1
|
Qi J, Li Y, Yao X, Li G, Xu W, Chen L, Xie Z, Gu J, Wu H, Li Z. Rational design of ROS scavenging and fluorescent gold nanoparticles to deliver siRNA to improve plant resistance to Pseudomonas syringae. J Nanobiotechnology 2024; 22:446. [PMID: 39075467 PMCID: PMC11285324 DOI: 10.1186/s12951-024-02733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Bacterial diseases are one of the most common issues that result in crop loss worldwide, and the increasing usage of chemical pesticides has caused the occurrence of resistance in pathogenic bacteria and environmental pollution problems. Nanomaterial mediated gene silencing is starting to display powerful efficiency and environmental friendliness for improving plant disease resistance. However, the internalization of nanomaterials and the physiological mechanisms behind nano-improved plant disease resistance are still rarely understood. We engineered the polyethyleneimine (PEI) functionalized gold nanoparticles (PEI-AuNPs) with fluorescent properties and ROS scavenging activity to act as siRNA delivery platforms. Besides the loading, protection, and delivery of nucleic acid molecules in plant mature leaf cells by PEI-AuNPs, its fluorescent property further enables the traceability of the distribution of the loaded nucleic acid molecules in cells. Additionally, the PEI-AuNPs-based RNAi delivery system successfully mediated the silencing of defense-regulated gene AtWRKY1. Compared to control plants, the silenced plants performed better resistance to Pseudomonas syringae, showing a reduced bacterial number, decreased ROS content, increased antioxidant enzyme activities, and improved chlorophyll fluorescence performance. Our results showed the advantages of AuNP-based RNAi technology in improving plant disease resistance, as well as the potential of plant nanobiotechnology to protect agricultural production.
Collapse
Affiliation(s)
- Jie Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yanhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xue Yao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guangjing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenying Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Lingling Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhouli Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiangjiang Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 511464, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 511464, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 511464, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 511464, China.
| | - Zhaohu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
3
|
K R, S VK, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, Vasseghian Y. Exploring the diverse applications of Carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. ENVIRONMENTAL RESEARCH 2024; 240:117521. [PMID: 37890825 DOI: 10.1016/j.envres.2023.117521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
Collapse
Affiliation(s)
- Ramaprabha K
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Venkat Kumar S
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
4
|
Li J, Tian Z, Li J, Askari K, Han A, Ma J, Liu R. Physcion and chitosan-Oligosaccharide (COS) synergistically improve the yield by enhancing photosynthetic efficiency and resilience in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107993. [PMID: 37678090 DOI: 10.1016/j.plaphy.2023.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
As progressively increasing food safety concerns, diversified plant diseases and abiotic stresses, environmental-friendly bio-pesticides and bio-stimulants combinations may are likely to serve as a vital means of safeguarding green and sustainable food production. Accordingly, in this study, pot and field trials were performed to examine the application potential of the combination of physcion and chitosan-Oligosaccharide (COS) in wheat production. Wheat seeds were coated with physcion and COS and the effects exerted by them on morphology, physiology and yield of the wheat were investigated. As indicated by the results, the combination of physcion and COS not only did not inhibit the growth of wheat seedlings, but also synergistically increased root vigor and photosynthetic pigment content. Simultaneously, the lignin content in the roots and leaves was increased significantly. Moreover, the result confirmed that the combination of both substances reduced the MDA content, which was correlated with the up-regulation of the transcript expression level of antioxidant enzyme genes and the resulting increased enzyme activity. Furthermore, this combination synergistically increased the net photosynthetic rate (Pn) of the flag leaves and ultimately contributed to the increase in yield. Notably, the above-mentioned desirable cooperative effect was not limited by cultivars and cultivation methods. The conclusion of this study suggested that the combination of physcion and COS synergistically improved the photosynthetic rate and resilience in wheat, such that high wheat yields can be more significantly maintained, and future food security can be more effectively ensured.
Collapse
Affiliation(s)
- Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Tian
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jingkun Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Komelle Askari
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Junwei Ma
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
5
|
Mechanisms and technology of marine oligosaccharides to control postharvest disease of fruits. Food Chem 2023; 404:134664. [DOI: 10.1016/j.foodchem.2022.134664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
6
|
Liu Y, Yang H, Wen F, Bao L, Zhao Z, Zhong Z. Chitooligosaccharide-induced plant stress resistance. Carbohydr Polym 2023; 302:120344. [PMID: 36604042 DOI: 10.1016/j.carbpol.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
In nature, the production of plant stress resistance traits is often induced by extreme environmental conditions. Under extreme conditions, plants can be irreversibly damaged. Intervention with phytostimulants, however, can improve plant stress resistance without causing damage to the plants themselves, hence maintaining the production. For example, exogenous substances such as proteins and polysaccharides can be used effectively as phytostimulants. Chitooligosaccharide, a plant stimulant, can promote seed germination and plant growth and development, and improve plant photosynthesis. In this review, we summarize progress in the research of chitooligosaccharide-induced plant stress resistance. The mechanism and related experiments of chitooligosaccharide-induced resistance to pathogen, drought, low-temperature, saline-alkali, and other stresses are classified and discussed. In addition, we put forward the challenges confronted by chitooligosaccharide-induced plant stress resistance and the future research concept that requires multidisciplinary cooperation, which could provide data for the in-depth study of the effect of chitooligosaccharide on plants.
Collapse
Affiliation(s)
- Yao Liu
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hehe Yang
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fang Wen
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Liangliang Bao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Zhao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhimei Zhong
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
7
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Natural antimicrobial oligosaccharides in the food industry. Int J Food Microbiol 2023; 386:110021. [PMID: 36462348 DOI: 10.1016/j.ijfoodmicro.2022.110021] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
An increase in the number of antibiotic resistance genes burdens the environment and affects human health. Additionally, people have developed a cautious attitude toward chemical preservatives. This attitude has promoted the search for new natural antimicrobial substances. Oligosaccharides from various sources have been studied for their antimicrobial and prebiotic effects. Antimicrobial oligosaccharides have several advantages such as being produced from renewable resources and showing antimicrobial properties similar to those of chemical preservatives. Their excellent broad-spectrum antibacterial properties are primarily because of various synergistic effects, including destruction of pathogen cell wall. Additionally, the adhesion of harmful microorganisms and the role of harmful factors may be reduced by oligosaccharides. Some natural oligosaccharides were also shown to stimulate the growth probiotic organisms. Therefore, antimicrobial oligosaccharides have the potential to meet food processing industry requirements in the future. The latest progress in research on the antimicrobial activity of different oligosaccharides is demonstrated in this review. The possible mechanism of action of these antimicrobial oligosaccharides is summarized with respect to their direct and indirect effects. Finally, the extended applications of oligosaccharides from the food source industry to food processing are discussed.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Tang C, Zhai Y, Wang Z, Zhao X, Yang C, Zhao Y, Zeng LB, Zhang DY. Metabolomics and transcriptomics reveal the effect of hetero-chitooligosaccharides in promoting growth of Brassica napus. Sci Rep 2022; 12:21197. [PMID: 36482110 PMCID: PMC9731942 DOI: 10.1038/s41598-022-25850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The hetero-chitooligosaccharide (HTCOS) is a naturally occurring biopolymer in the exoskeleton of crustaceans and insects. Although some studies have been carried out on HTCOS in inducing plant resistance and promoting growth, the molecular mechanism of HTCOS in plants is not clear. In this study, an integrated analysis of metabolomics and transcriptomics was performed to analyze the response of Brassica napus to hetero-chitooligosaccharides treatment. The levels of 26 metabolites in B. napus were significantly changed under the HTCOS treatment. Amongst these metabolites, 9 metabolites were significantly up-regulated, including pentonic acid, indole-3-acetate, and γ-aminobutyric acid. Transcriptome data showed that there were 817 significantly up-regulated genes and 1064 significantly down-regulated genes in B. napus under the HTCOS treatment. Interestingly, the indole-3-acetate (IAA) content under the HTCOS treatment was about five times higher than that under the control condition. Moreover, four genes related to plant hormone signal transduction, three AUX/IAA genes, and one ARF gene, were significantly up-regulated under the HTCOS treatment. Furthermore, the plant height, branching number, and biomass of B. napus under the HTCOS treatment were significantly increased compared to that in the control condition. This evidence indicated that the HTCOS treatment contributed to accumulating the content of plant hormone IAA in the B. napus, up-regulating the expression of key genes in the signaling pathway of plant growth and improving the agronomic traits of B. napus.
Collapse
Affiliation(s)
- Chao Tang
- grid.257160.70000 0004 1761 0331College of Plant Protection, Hunan Agricultural University, No. 1, Nongda Road, Furong District, Changsha City, 410208 Hunan Province China ,grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Yang Zhai
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Zhuo Wang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xin Zhao
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Chen Yang
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Yong Zhao
- ZhongkeRunxin (Suzhou) Biotechnology Co., Ltd., Suzhou, 215152 Jiangsu China
| | - Liang-bin Zeng
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - De-yong Zhang
- grid.257160.70000 0004 1761 0331College of Plant Protection, Hunan Agricultural University, No. 1, Nongda Road, Furong District, Changsha City, 410208 Hunan Province China
| |
Collapse
|
9
|
Ezzouine N, El Kaim Billah R, Soufiane A, Esserti S, Belfaiza M, Rifai LA, Makroum K, Koussa T, Faize L, Alburquerque N, Burgos L, Venisse JS, Faize M. Protection of Solanum lycopesicum induced by chitosan and chitosan nano-hydroxyapatite against Pepino mosaic virus and Verticillium dahliae. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Demirjian C, Razavi N, Desaint H, Lonjon F, Genin S, Roux F, Berthomé R, Vailleau F. Study of natural diversity in response to a key pathogenicity regulator of Ralstonia solanacearum reveals new susceptibility genes in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2022; 23:321-338. [PMID: 34939305 PMCID: PMC8828461 DOI: 10.1111/mpp.13135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 06/12/2023]
Abstract
Ralstonia solanacearum gram-negative phytopathogenic bacterium exerts its virulence through a type III secretion system (T3SS) that translocates type III effectors (T3Es) directly into the host cells. T3E secretion is finely controlled at the posttranslational level by helper proteins, T3SS control proteins, and type III chaperones. The HpaP protein, one of the type III secretion substrate specificity switch (T3S4) proteins, was previously highlighted as a virulence factor on Arabidopsis thaliana Col-0 accession. In this study, we set up a genome-wide association analysis to explore the natural diversity of response to the hpaP mutant of two A. thaliana mapping populations: a worldwide collection and a local population. Quantitative genetic variation revealed different genetic architectures in both mapping populations, with a global delayed response to the hpaP mutant compared to the GMI1000 wild-type strain. We have identified several quantitative trait loci (QTLs) associated with the hpaP mutant inoculation. The genes underlying these QTLs are involved in different and specific biological processes, some of which were demonstrated important for R. solanacearum virulence. We focused our study on four candidate genes, RKL1, IRE3, RACK1B, and PEX3, identified using the worldwide collection, and validated three of them as susceptibility factors. Our findings demonstrate that the study of the natural diversity of plant response to a R. solanacearum mutant in a key regulator of virulence is an original and powerful strategy to identify genes directly or indirectly targeted by the pathogen.
Collapse
Affiliation(s)
| | - Narjes Razavi
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
| | - Henri Desaint
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
- SYNGENTA SeedsSarriansFrance
| | - Fabien Lonjon
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
- Present address:
Department of Cell & Systems BiologyUniversity of TorontoTorontoOntarioCanada
| | - Stéphane Genin
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
| | - Fabrice Roux
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
| | | | | |
Collapse
|
11
|
Yu L, Zong Y, Han Y, Zhang X, Zhu Y, Oyom W, Gong D, Prusky D, Bi Y. Both chitosan and chitooligosaccharide treatments accelerate wound healing of pear fruit by activating phenylpropanoid metabolism. Int J Biol Macromol 2022; 205:483-490. [PMID: 35196569 DOI: 10.1016/j.ijbiomac.2022.02.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to compare the effects of chitosan (CTS) and chitooligosaccharide (COS) treatments on wound healing of pear fruits and to investigate the related mechanisms during postharvest storage under ambient conditions. The results revealed that CTS and COS treatments reduced the weight loss and disease index of the wounded pears (Pyrus bretschneideri cv. Dongguo), and accelerated suberin polyphenolic and lignin deposition at wounds during 7 d of investigation. Furthermore, CTS and COS elevated the level of the genes expression and activities of key enzymes and increased product contents of phenylpropanoid metabolism. Collectively, these treatments at a concentration of 1 g/L could promote wound healing in pears by activating phenylpropanoid metabolism. Comparatively, COS treatment presented better effects to CTS and could be useful as a preservative method to enhance storability of fresh produce.
Collapse
Affiliation(s)
- Lirong Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yatong Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - William Oyom
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Di Gong
- Department of Food Science, Insititute of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Dov Prusky
- Department of Postharvest Science, Insititute of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
12
|
Sun H, Zhang H, Xu Z, Wang Y, Liu X, Li Y, Tian B, Sun G, Zhang H. TMT-based quantitative proteomic analysis of the effects of Pseudomonas syringae pv. tabaci (Pst) infection on photosynthetic function and the response of the MAPK signaling pathway in tobacco leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:657-667. [PMID: 34214776 DOI: 10.1016/j.plaphy.2021.06.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
To reveal the mechanism of photosynthesis inhibition by infection and the response of the MAPK signaling pathway to pathogen infection, tobacco leaves were inoculated with Pseudomonas syringae pv. tabaci (Pst), and the effects of Pst infection on photosynthesis of tobacco leaves were studied by physiological and proteomic techniques, with a focus on MAPK signaling pathway related proteins. Pst infection was observed to lead to the degradation of chlorophyll (especially Chl b) in tobacco leaves and the down-regulation of light harvesting antenna proteins expression, thus limiting the light harvesting ability. The photosystem II and I (PSII and PSI) activities were also decreased, and Pst infection inhibited the utilization of light and CO2. Proteomic analyses showed that the number of differentially expressed proteins (DEPs) under Pst infection at 3 d were significantly higher than at 1 d, especially the number of down-regulated proteins. The KEGG enrichment of DEPs was mainly enriched in the energy metabolism processes such as photosynthesis antenna proteins and photosynthesis. The down-regulation of chlorophyll a-b binding protein, photosynthetic electron transport related proteins (e.g., PSII and PSI core proteins, the Cytb6/f complex, PC, Fd, FNR), ATP synthase subunits, and key enzymes in the Calvin cycle were the key changes associated with Pst infection that may inhibit tobacco photosynthesis. The effect of Pst infection on the PSII electron acceptor side was significantly greater than that on the PSII donor side. The main factor that decreased the photosynthetic ability of tobacco leaves with Pst infection at 1 d may be the inhibition of photochemical reactions leading to an insufficient supply of ATP, rather than decreased expression of enzymes involved in the Calvin cycle. At 1 d into Pst infection, the PSII regulated energy dissipation yield Y(NPQ) may play a role in preventing photosynthetic inhibition in tobacco leaves, but the long-term Pst infection significantly inhibited Y(NPQ) and the expression of PsbS proteins. Proteins involved in the MAPK signaling pathway were up-regulated, suggesting the MAPK signaling pathway was activated to respond to Pst infection. However, at the late stage of Pst infection (at 3 d), MAPK signaling pathway proteins were degraded, and the defense function of the MAPK signaling pathway in tobacco leaves was damaged.
Collapse
Affiliation(s)
- Hongwei Sun
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Hongbo Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zisong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Wang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiaoqian Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuanyuan Li
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bei Tian
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guangyu Sun
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
13
|
Wang K, Li C, Lei C, Zou Y, Li Y, Zheng Y, Fang Y. Dual function of VvWRKY18 transcription factor in the β-aminobutyric acid-activated priming defense in grapes. PHYSIOLOGIA PLANTARUM 2021; 172:1477-1492. [PMID: 33483982 DOI: 10.1111/ppl.13341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/13/2020] [Accepted: 01/15/2021] [Indexed: 05/18/2023]
Abstract
Induction of phytoalexin production after invading pathogens is recognized as an essential aspect of the plant-induced resistance. The WRKY family includes plant-specific transcriptional factors associated with plant defense responses, but the comprehensive mechanisms are poorly understood. Here, we attempted to elaborate the regulatory function of VvWRKY18 from the group IIa of WRKY transcription factor (TF) from Vitis vinifera, in the regulation of β-aminobutyric acid (BABA)-activated stilbene phytoalexins biosynthesis and PATHOGENESIS-RELATED (PR) genes expressions in grapes. BABA at 10 mmol L-1 triggered a priming protection in grapes and conferred a potentiation of the expression levels of VvWRKY18, VvNPR1, and several salicylic acid (SA)-responsive genes, which was accompanied by enhanced stilbene production upon Botrytis cinerea infection. In addition, a physical interaction between VvWRKY18 and the regulatory protein VvNPR1 was detected in vivo and in vitro by yeast-2-hybrid (Y2H), pull-down and co-immunoprecipitation assay (Co-IP) assays. Furthermore, yeast-1-hybrid (Y1H) and dual-luciferase reporter (DLR) assays indicated that VvWRKY18 activated the transcription of STILBENE SYNTHASE (STS) genes, including VvSTS1 and VvSTS2, by directly binding the W-box elements within the specific promoters and resultantly enhancing stilbene phytoalexins biosynthesis. Further investigation demonstrated that heterologous expression of VvWRKY18 elevated the transcriptions of STS and PR genes, thus contributing to potentiating the defense of transgenic Arabidopsis thaliana plants and resultantly inhibiting B. cinerea invasion. Hence, VvWRKY18 serves as a singular effector involved in the synthesis of stilbene phytoalexins in grapes and its interaction with VvNPR1 provided DNA binding ability required for VvNPR1 to initiate systemic acquired resistance (SAR) defense.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
| | - Changyi Lei
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
| | - Yanyu Zou
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yanjie Li
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
14
|
Jorrin Novo JV. Proteomics and plant biology: contributions to date and a look towards the next decade. Expert Rev Proteomics 2021; 18:93-103. [PMID: 33770454 DOI: 10.1080/14789450.2021.1910028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION This review presents the view of the author, that is opinionable and even speculative, on the field of proteomics, its application to plant biology knowledge, and translation to biotechnology. Written in a more academic than scientific style, it is based on past original and review articles by the author´s group, and those published by leading scientists in the last two years. AREAS COVERED Starting with a general definition and references to historical milestones, it covers sections devoted to the different platforms employed, the plant biology discourse in the protein language, challenges and future prospects, ending with the author opinion. EXPERT OPINION In 25 years, five proteomics platform generations have appeared. We are now moving from proteomics to Systems Biology. While feasible with model organisms, proteomics of orphan species remains challenging. Proteomics, even in its simplest approach, sheds light on plant biological processes, central dogma, and molecular bases of phenotypes of interest, and it can be translated to areas such as food traceability and allergen detection. Proteomics should be validated and optimized to each experimental system, objectives, and hypothesis. It has limitations, artifacts, and biases. We should not blindly accept proteomics data and just create a list of proteins, networks, and avoid speculative biological interpretations. From the hundred to thousand proteins identified and quantified, it is important to obtain a focus and validate some of them, otherwise it is merely. We are starting to have the protein pieces, so let, from now, build the proteomics and biological puzzle.
Collapse
Affiliation(s)
- J V Jorrin Novo
- Dpt. Biochemistry and Molecular Biology, Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, ETSIAM, University of Cordoba, Cordoba , Spain
| |
Collapse
|
15
|
Sekiya A, Marques FG, Leite TF, Cataldi TR, de Moraes FE, Pinheiro ALM, Labate MTV, Labate CA. Network Analysis Combining Proteomics and Metabolomics Reveals New Insights Into Early Responses of Eucalyptus grandis During Rust Infection. FRONTIERS IN PLANT SCIENCE 2021; 11:604849. [PMID: 33488655 PMCID: PMC7817549 DOI: 10.3389/fpls.2020.604849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 05/19/2023]
Abstract
Eucalyptus rust is caused by the biotrophic fungus, Austropuccinia psidii, which affects commercial plantations of Eucalyptus, a major raw material for the pulp and paper industry in Brazil. In this manuscript we aimed to uncover the molecular mechanisms involved in rust resistance and susceptibility in Eucalyptus grandis. Epifluorescence microscopy was used to follow the fungus development inside the leaves of two contrasting half-sibling genotypes (rust-resistance and rust-susceptible), and also determine the comparative time-course of changes in metabolites and proteins in plants inoculated with rust. Within 24 h of complete fungal invasion, the analysis of 709 metabolomic features showed the suppression of many metabolites 6 h after inoculation (hai) in the rust-resistant genotype, with responses being induced after 12 hai. In contrast, the rust-susceptible genotype displayed more induced metabolites from 0 to 18 hai time-points, but a strong suppression occurred at 24 hai. Multivariate analyses of genotypes and time points were used to select 16 differential metabolites mostly classified as phenylpropanoid-related compounds. Applying the Weighted Gene Co-Expression Network Analysis (WGCNA), rust-resistant and rust-susceptible genotypes had, respectively, 871 and 852 proteins grouped into 5 and 6 modules, of which 5 and 4 of them were significantly correlated to the selected metabolites. Functional analyses revealed roles for photosynthesis and oxidative-dependent responses leading to temporal activity of metabolites and related enzymes after 12 hai in rust-resistance; while the initial over-accumulation of those molecules and suppression of supporting mechanisms at 12 hai caused a lack of progressive metabolite-enzyme responses after 12 hai in rust-susceptible genotype. This study provides some insights on how E. grandis plants are functionally modulated to integrate secondary metabolites and related enzymes from phenylpropanoid pathway and lead to temporal divergences of resistance and susceptibility responses to rust.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
16
|
De Vega D, Holden N, Hedley PE, Morris J, Luna E, Newton A. Chitosan primes plant defence mechanisms against Botrytis cinerea, including expression of Avr9/Cf-9 rapidly elicited genes. PLANT, CELL & ENVIRONMENT 2021; 44:290-303. [PMID: 33094513 PMCID: PMC7821246 DOI: 10.1111/pce.13921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 05/10/2023]
Abstract
Current crop protection strategies against the fungal pathogen Botrytis cinerea rely on a combination of conventional fungicides and host genetic resistance. However, due to pathogen evolution and legislation in the use of fungicides, these strategies are not sufficient to protect plants against this pathogen. Defence elicitors can stimulate plant defence mechanisms through a phenomenon known as defence priming. Priming results in a faster and/or stronger expression of resistance upon pathogen recognition by the host. This work aims to study defence priming by a commercial formulation of the elicitor chitosan. Treatments with chitosan result in induced resistance (IR) in solanaceous and brassicaceous plants. In tomato plants, enhanced resistance has been linked with priming of callose deposition and accumulation of the plant hormone jasmonic acid (JA). Large-scale transcriptomic analysis revealed that chitosan primes gene expression at early time-points after infection. In addition, two novel tomato genes with a characteristic priming profile were identified, Avr9/Cf-9 rapidly elicited protein 75 (ACRE75) and 180 (ACRE180). Transient and stable over-expression of ACRE75, ACRE180 and their Nicotiana benthamiana homologs, revealed that they are positive regulators of plant resistance against B. cinerea. This provides valuable information in the search for strategies to protect Solanaceae plants against B. cinerea.
Collapse
Affiliation(s)
| | - Nicola Holden
- The James Hutton InstituteDundeeUK
- Scotland's Rural College, Aberdeen CampusAberdeenUK
| | | | | | - Estrella Luna
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
17
|
Zhou Y, Jing M, Levy A, Wang H, Jiang S, Dou D. Molecular mechanism of nanochitin whisker elicits plant resistance against Phytophthora and the receptors in plants. Int J Biol Macromol 2020; 165:2660-2667. [PMID: 33096175 DOI: 10.1016/j.ijbiomac.2020.10.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Rod-like nanochitin (NC) whisker with cationic nature has a strong synergistic effect with fungicides on inhibition of tobacco root rot disease. This study we explored the activity of NC against Phytophthora and the mechanism for eliciting plant defense response and the receptors in planta. P. capsici isolates, model Nicotiana benthamiana plants and Arabidopsis thaliana were treated with 0.005% of NC suspension and 1 μM of flg22. Infection control efficacy against P. capsici isolates, biosynthetic enzyme activities and the PR genes expression were determined at different hours post treatment in plant. The infection control efficacy, ROS generation, and PTI maker gene expression were re-analyzed in A. thaliana Col-0, bak1 and cerk1 mutants. The results showed that NC did not exhibit inhibitory effect on vegetative growth of P. capsici, but enhanced the resistance against P. capsici by systemically enhanced phenylalanine ammonia-lyase activity and PR gene expression. P. capsici resistance, PTI maker gene promotion, and ROS production in A. thaliana induced by NC depended not only on chitin receptor CERK1, but also BAK1. NC and flg22 induced oomycete immunity through a mechanism of a cross-microbe protection via the BAK1-CERK1 pathway in plant, pointing to the complexity of the plant immunity system.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Hezhong Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China; NanoAgro Center, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Shijun Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China; NanoAgro Center, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
18
|
Xie X, Yan Y, Liu T, Chen J, Huang M, Wang L, Chen M, Li X. Data-independent acquisition proteomic analysis of biochemical factors in rice seedlings following treatment with chitosan oligosaccharides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104681. [PMID: 32980063 DOI: 10.1016/j.pestbp.2020.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Chitosan oligosaccharides (COS) can elicit plant immunity and defence responses in rice plants, but exactly how this promotes plant growth remains largely unknown. Herein, we explored the effects of 0.5 mg/L COS on plant growth promotion in rice seedlings by measuring root and stem length, investigating biochemical factors in whole plants via proteomic analysis, and confirming upregulated and downregulated genes by real-time quantitative PCR. Pathway enrichment results showed that COS promoted root and stem growth, and stimulated metabolic (biosynthetic and catabolic processes) and photosynthesis in rice plants during the seedling stage. Expression levels of genes related to chlorophyll a-b binding, RNA binding, catabolic processes and calcium ion binding were upregulated following COS treatment. Furthermore, comparative analysis indicated that numerous proteins involved in the biosynthesis, metabolic (catabolic) processes and photosynthesis pathways were upregulated. The findings indicate that COS may upregulate calcium ion binding, photosynthesis, RNA binding, and catabolism proteins associated with plant growth during the rice seedling stage.
Collapse
Affiliation(s)
- Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yunlong Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jun Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Li Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Meiqing Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
19
|
Niu L, Liu L, Wang W. Digging for Stress-Responsive Cell Wall Proteins for Developing Stress-Resistant Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:576385. [PMID: 33101346 PMCID: PMC7546335 DOI: 10.3389/fpls.2020.576385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 06/09/2023]
Abstract
As a vital component of plant cell walls, proteins play important roles in stress response by modifying the structure of cell walls and involving in the wall integrity signaling pathway. Recently, we have critically reviewed the predictors, databases, and cross-referencing of the subcellular locations of possible cell wall proteins (CWPs) in plants (Briefings in Bioinformatics 2018;19:1130-1140). Here, we briefly introduce strategies for isolating CWPs during proteomic analysis. Taking maize (Zea mays) as an example, we retrieved 1873 probable maize CWPs recorded in the UniProt KnowledgeBase (UniProtKB). After curation, 863 maize CWPs were identified and classified into 59 kinds of protein families. By referring to gene ontology (GO) annotations and gene differential expression in the Expression Atlas, we have highlighted the potential of CWPs acting in the front line of defense against biotic and abiotic stresses. Moreover, the analysis results of cis-acting elements revealed the responsiveness of the genes encoding CWPs toward phytohormones and various stresses. We suggest that the stress-responsive CWPs could be promising candidates for applications in developing varieties of stress-resistant maize.
Collapse
|
20
|
Oligosaccharide is a promising natural preservative for improving postharvest preservation of fruit: A review. Food Chem 2020; 341:128178. [PMID: 33022576 DOI: 10.1016/j.foodchem.2020.128178] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022]
Abstract
Lack of proper postharvest management of fruits causes huge economic loss, increase poverty, hunger and malnutrition. To reduce postharvest losses, globally different postharvest technologies and synthetic chemical treatments were widely used, but some of them are reported to enhance the risk for human health and environment. Recently, oligosaccharides have attractedmuch attention because of their numerous health benefits, and potential applications in agriculture. Many previous reports demonstrated that oligosaccharides treatment improves the postharvest preservation of fruits and extend the shelf life. Oligosaccharides postharvest treatments maintained higher non enzymatic antioxidant activity, increased antioxidant activity, regulate hormone biosynthesis and delayed cell wall degradation. In this review, we systematically summarize and discuss the recent research findings concerning the preservation effects of different oligosaccharides, and their mechanism underlying delaying ripening and senescence of fruits during postharvest storage. Moreover, we provide future research direction for the utilization of oligosaccharides to improve postharvest preservation of fruits.
Collapse
|
21
|
Jia X, Rajib MR, Yin H. Recognition Pattern, Functional Mechanism and Application of Chitin and Chitosan Oligosaccharides in Sustainable Agriculture. Curr Pharm Des 2020; 26:3508-3521. [DOI: 10.2174/1381612826666200617165915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Background:
Application of chitin attracts much attention in the past decades as the second abundant
polysaccharides in the world after cellulose. Chitin oligosaccharides (CTOS) and its deacetylated derivative chitosan
oligosaccharides (COS) were shown great potentiality in agriculture by enhancing plant resistance to abiotic
or biotic stresses, promoting plant growth and yield, improving fruits quality and storage, etc. Those applications
have already served huge economic and social benefits for many years. However, the recognition mode and functional
mechanism of CTOS and COS on plants have gradually revealed just in recent years.
Objective:
Recognition pattern and functional mechanism of CTOS and COS in plant together with application
status of COS in agricultural production will be well described in this review. By which we wish to promote
further development and application of CTOS and COS–related products in the field.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mijanur R. Rajib
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
22
|
Jia X, Zeng H, Bose SK, Wang W, Yin H. Chitosan oligosaccharide induces resistance to Pst DC3000 in Arabidopsis via a non-canonical N-glycosylation regulation pattern. Carbohydr Polym 2020; 250:116939. [PMID: 33049851 DOI: 10.1016/j.carbpol.2020.116939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
Roles of protein N-glycosylation in chitosan oligosaccharide (COS) induced resistance were investigated in the present study. Results demonstrated that N-glycosylation deficient Arabidopsis mutants (stt3a and ManI) were more susceptible against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) than wild type (WT) plants. Surprisingly, in stt3a and ManI, COS-induced resistance to Pst DC3000 was mostly intact, and the up-regulation effect on SA- and JA-mediated signalling pathways also similar like WT. Nucleotide sugars accumulation and N-glycosylation related genes expression were differently regulated after COS treatment. Global glycomics analysis quantified 157 N-glycan isomers, and 56.7, 50.3 and 47.1 % of them were significantly changed in COS, mock + Pst, and COS + Pst treated plants, respectively. Moreover, COS pretreatment could reverse the effect of Pst DC3000 on many N-glycans, suggesting that COS regulates protein N-glycosylation via a non-canonical pattern compared with plant defense, which may contribute to its obvious disease control effect when N-glycosylation impairment occurs.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haihong Zeng
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Santosh Kumar Bose
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|