1
|
Kwon JS, Lee J, Shilpha J, Jang H, Kang WH. The landscape of sequence variations between resistant and susceptible hot peppers to predict functional candidate genes against bacterial wilt disease. BMC PLANT BIOLOGY 2024; 24:1036. [PMID: 39482582 PMCID: PMC11529287 DOI: 10.1186/s12870-024-05742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Bacterial wilt (BW), caused by Ralstonia solanacearum (Ral), results in substantial yield losses in pepper crops. Developing resistant pepper varieties through breeding is the most effective strategy for managing BW. To achieve this, a thorough understanding of the genetic information connected with resistance traits is essential. Despite identifying three major QTLs for bacterial wilt resistance in pepper, Bw1 on chromosome 8, qRRs-10.1 on chromosome 10, and pBWR-1 on chromosome 1, the genetic information of related BW pepper varieties has not been sufficiently studied. Here, we resequenced two pepper inbred lines, C. annuum 'MC4' (resistant) and C. annuum 'Subicho' (susceptible), and analyzed genomic variations through SNPs and Indels to identify candidate genes for BW resistance. RESULTS An average of 139.5 Gb was generated among the two cultivars, with coverage ranging from 44.94X to 46.13X. A total of 8,815,889 SNPs was obtained between 'MC4' and 'Subicho'. Among them, 31,190 (0.35%) were non-synonymous SNPs (nsSNPs) corresponding to 10,926 genes, and these genes were assigned to 142 Gene Ontology (GO) terms across the two cultivars. We focused on three known BW QTL regions by identifying genes with sequence variants through gene set enrichment analysis and securing those belonging to high significant GO terms. Additionally, we found 310 NLR genes with nsSNP variants between 'MC4' (R) and 'Subicho' (S) within these regions. Also, we performed an Indel analysis on these genes. By integrating all this data, we identified eight candidate BW resistance genes, including two NLR genes with nsSNPs variations in qRRs-10.1 on chromosome 10. CONCLUSION We identified genomic variations in the form of SNPs and Indels by re-sequencing two pepper cultivars with contrasting traits for bacterial wilt. Specifically, the four genes associated with pBWR-1 and Bw1 that exhibit both nsSNP and Indel variations simultaneously in 'Subicho', along with the two NLR genes linked to qRRs-10.1, which are known for their direct involvement in immune responses, are identified as most likely BW resistance genes. These variants in leading candidate genes associated with BW resistance can be used as important markers for breeding pepper varieties.
Collapse
Affiliation(s)
- Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
2
|
Shaheen S, Lalarukh I, Ahmad J, Zulqadar SA, Alharbi SA, Hareem M, Alarfaj AA, Ansari MJ. Physio-biochemical mechanism of melatonin seed priming in stimulating growth and drought tolerance in bread wheat. BMC PLANT BIOLOGY 2024; 24:918. [PMID: 39354351 PMCID: PMC11443756 DOI: 10.1186/s12870-024-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
Drought stress (DS) adversely affects a plant's development and growth by negatively altering the plant's physio-biochemical functions. Previous investigations have illustrated that seed priming with growth regulators is an accessible, affordable, and effective practice to elevate a plant's tolerance to drought stress. Melatonin (MT) is derived from the precursor tryptophan and can improve germination, biomass, and photosynthesis under stress conditions. The current study examined the effect of melatonin seed priming on two wheat cultivars (Fakhar-e-Bhakkar and Akber-19) cultivated under severe drought conditions (35% FC). There were 6 levels of melatonin (i.e., M0 = control, M1 = 1 mg L- 1, M2 = 2 mg L- 1, M3 = 3 mg L- 1, M4 = 4 mg L- 1 and M5 = mg L- 1) which were used for seed priming. Our results confirmed that seed priming with M2 = 2 mgL- 1 concentration of MT alleviates the negative effects of DS by boosting the germination rate by 54.84% in Akber-19 and 33.33% in Fakhar-e-Bhakkar. Similarly, leaf-relative water contents were enhanced by 22.38% and 13.28% in Akber-19 and Fakhar-e-Bhakkar, respectively. Melatonin pre-treatment with 2 mgL- 1 significantly enhanced fresh and dry biomass of shoot and root, leaf area, photosynthetic pigments, osmoprotectants accumulation [total soluble proteins (TSP), total free amino acids (TFAA), proline, soluble sugars, glycine betaine (GB)] and lowered the amount of malondialdehyde (MDA) and hydrogen peroxide (H2O2) production by elevating antioxidants [Ascorbic acid, catalase (CAT), Phenolics, peroxidase (POD) and superoxide dismutase (SOD)] activity under drought stress (DS). Meanwhile, under control conditions (NoDS), the melatonin treatment M1 = 1 mgL- 1 effectively enhanced all the growth-related physio-biochemical attributes in both wheat cultivars. In the future, more investigations are suggested on different crops under variable agroclimatic conditions to declare 2 mgL- 1 melatonin as an efficacious amendment to alleviate drought stress.
Collapse
Affiliation(s)
- Sehar Shaheen
- Department of Botany, Government College Women University, Faisalabad, Pakistan.
| | - Irfana Lalarukh
- Department of Botany, Government College Women University, Faisalabad, Pakistan.
| | - Javed Ahmad
- Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | - Syed Ali Zulqadar
- Office Soil and Water Testing Laboratory for Research, Bahawalpur, Punjab, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly)-Uttar Pradesh, Moradabad, 24400, India
| |
Collapse
|
3
|
Hu L, Lv X, Zhang Y, Du W, Fan S, Kong L. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Int J Mol Sci 2024; 25:10430. [PMID: 39408761 PMCID: PMC11476764 DOI: 10.3390/ijms251910430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Wheat is the most widely grown crop in the world; its production is severely disrupted by increasing water deficit. Plant roots play a crucial role in the uptake of water and perception and transduction of water deficit signals. In the past decade, the mechanisms of drought tolerance have been frequently reported; however, the transcriptome and metabolome regulatory network of root responses to water stress has not been fully understood in wheat. In this study, the global transcriptomic and metabolomics profiles were employed to investigate the mechanisms of roots responding to water stresses using the drought-tolerant (DT) and drought-susceptible (DS) wheat genotypes. The results showed that compared with the control group, wheat roots exposed to polyethylene glycol (PEG) had 25941 differentially expressed genes (DEGs) and more upregulated genes were found in DT (8610) than DS (7141). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs of the drought-tolerant genotype were preferably enriched in the flavonoid biosynthetic process, anthocyanin biosynthesis and suberin biosynthesis. The integrated analysis of the transcriptome and metabolome showed that in DT, the KEGG pathways, including flavonoid biosynthesis and arginine and proline metabolism, were shared by differentially accumulated metabolites (DAMs) and DEGs at 6 h after treatment (HAT) and pathways including alanine, aspartate, glutamate metabolism and carbon metabolism were shared at 48 HAT, while in DS, the KEGG pathways shared by DAMs and DEGs only included arginine and proline metabolism at 6 HAT and the biosynthesis of amino acids at 48 HAT. Our results suggest that the drought-tolerant genotype may relieve the drought stress by producing more ROS scavengers, osmoprotectants, energy and larger roots. Interestingly, hormone signaling plays an important role in promoting the development of larger roots and a higher capability to absorb and transport water in drought-tolerant genotypes.
Collapse
Affiliation(s)
- Ling Hu
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China;
| | - Xuemei Lv
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
4
|
Wei R, Ma L, Ma S, Xu L, Ma T, Ma Y, Cheng Z, Dang J, Li S, Chai Q. Intrinsic Mechanism of CaCl 2 Alleviation of H 2O 2 Inhibition of Pea Primary Root Gravitropism. Int J Mol Sci 2024; 25:8613. [PMID: 39201298 PMCID: PMC11354692 DOI: 10.3390/ijms25168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.
Collapse
Affiliation(s)
- Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Site Management Center, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Zhen Cheng
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Sheng Li
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiang Chai
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Yang S, Yu X, Gao X, Fatima K, Tahir Ul Qamar M. Comparative genomic profiling of transport inhibitor Response1/Auxin signaling F-box (TIR1/AFB) genes in eight Pyrus genomes revealed the intraspecies diversity and stress responsiveness patterns. Front Genet 2024; 15:1393487. [PMID: 38798703 PMCID: PMC11116618 DOI: 10.3389/fgene.2024.1393487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024] Open
Abstract
In the genomics of plants and the phytoecosystem, Pyrus (pear) is among the most nutritious fruits and contains fiber that has great health benefits to humans. It is mostly cultivated in temperate regions and is one of the most cultivated pome fruits globally. Pears are highly subjected to biotic and abiotic stresses that affect their yield. TIR1/AFB proteins act as auxin co-receptors during the signaling of nuclear auxins and play a primary role in development-related regulatory processes and responses to biotic and abiotic stresses. However, this gene family and its members have not been explored in Pyrus genomes, and understanding these genes will help obtain useful insights into stress tolerance and ultimately help maintain a high yield of pears. This study reports a pangenome-wide investigation of TIR1/AFB genes from eight Pyrus genomes: Cuiguan (Pyrus pyrifolia), Shanxi Duli (P. betulifolia), Zhongai 1 [(P. ussuriensis × communis) × spp.], Nijisseiki (P. pyrifolia), Yunhong No.1 (P. pyrifolia), d'Anjou (P. communis), Bartlett v2.0 (P. communis), and Dangshansuli v.1.1 (P. bretschneideri). These genes were randomly distributed on 17 chromosomes in each genome. Based on phylogenetics, the identified TIR1/AFB genes were divided into six groups. Their gene structure and motif pattern showed the intraspecific structural conservation as well as evolutionary patterns of Pyrus TIR1/AFBs. The expansion of this gene family in Pyrus is mainly caused by segmental duplication; however, a few genes showed tandem duplication. Moreover, positive and negative selection pressure equally directed the gene's duplication process. The GO and PPI analysis showed that Pyrus TIR1/AFB genes are associated with abiotic stress- and development-related signaling pathways. The promoter regions of Pyrus TIR1/AFB genes were enriched in hormone-, light-, development-, and stress-related cis elements. Furthermore, publicly available RNA-seq data analysis showed that DaTIR1/AFBs have varied levels of expression in various tissues and developmental stages, fruit hardening disease conditions, and drought stress conditions. This indicated that DaTIR1/AFB genes might play critical roles in response to biotic and abiotic stresses. The DaTIR1/AFBs have similar protein structures, which show that they are involved in the same function. Hence, this study will broaden our knowledge of the TIR1/AFB gene family in Pyrus, elucidating their contribution to conferring resistance against various environmental stresses, and will also provide valuable insights for future researchers.
Collapse
Affiliation(s)
- Sheng Yang
- Pomology Institute, Shanxi Agricultural University, Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, Shanxi, China
| | - Xiaomei Yu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xinke Gao
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Kinza Fatima
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| |
Collapse
|
6
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
7
|
Dalal M, Mansi, Mayandi K. Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. PLANTA 2023; 258:108. [PMID: 37898971 DOI: 10.1007/s00425-023-04262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
MAIN CONCLUSION The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Mansi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Karthikeyan Mayandi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
8
|
Jahan MS, Zhao CJ, Shi LB, Liang XR, Jabborova D, Nasar J, Zhou XB. Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1193666. [PMID: 37575931 PMCID: PMC10413876 DOI: 10.3389/fpls.2023.1193666] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
Drought is one of the most significant abiotic stress threatening to crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. As the global climate changes, it is more important to find solutions to make plants more resilient to drought. The prime aimed of the study is to investigate the effect of melatonin on drought tolerance in soybean and its potential mechanisms. Soybean seedlings were treated with 20% polyethylene glycol 6000 (PEG 6000) and subjected to osmotic stress (14 days) with or without 100 μM melatonin treatment. Our results revealed that melatonin supplementation significantly mitigated PEG-induced growth retardation and increased water absorption ability. Foliar application of melatonin also increased gas exchange and the chlorophyll fluorescence attributes by the mitigation of the osmotic-induced reduction of the reaction activity of photosystems I and II, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), electron transport activity, and photosynthetic efficiency. In addition, PEG-induced elevated production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly reversed by melatonin treatment. Equally important, melatonin boosted the antioxidant activities of soybean plants. Moreover, osmotic stress substantially increased abscisic acid (ABA) accumulation in roots and leaves, while melatonin-received plant leaves accumulated less ABA but roots content higher ABA. Similarly, melatonin significantly suppressed ABA biosynthesis and signaling gene expression in soybean exposed to drought stress. Furthermore, osmotic stress significantly suppressed plasmalemma (GmPIPs) and tonoplast aquaporin (GmTIPs) genes expression, and their transcript abundance was up-regulated by melatonin co-addition. Taken together, our results indicated that melatonin potentially improves drought tolerance of soybean through the regulation of ABA and aquaporin gene expression, increasing photosynthetic efficiency as well as enhancing water uptake efficiency.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Guangxi, Nanning, China
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Chang Jiang Zhao
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Guangxi, Nanning, China
| | - Li Bo Shi
- MAP Division (Shandong) of Sinochem Agriculture Holdings, Jinan, China
| | - Xiu Ren Liang
- Guangxi Ecoengineering Vocational and Technical College, Liuzhou, China
| | - Dilfuza Jabborova
- Laboratory of Medicinal Plants Genetics and Biotechnology, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Jamal Nasar
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Guangxi, Nanning, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Guangxi, Nanning, China
| |
Collapse
|
9
|
Xu Y, Hu W, Song S, Ye X, Ding Z, Liu J, Wang Z, Li J, Hou X, Xu B, Jin Z. MaDREB1F confers cold and drought stress resistance through common regulation of hormone synthesis and protectant metabolite contents in banana. HORTICULTURE RESEARCH 2023; 10:uhac275. [PMID: 36789258 PMCID: PMC9923210 DOI: 10.1093/hr/uhac275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
Adverse environmental factors severely affect crop productivity. Improving crop resistance to multiple stressors is an important breeding goal. Although CBFs/DREB1s extensively participate in plant resistance to abiotic stress, the common mechanism underlying CBFs/DREB1s that mediate resistance to multiple stressors remains unclear. Here, we show the common mechanism for MaDREB1F conferring cold and drought stress resistance in banana. MaDREB1F encodes a dehydration-responsive element binding protein (DREB) transcription factor with nuclear localization and transcriptional activity. MaDREB1F expression is significantly induced after cold, osmotic, and salt treatments. MaDREB1F overexpression increases banana resistance to cold and drought stress by common modulation of the protectant metabolite levels of soluble sugar and proline, activating the antioxidant system, and promoting jasmonate and ethylene syntheses. Transcriptomic analysis shows that MaDREB1F activates or alleviates the repression of jasmonate and ethylene biosynthetic genes under cold and drought conditions. Moreover, MaDREB1F directly activates the promoter activities of MaAOC4 and MaACO20 for jasmonate and ethylene syntheses, respectively, under cold and drought conditions. MaDREB1F also targets the MaERF11 promoter to activate MaACO20 expression for ethylene synthesis under drought stress. Together, our findings offer new insight into the common mechanism underlying CBF/DREB1-mediated cold and drought stress resistance, which has substantial implications for engineering cold- and drought-tolerant crops.
Collapse
Affiliation(s)
| | - Wei Hu
- Corresponding authors. E-mail: ; ;
| | | | - Xiaoxue Ye
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zehong Ding
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Juhua Liu
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zhuo Wang
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Jingyang Li
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Xiaowan Hou
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Guangdong, China
| | - Biyu Xu
- Corresponding authors. E-mail: ; ;
| | | |
Collapse
|
10
|
Sehgal D, Dhakate P, Ambreen H, Shaik KHB, Rathan ND, Anusha NM, Deshmukh R, Vikram P. Wheat Omics: Advancements and Opportunities. PLANTS (BASEL, SWITZERLAND) 2023; 12:426. [PMID: 36771512 PMCID: PMC9919419 DOI: 10.3390/plants12030426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Plant omics, which includes genomics, transcriptomics, metabolomics and proteomics, has played a remarkable role in the discovery of new genes and biomolecules that can be deployed for crop improvement. In wheat, great insights have been gleaned from the utilization of diverse omics approaches for both qualitative and quantitative traits. Especially, a combination of omics approaches has led to significant advances in gene discovery and pathway investigations and in deciphering the essential components of stress responses and yields. Recently, a Wheat Omics database has been developed for wheat which could be used by scientists for further accelerating functional genomics studies. In this review, we have discussed various omics technologies and platforms that have been used in wheat to enhance the understanding of the stress biology of the crop and the molecular mechanisms underlying stress tolerance.
Collapse
Affiliation(s)
- Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco 56237, Mexico
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Priyanka Dhakate
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110076, India
| | - Heena Ambreen
- School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Khasim Hussain Baji Shaik
- Faculty of Agriculture Sciences, Georg-August-Universität, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Nagenahalli Dharmegowda Rathan
- Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
- Corteva Agriscience, Hyderabad 502336, Telangana, India
| | | | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| | - Prashant Vikram
- Bioseed Research India Ltd., Hyderabad 5023324, Telangana, India
| |
Collapse
|
11
|
Chen X, Chen Y, Zhang W, Zhang W, Wang H, Zhou Q. Response characteristics of root to moisture change at seedling stage of Kengyilia hirsuta. FRONTIERS IN PLANT SCIENCE 2023; 13:1052791. [PMID: 36684787 PMCID: PMC9853184 DOI: 10.3389/fpls.2022.1052791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Kengyilia hirsuta is an important pioneer plant distributed on the desertified grassland of the Qinghai-Tibet Plateau. It has strong adaptability to alpine desert habitats, so it can be used as a sand-fixing plant on sandy alpine land. To study the response mechanisms of root morphological and physiological characteristics of K. hirsuta to sandy soil moisture, 10%, 25% and 40% moisture levels were set up through potted weighing water control method. The biomass, root-shoot ratio, root architecture parameters, and biochemical parameters malondialdehyde, free proline, soluble protein, indole-3-acetic acid, abscisic acid, cytokinin, gibberellin, relative conductivity and antioxidant enzyme activities were measured in the trefoil stage, and the response mechanisms of roots at different moisture levels were analyzed. The results showed that with the increase of soil moisture, root morphological indexes such as root biomass, total root length, total root volume and total root surface increased, while the root topological index decreased continuously. The malondialdehyde content, relative conductivity, superoxide dismutase activity, peroxidase activity, catalase activity, free proline content, soluble protein content, abscisic acid content and cytokinin content at the 25% and 40% moisture levels were significantly decreased compared with the 10% level (P< 0.05). Thus, the root growth of K. hirsuta was restricted by the 10% moisture level, but supported by the 25% and 40% moisture levels. An artificial neural network revealed that total root length, total root surface area, root link average length, relative conductivity, soluble protein, free proline and moisture level were the key factors affecting root development. These research results could contribute to future agricultural sustainability.
Collapse
Affiliation(s)
- Xueyao Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Wei Zhang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Wenlu Zhang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Hui Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- Institute of the Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
12
|
Kou X, Han W, Kang J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1085409. [PMID: 36570905 PMCID: PMC9780461 DOI: 10.3389/fpls.2022.1085409] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Plants are exposed to increasingly severe drought events and roots play vital roles in maintaining plant survival, growth, and reproduction. A large body of literature has investigated the adaptive responses of root traits in various plants to water stress and these studies have been reviewed in certain groups of plant species at a certain scale. Nevertheless, these responses have not been synthesized at multiple levels. This paper screened over 2000 literatures for studies of typical root traits including root growth angle, root depth, root length, root diameter, root dry weight, root-to-shoot ratio, root hair length and density and integrates their drought responses at genetic and morphological scales. The genes, quantitative trait loci (QTLs) and hormones that are involved in the regulation of drought response of the root traits were summarized. We then statistically analyzed the drought responses of root traits and discussed the underlying mechanisms. Moreover, we highlighted the drought response of 1-D and 2-D root length density (RLD) distribution in the soil profile. This paper will provide a framework for an integrated understanding of root adaptive responses to water deficit at multiple scales and such insights may provide a basis for selection and breeding of drought tolerant crop lines.
Collapse
Affiliation(s)
- Xinyue Kou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Weihua Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jian Kang
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
13
|
Du W, Lu Y, Li Q, Luo S, Shen S, Li N, Chen X. TIR1/AFB proteins: Active players in abiotic and biotic stress signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:1083409. [PMID: 36523629 PMCID: PMC9745157 DOI: 10.3389/fpls.2022.1083409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The TIR1/AFB family of proteins is a group of functionally diverse auxin receptors that are only found in plants. TIR1/AFB family members are characterized by a conserved N-terminal F-box domain followed by 18 leucine-rich repeats. In the past few decades, extensive research has been conducted on the role of these proteins in regulating plant development, metabolism, and responses to abiotic and biotic stress. In this review, we focus on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic and biotic stress. We highlight studies that have shed light on the mechanisms by which TIR1/AFB proteins are regulated at the transcriptional and post-transcriptional as well as the downstream in abiotic or biotic stress pathways regulated by the TIR1/AFB family.
Collapse
Affiliation(s)
- Wenchao Du
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yang Lu
- Hebei University Characteristic sericulture Application Technology Research and Development Center, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Qiang Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
14
|
Guo J, Zhou J, Liu S, Shen L, Liang X, Wang T, Zhu L. Underlying Mechanisms for Low-Molecular-Weight Dissolved Organic Matter to Promote Translocation and Transformation of Chlorinated Polyfluoroalkyl Ether Sulfonate in Wheat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15617-15626. [PMID: 36272151 DOI: 10.1021/acs.est.2c04356] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) such as fulvic acid (FA) and humic acid (HA) in soil considerably affects the fate of per- and polyfluoroalkyl substances (PFASs). However, the effect of DOM on their behavior in plants remains unclear. Herein, hydroponic experiments indicate that FA and HA reduce the accumulation of an emerging PFAS of high concern, 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), in wheat roots by reducing its bioavailability in the solution. Nevertheless, FA with low molecular weight (MW) promotes its absorption and translocation from the roots to the shoots by stimulating the activity and the related genes of the plasma membrane H+-ATPase, whereas high-MW HA shows the opposite effect. Moreover, in vivo and in vitro experiments indicate that 6:2 Cl-PFESA undergoes reductive dechlorination, which is regulated mainly using nitrate reductase and glutathione transferase. HA and FA, particularly the latter, promote the dechlorination of 6:2 Cl-PFESA in wheat by enhancing electron transfer efficiency and superoxide production. Transcriptomic analysis indicates that FA also stimulates catalytic activity, cation binding, and oxidoreductase activity, facilitating 6:2 Cl-PFESA transformation in wheat.
Collapse
Affiliation(s)
- Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Lina Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Xiaoxue Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300071, P. R. China
| |
Collapse
|
15
|
Liu J, Zhi L, Zhang N, Zhang W, Meng D, Batool A, Ren X, Ji J, Niu Y, Li R, Li J, Song L. Transcriptomic analysis reveals the contribution of QMrl-7B to wheat root growth and development. FRONTIERS IN PLANT SCIENCE 2022; 13:1062575. [PMID: 36457528 PMCID: PMC9706392 DOI: 10.3389/fpls.2022.1062575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Roots are the major organs for water and nutrient acquisition and substantially affect plant growth, development and reproduction. Improvements to root system architecture are highly important for the increased yield potential of bread wheat. QMrl-7B, a major stable quantitative trait locus (QTL) that controls maximum root length (MRL), essentially contributes to an improved root system in wheat. To further analyze the biological functions of QMrl-7B in root development, two sets of Triticum aestivum near-isogenic lines (NILs), one with superior QMrl-7B alleles from cultivar Kenong 9204 (KN9204) named NILKN9204 and another with inferior QMrl-7B alleles from cultivar Jing 411 (J411) named NILJ411, were subjected to transcriptomic analysis. Among all the mapped genes analyzed, 4871 genes were identified as being differentially expressed between the pairwise NILs under different nitrogen (N) conditions, with 3543 genes expressed under normal-nitrogen (NN) condition and 2689 genes expressed under low-nitrogen (LN) condition. These genes encode proteins that mainly include N O 3 - transporters, phytohormone signaling components and transcription factors (TFs), indicating the presence of a complex regulatory network involved in root determination. In addition, among the 13524 LN-induced differentially expressed genes (DEGs) detected in this study, 4308 and 2463 were specifically expressed in the NILKN9204 and NILJ411, respectively. These DEGs reflect different responses of the two sets of NILs to varying N supplies, which likely involve LN-induced root growth. These results explain the better-developed root system and increased root vitality conferred by the superior alleles of QMrl-7B and provide a deeper understanding of the genetic underpinnings of root traits, pointing to a valuable locus suitable for future breeding efforts for sustainable agriculture.
Collapse
Affiliation(s)
- Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liya Zhi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Deyuan Meng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Aamana Batool
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Ren
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Yanxiao Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ruiqi Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Liqiang Song
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
16
|
Xu F, Chen S, Zhou S, Yue C, Yang X, Zhang X, Zhan K, He D. Genome-wide association, RNA-seq and iTRAQ analyses identify candidate genes controlling radicle length of wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:939544. [PMID: 36247556 PMCID: PMC9554269 DOI: 10.3389/fpls.2022.939544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The radicle, present in the embryo of a seed, is the first root to emerge at germination, and its rapid growth is essential for establishment and survival of the seedling. However, there are few studies on the critical mechanisms underlying radicle and then radicle length in wheat seedlings, despite its importance as a food crop throughout the world. In the present study, 196 wheat accessions from the Huanghuai Wheat Region were screened to measure radicle length under 4 hydroponic culture environments over 3 years. Different expression genes and proteins (DEGs/DEPs) between accessions with extremely long [Yunong 949 (WRL1), Zhongyu 9,302 (WRL2)] and short roots [Yunong 201 (WRS1), Beijing 841 (WRS2)] were identified in 12 sets of root tissue samples by RNA-seq and iTRAQ (Isobaric tags for relative and absolute quantification). Phenotypic results showed that the elongation zone was significantly longer in root accessions with long roots compared to the short-rooted accessions. A genome-wide association study (GWAS) identified four stable chromosomal regions significantly associated with radicle length, among which 1A, 4A, and 7A chromosomes regions explained 7.17% to12.93% of the phenotypic variation. The omics studies identified the expression patterns of 24 DEGs/DEPs changed at both the transcriptional and protein levels. These DEGs/DEPs were mainly involved in carbon fixation in photosynthetic organisms, photosynthesis and phenylpropanoid biosynthesis pathways. TraesCS1A02G104100 and TraesCS2B02G519100 were involved in the biosynthesis of tricin-lignins in cell walls and may affect the extension of cell walls in the radicle elongation zone. A combination of GWAS and RNA-seq analyses revealed 19 DEGs with expression changes in the four accessions, among which, TraesCS1A02G422700 (a cysteine-rich receptor-like protein kinase 6, CRK6) also showed upregulation in the comparison group by RNA-seq, iTRAQ, and qRT-PCR. BSMV-mediated gene silencing also showed that TaCRK6 improves root development in wheat. Our data suggest that TaCRK6 is a candidate gene regulating radicle length in wheat.
Collapse
Affiliation(s)
- Fengdan Xu
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Research Institute of Plant Nutrition and Resources and Environments, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shulin Chen
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Sumei Zhou
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Chao Yue
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiwen Yang
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiang Zhang
- Research Institute of Plant Nutrition and Resources and Environments, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Kehui Zhan
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Dexian He
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Lu D, Zhang L, Wu Y, Pan Q, Zhang Y, Liu P. An integrated metabolome and transcriptome approach reveals the fruit flavor and regulatory network during jujube fruit development. FRONTIERS IN PLANT SCIENCE 2022; 13:952698. [PMID: 36212371 PMCID: PMC9537746 DOI: 10.3389/fpls.2022.952698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The fruit flavor is a key economic value attribute of jujube. Here we compared metabolomes and transcriptomes of "Mazao" (ST) and "Ping'anhuluzao" (HK) with unique flavors during fruit development. We identified 437 differential metabolites, mainly sugars, acids, and lipids. Fructose, glucose, mannose and citric acid, and malic acid are the determinants of sugar and acid taste of jujube fruit. Based on the transcriptome, 16,245 differentially expressed genes (DEGs) were identified, which were involved in "glucosyltransferase activity," "lipid binding," and "anion transmembrane transporter activity" processes. Both transcriptome and metabolome showed that developmental stages 2 and 3 were important transition periods for jujube maturation. Based on WGCNA and gene-metabolite correlation analysis, modules, and transcription factors (ZjHAP3, ZjTCP14, and ZjMYB78) highly related to sugar and acid were identified. Our results provide new insights into the mechanism of sugar and acid accumulation in jujube fruit and provide clues for the development of jujube with a unique flavor.
Collapse
Affiliation(s)
- Dongye Lu
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yang Wu
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Qinghua Pan
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Yuping Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Lu C, Tian Y, Hou X, Hou X, Jia Z, Li M, Hao M, Jiang Y, Wang Q, Pu Q, Yin Z, Li Y, Liu B, Kang X, Zhang G, Ding X, Liu Y. Multiple forms of vitamin B 6 regulate salt tolerance by balancing ROS and abscisic acid levels in maize root. STRESS BIOLOGY 2022; 2:39. [PMID: 37676445 PMCID: PMC10441934 DOI: 10.1007/s44154-022-00061-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 09/08/2023]
Abstract
Salt stress causes osmotic stress, ion toxicity and oxidative stress, inducing the accumulation of abscisic acid (ABA) and excessive reactive oxygen species (ROS) production, which further damage cell structure and inhibit the development of roots in plants. Previous study showed that vitamin B6 (VB6) plays a role in plant responses to salt stress, however, the regulatory relationship between ROS, VB6 and ABA under salt stress remains unclear yet in plants. In our study, we found that salt stress-induced ABA accumulation requires ROS production, in addition, salt stress also promoted VB6 (including pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and pyridoxal 5'-phosphate (PLP)) accumulation, which involved in ROS scavenging and ABA biosynthesis. Furthermore, VB6-deficient maize mutant small kernel2 (smk2) heterozygous is more susceptible to salt stress, and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress, interestingly, which can be restored by exogenous PN and PLP, respectively. According to these results, we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress, respectively, it laid a foundation for VB6 to be better applied in crop salt resistance than ABA.
Collapse
Affiliation(s)
- Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xuanxuan Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xin Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zichang Jia
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Min Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingxia Hao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qingbin Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Shandong Pengbo Biotechnology Co., LTD, Taian, 271018, China
| | - Qiong Pu
- Shandong Agriculture and Engineering University, Jinan, 250000, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, Shandong, China
| | - Xiaojing Kang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Guangyi Zhang
- Shandong Xinyuan Seed Industry Co., LTD, Taian, 271000, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Yinggao Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
19
|
Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. Int J Mol Sci 2022; 23:ijms23169310. [PMID: 36012575 PMCID: PMC9409098 DOI: 10.3390/ijms23169310] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Roots play important roles in determining crop development under drought. Under such conditions, the molecular mechanisms underlying key responses and interactions with the rhizosphere in crop roots remain limited compared with model species such as Arabidopsis. This article reviews the molecular mechanisms of the morphological, physiological, and metabolic responses to drought stress in typical crop roots, along with the regulation of soil nutrients and microorganisms to these responses. Firstly, we summarize how root growth and architecture are regulated by essential genes and metabolic processes under water-deficit conditions. Secondly, the functions of the fundamental plant hormone, abscisic acid, on regulating crop root growth under drought are highlighted. Moreover, we discuss how the responses of crop roots to altered water status are impacted by nutrients, and vice versa. Finally, this article explores current knowledge of the feedback between plant and soil microbial responses to drought and the manipulation of rhizosphere microbes for improving the resilience of crop production to water stress. Through these insights, we conclude that to gain a more comprehensive understanding of drought adaption mechanisms in crop roots, future studies should have a network view, linking key responses of roots with environmental factors.
Collapse
|
20
|
Lin L, Wang J, Wang Q, Ji M, Hong S, Shang L, Zhang G, Zhao Y, Ma Q, Gu C. Transcriptome Approach Reveals the Response Mechanism of Heimia myrtifolia (Lythraceae, Myrtales) to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:877913. [PMID: 35874015 PMCID: PMC9305661 DOI: 10.3389/fpls.2022.877913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major environmental condition that inhibits the development and cultivation of Heimia myrtifolia. The molecular processes of drought resistance in H. myrtifolia remain unknown, which has limited its application. In our study, transcriptome analyzes were compared across three treatment groups (CK, T1, and T2), to investigate the molecular mechanism of drought resistance. Plant leaves wilted and drooped as the duration of drought stress increased. The relative water content of the leaves declined dramatically, and relative electrolyte leakage rose progressively. Using an RNA-Seq approach, a total of 62,015 unigenes with an average length of 1730 bp were found, with 86.61% of them annotated to seven databases, and 14,272 differentially expressed genes (DEGs) were identified in drought stress. GO and KEGG enrichment analyzes of the DEGs revealed significantly enriched KEGG pathways, including photosynthesis, photosynthetic antenna proteins, plant hormone signal transduction, glutathione metabolism, and ascorbate and aldarate metabolism. Abscisic acid signal transduction was the most prevalent in the plant hormone signal transduction pathway, and other plant hormone signal transductions were also involved in the drought stress response. The transcription factors (including MYB, NAC, WRKY, and bHLH) and related differential genes on significantly enriched pathways all played important roles in the drought process, such as photosynthesis-related genes and antioxidant enzyme genes. In conclusion, this study will provide several genetic resources for further investigation of the molecular processes that will be beneficial to H. myrtifolia cultivation and breeding.
Collapse
Affiliation(s)
- Lin Lin
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jie Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Qun Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Mengcheng Ji
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Sidan Hong
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Linxue Shang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Cuihua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
21
|
Kim G, Ryu H, Sung J. Hormonal Crosstalk and Root Suberization for Drought Stress Tolerance in Plants. Biomolecules 2022; 12:811. [PMID: 35740936 PMCID: PMC9220869 DOI: 10.3390/biom12060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Higher plants in terrestrial environments face to numerous unpredictable environmental challenges, which lead to a significant impact on plant growth and development. In particular, the climate change caused by global warming is causing drought stress and rapid desertification in agricultural fields. Many scientific advances have been achieved to solve these problems for agricultural and plant ecosystems. In this review, we handled recent advances in our understanding of the physiological changes and strategies for plants undergoing drought stress. The activation of ABA synthesis and signaling pathways by drought stress regulates root development via the formation of complicated signaling networks with auxin, cytokinin, and ethylene signaling. An abundance of intrinsic soluble sugar, especially trehalose-6-phosphate, promotes the SnRK-mediated stress-resistance mechanism. Suberin deposition in the root endodermis is a physical barrier that regulates the influx/efflux of water and nutrients through complex hormonal and metabolic networks, and suberization is essential for drought-stressed plants to survive. It is highly anticipated that this work will contribute to the reproduction and productivity improvements of drought-resistant crops in the future.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheong-ju 28644, Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheong-ju 28644, Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| |
Collapse
|
22
|
Hickey K, Wood M, Sexton T, Sahin Y, Nazarov T, Fisher J, Sanguinet KA, Cousins A, Kirchhoff H, Smertenko A. Drought Tolerance Strategies and Autophagy in Resilient Wheat Genotypes. Cells 2022; 11:1765. [PMID: 35681460 PMCID: PMC9179661 DOI: 10.3390/cells11111765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/18/2023] Open
Abstract
Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.
Collapse
Affiliation(s)
- Kahleen Hickey
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Magnus Wood
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Tom Sexton
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Yunus Sahin
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Jessica Fisher
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164, USA;
| | - Asaph Cousins
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| |
Collapse
|
23
|
El-Yazied AA, Ibrahim MFM, Ibrahim MAR, Nasef IN, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Alaklabi A, Dessoky ES, Alabdallah NM, Omar MMA, Ibrahim MTS, Metwally AA, Hassan KM, Shehata SA. Melatonin Mitigates Drought Induced Oxidative Stress in Potato Plants through Modulation of Osmolytes, Sugar Metabolism, ABA Homeostasis and Antioxidant Enzymes. PLANTS (BASEL, SWITZERLAND) 2022; 11:1151. [PMID: 35567152 PMCID: PMC9104148 DOI: 10.3390/plants11091151] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/05/2023]
Abstract
The effect of melatonin (MT) on potato plants under drought stress is still unclear in the available literature. Here, we studied the effect of MT as a foliar application at 0, 0.05, 0.1, and 0.2 mM on potato plants grown under well-watered and drought stressed conditions during the most critical period of early tuberization stage. The results indicated that under drought stress conditions, exogenous MT significantly (p ≤ 0.05) improved shoot fresh weight, shoot dry weight, chlorophyll (Chl; a, b and a + b), leaf relative water content (RWC), free amino acids (FAA), non-reducing sugars, total soluble sugars, cell membrane stability index, superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX) compared to the untreated plants. Meanwhile, carotenoids, proline, methylglyoxal (MG), H2O2, lipid peroxidation (malondialdehyde; MDA) and abscisic acid (ABA) were significantly decreased compared to the untreated plants. These responses may reveal the protective role of MT against drought induced carbonyl/oxidative stress and enhancing the antioxidative defense systems. Furthermore, tuber yield was differentially responded to MT treatments under well-watered and drought stressed conditions. Since, applied-MT led to an obvious decrease in tuber yield under well-watered conditions. In contrast, under drought conditions, tuber yield was substantially increased by MT-treatments up to 0.1 mM. These results may imply that under water deficiency, MT can regulate the tuberization process in potato plants by hindering ABA transport from the root to shoot system, on the one hand, and by increasing the non-reducing sugars on the other hand.
Collapse
Affiliation(s)
- Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Mervat A. R. Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Ibrahim N. Nasef
- Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, Tabuk University, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, Tabuk University, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Fahad Mohammed Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| | - Eldessoky S. Dessoky
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohamed M. A. Omar
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Mariam T. S. Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Amr A. Metwally
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Karim. M. Hassan
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Said A. Shehata
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
24
|
Liu Z, Guo C, Wu R, Wang J, Zhou Y, Yu X, Zhang Y, Zhao Z, Liu H, Sun S, Hu M, Qin A, Liu Y, Yang J, Bawa G, Sun X. Identification of the Regulators of Epidermis Development under Drought- and Salt-Stressed Conditions by Single-Cell RNA-Seq. Int J Mol Sci 2022; 23:ijms23052759. [PMID: 35269904 PMCID: PMC8911155 DOI: 10.3390/ijms23052759] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
As sessile organisms, plants constantly face challenges from the external environment. In order to meet these challenges and survive, plants have evolved a set of sophisticated adaptation strategies, including changes in leaf morphology and epidermal cell development. These developmental patterns are regulated by both light and hormonal signaling pathways. However, our mechanistic understanding of the role of these signaling pathways in regulating plant response to environmental stress is still very limited. By applying single-cell RNA-Seq, we determined the expression pattern of PHYTOCHROME INTERACTING FACTOR (PIF) 1, PIF3, PIF4, and PIF5 genes in leaf epidermal pavement cells (PCs) and guard cells (GCs). PCs and GCs are very sensitive to environmental stress, and our previous research suggests that these PIFs may be involved in regulating the development of PCs, GCs, and leaf morphology under environmental stress. Growth analysis showed that pif1/3/4/5 quadruple mutant maintained tolerance to drought and salt stress, and the length to width ratio of leaves and petiole length under normal growth conditions were similar to those of wild-type (WT) plants under drought and salt treatment. Analysis of the developmental patterns of PCs and GCs, and whole leaf morphology, further confirmed that these PIFs may be involved in mediating the development of epidermal cells under drought and salt stress, likely by regulating the expression of MUTE and TOO MANY MOUTHS (TMM) genes. These results provide new insights into the molecular mechanism of plant adaptation to adverse growth environments.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaole Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zihao Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Susu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengke Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Aizhi Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yumeng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jincheng Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - George Bawa
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (Z.L.); (C.G.); (R.W.); (J.W.); (Y.Z.); (X.Y.); (Y.Z.); (Z.Z.); (H.L.); (S.S.); (M.H.); (A.Q.); (Y.L.); (J.Y.); (G.B.)
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Correspondence: ; Tel.: +86-135-2401-6285
| |
Collapse
|
25
|
Zhao X, Huang LJ, Sun XF, Zhao LL, Wang PC. Transcriptomic and Metabolomic Analyses Reveal Key Metabolites, Pathways and Candidate Genes in Sophora davidii (Franch.) Skeels Seedlings Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:785702. [PMID: 35310664 PMCID: PMC8924449 DOI: 10.3389/fpls.2022.785702] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/07/2022] [Indexed: 05/26/2023]
Abstract
Soil aridification and desertification are particularly prominent in China's karst areas, severely limiting crop yields and vegetation restoration. Therefore, it is very important to identify naturally drought-tolerant plant species. Sophora davidii (Franch.) Skeels is resistant to drought and soil infertility, is deeply rooted and is an excellent plant material for soil and water conservation. We studied the transcriptomic and metabolomic changes in S. davidii in response to drought stress (CK, control; LD, mild drought stress; MD, moderate drought stress; and SD, severe drought stress). Sophora davidii grew normally under LD and MD stress but was inhibited under SD stress; the malondialdehyde (MDA), hydrogen peroxide (H2O2), soluble sugar, proline, chlorophyll a, chlorophyll b and carotenoid contents and ascorbate peroxidase (APX) activity significantly increased, while the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and soluble protein content significantly decreased. In the LD/CK, MD/CK and SD/CK comparison groups, there were 318, 734 and 1779 DEGs, respectively, and 100, 168 and 281 differentially accumulated metabolites, respectively. Combined analysis of the transcriptomic and metabolomic data revealed the metabolic regulation of S. davidii in response to drought stress. First, key candidate genes such as PRR7, PRR5, GI, ELF3, PsbQ, PsaK, INV, AMY, E2.4.1.13, E3.2.1.2, NCED, PP2C, PYL, ABF, WRKY33, P5CS, PRODH, AOC3, HPD, GPX, GST, CAT and SOD1 may govern the drought resistance of S. davidii. Second, three metabolites (oxidised glutathione, abscisic acid and phenylalanine) were found to be related to drought tolerance. Third, several key candidate genes and metabolites involved in 10 metabolic pathways were identified, indicating that these metabolic pathways play an important role in the response to drought in S. davidii and possibly other plant species.
Collapse
Affiliation(s)
- Xin Zhao
- College of Animal Science, Guizhou University, Guiyang, China
| | - Li-Juan Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xiao-Fu Sun
- College of Animal Science, Guizhou University, Guiyang, China
| | - Li-Li Zhao
- College of Animal Science, Guizhou University, Guiyang, China
| | | |
Collapse
|
26
|
Rane J, Singh AK, Tiwari M, Prasad PVV, Jagadish SVK. Effective Use of Water in Crop Plants in Dryland Agriculture: Implications of Reactive Oxygen Species and Antioxidative System. FRONTIERS IN PLANT SCIENCE 2022; 12:778270. [PMID: 35082809 PMCID: PMC8784697 DOI: 10.3389/fpls.2021.778270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 05/03/2023]
Abstract
Under dryland conditions, annual and perennial food crops are exposed to dry spells, severely affecting crop productivity by limiting available soil moisture at critical and sensitive growth stages. Climate variability continues to be the primary cause of uncertainty, often making timing rather than quantity of precipitation the foremost concern. Therefore, mitigation and management of stress experienced by plants due to limited soil moisture are crucial for sustaining crop productivity under current and future harsher environments. Hence, the information generated so far through multiple investigations on mechanisms inducing drought tolerance in plants needs to be translated into tools and techniques for stress management. Scope to accomplish this exists in the inherent capacity of plants to manage stress at the cellular level through various mechanisms. One of the most extensively studied but not conclusive physiological phenomena is the balance between reactive oxygen species (ROS) production and scavenging them through an antioxidative system (AOS), which determines a wide range of damage to the cell, organ, and the plant. In this context, this review aims to examine the possible roles of the ROS-AOS balance in enhancing the effective use of water (EUW) by crops under water-limited dryland conditions. We refer to EUW as biomass produced by plants with available water under soil moisture stress rather than per unit of water (WUE). We hypothesize that EUW can be enhanced by an appropriate balance between water-saving and growth promotion at the whole-plant level during stress and post-stress recovery periods. The ROS-AOS interactions play a crucial role in water-saving mechanisms and biomass accumulation, resulting from growth processes that include cell division, cell expansion, photosynthesis, and translocation of assimilates. Hence, appropriate strategies for manipulating these processes through genetic improvement and/or application of exogenous compounds can provide practical solutions for improving EUW through the optimized ROS-AOS balance under water-limited dryland conditions. This review deals with the role of ROS-AOS in two major EUW determining processes, namely water use and plant growth. It describes implications of the ROS level or content, ROS-producing, and ROS-scavenging enzymes based on plant water status, which ultimately affects photosynthetic efficiency and growth of plants.
Collapse
Affiliation(s)
- Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
27
|
Song T, Das D, Ye NH, Wang GQ, Zhu FY, Chen MX, Yang F, Zhang JH. Comparative transcriptome analysis of coleorhiza development in japonica and Indica rice. BMC PLANT BIOLOGY 2021; 21:514. [PMID: 34736393 PMCID: PMC8567703 DOI: 10.1186/s12870-021-03276-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/18/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Coleorhiza hairs, are sheath-like outgrowth organs in the seeds of Poaceae family that look like root hair but develop from the coleorhiza epidermal cells during seed imbibition. The major role of coleorhiza hair in seed germination involves facilitating water uptake and nutrient supply for seed germination. However, molecular basis of coleorhiza hair development and underlying genes and metabolic pathways during seed germination are largely unknown and need to be established. RESULTS In this study, a comparative transcriptome analysis of coleorhiza hairs from japonica and indica rice suggested that DEGs in embryo samples from seeds with embryo in air (EIA) as compared to embryo from seeds completely covered by water (CBW) were enriched in water deprivation, abscisic acid (ABA) and auxin metabolism, carbohydrate catabolism and phosphorus metabolism in coleorhiza hairs in both cultivars. Up-regulation of key metabolic genes in ABA, auxin and dehydrin and aquaporin genes may help maintain the basic development of coleorhiza hair in japonica and indica in EIA samples during both early and late stages. Additionally, DEGs involved in glutathione metabolism and carbon metabolism are upregulated while DEGs involved in amino acid and nucleotide sugar metabolism are downregulated in EIA suggesting induction of oxidative stress-alleviating genes and less priority to primary metabolism. CONCLUSIONS Taken together, results in this study could provide novel aspects about the molecular signaling that could be involved in coleorhiza hair development in different types of rice cultivars during seed germination and may give some hints for breeders to improve seed germination efficiency under moderate drought conditions.
Collapse
Affiliation(s)
- Tao Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Debatosh Das
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Guan-Qun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| | - Jian-Hua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
28
|
Siddiqui MN, Léon J, Naz AA, Ballvora A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1007-1019. [PMID: 33096558 PMCID: PMC7904151 DOI: 10.1093/jxb/eraa487] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Cereals are important crops worldwide that help meet food demands and nutritional needs. In recent years, cereal production has been challenged globally by frequent droughts and hot spells. A plant's root is the most relevant organ for the plant adaptation to stress conditions, playing pivotal roles in anchorage and the acquisition of soil-based resources. Thus, dissecting root system variations and trait selection for enhancing yield and sustainability under drought stress conditions should aid in future global food security. This review highlights the variations in root system attributes and their interplay with shoot architecture features to face water scarcity and maintain thus yield of major cereal crops. Further, we compile the root-related drought responsive quantitative trait loci/genes in cereal crops including their interspecies relationships using microsynteny to facilitate comparative genomic analyses. We then discuss the potential of an integrated strategy combining genomics and phenomics at genetic and epigenetic levels to explore natural genetic diversity as a basis for knowledge-based genome editing. Finally, we present an outline to establish innovative breeding leads for the rapid and optimized selection of root traits necessary to develop resilient crop varieties.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Liu W, Jiang Y, Jin Y, Wang C, Yang J, Qi H. Drought-induced ABA, H 2O 2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems. BMC PLANT BIOLOGY 2021; 21:83. [PMID: 33557758 PMCID: PMC7871556 DOI: 10.1186/s12870-021-02869-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/01/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cinnamyl alcohol dehydrogenase (CAD) is an important enzyme functions at the last step in lignin monomer synthesis pathway. Our previous work found that drought induced the expressions of CmCAD genes and promoted lignin biosynthesis in melon stems. RESULTS Here we studied the effects of abscisic acid (ABA), hydrogen peroxide (H2O2) and jasmonic acid (JA) to CmCADs under drought stress. Results discovered that drought-induced ABA, H2O2 and MeJA were prevented efficiently from increasing in melon stems pretreated with fluridone (Flu, ABA inhibitor), imidazole (Imi, H2O2 scavenger) and ibuprofen (Ibu, JA inhibitor). ABA and H2O2 are involved in the positive regulations to CmCAD1, 2, 3, and 5, and JA is involved in the positive regulations to CmCAD2, 3, and 5. According to the expression profiles of lignin biosynthesis genes, ABA, H2O2 and MeJA all showed positive regulations to CmPAL2-like, CmPOD1-like, CmPOD2-like and CmLAC4-like. In addition, positive regulations were also observed with ABA to CmPAL1-like, CmC4H and CmCOMT, with H2O2 to CmPAL1-like, CmC4H, CmCCR and CmLAC17-like, and with JA to CmCCR, CmCOMT, CmLAC11-like and CmLAC17-like. As expected, the signal molecules positively regulated CAD activity and lignin biosynthesis under drought stress. Promoter::GUS assays not only further confirmed the regulations of the signal molecules to CmCAD1~3, but also revealed the important role of CmCAD3 in lignin synthesis due to the strongest staining of CmCAD3 promoter::GUS. CONCLUSIONS CmCADs but CmCAD4 are positively regulated by ABA, H2O2 and JA under drought stress and participate in lignin synthesis.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, People's Republic of China
| | - Yun Jiang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
| | - Yazhong Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Chenghui Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Juan Yang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
30
|
Zhang Y, Zhou J, Wei F, Song T, Yu Y, Yu M, Fan Q, Yang Y, Xue G, Zhang X. Nucleoredoxin Gene TaNRX1 Positively Regulates Drought Tolerance in Transgenic Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:756338. [PMID: 34868149 PMCID: PMC8632643 DOI: 10.3389/fpls.2021.756338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
Drought is the main abiotic stress factor limiting the growth and yield of wheat (Triticum aestivum L.). Therefore, improving wheat tolerance to drought stress is essential for maintaining yield. Previous studies have reported on the important role of TaNRX1 in conferring drought stress tolerance. Therefore, to elucidate the regulation mechanism by which TaNRX1 confers drought resistance in wheat, we generated TaNRX1 overexpression (OE) and RNA interference (RNAi) wheat lines. The results showed that the tolerance of the OE lines to drought stress were significantly enhanced. The survival rate, leaf chlorophyll, proline, soluble sugar content, and activities of the antioxidant enzymes (catalase, superoxide dismutase, and peroxidase) of the OE lines were higher than those of the wild type (WT); however, the relative electrical conductivity and malondialdehyde, hydrogen peroxide, and superoxide anion levels of the OE lines were lower than those of the WT; the RNAi lines showed the opposite results. RNA-seq results showed that the common differentially expressed genes of TaNRX1 OE and RNAi lines, before and after drought stress, were mainly distributed in the plant-pathogen interaction, plant hormone signal transduction, phenylpropane biosynthesis, starch and sucrose metabolism, and carbon metabolism pathways and were related to the transcription factors, including WRKY, MYB, and bHLH families. This study suggests that TaNRX1 positively regulates drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Yunrui Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jianfei Zhou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Fan Wei
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yang Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Ming Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qiru Fan
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yanning Yang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Gang Xue
- College of Tobacco, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Gang Xue,
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
- Xiaoke Zhang,
| |
Collapse
|
31
|
Rativa AGS, Junior ATDA, Friedrich DDS, Gastmann R, Lamb TI, Silva ADS, Adamski JM, Fett JP, Ricachenevsky FK, Sperotto RA. Root responses of contrasting rice genotypes to low temperature stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153307. [PMID: 33142180 DOI: 10.1016/j.jplph.2020.153307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Rice (Oryza sativa L.) ssp. indica is the most cultivated species in the South of Brazil. However, these plants face low temperature stress from September to November, which is the period of early sowing, affecting plant development during the initial stages of growth, and reducing rice productivity. This study aimed to characterize the root response to low temperature stress during the early vegetative stage of two rice genotypes contrasting in their cold tolerance (CT, cold-tolerant; and CS, cold-sensitive). Root dry weight and length, as well as the number of root hairs, were higher in CT than CS when exposed to cold treatment. Histochemical analyses indicated that roots of CS genotype present higher levels of lipid peroxidation and H2O2 accumulation, along with lower levels of plasma membrane integrity than CT under low temperature stress. RNAseq analyses revealed that the contrasting genotypes present completely different molecular responses to cold stress. The number of over-represented functional categories was lower in CT than CS under cold condition, suggesting that CS genotype is more impacted by low temperature stress than CT. Several genes might contribute to rice cold tolerance, including the ones related with cell wall remodeling, cytoskeleton and growth, signaling, antioxidant system, lipid metabolism, and stress response. On the other hand, high expression of the genes SRC2 (defense), root architecture associated 1 (growth), ACC oxidase, ethylene-responsive transcription factor, and cytokinin-O-glucosyltransferase 2 (hormone-related) seems to be related with cold sensibility. Since these two genotypes have a similar genetic background (sister lines), the differentially expressed genes found here can be considered candidate genes for cold tolerance and could be used in future biotechnological approaches aiming to increase rice tolerance to low temperature.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Gastmann
- Biological Sciences and Health Center, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Thainá Inês Lamb
- Biological Sciences and Health Center, University of Taquari Valley - Univates, Lajeado, Brazil
| | | | | | - Janette Palma Fett
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Klein Ricachenevsky
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raul Antonio Sperotto
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil; Biological Sciences and Health Center, University of Taquari Valley - Univates, Lajeado, Brazil.
| |
Collapse
|
32
|
Sun L, Liu LP, Wang YZ, Yang L, Wang MJ, Liu JX. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. PLANTA 2020; 252:95. [PMID: 33130990 DOI: 10.1007/s00425-020-03502-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The Arabidopsis transcription factor NAC103 is up-regulated and its encoding protein is stabilized by ABA treatment, which positively regulates several ABA-responsive downstream genes during seed germination and seedlings growth. The Arabidopsis transcription factor NAC103 was previously found to be involved in endoplasmic reticulum (ER) stress and DNA damage responses. In this study, we report the new biological function of NAC103 in abscisic acid (ABA) response during seed germination and seedling growth in Arabidopsis. The expression of NAC103 was up-regulated and the NAC103 protein was stabilized by ABA treatment. Both the loss-of-function mutants of NAC103, created by targeted gene-editing, and the over-expression plants of NAC103 have no obvious germination-related phenotype under normal growth conditions. However, under exogenous ABA treatment conditions, the NAC103 mutants were less sensitive to ABA during seed germination; in contrast, the NAC103 over-expression plants were more sensitive to ABA during seed germination and young seedling growth. Further, NAC103 regulated several ABA-responsive downstream genes including MYB78, MYB3, PLP3, AMY1, and RGL2. These results demonstrate that NAC103 positively regulates ABA response in Arabidopsis.
Collapse
Affiliation(s)
- Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Li-Ping Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ya-Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Rajagopalan N, Lu Y, Burton IW, Monteil-Rivera F, Halasz A, Reimer E, Tweidt R, Brûlé-Babel A, Kutcher HR, You FM, Cloutier S, Cuperlovic-Culf M, Hiebert CW, McCallum BD, Loewen MC. A phenylpropanoid diglyceride associates with the leaf rust resistance Lr34res gene in wheat. PHYTOCHEMISTRY 2020; 178:112456. [PMID: 32692663 DOI: 10.1016/j.phytochem.2020.112456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The gene Lr34res is one of the most long-lasting sources of quantitative fungal resistance in wheat. It is shown to be effective against leaf, stem, and stripe rusts, as well as powdery mildew and spot blotch. Recent biochemical characterizations of the encoded ABC transporter have outlined a number of allocrites, including phospholipids and abscisic acid, consistent with the established general promiscuity of ABC transporters, but ultimately leaving its mechanism of rust resistance unclear. Working with flag leaves of Triticum aestivum L. variety 'Thatcher' (Tc) and a near-isogenic line of 'Thatcher' into which the Lr34res allele was introgressed (Tc+Lr34res; RL6058), a comparative semi-targeted metabolomics analysis of flavonoid-rich extracts revealed virtually identical profiles with the exception of one metabolite accumulating in Tc+Lr34res, which was not present at comparable levels in Tc. Structural characterization of the purified metabolite revealed a phenylpropanoid diglyceride structure, 1-O-p-coumaroyl-3-O-feruloylglycerol (CFG). Additional profiling of CFG across a collection of near-isogenic lines and representative Lr34 haplotypes highlighted a broad association between the presence of Lr34res and elevated accumulations of CFG. Depletion of CFG upon infection, juxtaposed to its relatively lower anti-fungal activity, suggests CFG may serve as a storage form of the more potent anti-microbial hydroxycinnamic acids that are accessed during defense responses. Altogether these findings suggest a role for the encoded LR34res ABC transporter in modifying the accumulation of CFG, leading to increased accumulation of anti-fungal metabolites, essentially priming the wheat plant for defense.
Collapse
Affiliation(s)
- Nandhakishore Rajagopalan
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yuping Lu
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Ian W Burton
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Fanny Monteil-Rivera
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Annamaria Halasz
- National Research Council of Canada, Energy Mining and Environment Research Center, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Elsa Reimer
- Agriculture and Agri-Food Canada, Morden Research and Development Center, 101 Route 100, Unit 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Rebecca Tweidt
- Department of Plant Sciences and the Crop Development Center, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Anita Brûlé-Babel
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd. Winnipeg, MB, R3T 2N2, Canada
| | - Hadley R Kutcher
- Department of Plant Sciences and the Crop Development Center, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Frank M You
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Miroslava Cuperlovic-Culf
- National Research Council of Canada, Digital Technologies Research Center, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Colin W Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Center, 101 Route 100, Unit 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Brent D McCallum
- Agriculture and Agri-Food Canada, Morden Research and Development Center, 101 Route 100, Unit 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Michele C Loewen
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 100 Sussex Drive, Ottawa, ON, K1A 5A2, Canada.
| |
Collapse
|
34
|
Gene co-expression network analysis to identify critical modules and candidate genes of drought-resistance in wheat. PLoS One 2020; 15:e0236186. [PMID: 32866164 PMCID: PMC7458298 DOI: 10.1371/journal.pone.0236186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
AIM To establish a gene co-expression network for identifying principal modules and hub genes that are associated with drought resistance mechanisms, analyzing their mechanisms, and exploring candidate genes. METHODS AND FINDINGS 42 data sets including PRJNA380841 and PRJNA369686 were used to construct the co-expression network through weighted gene co-expression network analysis (WGCNA). A total of 1,896,897,901 (284.30 Gb) clean reads and 35,021 differentially expressed genes (DEGs) were obtained from 42 samples. Functional enrichment analysis indicated that photosynthesis, DNA replication, glycolysis/gluconeogenesis, starch and sucrose metabolism, arginine and proline metabolism, and cell cycle were significantly influenced by drought stress. Furthermore, the DEGs with similar expression patterns, detected by K-means clustering, were grouped into 29 clusters. Genes involved in the modules, such as dark turquoise, yellow, and brown, were found to be appreciably linked with drought resistance. Twelve central, greatly correlated genes in stage-specific modules were subsequently confirmed and validated at the transcription levels, including TraesCS7D01G417600.1 (PP2C), TraesCS5B01G565300.1 (ERF), TraesCS4A01G068200.1 (HSP), TraesCS2D01G033200.1 (HSP90), TraesCS6B01G425300.1 (RBD), TraesCS7A01G499200.1 (P450), TraesCS4A01G118400.1 (MYB), TraesCS2B01G415500.1 (STK), TraesCS1A01G129300.1 (MYB), TraesCS2D01G326900.1 (ALDH), TraesCS3D01G227400.1 (WRKY), and TraesCS3B01G144800.1 (GT). CONCLUSIONS Analyzing the response of wheat to drought stress during different growth stages, we have detected three modules and 12 hub genes that are associated with drought resistance mechanisms, and five of those genes are newly identified for drought resistance. The references provided by these modules will promote the understanding of the drought-resistance mechanism. In addition, the candidate genes can be used as a basis of transgenic or molecular marker-assisted selection for improving the drought resistance and increasing the yields of wheat.
Collapse
|
35
|
Li B, Feng Y, Zong Y, Zhang D, Hao X, Li P. Elevated CO 2-induced changes in photosynthesis, antioxidant enzymes and signal transduction enzyme of soybean under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:105-114. [PMID: 32535322 DOI: 10.1016/j.plaphy.2020.05.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Rising atmospheric [CO2] influences plant growth, development, productivity and stress responses. Soybean is a major oil crop. At present, it is unclear how elevated [CO2] affects the physiological and biochemical pathways of soybean under drought stress. In this study, changes in the photosynthetic capacity, photosynthetic pigment and antioxidant level were evaluated in soybean at flowering stages under different [CO2] (400 μmol mol-1 and 600 μmol mol-1) and water level (the relative water content of the soil was 75-85% soil capacity, and the relative water content of the soil was 35-45% soil capacity under drought stress). Changes in levels of osmolytes, hormones and signal transduction enzymes were also determined. The results showed that under drought stress, increasing [CO2] significantly reduced leaf transpiration rate (E), net photosynthetic rate (PN) and chlorophyll b content. Elevated [CO2] significantly decreased the content of malondialdehyde (MDA) and proline (PRO), while significantly increased superoxide dismutase (SOD) and abscisic acid (ABA) under drought stress. Elevated [CO2] significantly increased the transcript and protein levels of calcium-dependent protein kinase (CDPK), and Glutathione S- transferase (GST). The content of HSP-70 and the corresponding gene expression level were significantly reduced by elevated [CO2], irrespective of water treatments. Taken together, these results suggest that elevated [CO2] does not alleviate the negative impacts of drought stress on photosynthesis. ABA, CDPK and GST may play an important role in elevated CO2-induced drought stress responses.
Collapse
Affiliation(s)
- Bingyan Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanan Feng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
36
|
Benny J, Marchese A, Giovino A, Marra FP, Perrone A, Caruso T, Martinelli F. Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1059. [PMID: 32825043 PMCID: PMC7570245 DOI: 10.3390/plants9091059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/29/2022]
Abstract
The present study aimed at identifying and mapping key genes expressed in root tissues involved in drought and salinity tolerance/resistance conserved among different fruit tree species. Twenty-six RNA-Seq samples were analyzed from six published studies in five plant species (Olea europaea, Vitis riparia Michx, Prunus mahaleb, Prunus persica, Phoenix dactylifera). This meta-analysis used a bioinformatic pipeline identifying 750 genes that were commonly modulated in three salinity studies and 683 genes that were commonly regulated among three drought studies, implying their conserved role in resistance/tolerance/response to these environmental stresses. A comparison was done on the genes that were in common among both salinity and drought resulted in 82 genes, of which 39 were commonly regulated with the same trend of expression (23 were upregulated and 16 were downregulated). Gene set enrichment and pathway analysis pointed out that pathways encoding regulation of defense response, drug transmembrane transport, and metal ion binding are general key molecular responses to these two abiotic stress responses. Furthermore, hormonal molecular crosstalk plays an essential role in the fine-tuning of plant responses to drought and salinity. Drought and salinity induced a different molecular "hormonal fingerprint". Dehydration stress specifically enhanced multiple genes responsive to abscisic acid, gibberellin, brassinosteroids, and the ethylene-activated signaling pathway. Salt stress mostly repressed genes encoding for key enzymes in signaling proteins in auxin-, gibberellin-(gibberellin 2 oxidase 8), and abscisic acid-related pathways (aldehyde oxidase 4, abscisic acid-responsive element-binding protein 3). Abiotic stress-related genes were mapped into the chromosome to identify molecular markers usable for the improvement of these complex quantitative traits. This meta-analysis identified genes that serve as potential targets to develop cultivars with enhanced drought and salinity resistance and/or tolerance across different fruit tree crops in a biotechnological sustainable way.
Collapse
Affiliation(s)
- Jubina Benny
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy; (J.B.); (T.C.)
| | - Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy; (J.B.); (T.C.)
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), 90011 Bagheria, Italy;
| | - Francesco Paolo Marra
- Department of Architecture (DARCH), University of Palermo, Viale delle Scienze—Ed. 8, 90128 Palermo, Italy;
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy; (J.B.); (T.C.)
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
37
|
Cheng H, Ma X, Jia S, Li M, Mao P. Transcriptomic analysis reveals the changes of energy production and AsA-GSH cycle in oat embryos during seed ageing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:40-52. [PMID: 32474385 DOI: 10.1016/j.plaphy.2020.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Deterioration during seed storage generally causes seed vigour declining. However, the mechanism of deterioration occurred still not clear. Seeds and embryos of oat (Avena sativa L.) were selected to analyze the relation of physiological and metabolic reactions with DEGs by using RNA-seq. Oat seed vigour declined during seeds aged 0 day (CK), 16 days (CD16) and 32 days (CD32). The changes of MDA and H2O2 contents, antioxidant enzymes activities of APX, DHAR, MDHAR and GR related with AsA-GSH cycle in embryos illustrated that seed vigour declined to the minimum at CD32. Transcriptomic analysis showed a total of 11335 and 8274 DEGs were identified at CD16 and CD32 compared with CK respectively, of which 4070 were overlapped. When seed vigour declined to the moderate level (CD16), the accumulation of H2O2 caused by the inhibition of complex I in ETC could be alleviated with AsA-GSH cycle. RNA-seq and qRT-PCR results both showed alternative oxidase in alternate respiratory pathway was upregulated which would maintain seed respiration. However, as seed vigour was at the lowest level (CD32), blocked ETC caused by down-regulation of complex III, including Ubiquinol-cytochrome C reductase complex 14kD subunit and Ubiquinol-cytochrome C reductase, UQCRX/QCR9 like, were more seriously and H2O2 scavenging was limited by the inactive AsA-GSH cycle. It could be suggested that the function of AsA-GSH would play a key role for regulating the physiological responses of ETC in embryos during seed ageing. These results would provide an insight into embryo for the transcriptomic information during oat seed ageing.
Collapse
Affiliation(s)
- Hang Cheng
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiqing Ma
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shangang Jia
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Manli Li
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Peisheng Mao
- Forage Seed Lab, China Agricultural University, Beijing, 100193, People's Republic of China; Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
38
|
Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK. PANOMICS meets germplasm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1507-1525. [PMID: 32163658 PMCID: PMC7292548 DOI: 10.1111/pbi.13372] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
Genotyping-by-sequencing has enabled approaches for genomic selection to improve yield, stress resistance and nutritional value. More and more resource studies are emerging providing 1000 and more genotypes and millions of SNPs for one species covering a hitherto inaccessible intraspecific genetic variation. The larger the databases are growing, the better statistical approaches for genomic selection will be available. However, there are clear limitations on the statistical but also on the biological part. Intraspecific genetic variation is able to explain a high proportion of the phenotypes, but a large part of phenotypic plasticity also stems from environmentally driven transcriptional, post-transcriptional, translational, post-translational, epigenetic and metabolic regulation. Moreover, regulation of the same gene can have different phenotypic outputs in different environments. Consequently, to explain and understand environment-dependent phenotypic plasticity based on the available genotype variation we have to integrate the analysis of further molecular levels reflecting the complete information flow from the gene to metabolism to phenotype. Interestingly, metabolomics platforms are already more cost-effective than NGS platforms and are decisive for the prediction of nutritional value or stress resistance. Here, we propose three fundamental pillars for future breeding strategies in the framework of Green Systems Biology: (i) combining genome selection with environment-dependent PANOMICS analysis and deep learning to improve prediction accuracy for marker-dependent trait performance; (ii) PANOMICS resolution at subtissue, cellular and subcellular level provides information about fundamental functions of selected markers; (iii) combining PANOMICS with genome editing and speed breeding tools to accelerate and enhance large-scale functional validation of trait-specific precision breeding.
Collapse
Affiliation(s)
- Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Anke Bellaire
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| |
Collapse
|
39
|
Derakhshani B, Ayalew H, Mishina K, Tanaka T, Kawahara Y, Jafary H, Oono Y. Comparative Analysis of Root Transcriptome Reveals Candidate Genes and Expression Divergence of Homoeologous Genes in Response to Water Stress in Wheat. PLANTS 2020; 9:plants9050596. [PMID: 32392904 PMCID: PMC7284651 DOI: 10.3390/plants9050596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
Crop cultivars with larger root systems have an increased ability to absorb water and nutrients under conditions of water deficit. To unravel the molecular mechanism of water-stress tolerance in wheat, we performed RNA-seq analysis on the two genotypes, Colotana 296-52 (Colotana) and Tincurrin, contrasting the root growth under polyethylene-glycol-induced water-stress treatment. Out of a total of 35,047 differentially expressed genes, 3692 were specifically upregulated in drought-tolerant Colotana under water stress. Transcription factors, pyrroline-5-carboxylate reductase and late-embryogenesis-abundant proteins were among upregulated genes in Colotana. Variant calling between Colotana and Tincurrin detected 15,207 SNPs and Indels, which may affect protein function and mediate the contrasting root length phenotype. Finally, the expression patterns of five triads in response to water, high-salinity, heat, and cold stresses were analyzed using qRT-PCR to see if there were differences in homoeologous gene expression in response to those conditions. The five examined triads showed variation in the contribution of homoeologous genes to water, high-salinity, heat, and cold stresses in the two genotypes. The variation of homoeologous gene expression in response to environmental stresses may enable plants to better cope with stresses in their natural environments.
Collapse
Affiliation(s)
- Behnam Derakhshani
- Department of Agronomy & Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
- Breeding Material Development Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Habtamu Ayalew
- Small Grains Breeding Laboratory, Noble Research Institute LLC, Ardmore, OK 73401, USA;
| | - Kohei Mishina
- Plant Genome Research Unit, Institute of Crop Science, NARO, Tsukuba 305-8518, Japan;
| | - Tsuyoshi Tanaka
- Breeding Informatics Research Unit, Institute of Crop Science, NARO, Tsukuba 305-8518, Japan; (T.T.); (Y.K.)
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba 305-8518, Japan
| | - Yoshihiro Kawahara
- Breeding Informatics Research Unit, Institute of Crop Science, NARO, Tsukuba 305-8518, Japan; (T.T.); (Y.K.)
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba 305-8518, Japan
| | - Hossein Jafary
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran 19395-1454, Iran;
| | - Youko Oono
- Breeding Material Development Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
- Correspondence: ; Tel.: +81-29-838-7443
| |
Collapse
|
40
|
Fradera-Sola A, Thomas A, Gasior D, Harper J, Hegarty M, Armstead I, Fernandez-Fuentes N. Differential gene expression and gene ontologies associated with increasing water-stress in leaf and root transcriptomes of perennial ryegrass (Lolium perenne). PLoS One 2019; 14:e0220518. [PMID: 31361773 PMCID: PMC6667212 DOI: 10.1371/journal.pone.0220518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is a forage and amenity grass species widely cultivated in temperate regions worldwide. As such, perennial ryegrass populations are exposed to a range of environmental conditions and stresses on a seasonal basis and from year to year. One source of potential stress is limitation on water availability. The ability of these perennial grasses to be able to withstand and recover after periods of water limitation or drought can be a key component of grassland performance. Thus, we were interested in looking at changes in patterns of gene expression associated with increasing water stress. Clones of a single genotype of perennial ryegrass were grown under non-flowering growth room conditions in vermiculite supplemented with nutrient solution. Leaf and root tissue was sampled at 4 times in quadruplicate relating to estimated water contents of 35%, 15%, 5% and 1%. RNA was extracted and RNAseq used to generate transcriptome profiles at each sampling point. Transcriptomes were assembled using the published reference genome sequence and differential gene expression analysed using 3 different programmes, DESeq2, edgeR and limma (with the voom transformation), individually and in combination, deriving Early, Middle and Late stage comparisons. Identified differentially expressed genes were then associated with enriched GO terms using BLAST2GO. For the leaf, up-regulated differentially expressed genes were strongly associated with GO terms only during the Early stage and the majority of GO terms were associated with only down-regulated genes at the Middle or Late stages. For the roots, few differentially expressed genes were identified at either Early or Middle stages. Only one replicate at 1% estimated water content produced high quality data for the root, however, this indicated a high level of differential expression. Again the majority of enriched GO terms were associated with down-regulated genes. The performance of the different analysis programmes and the annotations associated with identified differentially expressed genes is discussed.
Collapse
Affiliation(s)
- Albert Fradera-Sola
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Dagmara Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Matthew Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
41
|
Wen X, Wang J, Zhang D, Wang Y. A Gene Regulatory Network Controlled by BpERF2 and BpMYB102 in Birch under Drought Conditions. Int J Mol Sci 2019; 20:ijms20123071. [PMID: 31234595 PMCID: PMC6627136 DOI: 10.3390/ijms20123071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Gene expression profiles are powerful tools for investigating mechanisms of plant stress tolerance. Betula platyphylla (birch) is a widely distributed tree, but its drought-tolerance mechanism has been little studied. Using RNA-Seq, we identified 2917 birch genes involved in its response to drought stress. These drought-responsive genes include the late embryogenesis abundant (LEA) family, heat shock protein (HSP) family, water shortage-related and ROS-scavenging proteins, and many transcription factors (TFs). Among the drought-induced TFs, the ethylene responsive factor (ERF) and myeloblastosis oncogene (MYB) families were the most abundant. BpERF2 and BpMYB102, which were strongly induced by drought and had high transcription levels, were selected to study their regulatory networks. BpERF2 and BpMYB102 both played roles in enhancing drought tolerance in birch. Chromatin immunoprecipitation combined with qRT-PCR indicated that BpERF2 regulated genes such as those in the LEA and HSP families, while BpMYB102 regulated genes such as Pathogenesis-related Protein 1 (PRP1) and 4-Coumarate:Coenzyme A Ligase 10 (4CL10). Multiple genes were regulated by both BpERF2 and BpMYB102. We further characterized the function of some of these genes, and the genes that encode Root Primordium Defective 1 (RPD1), PRP1, 4CL10, LEA1, SOD5, and HSPs were found to be involved in drought tolerance. Therefore, our results suggest that BpERF2 and BpMYB102 serve as transcription factors that regulate a series of drought-tolerance genes in B. platyphylla to improve drought tolerance.
Collapse
Affiliation(s)
- Xuejing Wen
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Daoyuan Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China.
| | - Yucheng Wang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China.
| |
Collapse
|
42
|
Xu Y, Ren Y, Li J, Li L, Chen S, Wang Z, Xin Z, Chen F, Lin T, Cui D, Tong Y. Comparative Proteomic Analysis Provides New Insights Into Low Nitrogen-Promoted Primary Root Growth in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:151. [PMID: 30842781 PMCID: PMC6391680 DOI: 10.3389/fpls.2019.00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/29/2019] [Indexed: 05/08/2023]
Abstract
Nitrogen deficient environments can promote wheat primary root growth (PRG) that allows for nitrogen uptake in deep soil. However, the mechanisms of low nitrogen-promoted root growth remain largely unknown. Here, an integrated comparative proteome study using iTRAQ analysis on the roots of two wheat varieties and their descendants with contrasting response to low nitrogen (LN) stress was performed under control (CK) and LN conditions. In total, 84 differentially abundant proteins (DAPs) specifically involved in the process of LN-promoted PRG were identified and 11 pathways were significantly enriched. The Glutathione metabolism, endocytosis, lipid metabolism, and phenylpropanoid biosynthesis pathways may play crucial roles in the regulation of LN-promoted PRG. We also identified 59 DAPs involved in the common response to LN stress in different genetic backgrounds. The common responsive DAPs to LN stress were mainly involved in nitrogen uptake, transportation and remobilization, and LN stress tolerance. Taken together, our results provide new insights into the metabolic and molecular changes taking place in contrasting varieties under LN conditions, which provide useful information for the genetic improvement of root traits and nitrogen use efficiency in wheat.
Collapse
Affiliation(s)
- Yanhua Xu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Life Sciences, Shangqiu Normal University, Shangqiu, China
| | - Yongzhe Ren
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Yongzhe Ren
| | - Jingjing Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Le Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shulin Chen
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiqiang Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Tongbao Lin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Tongbao Lin
| | - Dangqun Cui
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Dangqun Cui
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|