1
|
Palaniswamy R, Kambale R, Mohanavel V, Rajagopalan VR, Manickam S, Muthurajan R. Identifying molecular targets for modulating carotenoid accumulation in rice grains. Biochem Biophys Rep 2024; 40:101815. [PMID: 39290348 PMCID: PMC11406064 DOI: 10.1016/j.bbrep.2024.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Carotenoids are potential antioxidants offering extensive human health benefits including protection against chronic diseases. Augmenting the supply of health-benefiting compounds/metabolites through dietary supplements is the most sustainable way for a healthy life. Our study compares the traditional rice cultivar Kavuni and the white rice variety ASD 16. RNA-Seq analysis was carried out in the maturing panicles of Kavuni, which are enriched with antioxidants such as the therapeutic carotenoid lutein, polyphenols, and anthocyanins, along with "ASD 16", a popularly eaten white rice variety, to elucidate the molecular networks regulating accumulation of health benefiting compounds. Systematic analysis of transcriptome data identified preferential up-regulation of carotenoid precursors (OsDXS, OsGGPS) and key carotenoid biosynthetic genes (OsPSY1, OsZ-ISO) in the maturing grains of Kavuni. Our study also identified enhanced expression of OsLYC-E, OsCYP97A, and OsCYP97C transcripts involved in the alpha-carotenoid biosynthetic pathway and thereby leading to elevated lutein content in the grains of Kavuni. Kavuni grains showed preferential down-regulation of negative regulators of carotenoid metabolism viz., AP2 and HY5 and preferential up-regulation of positive modulators of carotenoid metabolism viz., Orange, OsDjB7, and OsSET29, thus creating a favorable molecular framework for carotenoid accumulation. Our study has unearthed valuable gene control points for precise manipulation of carotenoid profiles through CRISPR-based gene editing in rice grains. Perturbation of carotenoid biosynthesis holds unprecedented potential for the rapid development of the next generation of 'Golden rice'.
Collapse
Affiliation(s)
- Rakshana Palaniswamy
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rohit Kambale
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Vignesh Mohanavel
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudha Manickam
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Basu S, Kumar G. Regulation of nitro-oxidative homeostasis: an effective approach to enhance salinity tolerance in plants. PLANT CELL REPORTS 2024; 43:193. [PMID: 39008125 DOI: 10.1007/s00299-024-03275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
3
|
Zhao S, Guo T, Yao Y, Dong B, Zhao G. Research advancements in the maintenance mechanism of Sporidiobolus pararoseus enhancing the quality of soy sauce during fermentation. Int J Food Microbiol 2024; 417:110690. [PMID: 38581832 DOI: 10.1016/j.ijfoodmicro.2024.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Soy sauce is a traditional condiment that undergoes microbial fermentation of various ingredients to achieve its desired color, scent, and flavor. Sporidiobolus pararoseus, which is a type of Rhodocerevisiae, shows promising potential as a source of lipids, carotenoids, and enzymes that can enrich the taste and color of soy sauce. However, there is currently a lack of systematic and comprehensive studies on the functions and mechanisms of action of S. pararoseus during soy sauce fermentation. In this review, it is well established that S. pararoseus produces lipids that are abundant in unsaturated fatty acids, particularly oleic acid, as well as various carotenoids, such as β-carotene, torulene, and torularhodin. These pigments are synthesized through the mevalonic acid pathway and possess remarkable antioxidant properties, acting as natural colorants. The synthesis of carotenoids is stimulated by high salt concentrations, which induces oxidative stress caused by NaCl. This stress further activates crucial enzymes involved in carotenoid production, ultimately leading to pigment formation. Moreover, S. pararoseus can produce high-quality enzymes that aid in the efficient utilization of soy sauce substrates during fermentation. Furthermore, this review focused on the impact of S. pararoseus on the color and quality of soy sauce and comprehensively analyzed its characteristics and ingredients. Thus, this review serves as a basis for screening high-quality oleaginous red yeast strains and improving the quality of industrial soy sauce production through the wide application of S. pararoseus.
Collapse
Affiliation(s)
- Shuoshuo Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bin Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Bekkering C, Yu S, Kuo CC, Tian L. Distinct growth patterns in seedling and tillering wheat plants suggests a developmentally restricted role of HYD2 in salt-stress response. PLANT CELL REPORTS 2024; 43:119. [PMID: 38632145 PMCID: PMC11024023 DOI: 10.1007/s00299-024-03206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
KEY MESSAGE Mutants lacking functional HYD2 homoeologs showed improved seedling growth, but comparable or increased susceptibility to salt stress in tillering plants, suggesting a developmentally restricted role of HYD2 in salt response. Salinity stress threatens global food security by reducing the yield of staple crops such as wheat (Triticum ssp.). Understanding how wheat responds to salinity stress is crucial for developing climate resilient varieties. In this study, we examined the interplay between carotenoid metabolism and the response to salt (NaCl) stress, a specific form of salinity stress, in tetraploid wheat plants with mutations in carotenoid β-hydroxylase 1 (HYD1) and HYD2. Our investigation encompassed both the vulnerable seedling stage and the more developed tillering stage of wheat plant growth. Mutant combinations lacking functional HYD2 homoeologs, including hyd-A2 hyd-B2, hyd-A1 hyd-A2 hyd-B2, hyd-B1 hyd-A2 hyd-B2, and hyd-A1 hyd-B1 hyd-A2 hyd-B2, had longer first true leaves and slightly enhanced root growth during germination under salt stress compared to the segregate wild-type (control) plants. Interestingly, these mutant seedlings also showed decreased levels of neoxanthin and violaxanthin (xanthophylls derived from β-carotene) and an increase in β-carotene in roots. However, tillering hyd mutant and segregate wild-type plants generally did not differ in their height, tiller count, and biomass production under acute or prolonged salt stress, except for decreases in these parameters observed in the hyd-A1 hyd-B1 hyd-A2 hyd-B2 mutant that indicate its heightened susceptibility to salt stress. Taken together, these findings suggest a significant, yet developmentally restricted role of HYD2 homoeologs in salt-stress response in tetraploid wheat. They also show that hyd-A2 hyd-B2 mutant plants, previously demonstrated for possessing enriched nutritional (β-carotene) content, maintain an unimpaired ability to withstand salt stress.
Collapse
Affiliation(s)
- Cody Bekkering
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Shu Yu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Chih Chi Kuo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Cao D, Liu C, Zhang W, Zheng C, Zhang S, Jia H, Yang Y. Characterization of the DUF868 gene family in Nicotiana and functional analysis of NtDUF868-E5 involved in pigment metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108493. [PMID: 38447423 DOI: 10.1016/j.plaphy.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Domains of unknown function (DUF) proteins represent a large group of uncharacterized protein families. The DUF868 gene family in Nicotiana has not yet been described. In the present study, we identified 12, 11, and 25 DUF868 family members in the genome of Nicotiana sylvestris, N. tomentosiformis, and N. tabacum, respectively. Based on phylogenetic analysis, these were categorized into five groups (A-E). Within each group, the gene structures, motifs, and tertiary structures showed high similarity. NtDUF868 family expansion during evolution was mainly driven by segmental duplication events. MicroRNA (miRNA) target site prediction identified 12 miRNA members that target 16 NtDUF868 family genes. The promoters of these genes contain cis-regulatory elements responsive to light, phytohormones, and abiotic stresses. Expression profiling revealed their tissue- and stage-specific expression patterns. RNA-sequencing and quantitative reverse transcription PCR revealed that the NtDUF868 family genes are potentially involved in the response to abiotic and biotic stresses, particularly drought and hormone stresses, and in the resistance to black shank and bacterial wilt. We generated transformed plants using NtDUF868-E5 overexpression and gene-editing vectors. NtDUF868-E5 overexpression resulted in enhanced tobacco plant growth and development, leading to increased leaf photosynthetic capacity and higher chlorophyll and carotenoid contents. This study provided a comprehensive genome-wide analysis of the DUF868 gene family, shedding light on their potential roles in plant growth and stress responses.
Collapse
Affiliation(s)
- Dejun Cao
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Che Liu
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Wenhan Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Cong Zheng
- China Tobacco Fujian Company, Pucheng Branch, Nanping, 353000, China.
| | - Songtao Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Hongfang Jia
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
6
|
Vieira EA, Gaspar M, Caldeira CF, Munné-Bosch S, Braga MR. Desiccation tolerance in the resurrection plant Barbacenia graminifolia involves changes in redox metabolism and carotenoid oxidation. FRONTIERS IN PLANT SCIENCE 2024; 15:1344820. [PMID: 38425802 PMCID: PMC10902171 DOI: 10.3389/fpls.2024.1344820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Desiccation tolerance in vegetative tissues enables resurrection plants to remain quiescent under severe drought and rapidly recover full metabolism once water becomes available. Barbacenia graminifolia is a resurrection plant that occurs at high altitudes, typically growing on rock slits, exposed to high irradiance and limited water availability. We analyzed the levels of reactive oxygen species (ROS) and antioxidants, carotenoids and its cleavage products, and stress-related phytohormones in fully hydrated, dehydrated, and rehydrated leaves of B. graminifolia. This species exhibited a precise adjustment of its antioxidant metabolism to desiccation. Our results indicate that this adjustment is associated with enhanced carotenoid and apocarotenoids, α-tocopherol and compounds of ascorbate-glutathione cycle. While α-carotene and lutein increased in dried-leaves suggesting effective protection of the light-harvesting complexes, the decrease in β-carotene was accompanied of 10.2-fold increase in the content of β-cyclocitral, an apocarotenoid implicated in the regulation of abiotic stresses, compared to hydrated plants. The principal component analysis showed that dehydrated plants at 30 days formed a separate cluster from both hydrated and dehydrated plants for up to 15 days. This regulation might be part of the protective metabolic strategies employed by this resurrection plant to survive water scarcity in its inhospitable habitat.
Collapse
Affiliation(s)
| | - Marilia Gaspar
- Biodiversity Conservation Center, Institute of Environmental Research, São Paulo, Brazil
| | | | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marcia Regina Braga
- Biodiversity Conservation Center, Institute of Environmental Research, São Paulo, Brazil
| |
Collapse
|
7
|
Yuan Z, Liu Q, Mo L, Pang Z, Hu C. Integrating the Soil Microbiota and Metabolome Reveals the Mechanism through Which Controlled Release Fertilizer Affects Sugarcane Growth. Int J Mol Sci 2023; 24:14086. [PMID: 37762388 PMCID: PMC10531416 DOI: 10.3390/ijms241814086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Root-soil underground interactions mediated by soil microorganisms and metabolites are crucial for fertilizer utilization efficiency and crop growth regulation. This study employed a combined approach of soil microbial community profiling and non-targeted metabolomics to investigate the patterns of root-associated microbial aggregation and the mechanisms associated with metabolites under varying controlled-release fertilizer (CRF) application rates. The experimental treatments included five field application rates of CRF (D1: 675 kg/ha; D15: 1012.5 kg/ha; D2: 1350 kg/ha; D25: 1687.5 kg/ha; and D3: 2025 kg/ha) along with traditional fertilizer as a control (CK: 1687.5 kg/ha). The results indicated that the growth of sugarcane in the field was significantly influenced by the CRF application rate (p < 0.05). Compared with CK, the optimal field application of CRF was observed at D25, resulting in a 16.3% to 53.6% increase in sugarcane yield. Under the condition of reducing fertilizer application by 20%, D2 showed a 13.3% increase in stem yield and a 6.7% increase in sugar production. The bacterial ACE index exhibited significant differences between D25 and D1, while the Chao1 index showed significance among the D25, D1, and CK treatments. The dominant bacterial phyla in sugarcane rhizosphere aggregation included Proteobacteria, Actinobacteriota, and Acidobacteriota. Fungal phyla comprised Rozellomycota, Basidiomycota, and Ascomycota. The annotated metabolic pathways encompassed biosynthesis of secondary metabolites, carbohydrate metabolism, and lipid metabolism. Differential analysis and random forest selection identified distinctive biomarkers including Leotiomycetes, Cercospora, Anaeromyxobacter, isoleucyl-proline, and methylmalonic acid. Redundancy analysis unveiled soil pH, soil organic carbon, and available nitrogen as the primary drivers of microbial communities, while the metabolic profiles were notably influenced by the available potassium and phosphorus. The correlation heatmaps illustrated potential microbial-metabolite regulatory mechanisms under CRF application conditions. These findings underscore the significant potential of CRF in sugarcane field production, laying a theoretical foundation for sustainable development in the sugarcane industry.
Collapse
Affiliation(s)
- Zhaonian Yuan
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.M.); (Z.P.); (C.H.)
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugar Industry, Nanning 530000, China
| | - Qiang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;
| | - Lifang Mo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.M.); (Z.P.); (C.H.)
| | - Ziqin Pang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.M.); (Z.P.); (C.H.)
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.M.); (Z.P.); (C.H.)
| |
Collapse
|
8
|
Han S, Wang Y, Zhang Q, Wang W, Pei D. Chrysanthemum morifolium β-carotene hydroxylase overexpression promotes Arabidopsis thaliana tolerance to high light stress. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153962. [PMID: 36940578 DOI: 10.1016/j.jplph.2023.153962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The β-carotene hydroxylase gene (BCH) regulates zeaxanthin production in response to high light levels ro protect Chrysanthemum morifolium plants against light-induced damage. In this study, the Chrysanthemum morifolium CmBCH1 and CmBCH2 genes were cloned and their functional importance was assessed by overexpressing them in Arabidopsis thaliana. These transgenic plants were evaluated for gene-related changes in phenotypic characteristics, photosynthetic activity, fluorescence properties, carotenoid biosynthesis, aboveground/belowground biomass, pigment content, and the expression of light-regulated genes under conditions of high light stress relative to wild-type (WT) plants. When exposed to high light stress, WT A. thaliana leaves turned yellow and the overall biomass was reduced compared to that of the transgenic plants. WT plants exposed to high light stress also exhibited significant reductions in the net photosynthetic rate, stomatal conductance, Fv/Fm, qP, and ETR, whereas these changes were not observed in the transgenic CmBCH1 and CmBCH2 plants. Lutein and zaxanthin levels were significantly increased in the transgenic CmBCH1 and CmBCH2 lines, with progressive induction with prolonged light exposure, whereas no significant changes were observed in light-exposed WT plants. The transgenic plants also expressed higher levels of most carotenoid biosynthesis pathway genes, including phytoene synthase (AtPSY), phytoene desaturase (AtPDS), lycopene-β-cyclase (AtLYCB), and ζ-carotene desaturase (AtZDS). The elongated hypocotyl 5 (HY5) and succinate dehydrogenase (SDH) genes were significantly induced following exposure to high light conditions for 12h, whereas phytochrome-interacting factor 7 (PIF7) was significantly downregulated in these plants.
Collapse
Affiliation(s)
- Shuang Han
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Yunjing Wang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Qingchen Zhang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Wenjing Wang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Dongli Pei
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China.
| |
Collapse
|
9
|
Sun M, Xu QY, Zhu ZP, Liu PZ, Yu JX, Guo YX, Tang S, Yu ZF, Xiong AS. AgMYB5, an MYB transcription factor from celery, enhanced β-carotene synthesis and promoted drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2023; 23:151. [PMID: 36941578 PMCID: PMC10029358 DOI: 10.1186/s12870-023-04157-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Water shortage caused by global warming seriously affects the yield and quality of vegetable crops. β-carotene, the lipid-soluble natural product with important pharmacological value, is abundant in celery. Transcription factor MYB family extensively disperses in plants and plays regulatory roles in carotenoid metabolism and water scarcity response. RESULTS Here, the AgMYB5 gene encoding 196 amino acids was amplified from celery cv. 'Jinnanshiqin'. In celery, the expression of AgMYB5 exhibited transactivation activity, tissue specificity, and drought-condition responsiveness. Further analysis proved that ectopic expression of AgMYB5 increased β-carotene content and promoted drought tolerance in transgenic Arabidopsis thaliana. Moreover, AgMYB5 expression promoted β-carotene biosynthesis by triggering the expression of AtCRTISO and AtLCYB, which in turn increased antioxidant enzyme activities, and led to the decreased contents of H2O2 and MDA, and the inhibition of O2- generation. Meanwhile, β-carotene accumulation promoted endogenous ABA biosynthesis of transgenic Arabidopsis, which resulted in ABA-induced stomatal closing and delayed water loss. In addition, ectopic expression of AgMYB5 increased expression levels of AtERD1, AtP5CS1, AtRD22, and AtRD29. CONCLUSIONS The findings indicated that AgMYB5 up-regulated β-carotene biosynthesis and drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Qin-Yi Xu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Zhi-Peng Zhu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Pei-Zhuo Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jian-Xiang Yu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Yao-Xian Guo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Shu Tang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Zhi-Fang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
10
|
Castro-Cegrí A, Sierra S, Hidalgo-Santiago L, Esteban-Muñoz A, Jamilena M, Garrido D, Palma F. Postharvest Treatment with Abscisic Acid Alleviates Chilling Injury in Zucchini Fruit by Regulating Phenolic Metabolism and Non-Enzymatic Antioxidant System. Antioxidants (Basel) 2023; 12:211. [PMID: 36671073 PMCID: PMC9854589 DOI: 10.3390/antiox12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Reports show that phytohormone abscisic acid (ABA) is involved in reducing zucchini postharvest chilling injury. During the storage of harvested fruit at low temperatures, chilling injury symptoms were associated with cell damage through the production of reactive oxygen species. In this work, we have studied the importance of different non-enzymatic antioxidants on tolerance to cold stress in zucchini fruit treated with ABA. The application of ABA increases the antioxidant capacity of zucchini fruit during storage through the accumulation of ascorbate, carotenoids and polyphenolic compounds. The quantification of specific phenols was performed by UPLC/MS-MS, observing that exogenous ABA mainly activated the production of flavonoids. The rise in all these non-enzymatic antioxidants due to ABA correlates with a reduction in oxidative stress in treated fruit during cold stress. The results showed that the ABA mainly induces antioxidant metabolism during the first day of exposure to low temperatures, and this response is key to avoiding the occurrence of chilling injury. This work suggests an important protective role of non-enzymatic antioxidants and polyphenolic metabolism in the prevention of chilling injury in zucchini fruit.
Collapse
Affiliation(s)
- Alejandro Castro-Cegrí
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Sandra Sierra
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Laura Hidalgo-Santiago
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), University of Almería, 04120 Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
11
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
12
|
Li M, Zhang Y, Xu X, Chen Y, Chu J, Yao X. The combined treatments of brassinolide and zeaxanthin better alleviate oxidative damage and improve hypocotyl length, biomass, and the quality of radish sprouts stored at low temperature. Food Chem X 2022; 15:100394. [PMID: 36211765 PMCID: PMC9532720 DOI: 10.1016/j.fochx.2022.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The rot and deterioration of sprouts are closely related to their physiological state and postharvest storage quality. The study investigated the influences of brassinolide, zeaxanthin, and their combination on physiological metabolism, chlorophyll fluorescence, and nutritional quality of radish sprouts stored at 4 °C. The combined treatments enhanced hypocotyl length, fresh weight, contents of secondary metabolites, nutritional ingredients, glutathione, the photoprotective capacity of PSII, and FRAP level in radish sprouts compared with zeaxanthin alone. The combined treatments enhanced hypocotyl length, fresh weight, glutathione content, Fv/Fm value, and antioxidant capacity in sprouts compared to brassinolide alone. The combined treatment of zeaxanthin and brassinolide could make radish sprouts keep high biomass and antioxidant capacity by increasing the contents of stress-resistant metabolites and by weakening the photoinhibition of PSII in radish sprouts stored at 4 °C.
Collapse
Affiliation(s)
- Minghui Li
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center of Hebei University, Baoding 071002, China
| | - Xihang Xu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Ying Chen
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| |
Collapse
|
13
|
Raquel Ferreira Paulo I, Basílio de Oliveira Caland R, Orlando Muñoz Cadavid C, Martins Melo G, Soares De Castro Bezerra L, Pons E, Peña L, de Paula Oliveira R. β-carotene genetically-enriched lyophilized orange juice increases antioxidant capacity and reduces β-amyloid proteotoxicity and fat accumulation in Caenorhabditis elegans. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100141. [PMID: 36304081 PMCID: PMC9593878 DOI: 10.1016/j.fochms.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/01/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
β-carotene content of genetically modified orange was 33-fold higher. β-carotene-enriched LOJ provided greater antioxidant capacity and stress resistance. β-carotene-enriched LOJ reduced β-amyloid proteotoxicity. β-carotene-enriched LOJ showed higher hypolipidemic activity in glucose rich diet.
Citrus sinensis orange juice is an excellent dietary source of β-carotene, a well-known antioxidant. However, β-carotene concentrations are relatively low in most cultivars. We developed a new orange through metabolic engineering strategy (GS) with 33.72-fold increase in β-carotene content compared to its conventional counterpart (CV). Using Caenorhabditis elegans, we found that animals treated with GS showed a greater reduction in intracellular reactive oxygen species (ROS) which is associated with a greater resistance to oxidative stress and induction of the expression of antioxidant genes. Moreover, animals treated with GS orange showed a more effective protection against β-amyloid proteotoxicity and greater hypolipidemic effect under high glucose diet compared to animals treated with CV. These data demonstrate that the increased amount of β-carotene in orange actually provides a greater beneficial effect in C. elegans and a valuable proof of principle to support further studies in mammals and humans.
Collapse
Affiliation(s)
| | - Ricardo Basílio de Oliveira Caland
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí-IFPI, Brazil,Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Giovanna Martins Melo
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Elsa Pons
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain
| | - Leandro Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain
| | - Riva de Paula Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil,Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil,Corresponding author at: Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
14
|
Quiroz-Iturra LF, Simpson K, Arias D, Silva C, González-Calquin C, Amaza L, Handford M, Stange C. Carrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in Arabidopsis thaliana and Actinidia deliciosa. Int J Mol Sci 2022; 23:ijms232012157. [PMID: 36293018 PMCID: PMC9603649 DOI: 10.3390/ijms232012157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz-Iturra
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Kevin Simpson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7750000, Chile
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Cristóbal Silva
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Christian González-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Leticia Amaza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Michael Handford
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Correspondence: ; Tel.: +56-22-2978-7361
| |
Collapse
|
15
|
Li T, Liu JX, Deng YJ, Duan AQ, Liu H, Zhuang FY, Xiong AS. Differential hydroxylation efficiency of the two non-heme carotene hydroxylases: DcBCH1, rather than DcBCH2, plays a major role in carrot taproot. HORTICULTURE RESEARCH 2022; 9:uhac193. [PMID: 36338853 PMCID: PMC9630967 DOI: 10.1093/hr/uhac193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Carotene hydroxylase plays an important role in catalyzing the hydroxylation of carotene to xanthopylls, including two types: non-heme carotene hydroxylase (BCH type) and heme-containing cytochrome P450 hydroxylase (P450 type). Two BCH-encoding genes were annotated in the carrot genome. However, the role of BCHs and whether there are functional interactions between the duplicated BCHs in carrot remains unclear. In this study, two BCH encoding genes, DcBCH1 and DcBCH2, were cloned from carrot. The relative expression level of DcBCH1 was much higher than that of DcBCH2 in carrot taproots with different carotene accumulation levels. Overexpression of DcBCH1 in 'KRD' (high carotene accumulated) carrot changed the taproot color from orange to yellow, accompanied by substantial reductions in α-carotene and β-carotene. There was no obvious change in taproot color between transgenic 'KRD' carrot overexpressing DcBCH2 and control carrot. Simultaneously, the content of α-carotene in the taproot of DcBCH2-overexpressing carrot decreased, but the content of β-carotene did not change significantly in comparison with control carrot. Using the CRISPR/Cas9 system to knock out DcBCH1 in 'KRD' carrot lightened the taproot color from orange to pink-orange; the content of α-carotene in the taproot increased slightly, while the β-carotene content was still significantly decreased, compared with control carrot. In DcBCH1-knockout carrot, the transcript level of DcBCH2 was significantly increased. These results indicated that in carrot taproot, DcBCH1 played the main function of BCH enzyme, which could hydroxylate α-carotene and β-carotene; DcBCH1 and DcBCH2 had functional redundancy, and these two DcBCHs could partially compensate for each other.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Fei-Yun Zhuang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
16
|
Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, Chen B, Zheng G, Li H, Huang Y, Zhan J, Xiao D, He L. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 2022; 23:473. [PMID: 35761189 PMCID: PMC9235109 DOI: 10.1186/s12864-022-08670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Tuberous root formation and development is a complex process in sweet potato, which is regulated by multiple genes and environmental factors. However, the regulatory mechanism of tuberous root development is unclear. Results In this study, the transcriptome of fibrous roots (R0) and tuberous roots in three developmental stages (Rl, R2, R3) were analyzed in two sweet potato varieties, GJS-8 and XGH. A total of 22,914 and 24,446 differentially expressed genes (DEGs) were identified in GJS-8 and XGH respectively, 15,920 differential genes were shared by GJS-8 and XGH. KEGG pathway enrichment analysis showed that the DEGs shared by GJS-8 and XGH were mainly involved in “plant hormone signal transduction” “starch and sucrose metabolism” and “MAPK signal transduction”. Trihelix transcription factor (Tai6.25300) was found to be closely related to tuberous root enlargement by the comprehensive analysis of these DEGs and weighted gene co-expression network analysis (WGCNA). Conclusion A hypothetical model of genetic regulatory network for tuberous root development of sweet potato is proposed, which emphasizes that some specific signal transduction pathways like “plant hormone signal transduction” “Ca2+signal” “MAPK signal transduction” and metabolic processes including “starch and sucrose metabolism” and “cell cycle and cell wall metabolism” are related to tuberous root development in sweet potato. These results provide new insights into the molecular mechanism of tuberous root development in sweet potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08670-x.
Collapse
Affiliation(s)
- Zhaoqin Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532406, People's Republic of China
| | - Zhipeng Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jingli Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bimei Chen
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Ganghui Zheng
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Huifeng Li
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yongmei Huang
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
17
|
In silico analysis of carotenoid biosynthesis pathway in cassava (Manihot esculenta Crantz). J Genet 2022. [DOI: 10.1007/s12041-021-01345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Song HH, Zhou ZL, Zhao DL, Tang J, Li YH, Han Z, Chen XY, Hu KD, Yao GF, Zhang H. Storage Property Is Positively Correlated With Antioxidant Capacity in Different Sweet Potato Cultivars. FRONTIERS IN PLANT SCIENCE 2021; 12:696142. [PMID: 34887880 PMCID: PMC8649693 DOI: 10.3389/fpls.2021.696142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Sweet potato decays easily due to its high respiration rate and reactive oxygen species (ROS) accumulation during postharvest storage. In this study, we explored the relationship between antioxidant capacity in leaves and storage properties in different sweet potato cultivars, the tuberous roots of 10 sweet potato cultivars were used as the experimental materials to analyze the storage property during storage at 11-15°C. According to the decay percentage after 290 days of storage, Xu 32 was defined as a storage-tolerant cultivar (rot percentage less than 25%); Xu 55-2, Z 15-1, Shangshu 19, Yushu, and Zhezi 3 as above-moderate storage-tolerant cultivars (rot percentage ranging from 25 to 50%); Sushu 16, Yanshu 5, and Hanzi as medium-storable cultivars (rot percentage 50-75%); and Yan 25 as a storage-sensitive cultivar (rot percentage greater than 75%). Meanwhile, analysis of the α-amylase activity in root tubers of the 10 sweet potato cultivars during storage indicated that α-amylase activity was lowest in the storage-tolerant cultivar Xu 32 and highest in the storage-sensitive cultivar Yan 25. Evaluation of antioxidant enzyme activities and ROS content in the leaves of these 10 cultivars demonstrated that cultivar Xu 32, which showed the best storage property, had higher antioxidant enzyme activity [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD)] but lower lipoxygenase (LOX) activity, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, and superoxide anion radical (O2⋅-) production rates compared with those of the storage-sensitive cultivar Yan 25 and the medium-storability cultivars Hanzi, Yanshu 5, and Sushu 16. Additionally, principal component analysis (PCA) suggested that sweet potato cultivars with different storage properties were clustered separately. Correlation and heat map analysis further indicated that CAT, APX, POD, and SOD activities were negatively correlated with α-amylase activity, while LOX activity and MDA and H2O2 contents were negatively correlated with the storage property of sweet potato. Combined, our findings revealed that storage property is highly correlated with antioxidant capacity in sweet potato leaves and negatively correlated with α-amylase activity in tuberous roots, which provides a convenient means for the screening of storage-tolerant sweet potato cultivars.
Collapse
Affiliation(s)
- Hui-Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhi-Lin Zhou
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Dong-Lan Zhao
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Yan-Hong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhuo Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiao-Yan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
19
|
Li T, Liu JX, Deng YJ, Xu ZS, Xiong AS. Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:475. [PMID: 34663216 PMCID: PMC8522057 DOI: 10.1186/s12870-021-03236-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Carrot (Daucus carota L.), an important root vegetable, is very popular among consumers as its taproot is rich in various nutrients. Abiotic stresses, such as drought, salt, and low temperature, are the main factors that restrict the growth and development of carrots. Non-heme carotene hydroxylase (BCH) is a key regulatory enzyme in the β-branch of the carotenoid biosynthesis pathway, upstream of the abscisic acid (ABA) synthesis pathway. RESULTS In this study, we characterized a carrot BCH encoding gene, DcBCH1. The expression of DcBCH1 was induced by drought treatment. The overexpression of DcBCH1 in Arabidopsis thaliana resulted in enhanced tolerance to drought, as demonstrated by higher antioxidant capacity and lower malondialdehyde content after drought treatment. Under drought stress, the endogenous ABA level in transgenic A. thaliana was higher than that in wild-type (WT) plants. Additionally, the contents of lutein and β-carotene in transgenic A. thaliana were lower than those in WT, whereas the expression levels of most endogenous carotenogenic genes were significantly increased after drought treatment. CONCLUSIONS DcBCH1 can increase the antioxidant capacity and promote endogenous ABA levels of plants by regulating the synthesis rate of carotenoids, thereby regulating the drought resistance of plants. These results will help to provide potential candidate genes for plant drought tolerance breeding.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
20
|
Tang C, Xie J, Lv J, Li J, Zhang J, Wang C, Liang G. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:395-409. [PMID: 33740679 DOI: 10.1016/j.plaphy.2021.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/05/2021] [Indexed: 05/03/2023]
Abstract
As a typical thermophilous vegetable, the growth and yield of peppers are easily limited by chilling conditions. Zeaxanthin, a crucial carotenoid, positively regulates plant abiotic stress responses. Therefore, this study investigated the regulatory mechanisms of zeaxanthin-induced chilling tolerance in peppers. The results indicated that the pretreatment with zeaxanthin effectively alleviated chilling damage in pepper leaves and increased the plant fresh weight and photosynthetic pigment content under chilling stress. Additionally, alterations in photosynthetic chlorophyll fluorescence parameters and chlorophyll fluorescence induction curves after zeaxanthin treatment highlighted the participation of zeaxanthin in improving the photosystem response to chilling stress by heightening the quenching of excess excitation energy and protection of the photosynthetic electron transport system. In chill-stressed plants, zeaxanthin treatment also enhanced antioxidant enzyme activity and transcript expression, and reduced hydrogen peroxide (H2O2) and superoxide anion (O2•-) content, resulting in a decrease in biological membrane damage. Additionally, exogenous zeaxanthin upregulated the expression levels of key genes encoding β-carotene hydroxylase (CaCA1, CaCA2), zeaxanthin epoxidase (CaZEP) and violaxanthin de-epoxidase (CaVDE), and promoted the synthesis of endogenous zeaxanthin during chilling stress. Collectively, exogenous zeaxanthin pretreatment enhances plant tolerance to chilling by improving the photosystem process, increasing oxidation resistance, and inducing alterations in endogenous zeaxanthin metabolism.
Collapse
Affiliation(s)
- Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China.
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| |
Collapse
|
21
|
Hu X, Liu J, Li W, Wen T, Li T, Guo X, Liu RH. Biosynthesis and accumulation of multi-vitamins in black sweet corn (Zea mays L.) during kernel development. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5230-5238. [PMID: 32519367 DOI: 10.1002/jsfa.10573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/06/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Black sweet corn as an edible fruit has various nutritional qualities. This study discusses changes in the vitamin C and E, folate, and carotenoid content during black sweet corn maturation, and also the effects of preharvest weather conditions and of related genes in multi-vitamin biosynthesis pathways. RESULTS Most vitamin levels improved, especially vitamin C and carotenoid levels, while the folate content dropped rapidly. Transcript levels of most genes in folate biosynthesis showed trends that were similar to the content changes. VTC2 and GLDH, which are regulated by light, had high expression levels leading to an increase in ascorbate content during maturation. γ-Tocotrienol is the main vitamin E component, and HGGT, the key gene controlling the synthesis of tocotrienols, had a much higher expression level than other genes. Lutein and zeaxanthin were the dominant carotenoid components. A rapid reduction in the transcription level of LCYε could result in a lower lutein production rate . CONCLUSION Black sweet corn has a high nutritional value and is rich in vitamins, including zeaxanthin, γ-tocotrienols, and ascorbic acid. The best harvest time is between 20-25 days after pollination (DAPs) when kernels had a good taste as well as relatively high vitamin levels. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaodan Hu
- School of Food Science and Engineering, South China University of Technology, Ministry of Education Engineering Research Centre of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jianhua Liu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wu Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tianxiang Wen
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Ministry of Education Engineering Research Centre of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Metabolomics integrated with transcriptomics: assessing the central metabolism of marine red yeast Sporobolomyces pararoseus under salinity stress. Arch Microbiol 2020; 203:889-899. [PMID: 33074377 DOI: 10.1007/s00203-020-02082-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Salinity stress is one of the most serious environmental issues in agricultural regions worldwide. Excess salinity inhibits root growth of various crops, and results in reductions of yield. It is of crucial to understand the molecular mechanisms mediating salinity stress responses for enhancing crops' salt tolerance. Marine red yeast Sporobolomyces pararoseus should have evolved some unique salt-tolerant mechanism, because they long-term live in high-salt ecosystems. However, little research has conducted so far by considering S. pararoseus as model microorganisms to study salt-tolerant mechanisms. Here, we successfully integrated metabolomics with transcriptomic profiles of S. pararoseus in response to salinity stress. Screening of metabolite features with untargeted metabolic profiling, we characterized 4862 compounds from the LC-MS/MS-based datasets. The integrated results showed that amino acid metabolism, carbohydrate metabolism, and lipid metabolism is significantly enriched in response to salt stress. Co-expression network analysis showed that 28 genes and 8 metabolites play an important role in the response of S. pararoseus, which provides valuable clues for subsequent validation. Together, the results provide valuable information for assessing the central metabolism of mediating salt responses in S. pararoseus and offer inventories of target genes for salt tolerance improvement via genetic engineering.
Collapse
|
23
|
Qureshi FF, Ashraf MA, Rasheed R, Ali S, Hussain I, Ahmed A, Iqbal M. Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137061. [PMID: 32036143 DOI: 10.1016/j.scitotenv.2020.137061] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
There is limited information available on changes in the uptake of essential nutrients and secondary metabolites accumulation in castor bean under Cr toxicity. Besides, the role of organic chelates (EDTA and citric acid) mediated improvement in Cr uptake by castor bean is mostly unknown. Three independent experiments (sand, hydroponics, and soil) were executed to determine the Cr phytoextraction potential of Ricinus communis L. In the sand experiment, optimum doses of organic chelates (EDTA and citric acid) were selected. These optimum doses of chelates were used in the hydroponics and soil experiments. The results of hydroponics and soil experiments manifested a significant decrease in growth characteristics and leaf pigments in response to Cr stress applied as K2Cr2O7 (a source of Cr6+). The application of organic chelates (2.5 and 5 mM) showed a noticeable improvement in oxidative defense and secondary metabolites accumulation that might have decreased oxidative injury reflected as lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. Moreover, chelates improved the uptake of essential nutrients (K+, Ca2+, Mg2+, Fe2+ and P) alongside significant enhancement in total Cr contents of plants. Our results advocated that chelates application resulted in greater endogenous levels of Cr3+ in plants compared with Cr6+ which is more toxic. In nutshell, organic chelates improved growth by regulating Cr species, ion homeostasis and secondary metabolites accumulation in Ricinus communis L.
Collapse
Affiliation(s)
- Freeha Fatima Qureshi
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University (CMU), Taiwan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Aftab Ahmed
- Institute of Home and Food Sciences Government College University, Faisalabad, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
24
|
Yang D, Xie Y, Sun H, Bian X, Ke Q, Kim HS, Ji CY, Jin R, Wang W, Zhang C, Ma J, Li Z, Ma D, Kwak SS. IbINH positively regulates drought stress tolerance in sweetpotato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:403-410. [PMID: 31794900 DOI: 10.1016/j.plaphy.2019.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 05/21/2023]
Abstract
Invertase inhibitor (INH) post-translationally regulates the activity of invertase, which hydrolyzes sucrose into glucose and fructose, and plays essential roles in plant growth and development. However, little is known about the role of INH in growth and responses to environmental challenges in sweetpotato. Here, we identified and characterized an INH-like gene (IbINH) from sweetpotato. IbINH belongs to the pectin methylesterase inhibitor super family. IbINH transcript was the most abundant in storage roots. IbINH mRNA levels were significantly up-regulated in response to drought, abscisic acid (ABA), salicyclic acid (SA) and jasmonic acid (JA) treatments. Overexpressing IbINH in sweetpotato (SI plants) led to the decrease of plant growth and the increase of drought tolerance, while down-regulation of IbINH (RI plants) by RNAi technology resulted in vigorous growth and drought sensitivity. Furthermore, sucrose was increased and hexoses was decreased in SI plants, but the opposite results were observed in RI plants. Moreover, higher levels of sugars were accumulated in SI plants in comparison to non-transgenic plants (NT plants) and RI plants during water deficit. In addition, ABA biosynthesis-involved and abiotic stress response-involved genes were prominently up-regulated in SI plants under drought stress. Taken together, these results indicate that IbINH mediates plant growth and drought stress tolerance in sweetpotato via induction of source-sink strength and ABA-regulated pathway.
Collapse
Affiliation(s)
- Dongjing Yang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China; Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Yiping Xie
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Xiaofeng Bian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Qingbo Ke
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Rong Jin
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chengling Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Jukui Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Zongyun Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Daifu Ma
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China; Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China.
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
25
|
Gemenet DC, da Silva Pereira G, De Boeck B, Wood JC, Mollinari M, Olukolu BA, Diaz F, Mosquera V, Ssali RT, David M, Kitavi MN, Burgos G, Felde TZ, Ghislain M, Carey E, Swanckaert J, Coin LJM, Fei Z, Hamilton JP, Yada B, Yencho GC, Zeng ZB, Mwanga ROM, Khan A, Gruneberg WJ, Buell CR. Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:23-36. [PMID: 31595335 PMCID: PMC6952332 DOI: 10.1007/s00122-019-03437-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/17/2019] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE β-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, β-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while β-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F1 progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, β-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase β-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and β-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.
Collapse
Affiliation(s)
- Dorcus C Gemenet
- International Potato Center, ILRI Campus, Old Naivasha Road, P.O. Box 25171-00603, Nairobi, Kenya.
| | | | - Bert De Boeck
- International Potato Center, Av. La Molina 1895, Lima, Peru
| | - Joshua C Wood
- Michigan State University, East Lansing, MI, 48824, USA
| | | | - Bode A Olukolu
- North Carolina State University, Raleigh, NC, 27695, USA
- University of Tennessee, Knoxville, TN, 37996, USA
| | - Federico Diaz
- International Potato Center, Av. La Molina 1895, Lima, Peru
| | | | | | - Maria David
- International Potato Center, Av. La Molina 1895, Lima, Peru
| | - Mercy N Kitavi
- International Potato Center, ILRI Campus, Old Naivasha Road, P.O. Box 25171-00603, Nairobi, Kenya
| | | | | | - Marc Ghislain
- International Potato Center, ILRI Campus, Old Naivasha Road, P.O. Box 25171-00603, Nairobi, Kenya
| | | | | | - Lachlan J M Coin
- University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | | | - Benard Yada
- National Crops Resources Research Institute (NaCCRI), Namulonge, P.O. Box 7084, Kampala, Uganda
| | - G Craig Yencho
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhao-Bang Zeng
- North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Awais Khan
- International Potato Center, Av. La Molina 1895, Lima, Peru
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | | | - C Robin Buell
- Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
26
|
Kim SE, Lee CJ, Ji CY, Kim HS, Park SU, Lim YH, Park WS, Ahn MJ, Bian X, Xie Y, Guo X, Kwak SS. Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced α-tocopherol content and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:436-444. [PMID: 31639559 DOI: 10.1016/j.plaphy.2019.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 05/14/2023]
Abstract
Oxidative stress caused by reactive oxygen species (ROS) under various environmental stresses significantly reduces plant productivity. Tocopherols (collectively known as vitamin E) are a group of lipophilic antioxidants that protect cellular components against oxidative stress. Previously, we isolated five tocopherol biosynthesis genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including tocopherol cyclase (IbTC). In this study, we generated transgenic sweetpotato plants overexpressing IbTC under the control of cauliflower mosaic virus (CaMV) 35S promoter (referred to as TC plants) via Agrobacterium-mediated transformation to understand the function of IbTC in sweetpotato. Three transgenic lines (TC2, TC9, and TC11) with high transcript levels of IbTC were selected for further characterization. High performance liquid chromatography (HPLC) analysis revealed that α-tocopherol was the most predominant form of tocopherol in sweetpotato tissues. The content of α-tocopherol was 1.6-3.3-fold higher in TC leaves than in non-transgenic (NT) leaves. No significant difference was observed in the tocopherol content of storage roots between TC and NT plants. Additionally, compared with NT plants, TC plants showed enhanced tolerance to multiple environmental stresses, including salt, drought, and oxidative stresses, and showed consistently higher levels of photosystem II activity and chlorophyll content, indicating abiotic stress tolerance. These results suggest IbTC as a strong candidate gene for the development of sweetpotato cultivars with increased α-tocopherol levels and enhanced abiotic stress tolerance.
Collapse
Affiliation(s)
- So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Ye-Hoon Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, South Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, South Korea
| | - Xiaofeng Bian
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yizhi Xie
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xiaodong Guo
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea.
| |
Collapse
|
27
|
Kim SE, Kim HS, Wang Z, Ke Q, Lee CJ, Park SU, Lim YH, Park WS, Ahn MJ, Kwak SS. A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation. PLANT CELL REPORTS 2019; 38:1393-1402. [PMID: 31346717 DOI: 10.1007/s00299-019-02448-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
IbOr-R96H resulted in carotenoid overaccumulation and enhanced abiotic stress tolerance in transgenic sweetpotato calli. The Orange (Or) protein is involved in the regulation of carotenoid accumulation and tolerance to various environmental stresses. Sweetpotato IbOr, with strong holdase chaperone activity, protects a key enzyme, phytoene synthase (PSY), in the carotenoid biosynthetic pathway and stabilizes a photosynthetic component, oxygen-evolving enhancer protein 2-1 (PsbP), under heat and oxidative stresses in plants. Previous studies of various plant species demonstrated that a single-nucleotide polymorphism (SNP) from Arg to His in Or protein promote a high level of carotenoid accumulation. Here, we showed that the substitution of a single amino acid at position 96 (Arg to His) of wild-type IbOr (referred to as IbOr-R96H) dramatically increases carotenoid accumulation. Sweetpotato calli overexpressing IbOr-WT or IbOr-Ins exhibited 1.8- or 4.3-fold higher carotenoid contents than those of the white-fleshed sweetpotato Yulmi (Ym) calli, and IbOr-R96H overexpression substantially increased carotenoid accumulation by up to 23-fold in sweetpotato calli. In particular, IbOr-R96H transgenic calli contained 88.4-fold higher levels of β-carotene than those in Ym calli. Expression levels of carotenogenesis-related genes were significantly increased in IbOr-R96H transgenic calli. Interestingly, transgenic calli overexpressing IbOr-R96H showed increased tolerance to salt and heat stresses, with similar levels of malondialdehyde to those in calli expressing IbOr-WT or IbOr-Ins. These results suggested that IbOr-R96H is a useful target for the generation of efficient industrial plants, including sweetpotato, to cope with growing food demand and climate change by enabling sustainable agriculture on marginal lands.
Collapse
Affiliation(s)
- So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
| | - Zhi Wang
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qingbo Ke
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea
| | - Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea
| | - Ye-Hoon Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Korea.
| |
Collapse
|
28
|
Antioxidative capacity is highly associated with the storage property of tuberous roots in different sweetpotato cultivars. Sci Rep 2019; 9:11141. [PMID: 31366974 PMCID: PMC6668466 DOI: 10.1038/s41598-019-47604-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/15/2019] [Indexed: 02/05/2023] Open
Abstract
The activities and gene expression of antioxidative enzymes and the ROS content were analyzed in two typical storage-tolerant cultivars (Xushu 32 and Shangshu 19) and another two storage-sensitive cultivars (Yanshu 25 and Sushu 16) to explore the association between the storage capacity of sweetpotato (Ipomoea batatas (L.) Lam) and ROS scavenging capability. The storage roots of the storage-tolerant cultivars maintained higher activities and expression levels of antioxidative enzymes, including ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD); lower activity and expression of lipoxygenase (LOX); and lower accumulation of ROS metabolites compared with the storage-sensitive cultivars. The antioxidative capability and ROS parameters of leaves were positively correlated with those of storage roots. Our results provide valuable insight for evaluating the storability of sweetpotato cultivars by analyzing the capabilities of the antioxidative system and the contents of ROS metabolites.
Collapse
|
29
|
Wang SQ, Tang J, Hu KD, Huang ZQ, Yang F, Zhang HY, Hu LY, Li YH, Yao GF, Zhang H. Antioxidative system in sweet potato root is activated by low-temperature storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3824-3833. [PMID: 30677132 DOI: 10.1002/jsfa.9604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/20/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sweet potato is susceptible to chilling injury during low-temperature storage. To explore the correlation between chilling injury and reactive oxygen species (ROS) metabolism, the content of ROS and the activities and gene expression of antioxidant enzymes were analyzed in the typical storage-tolerant cultivar Xushu 32 and storage-sensitive cultivar Yanshu 25. RESULTS The activities of antioxidant enzymes including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were enhanced rapidly in the early period of storage in response to chilling stress. Thereafter, the content of ROS metabolites increased consistently due to gradual decrease in ROS scavenging enzymes. Storage-tolerant cultivar Xushu 32 had higher antioxidant enzyme activities and gene expressions as well as higher content of antioxidant metabolites and lower content of ROS metabolites compared with storage-sensitive cultivar Yanshu 25, suggesting that the capacity of ROS scavenging by antioxidant enzymes and antioxidants is highly associated with the tolerance of sweet potato to chilling stress. CONCLUSION These results indicated that the antioxidative system is activated in the storage root of sweet potato and the antioxidative capacity is positively associated with better storage performance in the storage-tolerant cultivar. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Si-Qi Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhong-Qin Huang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Hui-Yun Zhang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Lan-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd., Jieshou, China
| | - Yan-Hong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
30
|
Ke Q, Kang L, Kim HS, Xie T, Liu C, Ji CY, Kim SH, Park WS, Ahn MJ, Wang S, Li H, Deng X, Kwak SS. Down-regulation of lycopene ε-cyclase expression in transgenic sweetpotato plants increases the carotenoid content and tolerance to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:52-60. [PMID: 30824061 DOI: 10.1016/j.plantsci.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 05/13/2023]
Abstract
Carotenoids are required for many biological processes in plants and humans. Lycopene ε-cyclase (LCY-ε) catalyzes the conversion of lycopene into lutein via the α-branch carotenoid biosynthesis pathway. Down-regulation of IbLCY-ε by RNAi increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato calli. As the role of IbLCY-ε in carotenoid biosynthesis and environmental stress responses in whole plants is poorly understood, transgenic sweetpotato (RLE plants) with reduced expression of IbLCY-ε were developed. RLE plants contained higher levels of total carotenoid and β-carotene, due to an elevated β-carotene/lutein ratio rather than increased de novo biosynthesis. RLE plants showed high reactive oxygen species/radical-scavenging activity. They also exhibited an enhanced tolerance of both salt and drought stress, which was associated with lower membrane permeability and a higher photosynthetic rate, respectively. Elevated carotenoid accumulation in RLE plants mitigated the reductions in leaf photosystem II efficiency and chlorophyll induced by abiotic stress. Expression of the carotenoid cleavage genes 9-cis-epoxycarotenoid dioxygenase, carotenoid cleavage dioxygenase 1 (CCD1) and CCD4 was higher in RLE plants, as was abscisic acid accumulation. IbLCY-ε silencing thus offers an effective approach for developing sweetpotato plants with increased tolerance to abiotic stress that will grow on global marginal lands with no reduction in nutritional value.
Collapse
Affiliation(s)
- Qingbo Ke
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Le Kang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637002, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Tian Xie
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chunjuan Liu
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Sun Ha Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Shiwen Wang
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hongbing Li
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiping Deng
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
31
|
Li C, Li B, Zhang N, Wei N, Wang Q, Wang W, Xie Y, Zou H. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway. J GEN APPL MICROBIOL 2018; 65:111-120. [PMID: 30487371 DOI: 10.2323/jgam.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids represent a diverse class of aliphatic C40 molecules with a variety of applications in the food and pharmaceutical industries. Sporidiobolus pararoseus NGR produces various carotenoids, including torulene, torularhodin and β-carotene. Salt stress significantly increases the torulene accumulation of S. pararoseus NGR. However, little is known, about the molecular mechanisms underlying the increased torulene biosynthesis. In this work, we investigated the effects of NaCl treatment on the contents of carotenoids (both qualitatively and quantitatively) and transcriptome. A total of 12.3 Gb of clean bases were generated in six cDNA libraries. These bases were de novo assembled into 9,533 unigenes with an average length of 1,654 nt and N50 of 2,371 nt. Transcriptome analysis revealed that of 3,849 differential expressed genes (DEGs) in response to salt stress, 2,019 were up-regulated, and 1,830 were down-regulated. Among these DEGs, we identified three carotenogenic genes crtE, crtYB, and crtI. In addition, fourteen candidate genes were predicted to participate in the conversion from torulene to torularhodin. Our findings should provide insights into the mechanisms of carotenoid biosynthesis and salt-tolerance of S. pararoseus NGR.
Collapse
Affiliation(s)
- Chunji Li
- College of Land and Environment, Shenyang Agricultural University
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University
| | - Na Wei
- College of Land and Environment, Shenyang Agricultural University
| | - Qifan Wang
- College of Land and Environment, Shenyang Agricultural University
| | - Wenjing Wang
- College of Land and Environment, Shenyang Agricultural University
| | - Yiwei Xie
- College of Bioscience and Biotechnology, Shenyang Agricultural University
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University
| |
Collapse
|
32
|
Yun JH, Sung H, Kim HS, Tak EJ, Kang W, Lee JY, Hyun DW, Kim PS, Bae JW. Complete genome sequence of the halophile bacterium Kushneria konosiri X49 T, isolated from salt-fermented Konosirus punctatus. Stand Genomic Sci 2018; 13:19. [PMID: 30305867 PMCID: PMC6167781 DOI: 10.1186/s40793-018-0324-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022] Open
Abstract
Kushneria konosiri X49T is a member of the Halomonadaceae family within the order Oceanospirillales and can be isolated from salt-fermented larval gizzard shad. The genome of K. konosiri X49T reported here provides a genetic basis for its halophilic character. Diverse genes were involved in salt-in and -out strategies enabling adaptation of X49T to hypersaline environments. Due to resistance to high salt concentrations, genome research of K. konosiri X49T will contribute to the improvement of environmental and biotechnological usage by enhancing understanding of the osmotic equilibrium in the cytoplasm. Its genome consists of 3,584,631 bp, with an average G + C content of 59.1%, and 3261 coding sequences, 12 rRNAs, 66 tRNAs, and 8 miscRNAs.
Collapse
Affiliation(s)
- Ji-Hyun Yun
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Hojun Sung
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Euon Jung Tak
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Woorim Kang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
- Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
33
|
Kim HS, Yoon UH, Lee CJ, Kim SE, Ji CY, Kwak SS. Status of research on the sweetpotato biotechnology and prospects of the molecular breeding on marginal lands. ACTA ACUST UNITED AC 2018. [DOI: 10.5010/jpb.2018.45.3.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Ung-Han Yoon
- Genomics Division, National Academy of Agricultural Science, Jeonju 54875, Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Chang Yoon Ji
- Research & Development Center, Korea Scientific Technique Industry Co., Ltd., 67, Saneop-ro 92, Gwonseon-gu, Suwon-si 16643, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| |
Collapse
|
34
|
Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q. A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:243-254. [PMID: 29807598 DOI: 10.1016/j.plantsci.2018.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 05/29/2023]
Abstract
Lycopene β-cyclase (LCYB) is an essential enzyme that catalyzes the conversion of lycopene into α-carotene and β-carotene in carotenoid biosynthesis pathway. However, the roles and underlying mechanisms of the LCYB gene in plant responses to abiotic stresses are rarely known. This gene has not been used to improve carotenoid contents of sweetpotato, Ipomoea batatas (L.) Lam.. In the present study, a new allele of the LCYB gene, named IbLCYB2, was isolated from the storage roots of sweetpotato line HVB-3. Its overexpression significantly increased the contents of α-carotene, β-carotene, lutein, β-cryptoxanthin and zeaxanthin and enhanced the tolerance to salt, drought and oxidative stresses in the transgenic sweetpotato (cv. Shangshu 19) plants. The genes involved in carotenoid and abscisic acid (ABA) biosynthesis pathways and abiotic stress responses were up-regulated in the transgenic plants. The ABA and proline contents and superoxide dismutase (SOD) activity were significantly increased, whereas malonaldehyde (MDA) and H2O2 contents were significantly decreased in the transgenic plants under abiotic stresses. The overall results indicate that the IbLCYB2 gene enhances carotenoid contents and abiotic stress tolerance through positive regulation of carotenoid and ABA biosynthesis pathways in sweetpotato. This gene has the potential to improve carotenoid contents and abiotic stress tolerance in sweetpotato and other plants.
Collapse
Affiliation(s)
- Chen Kang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Luyao Xue
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
35
|
Kim HS, Ji CY, Lee CJ, Kim SE, Park SC, Kwak SS. Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3393-3400. [PMID: 29385615 DOI: 10.1093/jxb/ery023] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/13/2018] [Indexed: 05/19/2023]
Abstract
Carotenoids play essential roles in various light-harvesting processes in plants and help protect the photosynthetic machinery from photo-oxidative damage. Orange genes, which play a role in carotenoid accumulation, have recently been isolated from several plant species, and their functions have been intensively investigated. The Orange gene (IbOr) of sweet potato [Ipomoea batatas (L.) Lam] helps maintain carotenoid homeostasis to improve plant tolerance to environmental stress. IbOr, a protein with strong holdase chaperone activity, directly interacts with phytoene synthase, a key enzyme involved in carotenoid biosynthesis, in plants under stress conditions, resulting in increased carotenoid accumulation and abiotic stress tolerance. In addition, IbOr interacts with the oxygen-evolving enhancer protein 2-1, a member of a protein complex in photosystem II that is denatured under heat stress. Transgenic sweet potato plants overexpressing IbOr showed enhanced tolerance to high temperatures (47 °C). These findings indicate that IbOr protects plants from environmental stress not only by controlling carotenoid biosynthesis, but also by directly stabilizing photosystem II. In this review, we discuss the functions of IbOr and Or proteins in other plant species and their possible biotechnological applications for molecular breeding for sustainable development on marginal lands.
Collapse
Affiliation(s)
- Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Gajeong-ro, Daejeon, Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Gajeong-ro, Daejeon, Korea
| | - So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Gajeong-ro, Daejeon, Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Daejeon, Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Gajeong-ro, Daejeon, Korea
| |
Collapse
|
36
|
Xerophyta viscosa Aldose Reductase, XvAld1, Enhances Drought Tolerance in Transgenic Sweetpotato. Mol Biotechnol 2018; 60:203-214. [PMID: 29423655 DOI: 10.1007/s12033-018-0063-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sweetpotato is a significant crop which is widely cultivated particularly in the developing countries with high and stable yield. However, drought stress is a major limiting factor that antagonistically influences the crop's productivity. Dehydration stress caused by drought causes aggregation of reactive oxygen species (ROS) in plants, and aldose reductases are first-line safeguards against ROS caused by oxidative stress. In the present study, we generated transgenic sweetpotato plants expressing aldose reductase, XvAld1 isolated from Xerophyta viscosa under the control of a stress-inducible promoter via Agrobacterium-mediated transformation. Our results demonstrated that the transgenic sweetpotato lines displayed significant enhanced tolerance to simulated drought stress and enhanced recuperation after rehydration contrasted with wild-type plants. In addition, the transgenic plants exhibited improved photosynthetic efficiency, higher water content and more proline accumulation under dehydration stress conditions compared with wild-type plants. These results demonstrate that exploiting the XvAld1 gene is not only a compelling and attainable way to improve sweetpotato tolerance to drought stresses without causing any phenotypic imperfections but also a promising gene candidate for more extensive crop improvement.
Collapse
|
37
|
Xerophyta viscosa Aldose Reductase, XvAld1, Enhances Drought Tolerance in Transgenic Sweetpotato. Mol Biotechnol 2018. [PMID: 29423655 DOI: 10.1007/s12033‐018‐0063‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Sweetpotato is a significant crop which is widely cultivated particularly in the developing countries with high and stable yield. However, drought stress is a major limiting factor that antagonistically influences the crop's productivity. Dehydration stress caused by drought causes aggregation of reactive oxygen species (ROS) in plants, and aldose reductases are first-line safeguards against ROS caused by oxidative stress. In the present study, we generated transgenic sweetpotato plants expressing aldose reductase, XvAld1 isolated from Xerophyta viscosa under the control of a stress-inducible promoter via Agrobacterium-mediated transformation. Our results demonstrated that the transgenic sweetpotato lines displayed significant enhanced tolerance to simulated drought stress and enhanced recuperation after rehydration contrasted with wild-type plants. In addition, the transgenic plants exhibited improved photosynthetic efficiency, higher water content and more proline accumulation under dehydration stress conditions compared with wild-type plants. These results demonstrate that exploiting the XvAld1 gene is not only a compelling and attainable way to improve sweetpotato tolerance to drought stresses without causing any phenotypic imperfections but also a promising gene candidate for more extensive crop improvement.
Collapse
|
38
|
Schaub P, Rodriguez-Franco M, Cazzonelli CI, Álvarez D, Wüst F, Welsch R. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids. PLoS One 2018; 13:e0192158. [PMID: 29394270 PMCID: PMC5796706 DOI: 10.1371/journal.pone.0192158] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high steady-state β-carotene levels prior to their application in crops.
Collapse
Affiliation(s)
- Patrick Schaub
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | | | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Richmond, NSW Australia
| | - Daniel Álvarez
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Florian Wüst
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Ralf Welsch
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| |
Collapse
|
39
|
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid Metabolism in Plants: The Role of Plastids. MOLECULAR PLANT 2018; 11:58-74. [PMID: 28958604 DOI: 10.1016/j.molp.2017.09.010] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 05/17/2023]
Abstract
Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mohammad Yazdani
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yaakov Tadmor
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Yaar Research Center, P.O. Box 1021, Ramat Yishai 30095, Israel
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|