1
|
Koter MD, Żurczak M, Matuszkiewicz M, Święcicka M, Kotliński M, Barczak-Brzyżek A, Filipecki M. Proteomic Dynamics in the Interaction of Susceptible and Resistant Tomato Cultivars and Potato Cyst Nematodes. Int J Mol Sci 2025; 26:2823. [PMID: 40141466 PMCID: PMC11943225 DOI: 10.3390/ijms26062823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigates the proteomic dynamics in tomato cultivars with differing resistance to potato cyst nematodes (PCNs). Cyst-forming nematodes, significant agricultural pests, induce complex molecular responses in host plants, forming syncytia in roots for their nutrition. This research employs mass spectrometry to analyze the proteomes of infected and uninfected roots from susceptible (Moneymaker) and resistant (LA1792 and L10) tomato lines. Over 2800 high-confidence protein hits were identified, revealing significant differences in abundance between susceptible and resistant lines. Notably, resistant lines exhibited a higher number of newly expressed proteins compared to susceptible lines; however, the proportion of induced and suppressed proteins was strongly genotype-dependent. Gene ontology (GO) analysis highlighted that nematode infection in susceptible line significantly regulates many defense-related proteins, particularly those involved in oxidative stress, with a similar number being upregulated and downregulated. Some GO terms enriched among nematode-regulated proteins also indicate the involvement of programmed cell death (PCD)-related processes. The susceptible line exhibited a prevalence of downregulated proteins, among which defense associated GO terms were significantly overrepresented. Four proteins (APY2, NIA2, GABA-T, and AATP1) potentially crucial for nematode parasitism were identified and their Arabidopsis orthologs were studied. Mutant Arabidopsis lines showed altered nematode resistance, supporting the involvement of these proteins in plant defense. This study highlights the complexity of host-nematode interactions and emphasizes the importance of proteomic analyses in identifying key factors and understanding plant defense mechanisms.
Collapse
Affiliation(s)
- Marek D. Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Marek Żurczak
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Maciej Kotliński
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Anna Barczak-Brzyżek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| |
Collapse
|
2
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
3
|
Santos N, Brandstetter H, Dall E. Arabidopsis thaliana Phytocystatin 6 Forms Functional Oligomer and Amyloid Fibril States. Biochemistry 2023; 62:3420-3429. [PMID: 37989209 PMCID: PMC10702442 DOI: 10.1021/acs.biochem.3c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Cystatins encode a high functional variability not only because of their ability to inhibit different classes of proteases but also because of their propensity to form oligomers and amyloid fibrils. Phytocystatins, essential regulators of protease activity in plants, specifically inhibit papain-like cysteine proteases (PLCPs) and legumains through two distinct cystatin domains. Mammalian cystatins can form amyloid fibrils; however, the potential for amyloid fibril formation of phytocystatins remains unknown. In this study, we demonstrate that Arabidopsis thaliana phytocystatin 6 (AtCYT6) exists as a mixture of monomeric, dimeric, and oligomeric forms in solution. Noncovalent oligomerization was facilitated by the N-terminal cystatin domain, while covalent dimerization occurred through disulfide bond formation in the interdomain linker. The noncovalent dimeric form of AtCYT6 retained activity against its target proteases, papain and legumain, albeit with reduced inhibitory potency. Additionally, we observed the formation of amyloid fibrils by AtCYT6 under acidic pH conditions and upon heating. The amyloidogenic potential could be attributed to the AtCYT6's N-terminal domain (AtCYT6-NTD). Importantly, AtCYT6 amyloid fibrils harbored inhibitory activities against both papain and legumain. These findings shed light on the oligomerization and amyloidogenic behavior of AtCYT6, expanding our understanding of phytocystatin biology and its potential functional implications for plant protease regulation.
Collapse
Affiliation(s)
- Naiá
P. Santos
- Department of Biosciences and Medical
Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical
Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Elfriede Dall
- Department of Biosciences and Medical
Biology, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Graska J, Fidler J, Gietler M, Prabucka B, Nykiel M, Labudda M. Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. BIOLOGY 2023; 12:927. [PMID: 37508359 PMCID: PMC10376146 DOI: 10.3390/biology12070927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological processes in plants, including responses to biotic and abiotic stresses. Changes in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging pathways in plant cells and highlights the role of NO in post-translational modifications of proteins (S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental conditions. Particular attention was paid to the interactions of NO with other signaling molecules: reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic acid. In addition, potential common patterns of NO-dependent defense responses against attack and feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were characterized. Our review definitely highlights the need for further research on the involvement of NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.
Collapse
Affiliation(s)
- Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| | | | | | | | | | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| |
Collapse
|
5
|
Proteolytic and Structural Changes in Rye and Triticale Roots under Aluminum Stress. Cells 2021; 10:cells10113046. [PMID: 34831267 PMCID: PMC8618286 DOI: 10.3390/cells10113046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
Proteolysis and structural adjustments are significant for defense against heavy metals. The purpose of this study was to evaluate whether the Al3+ stress alters protease activity and the anatomy of cereale roots. Azocaseinolytic and gelatinolytic measurements, transcript-level analysis of phytocystatins, and observations under microscopes were performed on the roots of Al3+-tolerant rye and tolerant and sensitive triticales exposed to Al3+. In rye and triticales, the azocaseinolytic activity was higher in treated roots. The gelatinolytic activity in the roots of rye was enhanced between 12 and 24 h in treated roots, and decreased at 48 h. The gelatinolytic activity in treated roots of tolerant triticale was the highest at 24 h and the lowest at 12 h, whereas in treated roots of sensitive triticale it was lowest at 12 h but was enhanced at 24 and 48 h. These changes were accompanied by increased transcript levels of phytocystatins in rye and triticale-treated roots. Light microscope analysis of rye roots revealed disintegration of rhizodermis in treated roots at 48 h and indicated the involvement of root border cells in rye defense against Al3+. The ultrastructural analysis showed vacuoles containing electron-dense precipitates. We postulate that proteolytic-antiproteolytic balance and structural acclimation reinforce the fine-tuning to Al3+.
Collapse
|
6
|
Bozbuga R. Molecular investigation of proteinase inhibitor (PI) gene in tomato plants induced by Meloidogyne species. J Genet Eng Biotechnol 2021; 19:129. [PMID: 34460010 PMCID: PMC8405829 DOI: 10.1186/s43141-021-00230-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Background The plant parasitic nematode genus Meloidogyne parasitize almost all flowering crops. Plants respond with a variety of morphological and molecular mechanisms to reduce the effects of pathogens. Proteinase inhibitors (PI), a special group of plant proteins which are small proteins, involve in protective role in the plants attacked by microorganisms. Still, the plant response using PI against nematodes has not been well understood. Therefore, this study was aimed to determine the expression of proteinase inhibitor I (PI-I) gene subsequent the infection of M. incognita, M. javanica, and M. chitwoodi in tomato plants post nematode infections. Molecular methods were used to determine the PI gene expressions at different days post nematode infections in host tissues. Results Results revealed that the population of M. incognita species reached the highest level of nematode population followed by M. javanica and M. chitwoodi, respectively. All Meloidogyne species induced expression of PI-I gene reached at the utmost level at 3 days post infection (dpi) in host tissues. Relative gene expression level was sharply dropped at 7 dpi, 14 dpi, and 21 dpi in M. incognita induced gene expression in host tissues. Similar results were observed in host tissues after infection of M. javanica and M. chitwoodi. Conclusions The commonalities of plant response across a diverse Meloidogyne species interaction and the expression of PI gene may be related to plant defense system. Increased level of PI gene expressions in early infection days in host tissues induced by parasitic nematodes may share resemblances to the mechanisms of resistance on biotrophic interactions.
Collapse
Affiliation(s)
- Refik Bozbuga
- Biological Control Research Institute, Nematology Lab, 01321, Yuregir, Adana, Turkey.
| |
Collapse
|
7
|
Labudda M, Tokarz K, Tokarz B, Muszyńska E, Gietler M, Górecka M, Różańska E, Rybarczyk-Płońska A, Fidler J, Prabucka B, Dababat AA, Lewandowski M. Reactive oxygen species metabolism and photosynthetic performance in leaves of Hordeum vulgare plants co-infested with Heterodera filipjevi and Aceria tosichella. PLANT CELL REPORTS 2020; 39:1719-1741. [PMID: 32955612 PMCID: PMC7502656 DOI: 10.1007/s00299-020-02600-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Krzysztof Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mirosława Górecka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Center (CIMMYT), Soil Borne Pathogens Program, Ankara, Turkey
| | - Mariusz Lewandowski
- Department of Plant Protection, Section of Applied Entomology, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
8
|
Muszyńska E, Labudda M. Effects of lead, cadmium and zinc on protein changes in Silene vulgaris shoots cultured in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111086. [PMID: 32781345 DOI: 10.1016/j.ecoenv.2020.111086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In the present research, Silene vulgaris as a representative species growing on both unpolluted and heavy metal (HM) polluted terrains were used to identify ecotype-specific responses to metallic stress. Growth, cell ultrastructure and element accumulations were compared between non-metallicolous (NM), calamine (CAL) and serpentine (SER) specimens untreated with HMs and treated with Pb, Cd and Zn ions under in vitro conditions. Moreover, proteins' modifications related to their level, carbonylation and degradations via vacuolar proteases were verified and linked with potential mechanisms to cope with ions toxicity. Our experiment revealed diversified strategy of HM uptake in NM and both metallicolous ecotypes, in which antagonistic relationship of Zn and Pb/Cd ions provided survival benefits for the whole organism. Despite this similarity, growth rate and metabolic pathways induced in CAL and SER shoots varied significantly. Exposition to HMs in CAL culture led to drop in protein level by approximately 16% compared to the control. This parameter nearly correlated with the enhanced activity of proteases at pH 5.2 as well as possible glutamate changes to proline and reduced glutathione, resulting in intensified growth and first signs of cell senescence. In turn, SER shoots were characterized by growth retardation (to 53% of the control), although protein level and carbonylation were not modified, while a deeper insight into protein network showed its remodeling towards production of polyamines and 2-oxoglutarate delivered to the Krebs cycle. Contrary, an uncontrolled HM influx in NM shoots contributed to morpho-structural disorders accompanied by an increase activity of proteases involved in the degradation of oxidized proteins, what pointed to metal-induced autophagy. Taken together, S. vulgaris ecotypes respond to stress by triggering various mechanisms engaged their survival and/or death under HM treatment.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| |
Collapse
|
9
|
Labudda M, Różańska E, Gietler M, Fidler J, Muszyńska E, Prabucka B, Morkunas I. Cyst Nematode Infection Elicits Alteration in the Level of Reactive Nitrogen Species, Protein S-Nitrosylation and Nitration, and Nitrosoglutathione Reductase in Arabidopsis thaliana Roots. Antioxidants (Basel) 2020; 9:antiox9090795. [PMID: 32859113 PMCID: PMC7555039 DOI: 10.3390/antiox9090795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/30/2023] Open
Abstract
Reactive nitrogen species (RNS) are redox molecules important for plant defense against pathogens. The aim of the study was to determine whether the infection by the beet cyst nematode Heterodera schachtii disrupts RNS balance in Arabidopsis thaliana roots. For this purpose, measurements of nitric oxide (NO), peroxynitrite (ONOO−), protein S-nitrosylation and nitration, and nitrosoglutathione reductase (GSNOR) in A. thaliana roots from 1 day to 15 days post-inoculation (dpi) were performed. The cyst nematode infection caused generation of NO and ONOO− in the infected roots. These changes were accompanied by an expansion of S-nitrosylated and nitrated proteins. The enzyme activity of GSNOR was decreased at 3 and 15 dpi and increased at 7 dpi in infected roots, whereas the GSNOR1 transcript level was enhanced over the entire examination period. The protein content of GSNOR was increased in infected roots at 3 dpi and 7 dpi, but at 15 dpi, did not differ between uninfected and infected roots. The protein of GSNOR was detected in plastids, mitochondria, cytoplasm, as well as endoplasmic reticulum and cytoplasmic membranes. We postulate that RNS metabolism plays an important role in plant defense against the beet cyst nematode and helps the fine-tuning of the infected plants to stress sparked by phytoparasitic nematodes.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.)
- Correspondence: ; Tel.: +48-22-5932570
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (E.R.); (E.M.)
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.)
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.)
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (E.R.); (E.M.)
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.)
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| |
Collapse
|
10
|
Labudda M, Muszyńska E, Gietler M, Różańska E, Rybarczyk-Płońska A, Fidler J, Prabucka B, Dababat AA. Efficient antioxidant defence systems of spring barley in response to stress induced jointly by the cyst nematode parasitism and cadmium exposure. PLANT AND SOIL 2020; 456:189-206. [PMID: 32952222 PMCID: PMC7487286 DOI: 10.1007/s11104-020-04713-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/07/2020] [Indexed: 05/04/2023]
Abstract
AIMS This research aimed to establish how Hordeum vulgare responds to abiotic and biotic stress affecting in tandem. METHODS Plants were inoculated with Heterodera filipjevi and treated with cadmium (Cd) concentration (5 μM) that can occur in the cultivated soil. To verify the hypothesis about participation of increased antioxidative defence in H. vulgare under stress, biochemical and microscopic methods were implemented. RESULTS The amount of superoxide anions and hydrogen peroxide was diminished in plants that were both nematode-inoculated and cadmium-treated. Superoxide anions were rendered harmless by increased activity of superoxide dismutase, and H2O2 was scavenged via Foyer-Halliwell-Asada pathway. The unique enhanced antioxidant capacity of double stressed plants was also linked with the accumulation of S-nitrosoglutathione as nitrosoglutathione reductase activity was inhibited. Furthermore, stimulated activity of arginase in these plants could promote polyamine synthesis and indirectly enhance non-enzymatic antioxidant mechanism. Results indicate that different antioxidants operating together significantly restricted oxidation of lipids and proteins, thus the integrity of cell membranes and protein functions were maintained. CONCLUSIONS The ROS deactivation machinery in barley leaves showed an unusual response during stress induced by H. filipjevi infection and cadmium treatment. Plants could induce a multi-component model of stress response, to detoxify Cd ions and efficiently repair stress damage.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Abdelfattah A. Dababat
- International Maize and Wheat Improvement Center (CIMMYT), Soil Borne Pathogens Program, Ankara, Turkey
| |
Collapse
|
11
|
Labudda M, Różańska E, Prabucka B, Muszyńska E, Marecka D, Kozak M, Dababat AA, Sobczak M. Activity profiling of barley vacuolar processing enzymes provides new insights into the plant and cyst nematode interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:38-52. [PMID: 31605455 PMCID: PMC6913211 DOI: 10.1111/mpp.12878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vacuolar processing enzymes (VPEs) play an important role during regular growth and development and defence responses. Despite substantial attempts to understand the molecular basis of plant-cyst nematode interaction, the mechanism of VPEs functioning during this interaction remains unknown. The second-stage Heterodera filipjevi juvenile penetrates host roots and induces the formation of a permanent feeding site called a syncytium. To investigate whether infection with H. filipjevi alters plant host VPEs, the studies were performed in Hordeum vulgare roots and leaves on the day of inoculation and at 7, 14 and 21 days post-inoculation (dpi). Implementing molecular, biochemical and microscopic methods we identified reasons for modulation of barley VPE activity during interaction with H. filipjevi. Heterodera filipjevi parasitism caused a general decrease of VPE activity in infected roots, but live imaging of VPEs showed that their activity is up-regulated in syncytia at 7 and 14 dpi and down-regulated at 21 dpi. These findings were accompanied by tissue-specific VPE gene expression patterns. Expression of the barley cystatin HvCPI-4 gene was stimulated in leaves but diminished in roots upon infestation. External application of cyclotides that can be produced naturally by VPEs elicits in pre-parasitic juveniles vesiculation of their body, enhanced formation of granules, induction of exploratory behaviour (stylet thrusts and head movements), production of reactive oxygen species (ROS) and final death by methuosis. Taken together, down-regulation of VPE activity through nematode effectors promotes the nematode invasion rates and leads to avoidance of the induction of the plant proteolytic response and death of the invading juveniles.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Elżbieta Różańska
- Department of Botany, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Ewa Muszyńska
- Department of Botany, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Dorota Marecka
- Department of Biochemistry and Microbiology, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Marcin Kozak
- Department of Botany, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Abdelfattah A. Dababat
- International Maize and Wheat Improvement Center (CIMMYT)Soil Borne Pathogens ProgramP.K. 39 Emek06511AnkaraTurkey
| | - Mirosław Sobczak
- Department of Botany, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| |
Collapse
|
12
|
Muszyńska E, Labudda M, Różańska E, Hanus-Fajerska E, Koszelnik-Leszek A. Structural, physiological and genetic diversification of Silene vulgaris ecotypes from heavy metal-contaminated areas and their synchronous in vitro cultivation. PLANTA 2019; 249:1761-1778. [PMID: 30826883 DOI: 10.1007/s00425-019-03123-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 05/20/2023]
Abstract
Results provide significant comparison of leaf anatomy, pigment content, antioxidant response and phenolic profile between individuals from miscellaneous populations and describe unified cultivation protocols for further research on stress biology. The plant communities growing on heavy metal-polluted areas have attracted considerable attention due to their unique ability to tolerate enormous amounts of toxic ions. Three ecotypes of Silene vulgaris representing calamine (CAL), serpentine (SER) and non-metallicolous (NM) populations were evaluated to reveal specific adaptation traits to harsh environment. CAL leaves presented a distinct anatomical pattern compared to leaves of SER and NM plants, pointing to their xeromorphic adaptation. These differences were accompanied by divergent accumulation and composition of photosynthetic pigments as well as antioxidant enzyme activity. In CAL ecotype, the mechanism of reactive oxygen species scavenging is based on the joint action of superoxide dismutase and catalase, but in SER ecotype on superoxide dismutase and guaiacol-type peroxidase. On the contrary, the concentration of phenylpropanoids and flavonols in the ecotypes was unchanged, implying the existence of similar pathways of their synthesis/degradation functioning in CAL and SER populations. The tested specimens showed genetic variation (atpA/MspI marker). Based on diversification of S. vulgaris populations, we focused on the elaboration of similar in vitro conditions for synchronous cultivation of various ecotypes. The most balanced shoot culture growth was obtained on MS medium containing 0.1 mg l-1 NAA and 0.25 mg l-1 BA, while the most abundant callogenesis was observed on MS medium enriched with 0.5 mg l-1 NAA and 5.0 mg l-1 BA. For the first time, unified in vitro protocols were described for metallophytes providing the opportunity to conduct basic and applied research on stress biology and tolerance mechanisms under freely controlled conditions.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Ewa Hanus-Fajerska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture, Al. 29 Listopada 54, 31-425, Krakow, Poland
| | - Anna Koszelnik-Leszek
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| |
Collapse
|
13
|
Calderan-Rodrigues MJ, Guimarães Fonseca J, de Moraes FE, Vaz Setem L, Carmanhanis Begossi A, Labate CA. Plant Cell Wall Proteomics: A Focus on Monocot Species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int J Mol Sci 2019; 20:E1975. [PMID: 31018495 PMCID: PMC6514655 DOI: 10.3390/ijms20081975] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions. In this review, we go deeper into the findings of cell wall proteomics in monocot species and make a comparative analysis of the CWPs identified, considering their predicted functions, the organs analyzed, the plant developmental stage and their possible use as targets for biofuel production. Arabidopsis thaliana CWPs were considered as a reference to allow comparisons among different monocots, i.e., Brachypodium distachyon, Saccharum spp. and Oryza sativa. Altogether, 1159 CWPs have been acknowledged, and specificities and similarities are discussed. In particular, a search for A. thaliana homologs of CWPs identified so far in monocots allows the definition of monocot CWPs characteristics. Finally, the analysis of monocot CWPs appears to be a powerful tool for identifying candidate proteins of interest for tailoring cell walls to increase biomass yield of transformation for second-generation biofuels production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Fabrício Edgar de Moraes
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Laís Vaz Setem
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Amanda Carmanhanis Begossi
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Carlos Alberto Labate
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| |
Collapse
|
14
|
Muszyńska E, Labudda M, Hanus-Fajerska E. Changes in proteolytic activity and protein carbonylation in shoots of Alyssum montanum ecotypes under multi-metal stress. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:61-64. [PMID: 30537613 DOI: 10.1016/j.jplph.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 05/11/2023]
Abstract
The aim of present study was to evaluate the proteolytic response of metallicolous (M) and nonmetallicolous (NM) ecotypes of Alyssum montanum under heavy metals (HMs) stress. Therefore, shoot cultures of tested species grown on medium enriched simultaneously with 0.7 mM ZnSO4, 3.0 μM Pb(NO3)2 and 16.4 μM CdCl2 and these concentration corresponded to the content of their soluble forms marked in calamine substrate. After 8 weeks of cultivation, the overall protease activity (azocaseinolytic) and determination of the proteolytic (gelatinolytic) enzymes profile were estimated in HMs-treated and untreated specimens. The proteins of NM specimens were more susceptible to proteolysis induced by HMs than proteins of M ones. It was found that applied HMs ions caused an increase of protease activity in HMs-treated shoots of NM ecotype that was accompanied by diminished total soluble proteins content and their higher carbonylation. In contrast, the activities of the neutral proteases and metal-dependent serine proteases decreased in HMs-treated shoots of M ecotype. Our results have revealed significant differences at the protein metabolism level in contrasting A. montanum ecotypes cultured in vitro in the presence of HMs.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Ewa Hanus-Fajerska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Krakow, Poland
| |
Collapse
|
15
|
Różańska E, Czarnocka W, Baranowski Ł, Mielecki J, de Almeida Engler J, Sobczak M. Expression of both Arabidopsis γ-tubulin genes is essential for development of a functional syncytium induced by Heterodera schachtii. PLANT CELL REPORTS 2018; 37:1279-1292. [PMID: 29947953 PMCID: PMC6096582 DOI: 10.1007/s00299-018-2312-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 05/23/2023]
Abstract
After initial up-regulation, expression of TUBG1 and TUBG2 is significantly down-regulated in mature syncytia, but lack of expression of either of γ-tubulin genes reduces numbers of nematode infections and developing females. Infective second stage juveniles of sedentary plant parasitic nematode Heterodera schachtii invade the root vascular tissue and induce a feeding site, named syncytium, formed as a result of cell hypertrophy and partial cell wall dissolution leading to a multinucleate state. Syncytium formation and maintenance involves a molecular interplay between the plant host and the developing juveniles leading to rearrangements and fragmentation of the plant cytoskeleton. In this study, we investigated the role of two Arabidopsis γ-tubulin genes (TUBG1 and TUBG2), involved in MTs nucleation during syncytium development. Expression analysis revealed that both γ-tubulin's transcript levels changed during syncytium development and after initial up-regulation (1-3 dpi) they were significantly down-regulated in 7, 10 and 15 dpi syncytia. Moreover, TUBG1 and TUBG2 showed distinct immunolocalization patterns in uninfected roots and syncytia. Although no severe changes in syncytium anatomy and ultrastructure in tubg1-1 and tubg2-1 mutants were observed compared to syncytia induced in wild-type plants, nematode infection assays revealed reduced numbers of infecting juveniles and developed female nematodes in mutant lines. Our results indicate that the expression of both TUBG1 and TUBG2 genes, although generally down-regulated in mature syncytia, is essential for successful root infection, development of functional syncytium and nematode maturation.
Collapse
Affiliation(s)
- Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Łukasz Baranowski
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | | - Mirosław Sobczak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
16
|
Labudda M, Różańska E, Czarnocka W, Sobczak M, Dzik JM. Systemic changes in photosynthesis and reactive oxygen species homeostasis in shoots of Arabidopsis thaliana infected with the beet cyst nematode Heterodera schachtii. MOLECULAR PLANT PATHOLOGY 2018; 19:1690-1704. [PMID: 29240311 PMCID: PMC6638082 DOI: 10.1111/mpp.12652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/19/2023]
Abstract
Photosynthetic efficiency and redox homeostasis are important for plant physiological processes during regular development as well as defence responses. The second-stage juveniles of Heterodera schachtii induce syncytial feeding sites in host roots. To ascertain whether the development of syncytia alters photosynthesis and the metabolism of reactive oxygen species (ROS), chlorophyll a fluorescence measurements and antioxidant responses were studied in Arabidopsis thaliana shoots on the day of inoculation and at 3, 7 and 15 days post-inoculation (dpi). Nematode parasitism caused an accumulation of superoxide and hydrogen peroxide molecules in the shoots of infected plants at 3 dpi, probably as a result of the observed down-regulation of antioxidant enzymes. These changes were accompanied by an increase in RNA and lipid oxidation markers. The activities of antioxidant enzymes were found to be enhanced on infection at 7 and 15 dpi, and the content of anthocyanins was elevated from 3 dpi. The fluorescence parameter Rfd , defining plant vitality and the photosynthetic capacity of leaves, decreased by 11% only at 7 dpi, and non-photochemical quenching (NPQ), indicating the effectiveness of photoprotection mechanisms, was about 16% lower at 3 and 7 dpi. As a result of infection, the ultrastructure of chloroplasts was changed (large starch grains and plastoglobules), and more numerous and larger peroxisomes were observed in the mesophyll cells of leaves. We postulate that the joint action of antioxidant enzymes/molecules and photochemical mechanisms leading to the maintenance of photosynthetic efficiency promotes the fine-tuning of the infected plants to oxidative stress induced by parasitic cyst nematodes.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| | - Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| | - Mirosław Sobczak
- Department of Botany, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| | - Jolanta Maria Dzik
- Department of Biochemistry, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| |
Collapse
|
17
|
Li N, Zhang S, Liang Y, Qi Y, Chen J, Zhu W, Zhang L. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J Proteomics 2018; 172:122-142. [DOI: 10.1016/j.jprot.2017.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|