1
|
Ahmad W, Waraich EA, Haider A, Mahmood N, Ramzan T, Alamri S, Siddiqui MH, Akhtar MS. Silicon-Mediated Improvement in Drought and Salinity Stress Tolerance of Black Gram ( Vigna mungo L.) by Modulating Growth, Physiological, Biochemical, and Root Attributes. ACS OMEGA 2024; 9:37231-37242. [PMID: 39246467 PMCID: PMC11375724 DOI: 10.1021/acsomega.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Water is a precious commodity for plant growth and metabolism; however, its scarcity and saline sand conditions have a drastic effect on plant growth and development. The main objective of the current study was to understand how silicon (Si) application might help Black gram (Vigna mungo L.) against the negative impacts of salt stress and drought. The treatments of this study were: no silicon = 0 mg/kg; silicon = 40 mg/kg; control = no stress; drought stress = 50% field capacity (FC); salinity = 10 dSm-1; drought + salinity = 10 dSm-1 + 50% field capacity (FC). The findings showed that the application of silicon in the sand significantly affected growth indices such as leaf area (LA), shoot fresh weight (SFW), shoot dry weight (SDW), and shoot length (SL). Root length (RL) increased significantly up to 55.9% in response to drought stress. Applying Si to the sand increased the root length (RL) by 53.9%. In comparison to the control, the turgor potential of leaves decreased by 10.3% under salinity, while it increased by 44.7% under drought stress. However, the application of silicon to the sand significantly improved the turgor potential of leaves by 98.7%. Under both drought and salt stress, gas exchange characteristics and photosynthetic pigments dramatically decreased. Applying 40 mg/kg silicon to sand improved the gas exchange characteristics, protein contents, and photosynthetic pigments of plants under drought and salt stress, such as levels of chlorophyll (a, and b) increased by 18% and 26%, respectively. Under control conditions, the hydrogen peroxide (H2O2) concentration was lower but increased during periods of drought and salinity stress. The concentrations of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were decreased by salt and drought stress and increased by sand application of silicon at a rate of 40 mg/kg. Application of silicon at 40 mg/kg sand rate improved the growth and development under control and stress conditions. Overall, this study provides an extensive understanding of the physiological mechanisms underlying the black gram's ability to withstand under salt stress and drought stress by application of Si which will serve as a roadmap for future cellular research.
Collapse
Affiliation(s)
- Waheed Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ejaz Ahmad Waraich
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Arslan Haider
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Nasir Mahmood
- Department of Fiber and Textile Technology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Tahrim Ramzan
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur, Uttar Pradesh 242001, India
| |
Collapse
|
2
|
Xu K, Wang P. Transcriptome-wide identification of the Hsp70 gene family in Pugionium cornutum and functional analysis of PcHsp70-5 under drought stress. PLANTA 2024; 260:84. [PMID: 39214933 DOI: 10.1007/s00425-024-04509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
MAIN CONCLUSION The PcHsp70-5 enhances drought stress tolerance in transgenic Arabidopsis thaliana by upregulating stress tolerance genes and antioxidant enzyme activities. Heat shock proteins (HSPs) constitute a class of evolutionarily conserved proteins synthesized by organisms in response to various adverse environmental stimuli such as elevated temperatures, drought, hormonal fluctuations, high salt concentrations, and mechanical stress. However, research on HSPs has predominantly focused on model plants and crops, whereas their functions in desert plants have not been well investigated. This study analyzed the transcriptome of Pugionium cornutum and identified the complete ORFs of 25 genes of the PcHsp70 family genes. Their expression levels under drought stress were investigated using existing RNA-seq data. PcHsp70-5 genes exhibited high expression levels in both roots and leaves under drought stress. Consequently, the PcHsp70-5 genes were cloned and transformed into Arabidopsis thaliana for further analysis of their roles in drought stress response. Real-time fluorescence quantitative PCR (qRT-PCR) analysis demonstrated that both, drought stress and ABA, induced PcHsp70-5 expression. Under drought conditions, transgenic Arabidopsis plants exhibited markedly enhanced growth compared to wild-type plants, as evidenced by improved survival rates, root length, fresh weight, chlorophyll content, and reduced levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in leaves, indicating that PcHsp70-5 overexpression mitigated growth inhibition and oxidative damage induced by drought stress. Subsequent research revealed that PcHsp70-5 overexpression significantly augmented the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and increased the proline content in transgenic Arabidopsis under drought conditions, alongside a significant increase in the expression levels of genes related to stress tolerance. This suggests that PcHsp70-5 enhances drought stress tolerance in transgenic Arabidopsis by upregulating stress tolerance genes and antioxidant enzyme activities.
Collapse
Affiliation(s)
- Ke Xu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, University of East, Hohhot, 01000, Inner Mongolia, China
| | - Ping Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, University of East, Hohhot, 01000, Inner Mongolia, China.
| |
Collapse
|
3
|
Han A, Wang C, Li J, Xu L, Guo X, Li W, Zhou F, Liu R. Physiological mechanism of sodium salicylate and folcisteine on alleviating salt stress in wheat seedlings. Sci Rep 2023; 13:22869. [PMID: 38129459 PMCID: PMC10739812 DOI: 10.1038/s41598-023-49629-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Soil salinization substantially hampers the growth and development of wheat, potentially leading to plant death in severe cases, thus reducing grain yield and quality. This phenomenon poses a significant threat to food security in China. We investigated the effects of two exogenous plant growth regulators, sodium salicylate and folcisteine, on the wheat physiology and key characteristics under salt stress using hydroponics method. The results indicated that both regulators effectively mitigated the growth inhibition of wheat under salt stress. We assessed morphological and physiological indexes, including antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], peroxidase [POD]) and malondialdehyde (MDA) concentration in wheat after foliar application of sodium salicylate and folcisteine under salt stress. The findings revealed that sodium salicylate was more effective than folcisteine. However, folcisteine showed superior performance in reducing hydrogen peroxide (H2O2) content and superoxide anion (O2-) level compared to sodium salicylate. Simultaneously, Concurrent application of both regulators synergistically enhanced their efficacy, yielding the most favorable outcomes. In addition, this study noted that while the initial effects of these regulators were not pronounced, their sustained application significantly improved wheat growth in stressful condition and alleviated the detrimental impacts of salt stress. This approach could effectively guarantee the food security and production in China.
Collapse
Affiliation(s)
- Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cuiling Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Li Xu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoyan Guo
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Feng Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Lu HL, Chen YH. Reclaimed water reuse system on water quality, growth of irrigated crops, and impact of ecology: case study in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59676-59689. [PMID: 35394627 DOI: 10.1007/s11356-022-19872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In rapidly urbanized regions, the development of sustainable and resilient urban agriculture is essential to reduce environmental pollution and ensure reusable resources. The purpose of this study was to design, implement, and analyze the effects of reclaimed water reuse systems on crop growth, water purification, and ecology. A simulated experimental field near the side of Li Tse Lake at MingDao University in Changhua County, Taiwan, was chosen as the research field. A reclaimed water reuse system was established to collect domestic sewage discharged from the student dormitory, and a soil filter bed and plants in the system were used to purify the sewage, so as to detect its effects on water quality, soil, plant growth, and ecology throughout the year. According to the results, the water purified by the reclaimed water reuse system met the agricultural irrigation water quality criteria. While the soil filter bed showed that the purified water was alkaline and had low electrical conductivity, this did not affect plant growth. In the reclaimed water reuse system, the cultivation of fruiting and leafy vegetables increased the habitats of a number of organisms, and a total of 49 families of arthropods in 13 orders were found. This study showed that the reclaimed water reuse system could not only purify water and promote water reuse but also improve the ecology and develop the potential for food production.
Collapse
Affiliation(s)
- Hsiao-Ling Lu
- Department of Biotechnology, National Formosa University, No 64, WenHua Rd., Huwei Township, Yunlin, 632301, Taiwan.
| | - Yi-Hsuan Chen
- Department of Post-Modern Agriculture, MingDao University, Changhua, 52345, Taiwan
| |
Collapse
|
5
|
Effect of irrigation with treated wastewater on bermudagrass (Cynodon dactylon (L.) Pers.) production and soil characteristics and estimation of plant nutritional input. PLoS One 2022; 17:e0271481. [PMID: 35839230 PMCID: PMC9286233 DOI: 10.1371/journal.pone.0271481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, climate change has greatly affected rainfall and air temperature levels leading to a reduction in water resources in Southern Europe. This fact has emphasized the need to focus on the use of non-conventional water resources for agricultural irrigation. The reuse of treated wastewater (TWW) can represent a sustainable solution, reducing the consumption of freshwater (FW) and the need for mineral fertilisers. The main aim of this study was to assess, in a three-year period, the effects of TWW irrigation compared to FW on the biomass production of bermudagrass [Cynodon dactylon (L.) Pers.] plants and soil characteristics and to estimate the nutritional input provided by TWW irrigation. TWW was obtained by a constructed wetland system (CWs) which was used to treat urban wastewater. The system had a total surface area of 100 m2. An experimental field of bermudagrass was set up close to the system in a Sicilian location (Italy), using a split-plot design for a two-factor experiment with three replications. Results highlighted a high organic pollutant removal [five days biochemical oxygen demand (BOD5): 61%, chemical oxygen demand (COD): 65%] and a good efficiency in nutrients [total nitrogen (TN): 50%, total phosphorus (TP): 42%] of the CWs. Plants irrigated with TWW showed higher dry aboveground dry-weight (1259.3 kg ha-1) than those irrigated with FW (942.2 kg ha-1), on average. TWW irrigation approximately allowed a saving of 50.0 kg TN ha-1 year-1, 24.0 kg TP ha-1 year-1 and 29.0 kg K ha-1 year-1 on average with respect to commonly used N-P-K fertilisation programme for bermudagrass in the Mediterranean region. Soil salinity increased significantly (p ≤ 0.01) over the years and was detected to be higher in TWW-irrigated plots (+6.34%) in comparison with FW-irrigated plots. Our findings demonstrate that medium-term TWW irrigation increases the biomass production of bermudagrass turf and contributes to save significant amounts of nutrients, providing a series of agronomic and environmental benefits.
Collapse
|
6
|
Oliveira LM, Mendonça V, Moura EA, Irineu THS, Figueiredo FRA, Melo MF, Celedonio WF, Rêgo ALB, Mendonça LFM, Andrade ADM. Salt stress and organic fertilization on the growth and biochemical metabolism of Hylocereus costaricensis (red pitaya) seedlings. BRAZ J BIOL 2022; 84:e258476. [PMID: 35613211 DOI: 10.1590/1519-6984.258476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Red pitaya (Hylocereus costaricensis) is a promising species, with high cultivation potential due to the organoleptic and functional qualities of its fruits. However, irrigation water salinity can affect the crop yield. Therefore, materials rich in organic substances can minimize the damage caused by excess salts in soil and/or water. Thus, the objective of this study was to evaluate the influence of organic matter sources as attenuators of salt stress on the production and biochemical responses of red pitaya seedlings. A completely randomized design in 4 × 5 factorial scheme, with five sources of organic matter (humus, sheep manure, biofertilizer, organic compost and sand + soil) and four salinities (0.6, 2.6, 4.6 and 6.6 dS m-1) with four replicates and two plants per plot was used. The shoot length, root length, cladode diameter, number of cladodes, number of sprotus, root volume, shoot dry mass, root dry mass and total dry mass, root and shoot dry mass ratio, chlorophyll a, b and total, amino acids and soluble sugars were evaluated at 120 days after the treatments began to be applied. Red pitaya is moderately tolerant to salinity (ECw from 4.0 to 6.0 dS m-1). Organic compost and sheep manure attenuate the harmful effects of salinity on red pitaya seedlings. Under salt stress conditions, red pitaya plants increase their levels of proline, amino acids and total sugars.
Collapse
Affiliation(s)
- L M Oliveira
- Universidade Federal Rural do Semi-Árido - UFERSA, Department of Agronomic and Forestry Sciences, Mossoró, RN, Brasil
| | - V Mendonça
- Universidade Federal Rural do Semi-Árido - UFERSA, Department of Agronomic and Forestry Sciences, Mossoró, RN, Brasil
| | - E A Moura
- Universidade Federal de Roraima - UFRR, Postgraduate Program in Agronomy - POSAGRO, Monte Cristo, RR, Brasil
| | - T H S Irineu
- Universidade Federal Rural do Semi-Árido - UFERSA, Department of Agronomic and Forestry Sciences, Mossoró, RN, Brasil
| | - F R A Figueiredo
- Universidade Federal Rural do Semi-Árido - UFERSA, Department of Agronomic and Forestry Sciences, Mossoró, RN, Brasil
| | - M F Melo
- Universidade Federal Rural do Semi-Árido - UFERSA, Department of Agronomic and Forestry Sciences, Mossoró, RN, Brasil
| | - W F Celedonio
- Universidade Federal da Paraíba - UFPB, Department of Plant Science and Environmental Science, Areia, PB, Brasil
| | - A L B Rêgo
- Universidade Federal Rural do Semi-Árido - UFERSA, Department of Agronomic and Forestry Sciences, Mossoró, RN, Brasil
| | - L F M Mendonça
- Universidade Federal de Campina Grande - UFCG, Department of Plant Sciences, Campina Grande, PB, Brasil
| | - A D M Andrade
- Universidade Federal Rural do Semi-Árido - UFERSA, Department of Agronomic and Forestry Sciences, Mossoró, RN, Brasil
| |
Collapse
|
7
|
Guo J, Shan C, Zhang Y, Wang X, Tian H, Han G, Zhang Y, Wang B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:854116. [PMID: 35574092 PMCID: PMC9093713 DOI: 10.3389/fpls.2022.854116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 05/10/2023]
Abstract
As the area of salinized soils increases, and freshwater becomes more scarcer worldwide, an urgent measure for agricultural production is to use salinized land and conserve freshwater resources. Ornamental flowering plants, such as carnations, roses, chrysanthemums, and gerberas, are found around the world and have high economic, ornamental, ecological, and edible value. It is therefore prudent to improve the salt tolerance of these important horticultural crops. Here, we summarize the salt-adaptive mechanisms, genes, and molecular breeding of ornamental flowering crops. We also review the genome editing technologies that provide us with the means to obtain novel varieties with high salinity tolerance and improved utility value, and discuss future directions of research into ornamental plants like salt exclusion mechanism. We considered that the salt exclusion mechanism in ornamental flowering plants, the acquisition of flowers with high quality and novel color under salinity condition through gene editing techniques should be focused on for the future research.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- *Correspondence: Jianrong Guo,
| | - Changdan Shan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yifan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Xinlei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Huaying Tian
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- Baoshan Wang,
| |
Collapse
|
8
|
Barba-Espín G, Martínez-Jiménez C, Izquierdo-Martínez A, Acosta-Motos JR, Hernández JA, Díaz-Vivancos P. H 2O 2-Elicitation of Black Carrot Hairy Roots Induces a Controlled Oxidative Burst Leading to Increased Anthocyanin Production. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122753. [PMID: 34961224 PMCID: PMC8703307 DOI: 10.3390/plants10122753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 05/23/2023]
Abstract
Hairy roots (HRs) grown in vitro are a powerful platform for plant biotechnological advances and for the bio-based production of metabolites of interest. In this work, black carrot HRs able to accumulate anthocyanin as major secondary metabolite were used. Biomass and anthocyanin accumulation were improved by modulating growth medium composition-different Murashige & Skoog (MS)-based media-and H2O2-elicitation, and the level of the main antioxidant enzymes on elicited HRs was measured. Higher growth was obtained on liquid 1/2 MS medium supplemented with 60 g/L sucrose for HRs grown over 20 days. In this medium, 200 µM H2O2 applied on day 12 induced anthocyanin accumulation by 20%. The activity of superoxide dismutase (SOD)-which generates H2O2 from O2•--increased by over 50%, whereas the activity of H2O2-scavenging enzymes was not enhanced. Elicitation in the HRs can result in a controlled oxidative burst, in which SOD activity increased H2O2 levels, whereas anthocyanins, as effective reactive oxygen species scavengers, could be induced to modulate the oxidative burst generated. Moreover, given the proven stability of the HR lines used and their remarkable productivity, this system appears as suitable for elucidating the interplay between antioxidant and secondary metabolism.
Collapse
|
9
|
Wang W, Yang Y, Deng Y, Wang Z, Yuan Y, Yang S, Qi J, Wu J, Fu D, Wang W, Hao Q. Overexpression of isochorismate synthase enhances salt tolerance in barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:139-149. [PMID: 33677226 DOI: 10.1016/j.plaphy.2021.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Isochorismate synthase (ICS) is a key enzyme for the synthesis of salicylic acid (SA) in plants. SA plays an important role in the response of plants to abiotic stress. In this study, transgenic barley was constructed to evaluate the function of ICS under salt stress. ICSOE lines showed obvious salt stress tolerance, this results from the increased outward Na+ flux and inward K+ flux in roots, thereby maintaining a lower cytosolic Na+/K+ ratio under salt stress. Overexprssion of ICS also improved Na+ sequestration in shoots under salt stress. In addition, ICSOE lines displayed less accumulation of reactive oxygen species and oxidative damage, accompanied by higher activity of antioxidant enzymes. The improved Na+/K+ ratio, Na+ sequestration, and antioxidative competence play an important role in the enhanced salt tolerance of ICSOE lines. These findings help to elucidate the abiotic stress resistance of the ICS pathway in barley.
Collapse
Affiliation(s)
- Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China; State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Yang Yang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Yanmei Deng
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Zhigang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Yuchao Yuan
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Shenlin Yang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Juan Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China; State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
10
|
Hernández JA, Díaz-Vivancos P, Acosta-Motos JR, Alburquerque N, Martínez D, Carrera E, García-Bruntón J, Barba-Espín G. Interplay among Antioxidant System, Hormone Profile and Carbohydrate Metabolism during Bud Dormancy Breaking in a High-Chill Peach Variety. Antioxidants (Basel) 2021; 10:560. [PMID: 33916531 PMCID: PMC8066612 DOI: 10.3390/antiox10040560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Prunus species have the ability to suspend (induce dormancy) and restart growth, in an intricate process in which environmental and physiological factors interact. (2) Methods: In this work, we studied the evolution of sugars, antioxidant metabolism, and abscisic acid (ABA) and gibberellins (GAs) levels during bud dormancy evolution in a high-chill peach variety, grown for two seasons in two different geographical areas with different annual media temperature, a cold (CA) and a temperate area (TA). (3) Results: In both areas, starch content reached a peak at ecodormancy, and then decreased at dormancy release (DR). Sorbitol and sucrose declined at DR, mainly in the CA. In contrast, glucose and fructose levels progressively rose until DR. A decline in ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase and catalase activities occurred in both seasons at DR. Moreover, the H2O2-sensitive SOD isoenzymes, Fe-SOD and Cu,Zn-SOD, and two novel peroxidase isoenzymes, were detected. Overall, these results suggest the occurrence of a controlled oxidative stress during DR. GA7 was the major bioactive GA in both areas, the evolution of its levels being different between seasons and areas. In contrast, ABA content decreased during the dormancy period in both areas, resulting in a reduction in the ABA/total GAs ratio, being more evident in the CA. (4) Conclusion: A possible interaction sugars-hormones-ROS could take place in high-chill peach buds, favoring the DR process, suggesting that, in addition to sugar metabolism, redox interactions can govern bud DR, regardless of chilling requirements.
Collapse
Affiliation(s)
- José A. Hernández
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Pedro Díaz-Vivancos
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - José Ramón Acosta-Motos
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Nuria Alburquerque
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Domingo Martínez
- Department of Food Technology, University Miguel Hernandez, 03202 Orihuela, Spain;
| | - Esther Carrera
- Group of Hormonal Metabolism and Plant Development Regulation, IBMCP-CSIC, 46011 Valencia, Spain;
| | | | - Gregorio Barba-Espín
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| |
Collapse
|
11
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
12
|
Qin C, Ahanger MA, Lin B, Huang Z, Zhou J, Ahmed N, Ai S, Mustafa NSA, Ashraf M, Zhang L. Comparative transcriptome analysis reveals the regulatory effects of acetylcholine on salt tolerance of Nicotiana benthamiana. PHYTOCHEMISTRY 2021; 181:112582. [PMID: 33246307 DOI: 10.1016/j.phytochem.2020.112582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/08/2023]
Abstract
Salinity is a major cause of crop losses worldwide. Acetylcholine (ACh) can ameliorate the adverse effects of abiotic stresses on plant growth, including salinity stress; however, the underlying molecular mechanisms of this process are unclear. Here, seedlings of Nicotiana benthamiana grown under normal conditions or exposed to 150 mmol L-1 NaCl salinity stress were then treated with a root application of 10 μM ACh. Exogenous ACh application resulted in the downregulation of the activity of the antioxidant enzymes, ascorbate peroxidase, and catalase. ACh-treated plants had lower levels of reactive oxygen species, including the superoxide anion radical and hydrogen peroxide. Transcriptome analysis indicated that ACh treatment under salt stress promoted the differential expression of 658 genes in leaves of N. benthamiana (527 were upregulated and 131 were downregulated). Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that exogenous ACh application was associated with a substantial increase in the transcripts of genes related to cell wall peroxidases, xyloglucan endotransglucosylases or hydrolases, and expansins, indicating that ACh activates cell wall biosynthesis in salt-stressed plants. ACh also enhanced the expression of genes associated with the auxin, gibberellin, brassinosteroid, and salicylic acid signalling pathways, indicating that ACh induces the activation of these pathways under salt stress. Collectively, these findings indicate that ACh-induced salt tolerance in N. benthamiana seedlings is mediated by the inhibition of antioxidant enzymes, activation of cell wall biosynthesis, and hormone signalling pathways. Stress-induced genes involved in osmotic regulation and oxidation resistance were induced by ACh under salt stress. The genes whose transcript levels were elevated by ACh treatment in salt-stressed N. benthamiana could be used as molecular markers of the physiological status of plants under salt stress.
Collapse
Affiliation(s)
- Cheng Qin
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Mohammad Abass Ahanger
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Bo Lin
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Ziguang Huang
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Jie Zhou
- Cangzhou Central Hospital, 061000 Cangzhou, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Suilong Ai
- Shaanxi Tobacco Scientific Institution, 71000, Xi'an, China
| | - Nabil S A Mustafa
- Department of Pomology, National Research Centre, 12622 Cairo, Egypt
| | - Muhammad Ashraf
- University of Agriculture, Faisalabad, 38000 Faisalabad, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China.
| |
Collapse
|
13
|
Barba-Espín G, Chen ST, Agnolet S, Hegelund JN, Stanstrup J, Christensen JH, Müller R, Lütken H. Ethephon-induced changes in antioxidants and phenolic compounds in anthocyanin-producing black carrot hairy root cultures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7030-7045. [PMID: 32803264 DOI: 10.1093/jxb/eraa376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Hairy root (HR) cultures are quickly evolving as a fundamental research tool and as a bio-based production system for secondary metabolites. In this study, an efficient protocol for establishment and elicitation of anthocyanin-producing HR cultures from black carrot was established. Taproot and hypocotyl explants of four carrot cultivars were transformed using wild-type Rhizobium rhizogenes. HR growth performance on plates was monitored to identify three fast-growing HR lines, two originating from root explants (lines NB-R and 43-R) and one from a hypocotyl explant (line 43-H). The HR biomass accumulated 25- to 30-fold in liquid media over a 4 week period. Nine anthocyanins and 24 hydroxycinnamic acid derivatives were identified and monitored using UPLC-PDA-TOF during HR growth. Adding ethephon, an ethylene-releasing compound, to the HR culture substantially increased the anthocyanin content by up to 82% in line 43-R and hydroxycinnamic acid concentrations by >20% in line NB-R. Moreover, the activities of superoxide dismutase and glutathione S-transferase increased in the HRs in response to ethephon, which could be related to the functionality and compartmentalization of anthocyanins. These findings present black carrot HR cultures as a platform for the in vitro production of anthocyanins and antioxidants, and provide new insight into the regulation of secondary metabolism in black carrot.
Collapse
Affiliation(s)
- Gregorio Barba-Espín
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
- Department of Fruit Breeding, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Shih-Ti Chen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Sara Agnolet
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Josefine Nymark Hegelund
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Jan Stanstrup
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
14
|
Rootstock Effects on Water Relations of Young Almond Trees (cv. Soleta) When Subjected to Water Stress and Rehydration. WATER 2020. [DOI: 10.3390/w12123319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rootstocks with size controlling potential are being used in newly planted intensive almond orchards. Due to increased water scarcity, characterizing the response of these rootstocks to water deficit is required. The current work aims to assess whether the rootstock can improve their drought tolerance. We investigated the morphological and physiological response of P. dulcis “Soleta” either self-rooted or grafted on Rootpac-20 rootstock. Plant responses were evaluated during a water stress period (withholding irrigation for 20 days) and subsequent recovery in potted plants under greenhouse conditions. Self-rooted plants had a higher capacity to control vigour than plants grafted onto Rootpac-20, both under full irrigation and no irrigation conditions. Stressed plants exhibited severe dehydration, as indicated by lower leaf water potential and relative water content. Removing irrigation reduced stomatal conductance in grafted and self-rooted plants by a similar extent, suggesting an efficient stomatal control, while the reduction in the net photosynthesis rate was more marked in grafted plants compared to non-grafted plants. Self-rooted plants under water stress increased their root to shoot ratio and water use efficiency, which are positive aspects for growth and survival of these plants.
Collapse
|
15
|
Yousefirad S, Soltanloo H, Ramezanpour SS, Zaynali Nezhad K, Shariati V. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS One 2020; 15:e0229513. [PMID: 32187229 PMCID: PMC7080263 DOI: 10.1371/journal.pone.0229513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/09/2020] [Indexed: 12/23/2022] Open
Abstract
Considering the complex nature of salinity tolerance mechanisms, the use of isogenic lines or mutants possessing the same genetic background albeit different tolerance to salinity is a suitable method for reduction of analytical complexity to study these mechanisms. In the present study, whole transcriptome analysis was evaluated using RNA-seq method between a salt-tolerant mutant line "M4-73-30" and its wild-type "Zarjou" cultivar at seedling stage after six hours of exposure to salt stress (300 mM NaCl). Transcriptome sequencing yielded 20 million reads for each genotype. A total number of 7116 transcripts with differential expression were identified, 1586 and 1479 of which were obtained with significantly increased expression in the mutant and the wild-type, respectively. In addition, the families of WRKY, ERF, AP2/EREBP, NAC, CTR/DRE, AP2/ERF, MAD, MIKC, HSF, and bZIP were identified as the important transcription factors with specific expression in the mutant genotype. The RNA-seq results were confirmed at several time points using qRT-PCR for some important salt-responsive genes. In general, the results revealed that the mutant accumulated higher levels of sodium ion in the root and decreased its transfer to the shoot. Also, the mutant increased the amount of potassium ion leading to the maintenance a high ratio [K+]/[Na+] in the shoot compared to its wild-type via fast stomata closure and consequently transpiration reduction under the salt stress. Moreover, a reduction in photosynthesis and respiration was observed in the mutant, resulting in utilization of the stored energy and the carbon for maintaining the plant tissues, which is considered as a mechanism of salt tolerance in plants. Up-regulation of catalase, peroxidase, and ascorbate peroxidase genes has resulted in higher accumulation of H2O2 in the wild-type compared to the mutant. Therefore, the wild-type initiated rapid ROS signals which led to less oxidative scavenging in comparison with the mutant. The mutant increased expression in the ion transporters and the channels related to the salinity to maintain the ion homeostasis. In overall, the results demonstrated that the mutant responded better to the salt stress under both osmotic and ionic stress phases and lower damage was observed in the mutant compared to its wild-type under the salt stress.
Collapse
Affiliation(s)
- Sareh Yousefirad
- Department of Plant Breeding and Plant Biotechnolgy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Hassan Soltanloo
- Department of Plant Breeding and Plant Biotechnolgy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Seyedeh Sanaz Ramezanpour
- Department of Plant Breeding and Plant Biotechnolgy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Khalil Zaynali Nezhad
- Department of Plant Breeding and Plant Biotechnolgy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Vahid Shariati
- Department of Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
16
|
Towards a Sustainable Agriculture: Strategies Involving Phytoprotectants against Salt Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Salinity is one of the main constraints for agriculture productivity worldwide. This important abiotic stress has worsened in the last 20 years due to the increase in water demands in arid and semi-arid areas. In this context, increasing tolerance of crop plants to salt stress is needed to guarantee future food supply to a growing population. This review compiles knowledge on the use of phytoprotectants of microbial origin (arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria), osmoprotectants, melatonin, phytohormones and antioxidant metabolism-related compounds as alleviators of salt stress in numerous plant species. Phytoprotectants are discussed in detail, including their nature, applicability, and role in the plant in terms of physiological and phenotype effects. As a result, increased crop yield and crop quality can be achieved, which in turn positively impact food security. Herein, efforts from academic and industrial sectors should focus on defining the treatment conditions and plant-phytoprotectant associations providing higher benefits.
Collapse
|
17
|
Zalacáin D, Martínez-Pérez S, Bienes R, García-Díaz A, Sastre-Merlín A. Turfgrass biomass production and nutrient balance of an urban park irrigated with reclaimed water. CHEMOSPHERE 2019; 237:124481. [PMID: 31549637 DOI: 10.1016/j.chemosphere.2019.124481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The increasing demand for water resources in arid and semiarid countries has stimulated the use of non-conventional water resources such as reclaimed water. Consequently, turfgrass irrigation with reclaimed water has become a regular practice in these regions. The main goal of this research was to assess the effects of reclaimed water (RW) irrigation in Madrid urban parks by studying changes in grass nutrient balance and its biomass production. Irrigation with reclaimed water led to a grass biomass increase, mainly due to the high proportion of nutrients received through the irrigation water. The main nutrient input in RW irrigation were of Cl, S, K and Na. RW also contributed to a significant increase in nutrient removal by grass. Thus, all this information generated should be taken into account by park managers in order to fulfill the grass aesthetic value and its nutritional requirements in those urban parks irrigated with RW.
Collapse
Affiliation(s)
- David Zalacáin
- Department of Geology, Geography and Environment, School of Sciences, University of Alcalá, Ctra Madrid-Barcelona Km 33.6, 28871, Alcalá de Henares, Madrid, Spain.
| | - Silvia Martínez-Pérez
- Department of Geology, Geography and Environment, School of Sciences, University of Alcalá, Ctra Madrid-Barcelona Km 33.6, 28871, Alcalá de Henares, Madrid, Spain
| | - Ramón Bienes
- Applied Research Dept., Madrid Institute for Research and Rural Development in Food and Agriculture (IMIDRA), Apdo 127, 28800, Alcalá de Henares, Madrid, Spain
| | - Andrés García-Díaz
- Applied Research Dept., Madrid Institute for Research and Rural Development in Food and Agriculture (IMIDRA), Apdo 127, 28800, Alcalá de Henares, Madrid, Spain
| | - Antonio Sastre-Merlín
- Department of Geology, Geography and Environment, School of Sciences, University of Alcalá, Ctra Madrid-Barcelona Km 33.6, 28871, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
18
|
Chen L, Bao F, Tang S, Zuo E, Lv Q, Zhang D, Hu Y, Wang X, He Y. PpAKR1A, a Novel Aldo-Keto Reductase from Physcomitrella Patens, Plays a Positive Role in Salt Stress. Int J Mol Sci 2019; 20:ijms20225723. [PMID: 31739643 PMCID: PMC6888457 DOI: 10.3390/ijms20225723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
The moss Physcomitrella patens is tolerant of highly saline environments. In plants, salinity stress may induce the production of toxic reactive carbonyl species (RCS) and oxidative damage. Aldo-keto reductases (AKRs) are a large group of NADP-dependent oxidoreductases involved in RCS detoxification. However, many members in this superfamily remain uncharacterized. In this study, we cloned and characterised a putative AKR1 from P. patens, named PpAKR1A. Notably, the transcription level of PpAKR1A was induced by salt and methylglyoxal (MG) stress, and the recombinant PpAKR1A protein catalysed the reduction of toxic aldehydes. PpAKR1A knockout mutants of P. patens (ppakr1a) were sensitive to NaCl and MG treatment, as indicated by much lower concentrations of chlorophyll and much higher concentrations of MG and H2O2 than those in WT plants. Meanwhile, ppakr1a plants exhibited decreases in the MG-reducing activity and reactive oxygen species-scavenging ability in response to salt stress, possibly due to decreases in the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Our results indicate that PpAKR1A is an aldo-keto reductase that detoxifies MG and thus plays an important role in salt stress tolerance in P. patens.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Shuxuan Tang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Enhui Zuo
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Dongyang Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Xiaoqin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (X.W.); (Y.H.); Tel.: +86-10-68903089 (Y.H.)
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
- Correspondence: (X.W.); (Y.H.); Tel.: +86-10-68903089 (Y.H.)
| |
Collapse
|
19
|
Patykowski J, Kołodziejek J, Wala M. Biochemical and growth responses of silver maple ( Acer saccharinum L.) to sodium chloride and calcium chloride. PeerJ 2018; 6:e5958. [PMID: 30613440 PMCID: PMC6309728 DOI: 10.7717/peerj.5958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/18/2018] [Indexed: 11/25/2022] Open
Abstract
The present research investigated the response of silver maple (Acer saccharinum L.) to salt treatment. The short- and long-term effects of NaCl and CaCl2 treatments on plant fitness characteristics (growth parameters, leaf chlorophyll content) and biochemical stress-coping mechanisms (proline accumulation as well as enzymatic activities) were examined. We found that the silver maple response to salt stress strictly depended on salt type and dose—calcium chloride was less toxic than sodium chloride, but high concentrations of both salts negatively influenced plant growth. The accumulation of proline, slight changes in the activity of superoxide dismutase and marked changes in catalase and peroxidase activities in the roots and leaves indicated complexity of the plant response. It was also shown that after one year, enzymatic parameters were restabilized, which indicates plant recovery, but the reduced mass of seedlings suggests that one year is not enough to cope with the prolonged cyclic salt stress, both resulting from NaCl and CaCl2 application. Therefore, seedlings of silver maple should be considered as moderately susceptible to salinity. Hence, it is recommended to use silver maple on non-de-iced urban areas, while planting on often de-iced roads should be avoided.
Collapse
Affiliation(s)
- Jacek Patykowski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jeremi Kołodziejek
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Mateusz Wala
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.,Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Abstract
This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.
Collapse
|