1
|
Hassan MJ, Najeeb A, Zhou M, Raza MA, Ali U, Cheng B, Ling Y, Li Z. Diethyl aminoethyl hexanoate reprogramed accumulations of organic metabolites associated with water balance and metabolic homeostasis in white clover under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1430752. [PMID: 39464286 PMCID: PMC11502329 DOI: 10.3389/fpls.2024.1430752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Diethyl aminoethyl hexanoate (DA-6) serving as a non-toxic and low-cost plant growth regulator is used for improving plant growth and stress tolerance, but the DA-6-mediated organic metabolites remodeling in relation to drought tolerance is not well documented in crops. The aims of the present study were to evaluate impacts of DA-6 on physiological functions including osmotic adjustment, photochemical efficiency, oxidative damage, and cell membrane stability as well as organic metabolites remodeling in white clover (Trifolium repens) leaves based on the analysis of metabolomics. Plants were foliarly treated with or without DA-6 and subsequently exposed to drought stress for 8 days. Results demonstrated that foliar application of DA-6 (1.5 mM) could significantly ameliorate drought tolerance, which was linked with better leaf water status, photosynthetic performance, and cell membrane stability as well as lower oxidative injury in leaves. Metabolic profiling of organic metabolites identified a total of 59 metabolites including 17 organic acids, 20 sugars, 12 alcohols, and 10 other metabolites. In response to drought stress, the DA-6 induced accumulations of many sugars and sugar alcohols (erythrulose, arabinose, xylose, inosose, galactose, talopyranose, fucose, erythritol, and ribitol), organic acids (propanoic acid, 2,3-dihydroxybutanoic acid, palmitic acid, linolenic acid, and galacturonic acid), and other metabolites (2-oxazoline, silane, and glycine) in white clover. These altered metabolites induced by the DA-6 could perform critical functions in maintenances of osmo-protection, osmotic adjustment, redox homeostasis, cell wall structure and membrane stability when white clover suffered from water deficit. In addition, the campesterol and stigmasterol significantly accumulated in all plants in spite of the DA-6 pretreatment under drought stress, which could be an important adaptive response to water deficit due to beneficial roles of those two metabolites in regulating cell membrane stability and antioxidant defense. Present findings provide new evidence of DA-6-regulated metabolic homeostasis contributing to drought tolerance in leguminous plants.
Collapse
Affiliation(s)
- Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Atiqa Najeeb
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Ali Raza
- Institute of Soil Fertilizer and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ummar Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Puttamadanayaka S, Emayavaramban P, Yadav PK, Radhakrishna A, Mehta BK, Chandra A, Ahmad S, Sanivarapu H, Siddaiah CN, Yogendra K. Unravelling the molecular mechanism underlying drought stress tolerance in Dinanath (Pennisetum pedicellatum Trin.) grass via integrated transcriptomic and metabolomic analyses. BMC PLANT BIOLOGY 2024; 24:928. [PMID: 39367330 PMCID: PMC11452992 DOI: 10.1186/s12870-024-05579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Dinanath grass (Pennisetum pedicellatum Trin.) is an extensively grown forage grass known for its significant drought resilience. In order to comprehensively grasp the adaptive mechanism of Dinanath grass in response to water deficient conditions, transcriptomic and metabolomics were applied in the leaves of Dinanath grass exposed to two distinct drought intensities (48-hour and 96-hour). Transcriptomic analysis of Dinanath grass leaves revealed that a total of 218 and 704 genes were differentially expressed under 48- and 96-hour drought conditions, respectively. The genes that were expressed differently (DEGs) and the metabolites that accumulated in response to 48-hour drought stress mainly showed enrichment in the biosynthesis of secondary metabolites, particularly phenolics and flavonoids. Conversely, under 96-hour drought conditions, the enriched pathways predominantly involved lipid metabolism, specifically sterol lipids. In particular, phenylpropanoid pathway and brassinosteroid signaling played a crucial role in drought response to 48- and 96-hour water deficit conditions, respectively. This variation in drought response indicates that the adaptation mechanism in Dinanath grass is highly dependent on the intensity of drought stress. In addition, different genes associated with phenylpropanoid and fatty acid biosynthesis, as well as signal transduction pathways namely phenylalanine ammonia-lyase, putrescine hydroxycinnamoyl transferase, abscisic acid 8'-hydroxylase 2, syntaxin-61, lipoxygenase 5, calcium-dependent protein kinase and phospholipase D alpha one, positively regulated with drought tolerance. Combined transcriptomic and metabolomic analyses highlights the outstanding involvement of regulatory pathways related to secondary cell wall thickening and lignin biosynthesis in imparting drought tolerance to Dinanath grass leaves. These findings collectively contribute to an enhanced understanding of candidate genes and key metabolites relevant to drought response in Dinanath grass. Furthermore, they establish a groundwork for the creation of a transcriptome database aimed at developing abiotic stress-tolerant grasses and major crop varieties through both transgenic and genome editing approaches.
Collapse
Affiliation(s)
| | | | | | - Auji Radhakrishna
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | | | - Amaresh Chandra
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Shahid Ahmad
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for Semi-Arid Tropics, Patancheru, 502324, India
| | | | - Kalenahalli Yogendra
- International Crops Research Institute for Semi-Arid Tropics, Patancheru, 502324, India.
| |
Collapse
|
3
|
Alafari HA, Freeg H, Abdelrahman M, Attia KA, Jalal AS, El-Banna A, Aboshosha A, Fiaz S. Integrated analysis of yield response and early stage biochemical, molecular, and gene expression profiles of pre-breeding rice lines under water deficit stress. Sci Rep 2024; 14:17855. [PMID: 39090142 PMCID: PMC11294455 DOI: 10.1038/s41598-024-60863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/29/2024] [Indexed: 08/04/2024] Open
Abstract
Breeding high yielding water-deficit tolerant rice is considered a primary goal for achieving the objectives of the sustainable development goals, 2030. However, evaluating the performance of the pre-breeding-promising parental-lines for water deficit tolerance prior to their incorporation in the breeding program is crucial for the success of the breeding programs. The aim of the current investigation is to assess the performance of a set of pre-breeding lines compared with their parents. To achieve this goal a set of 7 pre-breeding rice lines along with their parents (5 genotypes) were field evaluated under well-irrigated and water-stress conditions. Water stress was applied by flush irrigation every 12 days without keeping standing water after irrigation. Based on the field evaluation results, a pre-breeding line was selected to conduct physiological and expression analysis of drought related genes at the green house. Furthermore, a greenhouse trial was conducted in pots, where the genotypes were grown under well and stress irrigation conditions at seedling stage for physiological analysis and expression profiling of the genotypes. Results indicated that the pre-breeding lines which were high yielding under water shortage stress showed low drought susceptibility index. Those lines exhibited high proline, SOD, TSS content along with low levels of MDA content in their leaves. Moreover, the genotypes grain yield positively correlated with proline, SOD, TSS content in their leaves. The SSR markers RM22, RM525, RM324 and RM3805 were able to discriminate the tolerant parents from the sensitive one. Expression levels of the tested drought responsive genes revealed the upregulation of OsLEA3, OsAPX2, OsNAC1, OSDREB2A, OsDREB1C, OsZIP23, OsP5CS, OsAHL1 and OsCATA genes in response to water deficit stress as compared to their expression under normal irrigated condition. Taken together among the tested pre-breeding lines the RBL112 pre-breeding line is high yielding under water-deficit and could be used as donor for high yielding genes in the breeding for water deficit resistance. This investigation withdraws attention to evaluate the promising pre-breeding lines before their incorporation in the water deficit stress breeding program.
Collapse
Affiliation(s)
- Hayat Ali Alafari
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Haytham Freeg
- Rice Biotechnology Lab., Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Mohamed Abdelrahman
- Rice Biotechnology Lab., Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Kotb A Attia
- Rice Biotechnology Lab., Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, 11451, Riyadh, Saudi Arabia
| | - Areej S Jalal
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| | - Antar El-Banna
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, 11451, Riyadh, Saudi Arabia
| | - Ali Aboshosha
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, 11451, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan
| |
Collapse
|
4
|
Valitova J, Renkova A, Beckett R, Minibayeva F. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. Int J Mol Sci 2024; 25:8122. [PMID: 39125690 PMCID: PMC11311414 DOI: 10.3390/ijms25158122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Sterols play important structural and regulatory roles in numerous intracellular processes. Unlike animals, plants contain a distinctive and diverse variety of sterols. Recently, information has emerged showing that stigmasterol is a "stress sterol". Stigmasterol is synthesized via the mevalonate biosynthesis pathway and has structural similarity to β-sitosterol but differs in the presence of a trans-oriented double bond in the side chain. In plants, the accumulation of stigmasterol has been observed in response to various stresses. However, the precise ways that stigmasterol is involved in the stress responses of plants remain unclear. This comprehensive review provides an update on the biology of stigmasterol, particularly the physicochemical properties of this ethylsterol, its biosynthesis, and its occurrence in higher plants and extremophilic organisms, e.g., mosses and lichens. Special emphasis is given to the evolutionary aspects of stigmasterol biosynthesis, particularly the variations in the gene structure of C22-sterol desaturase, which catalyzes the formation of stigmasterol from β-sitosterol, in a diversity of evolutionarily distant organisms. The roles of stigmasterol in the tolerance of plants to hostile environments and the prospects for its biomedical applications are also discussed. Taken together, the available data suggest that stigmasterol plays important roles in plant metabolism, although in some aspects, it remains an enigmatic compound.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Albina Renkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Richard Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| |
Collapse
|
5
|
El Harkaoui S, El Kaourat A, El Monfalouti H, Kartah BE, Mariod AA, Charrouf Z, Rohn S, Drusch S, Matthäus B. Chemical Composition and Geographic Variation of Cold Pressed Balanites aegyptiaca Kernel Oil. Foods 2024; 13:1135. [PMID: 38611439 PMCID: PMC11011647 DOI: 10.3390/foods13071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
With the increasing impacts of climate change, establishing more sustainable and robust plants such as desert dates (Balanites aegyptiaca) seems to be necessary. Known for its resilience in arid conditions, this tree has the potential to become a more important food source, particularly for its potential to yield edible oil. This study characterized Balanites kernel oil (BKO) as a promising oil source in arid regions, studying the influence of geographical origin and environmental factors. Moroccan and Sudanese BKO samples were analyzed and compared with Mauritanian BKO. In the fatty acid profile, unsaturated fatty acids constituted over 70% of the BKO profile, with a predominance of linoleic acid (Li), oleic acid (Ol), palmitic acid (Pa), and stearic acid (St). Consequently, the predominant triacylglycerols were PaLiLi, PaLiOl, LiLiOl, OlLiOl, and StLiOl. α-Tocopherol dominated the tocochromanol composition (324 to 607 mg/kg), followed by γ-tocopherol (120 to 226 mg/kg), constituting 90% of the total tocochromanols. The total phytosterol content in BKO ranged from 871 to 2218 mg/kg oil, with β-sitosterol dominating (58% to 74%). Principal Component Analysis revealed that the geographical origin significantly influences BKO composition, emphasizing environmental factors, particularly water deficit and/or temperatures. Notably, Moroccan BKO collected from an area characterized by high aridity and relatively low winter temperatures, showcased a unique profile in fatty acid, phytosterols, and tocochromanols. The valorization of BKO presents an opportunity for local agricultural development in arid regions and a role model for plant development and agricultural practices in other parts of the world.
Collapse
Affiliation(s)
- Said El Harkaoui
- Department for Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Schützenberg 12, 32756 Detmold, Germany;
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
- Department of Food Technology and Food Material Science, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Königin-Luise-Str. 22, 14195 Berlin, Germany;
| | - Asma El Kaourat
- Laboratory of Plant Chemistry and Organic and Bio-Organic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., Rabat RP 1014, Morocco; (A.E.K.); (H.E.M.); (B.E.K.); (Z.C.)
| | - Hanae El Monfalouti
- Laboratory of Plant Chemistry and Organic and Bio-Organic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., Rabat RP 1014, Morocco; (A.E.K.); (H.E.M.); (B.E.K.); (Z.C.)
| | - Badr Eddine Kartah
- Laboratory of Plant Chemistry and Organic and Bio-Organic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., Rabat RP 1014, Morocco; (A.E.K.); (H.E.M.); (B.E.K.); (Z.C.)
| | - Abdalbasit Adam Mariod
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21931, Saudi Arabia;
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science & Technology, Ghibaish P.O. Box 100, Sudan
| | - Zoubida Charrouf
- Laboratory of Plant Chemistry and Organic and Bio-Organic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P., Rabat RP 1014, Morocco; (A.E.K.); (H.E.M.); (B.E.K.); (Z.C.)
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Königin-Luise-Str. 22, 14195 Berlin, Germany;
| | - Bertrand Matthäus
- Department for Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Schützenberg 12, 32756 Detmold, Germany;
| |
Collapse
|
6
|
Xu M, Zhang M, Tu Y, Zhang X. Overexpression of the OsFes1A increased the phytosterols content and enhanced drought and salt stress tolerance in Arabidopsis. PLANTA 2024; 259:63. [PMID: 38319323 DOI: 10.1007/s00425-024-04346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
MAIN CONCLUSION Overexpression of the rice gene, OsFes1A, increased phytosterol content and drought and salt stress tolerance in Arabidopsis. Phytosterols are key components of the phospholipid bilayer membrane and regulate various processes of plant growth and response to biotic and abiotic stresses. In this study, it was demonstrated that the overexpression of OsFes1A (Hsp70 nucleotide exchange factor Fes1) increased phytosterols content and enhanced tolerance to salt and drought stress in Arabidopsis. In transgenic plants, the average content of campesterol was 17.6% higher than that of WT, and the average content of β-sitosterol reached 923.75 μg/g, with an increase of 1.33-fold. In fes1a seeds, the contents of campesterol and β-sitosterol reduced by 20% and 10.93%, respectively. In OsFes1A transgenic seeds, the contents of campesterol and β-sitosterol increased by 1.38-fold and 1.25-fold respectively. Furthermore, the germination rate of transgenic Arabidopsis was significantly higher than WT under stress (salt, ABA, and drought treatment). Under salt stress, transgenic plants accumulated a lower MDA content, higher chlorophyll content, and POD activity relative to the wild type, while the mutants showed the opposite pattern Our study found multiple other functions of OsFes1A beyond the defined role of Fes1 in regulating Hsp70, contributing to the better understanding of the essential roles of Fes1 in plants. Meanwhile, it provides the theoretical basis for developing high phytosterol crop varieties.
Collapse
Affiliation(s)
- Minyan Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Mengting Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yaling Tu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Evtyugin DD, Evtuguin DV, Casal S, Domingues MR. Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production. Molecules 2023; 28:6526. [PMID: 37764302 PMCID: PMC10535520 DOI: 10.3390/molecules28186526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. However, many gaps in several fields of PS's research still hinder their widespread practical applications. In fact, many of the mechanisms associated with PS supplementation and their health benefits are still not fully elucidated. Furthermore, compared to cholesterol data, many complex PS chemical structures still need to be fully characterized, especially in oxidized PS. On the other hand, PS molecules have also been the focus of structural modifications for applications in diverse areas, including not only the above-mentioned but also in e.g., drug delivery systems or alternative matrixes for functional foods and fats. All the identified drawbacks are also superimposed by the need of new PS sources and technologies for their isolation and purification, taking into account increased environmental and sustainability concerns. Accordingly, current and future trends in PS research warrant discussion.
Collapse
Affiliation(s)
- Dmitry D. Evtyugin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dmitry V. Evtuguin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
| | - Susana Casal
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Ozolina N, Kapustina I, Gurina V, Spiridonova E, Nurminsky V. The microdomains (rafts) of plasmalemma in the protection of the plant cell under oxidative stress. PROTOPLASMA 2023; 260:1365-1374. [PMID: 36959427 DOI: 10.1007/s00709-023-01852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The investigation of the lipid-protein microdomains of the plasmalemma isolated with the aid of the non-detergent technique in the zones of the sucrose density gradient after high-speed centrifugation from the tissue pieces of beet roots, which underwent oxidative stress, was conducted. The microdomains, whose lipid composition - according to the definition - allowed us to classify them as rafts, were studied. After the exposure to oxidative stress (100 mM hydrogen peroxide), the variations in the composition of membrane lipids bound up mainly with the elevations of the content of raft-forming lipids (sterols, sterol esters). Oxidative stress provoked redistribution in the composition of sterols, which led to an elevation in the content of campesterol and in the ratio of stigmasterol/sitosterol. Furthermore, the variations were registered in the content of phospholipids and phosphoglycerolipids, which are capable of stabilizing the lamellar structure of membranes. The results obtained allow one to assume that under the oxidative stress, variations in the composition of lipids in microdomains of the plasma membrane can take place. These variations may influence the functioning of the membranes, and the membranes may participate in the protection of the plant cell.
Collapse
Affiliation(s)
- Natalia Ozolina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Irina Kapustina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Veronika Gurina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| | - Ekaterina Spiridonova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Vadim Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
9
|
Lv WJ, Huang JY, Lin J, Ma YM, He SQ, Zhang YW, Wang TZ, Cheng K, Xiong Y, Sun FG, Pan ZC, Sun JB, Mao W, Guo SN. Phytosterols Alleviate Hyperlipidemia by Regulating Gut Microbiota and Cholesterol Metabolism in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6409385. [PMID: 37151603 PMCID: PMC10156461 DOI: 10.1155/2023/6409385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023]
Abstract
Phytosterols (PS) have been shown to regulate cholesterol metabolism and alleviate hyperlipidemia (HLP), but the mechanism is still unclear. In this study, we investigated the mechanism by which PS regulates cholesterol metabolism in high-fat diet (HFD) mice. The results showed that PS treatment reduced the accumulation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in the serum of HFD mice, while increasing the serum levels of high-density lipoprotein cholesterol (HDL-C). Compared with HFD mice, PS not only increased the antioxidant activity of the liver but also regulated the mRNA expression levels of enzymes and receptors related to cholesterol metabolism. The hypolipidemic effect of PS was abolished by antibiotic (Abx) intervention and reproduced by fecal transplantation (FMT) intervention. The results of 16S rRNA sequencing analysis showed that PS modulated the gut microbiota of mice. PS reduced the relative abundance of Lactobacillus and other bile salt hydrolase- (BSH-) producing gut microbiota in HFD mice, which are potentially related to cholesterol metabolism. These findings partially explain the mechanisms by which PS regulates cholesterol metabolism. This implies that regulation of the gut microbiota would be a potential target for the treatment of HLP.
Collapse
Affiliation(s)
- Wei-Jie Lv
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jie-Yi Huang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jin Lin
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Yi-Mu Ma
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shi-Qi He
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ying-Wen Zhang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Tian-Ze Wang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ke Cheng
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ying Xiong
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Feng-Gang Sun
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Zhong-Chao Pan
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jing-Bo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shi-Ning Guo
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Burciaga-Monge A, López-Tubau JM, Laibach N, Deng C, Ferrer A, Altabella T. Effects of impaired steryl ester biosynthesis on tomato growth and developmental processes. FRONTIERS IN PLANT SCIENCE 2022; 13:984100. [PMID: 36247562 PMCID: PMC9557751 DOI: 10.3389/fpls.2022.984100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Steryl esters (SE) are stored in cytoplasmic lipid droplets and serve as a reservoir of sterols that helps to maintain free sterols (FS) homeostasis in cell membranes throughout plant growth and development, and provides the FS needed to meet the high demand of these key plasma membrane components during rapid plant organ growth and expansion. SE are also involved in the recycling of sterols and fatty acids released from membranes during plant tissues senescence. SE are synthesized by sterol acyltransferases, which catalyze the transfer of long-chain fatty acid groups to the hydroxyl group at C3 position of FS. Depending on the donor substrate, these enzymes are called acyl-CoA:sterol acyltransferases (ASAT), when the substrate is a long-chain acyl-CoA, and phospholipid:sterol acyltransferases (PSAT), which use a phospholipid as a donor substrate. We have recently identified and preliminary characterized the tomato (Solanum lycopersicum cv. Micro-Tom) SlASAT1 and SlPSAT1 enzymes. To gain further insight into the biological role of these enzymes and SE biosynthesis in tomato, we generated and characterized CRISPR/Cas9 single knock-out mutants lacking SlPSAT1 (slpsat1) and SlASAT1 (slasat1), as well as the double mutant slpsat1 x slasat1. Analysis of FS and SE profiles in seeds and leaves of the single and double mutants revealed a strong depletion of SE in slpsat1, that was even more pronounced in the slpsat1 x slasat1 mutant, while an increase of SE levels was observed in slasat1. Moreover, SlPSAT1 and SlASAT1 inactivation affected in different ways several important cellular and physiological processes, like leaf lipid bo1dies formation, seed germination speed, leaf senescence, and the plant size. Altogether, our results indicate that SlPSAT1 has a predominant role in tomato SE biosynthesis while SlASAT1 would mainly regulate the flux of the sterol pathway. It is also worth to mention that some of the metabolic and physiological responses in the tomato mutants lacking functional SlPSAT1 or SlASAT1 are different from those previously reported in Arabidopsis, being remarkable the synergistic effect of SlASAT1 inactivation in the absence of a functional SlPSAT1 on the early germination and premature senescence phenotypes.
Collapse
Affiliation(s)
- Alma Burciaga-Monge
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Joan Manel López-Tubau
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Natalie Laibach
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Albert Ferrer
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Xu Y, Wang H, Sahu SK, Li L, Liang H, Günther G, Wong GKS, Melkonian B, Melkonian M, Liu H, Wang S. Chromosome-level genome of Pedinomonas minor (Chlorophyta) unveils adaptations to abiotic stress in a rapidly fluctuating environment. THE NEW PHYTOLOGIST 2022; 235:1409-1425. [PMID: 35560066 DOI: 10.1111/nph.18220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The Pedinophyceae (Viridiplantae) comprise a class of small uniflagellate algae with a pivotal position in the phylogeny of the Chlorophyta as the sister group of the 'core chlorophytes'. We present a chromosome-level genome assembly of the freshwater type species of the class, Pedinomonas minor. We sequenced the genome using Pacbio, Illumina and Hi-C technologies, performed comparative analyses of genome and gene family evolution, and analyzed the transcriptome under various abiotic stresses. Although the genome is relatively small (55 Mb), it shares many traits with core chlorophytes including number of introns and protein-coding genes, messenger RNA (mRNA) lengths, and abundance of transposable elements. Pedinomonas minor is only bounded by the plasma membrane, thriving in temporary habitats that frequently dry out. Gene family innovations and expansions and transcriptomic responses to abiotic stresses have shed light on adaptations of P. minor to its fluctuating environment. Horizontal gene transfers from bacteria and fungi have possibly contributed to the evolution of some of these traits. We identified a putative endogenization site of a nucleocytoplasmic large DNA virus and hypothesized that endogenous viral elements donated foreign genes to the host genome, their spread enhanced by transposable elements, located at gene boundaries in several of the expanded gene families.
Collapse
Affiliation(s)
- Yan Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongli Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Hongping Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Gerd Günther
- Private Laboratory, Knittkuhler Str. 61, Düsseldorf, 40629, Germany
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Barbara Melkonian
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Michael Melkonian
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Huan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
12
|
Braga ÍDO, Carvalho da Silva TL, Belo Silva VN, Rodrigues Neto JC, Ribeiro JADA, Abdelnur PV, de Sousa CAF, Souza MT. Deep Untargeted Metabolomics Analysis to Further Characterize the Adaptation Response of Gliricidia sepium (Jacq.) Walp. to Very High Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:869105. [PMID: 35665181 PMCID: PMC9161747 DOI: 10.3389/fpls.2022.869105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The multipurpose tree Gliricidia sepium (Jacq.) Walp. adapts to a very high level of salt stress (≥20 dS m-1) and resumes the production of new leaves around 2 weeks after losing all leaves due to abrupt salinity stress. The integration of metabolome and transcriptome profiles from gliricidia leaves points to a central role of the phenylpropanoid biosynthesis pathway in the short-term response to salinity stress. In this study, a deeper untargeted metabolomics analysis of the leaves and roots of young gliricidia plants was conducted to characterize the mechanism(s) behind this adaptation response. The polar and lipidic fractions from leaf and root samples were extracted and analyzed on a UHPLC.ESI.Q-TOF.HRMS system. Acquired data were analyzed using the XCMS Online, and MetaboAnalyst platforms, via three distinct and complementary strategies. Together, the results obtained first led us to postulate that these plants are salt-excluding plants, which adapted to high salinity stress via two salt-excluding mechanisms, starting in the canopy-severe defoliation-and concluding in the roots-limited entry of Na. Besides that, it was possible to show that the phenylpropanoid biosynthesis pathway plays a role throughout the entire adaptation response, starting in the short term and continuing in the long one. The roots metabolome analysis revealed 11 distinct metabolic pathways affected by salt stress, and the initial analysis of the two most affected ones-steroid biosynthesis and lysine biosynthesis-led us also to postulate that the accumulation of lignin and some phytosterols, as well as lysine biosynthesis-but not degradation, play a role in promoting the adaptation response. However, additional studies are necessary to investigate these hypotheses.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrícia Verardi Abdelnur
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, Brazil
| | | | - Manoel Teixeira Souza
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, Brazil
| |
Collapse
|
13
|
Pérez L, Alves R, Perez-Fons L, Albacete A, Farré G, Soto E, Vilaprinyó E, Martínez-Andújar C, Basallo O, Fraser PD, Medina V, Zhu C, Capell T, Christou P. Multilevel interactions between native and ectopic isoprenoid pathways affect global metabolism in rice. Transgenic Res 2022; 31:249-268. [PMID: 35201538 PMCID: PMC8993735 DOI: 10.1007/s11248-022-00299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering. We hypothesized that the strict regulation of the native MVA pathway could be circumvented by expressing an ectopic plastidial MVA pathway that increases the accumulation of IPP and DMAPP in plastids. We therefore introduced genes encoding the plastid-targeted enzymes HMGS, tHMGR, MK, PMK and MVD and the nuclear-targeted transcription factor WR1 into rice and evaluated the impact of their endosperm-specific expression on (1) endogenous metabolism at the transcriptomic and metabolomic levels, (2) the synthesis of phytohormones, carbohydrates and fatty acids, and (3) the macroscopic phenotype including seed morphology. We found that the ectopic plastidial MVA pathway enhanced the expression of endogenous cytosolic MVA pathway genes while suppressing the native plastidial MEP pathway, increasing the production of certain sterols and tocopherols. Plants carrying the ectopic MVA pathway only survived if WR1 was also expressed to replenish the plastid acetyl-CoA pool. The transgenic plants produced higher levels of fatty acids, abscisic acid, gibberellins and lutein, reflecting crosstalk between phytohormones and secondary metabolism.
Collapse
Affiliation(s)
- Lucía Pérez
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Rui Alves
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, UK
| | - Alfonso Albacete
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, 30100, Murcia, Espinardo, Spain
- Department of Plant Production and Agrotechnology, Institute for Agri-Food Research and Development of Murcia, Murcia, La Alberca, Spain
| | - Gemma Farré
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Erika Soto
- Department of Chemistry, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Ester Vilaprinyó
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- IRBLleida, Lleida, Catalunya, Spain
| | - Cristina Martínez-Andújar
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, 30100, Murcia, Espinardo, Spain
| | - Oriol Basallo
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, UK
| | - Vicente Medina
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
14
|
Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, Tian H, Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int J Mol Sci 2022; 23:ijms23042332. [PMID: 35216448 PMCID: PMC8875669 DOI: 10.3390/ijms23042332] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.
Collapse
Affiliation(s)
- Yinglin Du
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Xizhe Fu
- The College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310012, China;
| | - Yiyang Chu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Peiwen Wu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Ye Liu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Lili Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Huiqin Tian
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
- Correspondence:
| |
Collapse
|
15
|
Creydt M, Lautner S, Fromm J, Fischer M. Wood profiling by non-targeted liquid chromatography high-resolution mass spectrometry: Part 2, Detection of the geographical origin of spruce wood (Picea abies) by determination of metabolite pattern. J Chromatogr A 2021; 1663:462737. [PMID: 34968956 DOI: 10.1016/j.chroma.2021.462737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
A non-targeted metabolomics-based approach using liquid chromatography high-resolution mass spectrometry was used to authenticate spruce wood (Picea abies) from two geographic source areas. The two sample sites were located in Germany and only 250 km apart. In order to achieve the highest possible metabolite coverage, the spruces samples were measured with four different methods using liquid chromatography high-resolution mass spectrometry. In this way, a total of approximately 4,100 features were detected, which included non-polar, polar, and intermediate-polar metabolites. Using supervised multivariate methods, a distinction between the two sample groups could be achieved on the basis of non-polar data sets. The major metabolites contributing to differentiation were identified by MS/MS experiments and were from the following classes of compounds: ceramides, fatty acids, glycerolipids, and phytosterols. Based on the soil descriptions of the two sites, it was concluded that there is probably a close relationship between nutrient availability and the differences in concentration of the marker compounds. The results show that a metabolomics-based approach is also suitable for differentiation of origin, even if the sample sites are close to each other.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany.
| | - Silke Lautner
- Applied Wood Biology, Faculty of Wood Science and Technology, Eberswalde University for Sustainable Development, Schicklerstrasse 5, 16225 Eberswalde, Germany
| | - Jörg Fromm
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany; Institute of Wood Science, Research Unit Wood Biology, University of Hamburg, Leuschnerstrasse 91d, 21031, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany
| |
Collapse
|
16
|
Ozolina NV, Kapustina IS, Gurina VV, Bobkova VA, Nurminsky VN. Role of Plasmalemma Microdomains (Rafts) in Protection of the Plant Cell Under Osmotic Stress. J Membr Biol 2021; 254:429-439. [PMID: 34302495 DOI: 10.1007/s00232-021-00194-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Lipid-protein microdomains (presumably rafts) of the plasmalemma isolated from the beetroots subjected to hyperosmotic stress and hypoosmotic stress were studied. In these microdomains, the variations in the composition of total lipids, sterols, and fatty acids were observed. These variations differed under hypo- and hyperosmotic types of stress. We presumed that such variations were bound up with different strategies, which are probably related to protecting the cell from osmotic stress. One of the protection tendencies might be related, in our opinion, to credible growth of the content of such lipids as sterols and sterol esters, which are considered as raft-forming. Under osmotic stress, these lipids can contribute to the formation of both new raft structures and new membrane contacts of plasmalemma with intracellular organelles. Another protection tendency may be bound up with the redistribution of membrane phospholipids and phosphoglycerolipids possibly to stabilize the membrane's lamellar structure, which is ensured by credible growth of the content of such lipids as phosphatidylcholines, phosphatidylinositols, and digalactosyldiacylglycerol. The participation of lipid-protein microdomains in the adaptive mechanisms of plant cells may, in our opinion, also be bound up with the redistribution of membrane sterols, which (redistribution) in a number of variants may provoke credible growth in the content of cholesterol or "anti-stress" sterols (campesterol and stigmasterol). So, according to our results, the variations in the content of the plasmalemma lipid-protein microdomains take place under osmotic stress. These variations may influence the functioning of plasmalemma and take part in the adaptive mechanisms of plant cells.
Collapse
Affiliation(s)
- N V Ozolina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia
| | - I S Kapustina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia
| | - V V Gurina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia.
| | - V A Bobkova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia
- Irkutsk State University, 5, Sukhe-Bator St, Irkutsk, Russia
| | - V N Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia
| |
Collapse
|
17
|
Zheng T, Guan L, Yu K, Haider MS, Nasim M, Liu Z, Li T, Zhang K, Jiu S, Jia H, Fang J. Expressional diversity of grapevine 3-Hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes. BMC PLANT BIOLOGY 2021; 21:279. [PMID: 34147088 PMCID: PMC8214791 DOI: 10.1186/s12870-021-03073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a key enzyme in the mevalonate (MVA) pathway, which regulates the metabolism of terpenoids in the cytoplasm and determines the type and content of downstream terpenoid metabolites. RESULTS Results showed that grapevine HMGR family has three members, such as VvHMGR1, VvHMGR2, and VvHMGR3. The expression of VvHMGRs in 'Kyoho' has tissue specificity, for example, VvHMGR1 keeps a higher expression, VvHMGR2 is the lowest, and VvHMGR3 gradually decreases as the fruit development. VvHMGR3 is closely related to CsHMGR1 and GmHMGR9 and has collinearity with CsHMGR2 and GmHMGR4. By the prediction of interaction protein, it can interact with HMG-CoA synthase, MVA kinase, FPP/GGPP synthase, diphosphate mevalonate decarboxylase, and participates in the synthesis and metabolism of terpenoids. VvHMGR3 have similar trends in expression with some of the genes of carotenoid biosynthesis and MEP pathways. VvHMGR3 responds to various environmental and phytohormone stimuli, especially salt stress and ultraviolet (UV) treatment. The expression level of VvHMGRs is diverse in grapes of different colors and aroma. VvHMGRs are significantly higher in yellow varieties than that in red varieties, whereas rose-scented varieties showed significantly higher expression than that of strawberry aroma. The expression level is highest in yellow rose-scented varieties, and the lowest in red strawberry scent varieties, especially 'Summer Black' and 'Fujiminori'. CONCLUSION This study confirms the important role of VvHMGR3 in the process of grape fruit coloring and aroma formation, and provided a new idea to explain the loss of grape aroma and poor coloring during production. There may be an additive effect between color and aroma in the HMGR expression aspect.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Lubin Guan
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Kun Yu
- College of Agriculture, Shihezi University, Shihezi City, 832003, PR China
| | - Muhammad Salman Haider
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Maazullah Nasim
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Teng Li
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, PR China
| | - Songtao Jiu
- Department of Plant Science, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China.
| |
Collapse
|
18
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|
19
|
Wedow JM, Burroughs CH, Rios Acosta L, Leakey ADB, Ainsworth EA. Age-dependent increase in α-tocopherol and phytosterols in maize leaves exposed to elevated ozone pollution. PLANT DIRECT 2021; 5:e00307. [PMID: 33615114 PMCID: PMC7876508 DOI: 10.1002/pld3.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 05/13/2023]
Abstract
Tropospheric ozone is a major air pollutant that significantly damages crop production. Crop metabolic responses to rising chronic ozone stress have not been well studied in the field, especially in C4 crops. In this study, we investigated the metabolomic profile of leaves from two diverse maize (Zea mays) inbred lines and the hybrid cross during exposure to season-long elevated ozone (~100 nl L-1) in the field using free air concentration enrichment (FACE) to identify key biochemical responses of maize to elevated ozone. Senescence, measured by loss of chlorophyll content, was accelerated in the hybrid line, B73 × Mo17, but not in either inbred line (B73 or Mo17). Untargeted metabolomic profiling further revealed that inbred and hybrid lines of maize differed in metabolic responses to ozone. A significant difference in the metabolite profile of hybrid leaves exposed to elevated ozone occurred as leaves aged, but no age-dependent difference in leaf metabolite profiles between ozone conditions was measured in the inbred lines. Phytosterols and α-tocopherol levels increased in B73 × Mo17 leaves as they aged, and to a significantly greater degree in elevated ozone stress. These metabolites are involved in membrane stabilization and chloroplast reactive oxygen species (ROS) quenching. The hybrid line also showed significant yield loss at elevated ozone, which the inbred lines did not. This suggests that the hybrid maize line was more sensitive to ozone exposure than the inbred lines, and up-regulated metabolic pathways to stabilize membranes and quench ROS in response to chronic ozone stress.
Collapse
Affiliation(s)
- Jessica M. Wedow
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Charles H. Burroughs
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Lorena Rios Acosta
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Andrew D. B. Leakey
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- USDA ARS Global Change and Photosynthesis Research UnitUrbanaILUSA
| |
Collapse
|
20
|
Díaz K, Espinoza L, Carvajal R, Silva-Moreno E, Olea AF, Rubio J. Exogenous Application of Brassinosteroid 24-Norcholane 22( S)-23-Dihydroxy Type Analogs to Enhance Water Deficit Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22031158. [PMID: 33503838 PMCID: PMC7865588 DOI: 10.3390/ijms22031158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Brassinosteroids (BRs) are plant hormones that play an essential role in plant development and have the ability to protect plants against various environmental stresses, such as low and high temperature, drought, heat, salinity, heavy metal toxicity, and pesticides. Mitigation of stress effects are produced through independent mechanisms or by interaction with other important phytohormones. However, there are few studies in which this property has been reported for BRs analogs. Thus, in this work, the enhancement of drought stress tolerance of A. thaliana was assessed for a series of 2-deoxybrassinosteroid analogs. In addition, the growth-promoting activity in the Rice Lamina Inclination Test (RLIT) was also evaluated. The results show that analog 1 exhibits similar growth activity as brassinolide (BL; used as positive control) in the RLIT bioassay. Interestingly, both compounds increase their activities by a factor of 1.2–1.5 when they are incorporated to polymer micelles formed by Pluronic F-127. On the other hand, tolerance to water deficit stress of Arabidopsis thaliana seedlings was evaluated by determining survival rate and dry weight of seedlings after the recovery period. In both cases, the effect of analog 1 is higher than that exhibited by BL. Additionally, the expression of a subset of drought stress marker genes was evaluated in presence and absence of exogenous applied BRs. Results obtained by qRT-PCR analysis, indicate that transcriptional changes of AtDREBD2A and AtNCED3 genes were more significant in A. thaliana treated with analog 1 in homogeneous solution than in that treated with BL. These changes suggest the activation of alternative pathway in response to water stress deficit. Thus, exogenous application of BRs synthetic analogs could be a potential tool for improvement of crop production under stress conditions.
Collapse
Affiliation(s)
- Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (K.D.); (L.E.); (R.C.)
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (K.D.); (L.E.); (R.C.)
| | - Rodrigo Carvajal
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (K.D.); (L.E.); (R.C.)
| | - Evelyn Silva-Moreno
- Instituto de Investigación Agropecuarias, INIA–La Platina, Avda. Santa Rosa, Santiago 11610, Chile;
| | - Andrés F. Olea
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8910339, Chile
- Correspondence: (A.F.O.); (J.R.); Tel.: +56-322-652-843 (A.F.O. & J.R.)
| | - Julia Rubio
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910339, Chile
- Correspondence: (A.F.O.); (J.R.); Tel.: +56-322-652-843 (A.F.O. & J.R.)
| |
Collapse
|
21
|
Zhang X, Lin K, Li Y. Highlights to phytosterols accumulation and equilibrium in plants: Biosynthetic pathway and feedback regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:637-649. [PMID: 32858426 DOI: 10.1016/j.plaphy.2020.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 05/26/2023]
Abstract
Phytosterols are a group of sterols exclusive to plants and fungi, but are indispensable to humans because of their medicinal and nutritional values. However, current raw materials used for phytosterols extraction add to the cost and waste in the process. For higher sterols production, major attention is drawn to plant materials abundant in phytosterols and genetic modification. To provide an insight into phytosterols metabolism, the research progress on key enzymes involved in phytosterols biosynthesis and conversions were summarized. CAS, SSR2, SMT, DWF1 and CYP710A, the enzymes participating in the biosynthetic pathway, and PSAT, ASAT and SGT, the enzymes involved in the conversion of free sterols to conjugated ones, were reviewed. Specifically, SMT and CYP710A were emphasized for their function on modulating the percentage composition of different kinds of phytosterols. The thresholds of sterol equilibrium and the resultant phytosterols accumulation, which vary in plant species and contribute to plasma membrane remodeling under stresses, were also discussed. By retrospective analysis of the previous researches, we proposed a feedback mechanism regulating sterol equilibrium underlying sterols metabolism. From a strategic perspective, we regard salt tolerant plant as an alternative to present raw materials, which will attain higher phytosterols production in combination with gene-modification.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
22
|
Lin F, Sun J, Liu N, Zhu L. Phytotoxicity and metabolic responses induced by tetrachlorobiphenyl and its hydroxylated and methoxylated derivatives in rice (Oryza sative L.). ENVIRONMENT INTERNATIONAL 2020; 139:105695. [PMID: 32272295 DOI: 10.1016/j.envint.2020.105695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) and their biotransformation products, hydroxylated (OH-PCBs) and methoxylated derivatives (MeO-PCBs), have been detected in the environment and biota, especially crops. However, to date, little information is available on the phytotoxicity and metabolic responses induced by these chemicals in crops. In this study, we exposed rice (Oryza sative L.) seedlings to 2,3,4,5-tetrachlorobiphenyl (CB-61) and its hydroxylated (4'-OH-CB-61) and methoxylated derivatives (4'-MeO-CB-61) at 0, 10, 50, 100 and 500 μg/L, respectively. After exposure for 14 days, significantly growth inhibition and oxidative damage were observed, among which the toxicities of 4'-OH-CB-61 and 4'-MeO-CB-61 were greater than that of the parent PCBs. Metabolomics analysis indicated that exposure to the three chemicals induced different metabolic responses. 4'-MeO-CB-61 mainly affected the saccharide catabolism, including pyruvate metabolism, the TCA cycle, the transfer of acetyl groups into mitochondria and the Warburg effect, resulting in a greater energy consumption. Moreover, both CB-61 and 4'-OH-CB-61 promoted several amino acid metabolism and fatty acid biosynthesis, thereby alleviating the potential ROS damage. This study for the first time evaluates and reveals the phytotoxicity of OH-PCBs and MeO-PCBs at the metabolic level, which attempts to provide important information for accurately evaluating the environmental risks of PCBs from the perspective of metabolism.
Collapse
Affiliation(s)
- Fangjing Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Na Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
23
|
Yang C, Zhao W, Wang Y, Zhang L, Huang S, Lin J. Metabolomics Analysis Reveals the Alkali Tolerance Mechanism in Puccinellia tenuiflora Plants Inoculated with Arbuscular Mycorrhizal Fungi. Microorganisms 2020; 8:E327. [PMID: 32110985 PMCID: PMC7142761 DOI: 10.3390/microorganisms8030327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 11/30/2022] Open
Abstract
Soil alkalization is a major environmental threat that affects plant distribution and yield in northeastern China. Puccinellia tenuiflora is an alkali-tolerant grass species that is used for salt-alkali grassland restoration. However, little is known about the molecular mechanisms by which arbuscular mycorrhizal fungi (AMF) enhance P. tenuiflora responses to alkali stress. Here, metabolite profiling in P. tenuiflora seedlings with or without arbuscular mycorrhizal fungi (AMF) under alkali stress was conducted using liquid chromatography combined with time-of-flight mass spectrometry (LC/TOF-MS). The results showed that AMF colonization increased seedling biomass under alkali stress. In addition, principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) demonstrated that non-AM and AM seedlings showed different responses under alkali stress. A heat map analysis showed that the levels of 88 metabolites were significantly changed in non-AM seedlings, but those of only 31 metabolites were significantly changed in AM seedlings. Moreover, the levels of a total of 62 metabolites were significantly changed in P. tenuiflora seedlings after AMF inoculation. The results suggested that AMF inoculation significantly increased amino acid, organic acid, flavonoid and sterol contents to improve osmotic adjustment and maintain cell membrane stability under alkali stress. P. tenuiflora seedlings after AMF inoculation produced more plant hormones (salicylic acid and abscisic acid) than the non-AM seedlings, probably to enhance the antioxidant system and facilitate ion balance under stress conditions. In conclusion, these findings provide new insights into the metabolic mechanisms of P. tenuiflora seedlings with arbuscular mycorrhizal fungi under alkali conditions and clarify the role of AM in the molecular regulation of this species under alkali stress.
Collapse
Affiliation(s)
- Chunxue Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Wenna Zhao
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Yingnan Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Liang Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Shouchen Huang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
| | - Jixiang Lin
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; (C.Y.); (W.Z.); (Y.W.); (L.Z.); (S.H.)
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
24
|
V P, Ali K, Singh A, Vishwakarma C, Krishnan V, Chinnusamy V, Tyagi A. Starch accumulation in rice grains subjected to drought during grain filling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:440-451. [PMID: 31419646 DOI: 10.1016/j.plaphy.2019.07.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 05/25/2023]
Abstract
Drought stress during the grain filling stage severely affects the quality and quantity of starch in rice grains. The enzymes such as ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27) and starch synthase (SS, EC 2.4.1.21) are the key regulatory enzymes involved in the starch biosynthesis. In this study, the activity of the AGPase and starch synthase (SS) was correlated with the qualitative and quantitative parameters such as sucrose, starch, amylose, amylopectin, and resistant starch in leaves, roots, and grains of drought tolerant (N22) and drought susceptible (IR64) cultivars under applied water deficit stress (WDS). Drought stress enhanced the remobilization of stored starch from leaves to developing rice grains which was positively correlated with a decrease in the starch and starch synthase activity in leaves. Starch accumulation in developing grains was positively correlated with an increase in the AGPase and SS activity under drought. It was found that starch, amylopectin, and sucrose content in developing grains increased under water deficit stress (WDS), while amylose content decreased in both the varieties. However, in leaves, the SS activity decreased while AGPase activity was found to be increased under WDS in both varieties. Decreased starch content in matured grains was due to shortening of grain filling stage as drought stress caused early plant senescence. Yield reduction under drought was more in susceptible variety IR64 as compared to tolerant genotype N22.
Collapse
Affiliation(s)
- Prathap V
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kishwar Ali
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandrapal Vishwakarma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
25
|
Kuczyńska A, Cardenia V, Ogrodowicz P, Kempa M, Rodriguez-Estrada MT, Mikołajczak K. Effects of multiple abiotic stresses on lipids and sterols profile in barley leaves (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:215-224. [PMID: 31181509 DOI: 10.1016/j.plaphy.2019.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 05/03/2023]
Abstract
Plants are usually exposed to several types of abiotic stress in regular field conditions. The lipid profile of barley homozygous lines exposed to drought, heat, salinity, and their combinations, was investigated in the present study. Free fatty acids, free sterols, and diacylglycerols were the most abundant classes (∼8.0% of plant material). The genetic background significantly impacted the lipid composition rather than the treatments, and diacylglycerols were the only lipid class affected by salinity (1.84 mg/100 mg plant tissue; ∼33% reduction). However, the genotype × treatment interaction analysis revealed that the lipid and sterol compositions depended on both genotype and environment. Our results suggest that inborn stress tolerance in barley is manifested by enhanced accumulation of most lipids, mainly sterols, especially in heat/drought-stressed plants. In addition, expression of the LTP2 gene may be indirectly involved in the abiotic stress reaction of barley by mediating intracellular transport of some lipid classes.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, Poznan, 60-479, Poland.
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences DISAFA, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy.
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, Poznan, 60-479, Poland.
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, Poznan, 60-479, Poland.
| | | | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, Poznan, 60-479, Poland.
| |
Collapse
|
26
|
Kochan E, Balcerczak E, Szymczyk P, Sienkiewicz M, Zielińska-Bliźniewska H, Szymańska G. Abscisic Acid Regulates the 3-Hydroxy-3-methylglutaryl CoA Reductase Gene Promoter and Ginsenoside Production in Panax quinquefolium Hairy Root Cultures. Int J Mol Sci 2019; 20:ijms20061310. [PMID: 30875925 PMCID: PMC6471273 DOI: 10.3390/ijms20061310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Panax quinquefolium hairy root cultures synthesize triterpenoid saponins named ginsenosides, that have multidirectional pharmacological activity. The first rate-limiting enzyme in the process of their biosynthesis is 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). In this study, a 741 bp fragment of the P. quinquefoliumHMGR gene (PqHMGR), consisting of a proximal promoter, 5′UTR (5′ untranslated region) and 5′CDS (coding DNA sequence) was isolated. In silico analysis of an isolated fragment indicated a lack of tandem repeats, miRNA binding sites, and CpG/CpNpG elements. However, the proximal promoter contained potential cis-elements involved in the response to light, salicylic, and abscisic acid (ABA) that was represented by the motif ABRE (TACGTG). The functional significance of ABA on P. quinquefolium HMGR gene expression was evaluated, carrying out quantitative RT-PCR experiments at different ABA concentrations (0.1, 0.25, 0.5, and 1 mg·L−1). Additionally, the effect of abscisic acid and its time exposure on biomass and ginsenoside level in Panax quinquefolium hairy root was examined. The saponin content was determined using HPLC. The 28 day elicitation period with 1 mg·L−1 ABA was the most efficient for Rg2 and Re (17.38 and 1.83 times increase, respectively) accumulation; however, the protopanaxadiol derivative content decreased in these conditions.
Collapse
Affiliation(s)
- Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego l, 90-151 Lodz, Poland.
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Piotr Szymczyk
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego l, 90-151 Lodz, Poland.
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, 2nd Chair of Otolaryngology, Medical University of Lodz, Żeligowskiego 7/9, 90-725, Lodz, Poland.
| | - Hanna Zielińska-Bliźniewska
- Department of Allergology and Respiratory Rehabilitation, 2nd Chair of Otolaryngology, Medical University of Lodz, Żeligowskiego 7/9, 90-725, Lodz, Poland.
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego l, 90-151 Lodz, Poland.
| |
Collapse
|