and for the analysis of endogenous gene function in plants using virus-induced gene silencing. The jellyfish green fluorescent protein (GFP) gene was inserted between the TRSV movement protein (MP) and coat protein (CP) regions, resulting in high in-frame expression of the RNA2-encoded viral polyprotein. GFP was released from the polyprotein via an N-terminal homologous MP-CP cleavage site and a C-terminal foot-and-mouth disease virus (FMDV) 2 A catalytic peptide in Nicotiana benthamiana. The VIGS target gene was introduced in the sense and antisense orientations into a SnaBI site, which was created by mutating the sequence following the CP stop codon. VIGS of phytoene desaturase (PDS) in N. benthamiana, Arabidopsis ecotype Col-0, cucurbits and legumes led to obvious photo-bleaching phenotypes. A significant reduction in PDS mRNA levels in silenced plants was confirmed by semi-quantitative RT-PCR.
Collapse
Affiliation(s)
- Fumei Zhao
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea; Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Seungmo Lim
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea; Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Davaajargal Igori
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea; Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Ran Hee Yoo
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea; Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Suk-Yoon Kwon
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea; Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Jae Sun Moon
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea; Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
47
|
Qi S, Lin Q, Zhu H, Gao F, Zhang W, Hua X. The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species. PLANT & CELL PHYSIOLOGY 2016; 57:528-39. [PMID: 26786853 DOI: 10.1093/pcp/pcw006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 01/07/2016] [Indexed: 05/04/2023]
Abstract
Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance.
Collapse
Affiliation(s)
- Shilian Qi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany Chinese Academy of Sciences, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingfang Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany Chinese Academy of Sciences, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huishan Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany Chinese Academy of Sciences, Beijing 100093, China
| | - Fenghua Gao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany Chinese Academy of Sciences, Beijing 100093, China
| | - Wenhao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xuejun Hua
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
48
|
Gurkok T, Ozhuner E, Parmaksiz I, Özcan S, Turktas M, İpek A, Demirtas I, Okay S, Unver T. Functional Characterization of 4'OMT and 7OMT Genes in BIA Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:98. [PMID: 26909086 PMCID: PMC4754624 DOI: 10.3389/fpls.2016.00098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/18/2016] [Indexed: 05/25/2023]
Abstract
Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes remain to be revealed. In this study, expressions of 3-hydroxy-N-methylcoclaurine 4'-methyltransferase (4'OMT) and reticuline 7-O-methyltransferase (7OMT) genes were subjected to manipulation to functionally characterize their roles in BIA biosynthesis. Measurements of alkaloid accumulation were performed in leaf, stem, and capsule tissues accordingly. Suppression of 4'OMT expression caused reduction in the total alkaloid content in stem tissue whereas total alkaloid content was significantly induced in the capsule. Silencing of the 7OMT gene also caused repression in total alkaloid content in the stem. On the other hand, over-expression of 4'OMT and 7OMT resulted in higher morphine accumulation in the stem but suppressed amount in the capsule. Moreover, differential expression in several BIA synthesis genes (CNMT, TYDC, 6OMT, SAT, COR, 4'OMT, and 7OMT) were observed upon manipulation of 4'OMT and 7OMT expression. Upon silencing and overexpression applications, tissue specific effects of these genes were identified. Manipulation of 4'OMT and 7OMT genes caused differentiated accumulation of BIAs including morphine and noscapine in capsule and stem tissues.
Collapse
Affiliation(s)
- Tugba Gurkok
- Eldivan SHMYO, Department of Anesthesia, Cankiri Karatekin UniversityCankiri, Turkey
| | - Esma Ozhuner
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Iskender Parmaksiz
- Department of Molecular Biology and Genetics, Faculty of Science, Gaziosmanpasa UniversityTokat, Turkey
| | - Sebahattin Özcan
- Department of Field Crops, Faculty of Agriculture, Ankara UniversityAnkara, Turkey
| | - Mine Turktas
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Arif İpek
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Ibrahim Demirtas
- Department of Chemistry, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Sezer Okay
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Turgay Unver
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| |
Collapse
|
49
|
Han Y, Zhang B, Qin X, Li M, Guo Y. Investigation of a miRNA-Induced Gene Silencing Technique in Petunia Reveals Alterations in miR173 Precursor Processing and the Accumulation of Secondary siRNAs from Endogenous Genes. PLoS One 2015; 10:e0144909. [PMID: 26658695 PMCID: PMC4701714 DOI: 10.1371/journal.pone.0144909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/26/2015] [Indexed: 11/19/2022] Open
Abstract
MIGS (miRNA-induced gene silencing) is a straightforward and efficient gene silencing technique in Arabidopsis. It works by exploiting miR173 to trigger the production of phasiRNAs (phased small interfering RNAs). MIGS can be used in plant species other than Arabidopsis by co-expression of miR173 and target gene fragments fused to an upstream miR173 target site. However, the efficiency and technical mechanisms have not been thoroughly investigated in other plants. In this work, two vectors, pMIGS-chs and pMIGS-pds, were constructed and transformed into petunia plants. The transgenic plants showed CHS (chalcone synthase) and PDS (phytoene desaturase) gene-silencing phenotypes respectively, indicating that MIGS functions in petunia. MIGS-chs plants were used to investigate the mechanisms of this technique in petunia. Results of 5′- RACE showed that the miR173 target site was cleaved at the expected position and that endogenous CHS genes were cut at multiple positions. Small RNA deep sequencing analysis showed that the processing of Arabidopsis miR173 precursors in MIGS-chs transgenic petunia plants did not occur in exactly the same way as in Arabidopsis, suggesting differences in the machinery of miRNA processing between plant species. Small RNAs in-phase with the miR173 cleavage register were produced immediately downstream from the cleavage site and out-of-phase small RNAs were accumulated at relatively high levels from processing cycle 5 onwards. Secondary siRNAs were generated from multiple sites of endogenous CHS-A and CHS-J genes, indicating that miR173 cleavage induced siRNAs have the same ability to initiate siRNA transitivity as the siRNAs functioning in co-suppression and hpRNA silencing. On account of the simplicity of vector construction and the transitive amplification of signals from endogenous transcripts, MIGS is a good alternative gene silencing method for plants, especially for silencing a cluster of homologous genes with redundant functions.
Collapse
Affiliation(s)
- Yao Han
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Bin Zhang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xiaoting Qin
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
50
|
Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep 2015; 5:11790. [PMID: 26134787 PMCID: PMC4488762 DOI: 10.1038/srep11790] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/04/2015] [Indexed: 11/08/2022] Open
Abstract
Cotton (Gossypium spp.) is an important economic crop and there is obvious heterosis in cotton, fertility has played an important role in this heterosis. However, the genes that exhibit critical roles in anther development and fertility are not well understood. Here, we report an acyl-CoA N-acyltransferase (EC2.3; GhACNAT) that plays a key role in anther development and fertility. Suppression of GhACNAT by virus-induced gene silencing in transgenic cotton (G. hirsutum L. cv. C312) resulted in indehiscent anthers that were full of pollen, diminished filaments and stamens, and plant sterility. We found GhACNAT was involved in lipid metabolism and jasmonic acid (JA) biosynthesis. The genes differentially expressed in GhACNAT-silenced plants and C312 were mainly involved in catalytic activity and transcription regulator activity in lipid metabolism. In GhACNAT-silenced plants, the expression levels of genes involved in lipid metabolism and jasmonic acid biosynthesis were significantly changed, the amount of JA in leaves and reproductive organs was significantly decreased compared with the amounts in C312. Treatments with exogenous methyl jasmonate rescued anther dehiscence and pollen release in GhACNAT-silenced plants and caused self-fertility. The GhACNAT gene may play an important role in controlling cotton fertility by regulating the pathways of lipid synthesis and JA biogenesis.
Collapse
|