1
|
Wang L, Nan H, Zhang M, Guang L, Meng J, Liu M, Meng Y, Chen W, Fan Y, Huang H, Sun Y, Yang Z, Chen X, Wu F, Song R, Wang S, Lu X, Chen X, Zhao L, Wang J, Cui Y, Zhou XR, Wang N, Feng K, Chen Q, Ye W. GhADT5 enhances alkali stress tolerance in cotton by regulating phenylalanine-derived flavonoid biosynthesis and antioxidant defense. BMC PLANT BIOLOGY 2025; 25:225. [PMID: 39972250 DOI: 10.1186/s12870-025-06204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Phenylalanine (Phe), an aromatic amino acid, is a key precursor of flavonoids, which are crucial for plant growth and development. Arogenate dehydratase (ADT) catalyzes the final step in Phe biosynthesis. This study identified eleven ADT genes in G. hirsutum, twelve in G. barbadense, six in G. arboreum, and six in G. raimondii. Among them, GhADT5 exhibited the highest upregulation under alkali stress. Silencing GhADT5 using virus-induced gene silencing (VIGS) reduced cotton tolerance to alkali stress. GhADT5 silencing also led to decreased plant phenylalanine content, total flavonoid content, and activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). These reductions caused intracellular accumulation of Malondialdehyde (MDA) and reactive oxygen species (ROS). This oxidative damage ultimately reduced tolerance to alkali stress. In addition, silenced plants displayed reduced stomatal aperture, cellular deformation, and irregular intercellular breaks in the leaf epidermis. In summary, these findings suggest that GhADT5 may enhance resistance to alkali stress by regulating enzymatic and non-enzymatic antioxidant systems. This study highlights the role of GhADT5 under alkali stress and provides novel insights for breeding cotton varieties with improved stress tolerance.
Collapse
Affiliation(s)
- Lidong Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, Xinjiang, 830052, China
| | - Hongyu Nan
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Menghao Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Lijun Guang
- Institute of Agricultural Science of 13th Division of Xinjiang Production and Construction Corps, Hami, Xinjiang, 839000, China
| | - Junting Meng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Mengyue Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Yuan Meng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Wenhua Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Hui Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Yuping Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Zhining Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xiao Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Fange Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Ruize Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Shuai Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xuke Lu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Lanjie Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Yupeng Cui
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Qin Chen
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, Xinjiang, 830052, China.
| | - Wuwei Ye
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China.
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, Xinjiang, 830052, China.
| |
Collapse
|
2
|
Abinaya K, Raja K, Raja K, Sathya Moorthy P, Senthil A, Chandrakumar K. Enhancing drought tolerance in blackgram (Vigna mungo L. Hepper) through physiological and biochemical modulation by peanut shell carbon dots. Sci Rep 2025; 15:5475. [PMID: 39953076 PMCID: PMC11828879 DOI: 10.1038/s41598-025-89610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Among the abiotic factors that causes threat to crop production, drought is one of the foremost constraints in the changing climatic era. Hence, a study was conducted to mitigate the effect of drought stress in blackgram with the peanut shell carbon dots (PNS-CDs) as seed priming and foliar spray agent. Blackgram seeds were primed with PNS-CDs at 200 ppm for 3 h and plants were sprayed with PNS-CDs at 50 ppm on 30th and 45th DAS under drought stress conditions (30%, 50% and 75% WHC). The imposed treatments included dry seeds (control), water sprayed plants, seed priming with PNS-CDs, foliar spray with PNS-CDs and combination of both. The results demarcate the exemplary performance of plants when given with combined application of priming (200 ppm) and foliar spray (50 ppm) with PNS-CDs in terms of its growth and yield. Further, an increased activity of catalase (12%), peroxidase (12%), superoxide dismutase (22%), glutathione reductase (60%), ascorbate peroxidase (55%), H2O2 scavenging (32%) and proline (35%) were noticed over dry seeds, which confirmed the antioxidant defense mechanism offered by PNS-CDs. In addition, the percentage increase in photosynthetic parameters like total chlorophyll (44%), total soluble protein (54%), photosynthetic rate (89%), stomatal conductance (40%), internal CO2 concentration (74%) and chlorophyll stability index (51%) confirmed the role of PNS-CDs as photosynthesis enhancer under drought stress, which resulted in enhanced stress tolerance, plant growth and yield. Thus, it was found that priming blackgram seeds with 200 ppm PNS-CDs for 3 h followed by foliar spray with 50 ppm on 30 and 45th DAS could serve as a sustainable alternative to chemical inputs, ensuring better crop productivity and stress tolerance in water-limited environments. Further, future research could explore the molecular mechanisms underlying the stress tolerance offered by PNS-CDs. In addition, the application of PNS-CDs to different crops, biotic and abiotic stress conditions will also pave the way for broader agricultural sustainability in an eco-friendly approach.
Collapse
Affiliation(s)
- Kanthavel Abinaya
- Department of Seed Science and Technology, Seed Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Karuppannan Raja
- Department of Seed Science and Technology, Seed Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Kalimuthu Raja
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Ponnuraj Sathya Moorthy
- Department of Basic Engineering and Applied Sciences, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Kumulur, 621712, India
| | - Alagarswamy Senthil
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalichamy Chandrakumar
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
3
|
Song X, Chen J, Xu C, Cai X, Song W, Chang A, Zhang Y, Luo C. Physiological and molecular mechanisms of exogenous salicylic acid in enhancing salt tolerance in tobacco seedlings by regulating antioxidant defence system and gene expression. FRONTIERS IN PLANT SCIENCE 2025; 16:1545865. [PMID: 39959351 PMCID: PMC11825763 DOI: 10.3389/fpls.2025.1545865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025]
Abstract
Introduction Salt stress has emerged as a predominant abiotic factor that jeopardizes global crop growth and yield. The plant hormone salicylic acid (SA) has notable potential in mitigating salt toxicity, yet its mechanism in enhancing the salinity tolerance of tobacco plants is not well explored. Methods This study aimed to assess the potential benefits of exogenous SA application (1.0 mM) on tobacco seedlings subjected to saline soil conditions. Results The foliar spray of SA partially mitigated these salt-induced effects, as evidenced by a reduction of malondialdehyde content, and improvements of leaf K+/Na+ ratios, pigment biosynthesis, and electron transport efficiency under NaCl stress. Additionally, SA increased the contents of total phenolic compound and soluble protein by 16.2% and 28.7% to alleviate NaCl-induced oxidative damage. Under salt stressed conditions, the activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase increased by 4.2%~14.4% in SA sprayed tobacco seedlings. Exogenous SA also increased ascorbate and glutathione levels and reduced their reduced forms by increasing the activities of glutathione reductase, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase. qRT-PCR analysis revealed that the key genes regulating SA biosynthesis, carbon assimilation, the antioxidant system and the ascorbate-glutathione cycle were activated by SA under conditions of salt stress. Discussion Our study elucidates the physiological and molecular mechanisms of exogenous SA in enhancing plant salt tolerance and provides a practical basis for crop improvement in saline environments.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jian Chen
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Can Xu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xianjie Cai
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Wenjing Song
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Aixia Chang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Chenggang Luo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| |
Collapse
|
4
|
Tan U. Application of indole-3-butyric acid (IBA) enhances agronomic, physiological and antioxidant traits of Salvia fruticosa under saline conditions: a practical approach. PeerJ 2025; 13:e18846. [PMID: 39807155 PMCID: PMC11727656 DOI: 10.7717/peerj.18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Background Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like Salvia fruticosa. This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to Salvia fruticosa cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress. Methods The factors were arranged as three different IBA doses (0, 1, and 2 g/L) and four different salinity concentrations (0, 6, 12, and 18 dS/m) in controlled greenhouse conditions. Plant height (PH), flower spike length (FSL), fresh shoot length (FRL), root length (RL), fresh root weight (FRW), fresh shoot weight (FSW), dried root weight (DRW), dried shoot weight (DSW), root/shoot index, drog (g/plant), relative water content (RWC), relative membrane permeability (RMP), chlorophyll content (SPAD), extraction yield (%), DPPH (2,2-Diphenyl-1-picrylhydrazyl), phenol content, flavonoid content, and ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) values were measured. Results The results show that as salinity doses increased, all parameters showed a decline. However, with a one-time IBA application to the plant cuttings before the rooting stage, particularly at a concentration of 2 g/L, was effective for mitigating the negative effects of salinity stress. Across all measured parameters, IBA significantly reduced the adverse impacts of salinity on Salvia fruticosa.
Collapse
Affiliation(s)
- Uğur Tan
- Department of Field Crops, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
5
|
Barman M, Tenhaken R, Dötterl S. Negative and sex-specific effects of drought on flower production, resources and pollinator visitation, but not on floral scent in monoecious Cucurbita pepo. THE NEW PHYTOLOGIST 2024; 244:1013-1023. [PMID: 39117354 DOI: 10.1111/nph.20016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 08/10/2024]
Abstract
The globally changing climatic condition is increasing the incidences of drought in several parts of the world. This is predicted and already shown to not only impact plant growth and flower development, but also plant-pollinator interactions and the pollination success of entomophilous plants. However, there is a large gap in our understanding of how drought affects the different flowers and pollen transfer among flowers in sexually polymorphic species. Here, we evaluated in monoecious Styrian oil pumpkin, and separately for female and male flowers, the responses of drought stress on flower production, petal size, nectar, floral scent and visitation by bumblebee pollinators. Drought stress adversely affected all floral traits studied, except floral scent. Although both flower sexes were adversely affected by drought stress, the effects were more severe on female flowers, with most of the female flowers even aborted before opening. The drought had negative effects on floral visitation by the pollinators, which generally preferred female flowers. Overall, our study highlights that the two flower sexes of a monoecious plant species are differently affected by drought stress and calls for further investigations to better understand the cues used by the pollinators to discriminate against male flowers and against flowers of drought-stressed plants.
Collapse
Affiliation(s)
- Monica Barman
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Raimund Tenhaken
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| |
Collapse
|
6
|
Shen X, Sun M, Nie B, Li X. Physiological adaptation of Cyperus esculentus L. seedlings to varying concentrations of saline-alkaline stress: Insights from photosynthetic performance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108911. [PMID: 38976943 DOI: 10.1016/j.plaphy.2024.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Soil salinization effects plant photosynthesis in a number of global ecosystems. In this study, photosynthetic and physiological parameters were used to elucidate the impacts of saline-alkaline stress on Cyperus esculentus L. (C. esculentus) seedling photosynthesis. The results demonstrate that salt stress, alkali stress and mixed salt and alkali stress treatments all have similar bell-shaped influences on photosynthesis. At low concentrations (0-100 mmol L-1), saline-alkaline stress promoted net photosynthetic rate, transpiration rate and water use efficiency in C. esculentus. However, as the treatments increased in intensity (100-200 mmol L-1), plant photosynthetic parameters began to decline. We interpreted this as the capacity of C. esculentus to improve osmoregulatory capacity in low saline-alkaline stress treatments by accumulating photosynthetic pigment, proline and malondialdehyde to counterbalance the induced stress - an adaptive mechanism that failed once concentrations reached a critical threshold (100 mmol L-1). Stomatal conductance, maximum photosynthetic rate and actual photosynthetic rate all decreased with increasing concentration of the stress treatments, and intercellular carbon dioxide showed a decreasing and then increasing trend. These results indicated that when the saline-alkaline stress concentrations were low, C. esculentus seedlings showed obvious adaptive ability, but when the concentration increased further, the physiological processes of C. esculentus seedlings were significantly affected, with an obvious decrease in photosynthetic efficiency. This study provides a new understanding of the photosynthetic adaptation strategies of C. esculentus seedlings to varying concentrations of saline-alkaline stress.
Collapse
Affiliation(s)
- Xin Shen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengxin Sun
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bixia Nie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyi Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 83001, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Tan U, Gören HK. Comprehensive evaluation of drought stress on medicinal plants: a meta-analysis. PeerJ 2024; 12:e17801. [PMID: 39056052 PMCID: PMC11271654 DOI: 10.7717/peerj.17801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Drought stress significantly affects plants by altering their physiological and biochemical processes, which can severely limit their growth and development. Similarly, drought has severe negative effects on medicinal plants, which are essential for healthcare. The effects are particularly significant in areas that rely mostly on traditional medicine, which might potentially jeopardize both global health and local economies. Understanding effects of droughts on medicinal plants is essential for developing strategies to enhance plant adaptability to drought stress, which is vital for sustaining agricultural productivity under changing climatic conditions. In this study, a meta-analysis was conducted on 27 studies examining various parameters such as plant yield, chlorophyll content, relative water content, essential oil content, essential oil yield, non-enzymatic antioxidants, enzymatic antioxidants, phenols, flavonoids, and proline content. The analysis explored the effects of drought across different stress conditions (control, moderate, and severe) to gain deeper insights into the drought's impact. The categorization of these stress conditions was based on field or soil capacity: control (100-80%), moderate (80-50%), and severe (below 50%). This classification was guided by the authors' descriptions in their studies. According to meta-analysis results, enzymatic antioxidants emerge as the most responsive parameters to stress. Other parameters such as relative water content (RWC) and yield also exhibit considerable negative mean effect sizes under all three stress conditions. Therefore, when evaluating the impacts of drought stress on medicinal plants, it is beneficial to include these three parameters (enzymatic antioxidants, RWC, and yield) in an evaluation of drought stress. The chlorophyll content has been determined not to be a reliable indicator for measuring impact of drought stress. Also, measuring antioxidants such as flavonoids and phenols could be a better option than using radical scavenging methods like DPPH (2, 2-difenil-1-pikrilhidrazil), FRAP (ferric reducing antioxidant power), and ABTS (2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)).
Collapse
Affiliation(s)
- Uğur Tan
- Field Crops, Aydın Adnan Menderes University, Aydın, Türkiye
| | | |
Collapse
|
8
|
Ameen M, Zia MA, Najeeb Alawadi HF, Naqve M, Mahmood A, Shahzad AN, Khan BA, Alhammad BA, Aljabri M, Seleiman MF. Exogenous application of selenium on sunflower ( Helianthus annuus L.) to enhance drought stress tolerance by morpho-physiological and biochemical adaptations. FRONTIERS IN PLANT SCIENCE 2024; 15:1427420. [PMID: 39091318 PMCID: PMC11291355 DOI: 10.3389/fpls.2024.1427420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
Drought stress poses a significant obstacle to agricultural productivity, particularly in the case of oilseed crops such as sunflower (Helianthus annuus L.). Selenium (Se) is a fundamental micronutrient that has been recognized for its ability to enhance plant resilience in the face of various environmental stresses. The FH-770 sunflower variety was cultivated in pots subjected to three stress levels (100% FC, 75% FC, and 50% FC) and four Se application rates (0 ppm, 30 ppm, 60 ppm, and 90 ppm). This research aimed to investigate the effect of exogenously applied Se on morpho-physiological and biochemical attributes of sunflower to improve the drought tolerance. Foliar Se application significantly lowered H2O2 (hydrogen peroxide; ROS) (20.89%) accumulation that markedly improved glycine betaine (GB) (74.46%) and total soluble protein (Pro) (68.63%), improved the accumulation of ascorbic acid (AA) (25.51%), total phenolics (TP) (39.34%), flavonoids (Flv) (73.16%), and anthocyanin (Ant) (83.73%), and improved the activity of antioxidant system superoxide dismutase (SOD) (157.63%), peroxidase (POD) (100.20%), and catalase (CAT) (49.87%), which ultimately improved sunflower growth by 36.65% during drought stress. Supplemental Se significantly increased shoot Se content (93.86%) and improved calcium (Ca2+), potassium (K+), and sodium (Na+) ions in roots by 36.16%, 42.68%, and 63.40%, respectively. Selenium supplements at lower concentrations (60 and 90 ppm) promoted the growth, development, and biochemical attributes of sunflowers in controlled and water-deficient circumstances. However, selenium treatment improved photosynthetic efficiency, plant growth, enzymatic activities, osmoregulation, biochemical characteristics, and nutrient balance. The mechanisms and molecular processes through which Se induces these modifications need further investigation to be properly identified.
Collapse
Affiliation(s)
- Muaz Ameen
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Maria Naqve
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj, Riyadh, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El Kom, Egypt
| |
Collapse
|
9
|
Yang D, Gao Z, Liu Y, Li Q, Yang J, Wang Y, Wang M, Xie T, Zhang M, Sun H. Exogenous application of 5-NGS increased osmotic stress resistance by improving leaf photosynthetic physiology and antioxidant capacity in maize. PeerJ 2024; 12:e17474. [PMID: 38818454 PMCID: PMC11138516 DOI: 10.7717/peerj.17474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Background Drought is a critical limiting factor affecting the growth and development of spring maize (Zea mays L.) seedlings in northeastern China. Sodium 5-nitroguaiacol (5-NGS) has been found to enhance plant cell metabolism and promote seedling growth, which may increase drought tolerance. Methods In the present study, we investigated the response of maize seedlings to foliar application of a 5-NGS solution under osmotic stress induced by polyethylene glycol (PEG-6000). Four treatment groups were established: foliar application of distilled water (CK), foliar application of 5-NGS (NS), osmotic stress + foliar application of distilled water (D), and osmotic stress + foliar application of 5-NGS (DN). Plant characteristics including growth and photosynthetic and antioxidant capacities under the four treatments were evaluated. Results The results showed that under osmotic stress, the growth of maize seedlings was inhibited, and both the photosynthetic and antioxidant capacities were weakened. Additionally, there were significant increases in the proline and soluble sugar contents and a decrease in seedling relative water content (RWC). However, applying 5-NGS alleviated the impact of osmotic stress on maize seedling growth parameters, particularly the belowground biomass, with a dry mass change of less than 5% and increased relative water content (RWC). Moreover, treatment with 5-NGS mitigated the inhibition of photosynthesis caused by osmotic stress by restoring the net photosynthetic rate (Pn) through an increase in chlorophyll content, photosynthetic electron transport, and intercellular CO2 concentration (Ci). Furthermore, the activity of antioxidant enzymes in the aboveground parts recovered, resulting in an approximately 25% decrease in both malondialdehyde (MDA) and H2O2. Remarkably, the activity of enzymes in the underground parts exhibited more significant changes, with the contents of MDA and H2O2 decreasing by more than 50%. Finally, 5-NGS stimulated the dual roles of soluble sugars as osmoprotectants and energy sources for metabolism under osmotic stress, and the proline content increased by more than 30%. We found that 5-NGS played a role in the accumulation of photosynthates and the effective distribution of resources in maize seedlings. Conclusions Based on these results, we determined that foliar application of 5-NGS may improve osmotic stress tolerance in maize seedlings. This study serves as a valuable reference for increasing maize yield under drought conditions.
Collapse
Affiliation(s)
- Deguang Yang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhifeng Gao
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuqi Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiao Li
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jingjing Yang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanbo Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Meiyu Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Meng Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Jiang T, He Y, Wu Z, Cui Y, Wang X, Huang H, Fan Y, Han M, Wang J, Wang S, Chen X, Lu X, Wang D, Guo L, Zhao L, Hao F, Ye W. Enhancing stimulation of cyaniding, GhLDOX3 activates reactive oxygen species to regulate tolerance of alkalinity negatively in cotton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115655. [PMID: 37924802 DOI: 10.1016/j.ecoenv.2023.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Anthocyanins belong to flavonoid secondary metabolites that act as plant pigments to give flowers and fruits different colors and as "scavengers" of reactive oxygen species (ROS) to protect plants from abiotic and biotic stresses. Few studies linked anthocyanins to alkaline resistance so far. In this study, anthocyanin synthesis-related gene leucoanthocyanidin dioxygenase (LDOX) was screened as a candidate gene to explore its relationship with alkali stress. The results found that pYL156: GhLDOX3 lines treated with 50 mM Na2CO3 (pH 11.11) for 24 h showed a significant increase in peroxidase (POD) activity, a decrease in total anthocyanin content and an increase in cyanidin content and a decrease in ROS accumulation compared to pYL156. The overexpressed (OE) lines, ldox mutant and wild-type (WT) lines in Arabidopsis were treated with 50 mM Na2CO3, 100 mM Na2CO3 and 150 mM Na2CO3 for 8 d, respectively. The wilted degree of the OE lines was more severe than WT lines, and less severe in the mutant lines in the 150 mM Na2CO3 treatment. After treatment, the expression levels of AtCAT and AtGSH genes related to antioxidant system in OE lines were significantly lower than in WT, and the expression levels of AtCAT and AtGSH in mutant lines were significantly higher than in WT. In conclusion, the above results suggest GhLDOX3 played a negative regulatory role in the mechanism of resisting Na2CO3 stress. Therefore, it can be considered in cotton breeding to improve the alkali tolerance of cotton by regulating the expression of related genes.
Collapse
Affiliation(s)
- Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization / School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde 415101, Hunan, China
| | - Zhe Wu
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, Hebei, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xiuping Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, Hebei, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Fushun Hao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization / School of Life Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization / School of Life Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
11
|
Iqbal H, Yaning C, Waqas M, Raza ST, Shareef M, Ahmad Z. Salinity and exogenous H 2 O 2 improve gas exchange, osmoregulation, and antioxidant metabolism in quinoa under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14057. [PMID: 38148196 DOI: 10.1111/ppl.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 12/28/2023]
Abstract
Climate change-induced concurrent drought and salinity stresses significantly threaten global crop yields, yet the physio-biochemical responses to combined stress in quinoa remain elusive. This study evaluated quinoa responses under four growth conditions: well-watered, drought stress, salt stress, and drought + salt stress with (15 mM) or without (0 mM) exogenous hydrogen peroxide (H2 O2 ) application. All examined stresses (alone or in combination) reduce quinoa growth and net photosynthesis, although salt stress was found to be less destructive than drought and combined stress. Strikingly, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), stomatal conductance (gs ), photosynthetic rate (PN ), K+ uptake, shoot height, shoot fresh, and dry weight were increased by 46.1%, 22.2%, 101.6%, 12.9%, 12.1%, 22.4%, 7.1%, 14%, and 16.4%, respectively, under combined stress compared to drought alone. In addition, exogenous H2 O2 effectively improved gaseous exchange, osmolytes' accumulation, and antioxidant activity, resulting in reduced lipid peroxidation, which eventually led to higher plant growth under all coercive conditions. The principle component analysis (PCA) indicated a strong positive correlation between antioxidant enzymes and inorganic ions, which contributed efficiently to osmotic adjustment, particularly under conditions of salinity followed by combined stress. In short, in combination, salt stress has the potential to mitigate drought-induced injuries by promoting the absorption of inorganic solutes for osmoregulation in quinoa plants. Furthermore, exogenous application of H2 O2 could be opted to enhance quinoa performance to increase its tolerance mechanism against drought and salinity, even under combined stress.
Collapse
Affiliation(s)
- Hassan Iqbal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chen Yaning
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Muhammad Waqas
- Department of Soil Science and Plants Nutrition, Hochschule Geisenheim University, Geiseneim, Germany
| | - Syed Turab Raza
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, Yunnan University, Kunming, China
| | | | - Zeeshan Ahmad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
12
|
Weng H, Wu M, Li X, Wu L, Li J, Atoba TO, Zhao J, Wu R, Ye D. High-throughput phenotyping salt tolerance in JUNCAOs by combining prompt chlorophyll a fluorescence with hyperspectral spectroscopy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111660. [PMID: 36822504 DOI: 10.1016/j.plantsci.2023.111660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The planting of salt-tolerant plants is regarded as the one of important measurements to improve the saline-alkali lands. The outstanding biological properties of JUNCAOs have made them candidates to improve and utilize saline-alkali lands. At present, little attention has been paid to developing a non-destructive and high throughput approach to evaluate the salt tolerance of JUNCAO. To close the gaps, three typical JUNCAOs (A.donax. No.1, A.donax. No.5 and A.donax. No.10) were evaluated by combining prompt chlorophyll a fluorescence (ChlF) with hyperspectral spectroscopy (HS). The results showed that salt stress reduced relative stem growth, water content, and total chlorophyll content but enhanced the malondialdehyde (MDA) content. It caused a significant change in chlorophyll a fluorescence kinetics with an appearance of L-, K- and J-band, implying damaging energetic connectivity between PSII units, uncoupling of the oxygen evolving complex (OEC) and inhibition of the QA-reoxidation. The negative impact of salt stress on JUNCAOs increased with the increasing level of salt concentration. Effect on spectral reflectance in the in the visible region with shifts on red edge position (REP) and blue edge position (BEP) to shorter wavelength was also found in salt stress plants. Combining principal component analysis (PCA) with the membership function method based on spectral indices and JIP-test parameters could well screen JUNCAOs salt tolerant ability with the highest for A.donax. NO.10 but lowest for A.donax. NO.1, which was the same as that of using conventional approach. The results demonstrate that prompt ChlF coupling with HS could provide potentials for non-invasively and high-throughput phenotyping salt tolerance in JUNCAOs.
Collapse
Affiliation(s)
- Haiyong Weng
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mingyang Wu
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaobin Li
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Libin Wu
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiayi Li
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tolulope Opeyemi Atoba
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jining Zhao
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - RenYe Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dapeng Ye
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
13
|
Xia L, Yao Y, Zeng Y, Guo Z, Zhang S. Acetic acid enhances drought tolerance more in female than in male willows. PHYSIOLOGIA PLANTARUM 2023; 175:e13890. [PMID: 36917073 DOI: 10.1111/ppl.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Drought is an important stress factor that limits plant growth and development. Female willows generally display stronger drought tolerance than males. The application of exogenous acetic acid (AA) has emerged as an efficient and eco-friendly approach to facilitate drought tolerance in willows. However, whether AA exerts sexually different effects on willows remains undefined. In this study, we comprehensively performed morphological and physiological analyses on three willow species, Salix rehderiana, Salix babylonica, and Salix matsudana, to investigate the sexually different responses to drought and AA. The results indicated that willow females were more drought-tolerant than males. AA application effectively enhanced willows' drought tolerance, and females applied with AA displayed greater root distribution and activity, stronger osmotic and antioxidant capacity and photosynthetic rate but less reactive oxygen species, or abscisic acid-mediated stomatal closure than males. In addition, AA application enhanced the jasmonic acid signaling pathway in females but inhibited it in males, conferring stronger drought defense capacity in female willows than in males. Overall, AA application improves drought tolerance more in female than in male willows, further enlarging the sexual differences in willows under drought-stressed conditions.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuan Yao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Zeng
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zian Guo
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Li H, Song F, Song X, Zhu K, Lin Q, Zhang J, Ning G. Single and composite damage mechanisms of soil polyethylene/polyvinyl chloride microplastics to the photosynthetic performance of soybean ( Glycine max [L.] merr.). FRONTIERS IN PLANT SCIENCE 2023; 13:1100291. [PMID: 36743543 PMCID: PMC9889878 DOI: 10.3389/fpls.2022.1100291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Introduction Adverse impacts of soil microplastics (MPs, diameter<5 mm) on vegetative growth and crop production have been widely reported, however, the single and composite damage mechanisms of polyethylene (PE) /polyvinyl chloride (PVC) microplastics (MPs) induced photosynthesis inhibition are still rarely known. Methods In this study, two widely distributed MPs, PE and PVC, were added to soils at a dose of 7% (dry soil) to examine the single and composite effects of PE-MPs and PVC-MPs on the photosynthetic performance of soybean. Results Results showed PE-MPs, PVC-MPs and the combination of these two contaminants increased malondialdehyde (MDA) content by 21.8-97.9%, while decreased net photosynthesis rate (Pn) by 11.5-22.4% compared to those in non-stressed plants, PVC MPs caused the most severe oxidative stress, while MPs stress resulted in Pn reduction caused by non-stomatal restriction. The reason for this is the single and composite MPs stress resulted in a 6% to 23% reduction in soybean PSII activity RCs reaction centers, along with negative effects on soybean PSII energy uptake, capture, transport, and dissipation. The presence of K-band and L-band also represents an imbalance in the number of electrons on the donor and acceptor side of PSII and a decrease in PSII energy transfer. Similarly, PVC single stress caused greater effects on soybean chloroplast PSII than PE single stress and combined stresses. Discussion PE and PVC microplastic stress led to oxidative stress in soybean, which affected the structure and function of photosynthetic PSII in soybean, ultimately leading to a decrease in net photosynthetic rate in soybean.
Collapse
Affiliation(s)
- Haibin Li
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Fupeng Song
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Xiliang Song
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Kongming Zhu
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Qun Lin
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Jinliang Zhang
- Dongying District, Agricultural and Rural Bureau, Dongying, China
| | - Guoqiang Ning
- Dongying District, Agricultural and Rural Bureau, Dongying, China
| |
Collapse
|
15
|
Sukhova E, Ratnitsyna D, Sukhov V. Simulated Analysis of Influence of Changes in H +-ATPase Activity and Membrane CO 2 Conductance on Parameters of Photosynthetic Assimilation in Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243435. [PMID: 36559546 PMCID: PMC9783116 DOI: 10.3390/plants11243435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 05/09/2023]
Abstract
Photosynthesis is an important process in plants which influences their development and productivity. Many factors can control the efficiency of photosynthesis, including CO2 conductance of leaf mesophyll, which affects the CO2 availability for Rubisco. It is known that electrical stress signals can decrease this conductance, and the response is probably caused by inactivation of H+-ATPase in the plasma membrane. In the current work, we analyzed the influence of both CO2 conductance in the plasma membrane, and chloroplast envelopes and H+-ATPase activity on photosynthetic CO2 assimilation, using a two-dimensional mathematical model of photosynthesis in leaves. The model included a description of assimilation on the basis of the Farquhar-von Caemmerer-Berry model, ion transport through the plasma membrane, diffusion of CO2 in the apoplast, and transport of CO2 through the plasma membrane and chloroplast envelope. The model showed that the photosynthetic CO2 assimilation rate was mainly dependent on the plasma membrane and chloroplast envelope conductance; direct influence of the H+-ATPase activity (through changes in pH and CO2/HCO3- concentration ratio) on this rate was weak. In contrast, both changes in CO2 conductance of the plasma membrane and chloroplast envelopes and changes in the H+-ATPase activity influenced spatial heterogeneity of the CO2 assimilation on the leaf surface in the simulated two-dimensional system. These effects were also observed under simultaneous changes in the CO2 conductance of the plasma membrane and H+-ATPase activity. Qualitatively similar influence of changes in the CO2 conductance of the plasma membrane and chloroplast envelopes, and changes in the H+-ATPase activity on photosynthesis were shown for two different densities of stomata in the simulated leaf; however, lowering the density of stomata decreased the assimilation rate and increased the heterogeneity of assimilation. The results of the model analysis clarify the potential influence of H+-ATPase inactivation on photosynthesis, and can be the basis for development of new methods for remote sensing of the influence of electrical signals.
Collapse
|
16
|
Angon PB, Tahjib-Ul-Arif M, Samin SI, Habiba U, Hossain MA, Brestic M. How Do Plants Respond to Combined Drought and Salinity Stress?-A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212884. [PMID: 36365335 PMCID: PMC9655390 DOI: 10.3390/plants11212884] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/12/2023]
Abstract
Plants are frequently exposed to one or more abiotic stresses, including combined salinity-drought, which significantly lowers plant growth. Many studies have been conducted to evaluate the responses of plants to combined salinity and drought stress. However, a meta-analysis-based systematic review has not been conducted yet. Therefore, this study analyzed how plants respond differently to combined salinity-drought stress compared to either stress alone. We initially retrieved 536 publications from databases and selected 30 research articles following a rigorous screening. Data on plant growth-related, physiological, and biochemical parameters were collected from these selected articles and analyzed. Overall, the combined salinity-drought stress has a greater negative impact on plant growth, photosynthesis, ionic balance, and oxidative balance than either stress alone. In some cases, salinity had a greater impact than drought stress and vice versa. Drought stress inhibited photosynthesis more than salinity, whereas salinity caused ionic imbalance more than drought stress. Single salinity and drought reduced shoot biomass equally, but salinity reduced root biomass more than drought. Plants experienced more oxidative stress under combined stress conditions because antioxidant levels did not increase in response to combined salinity-drought stress compared to individual salinity or drought stress. This study provided a comparative understanding of plants' responses to individual and combined salinity and drought stress, and identified several research gaps. More comprehensive genetic and physiological studies are needed to understand the intricate interplay between salinity and drought in plants.
Collapse
Affiliation(s)
- Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samia Islam Samin
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ummya Habiba
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M. Afzal Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marian Brestic
- Institut of Plant and Environmental Sciences, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
17
|
Chandrasekaran U, Byeon S, Kim K, Kim SH, Park CO, Han AR, Lee YS, Kim HS. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). FRONTIERS IN PLANT SCIENCE 2022; 13:1030140. [PMID: 36388508 PMCID: PMC9644029 DOI: 10.3389/fpls.2022.1030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change-related drought stress is expected to shift carbon partitioning toward volatile organic compound (VOC) biosynthesis. The effect of drought stress on VOC synthesis remains unknown in several tree species. Therefore, we exposed eastern white pine (Pinus strobus) plants to severe drought for 32 days and performed physiological analysis (chlorophyll content, leaf water content, and root/shoot index), biochemical analysis (non-structural carbohydrates, proline, lipid peroxidation, and antioxidant assay), and total root VOC analysis. Drought stress decreased the relative water and soil moisture contents. Root proline accumulation and antioxidant activity increased significantly, whereas leaf chlorophyll synthesis and fresh weight decreased significantly in drought-treated plants. A non-significant increase in sugar accumulation (leaves and roots), proline accumulation (leaves), antioxidant activity (leaves), and lipid peroxidation (leaves and roots) was observed in drought-treated plants. Drought stress caused a non-significant decline in root/shoot ratio and starch accumulation (leaves and roots) and caused a significant increase in root abscisic acid content. Drought-treated plants showed an increase in overall monoterpene synthesis (16%) and decline in total sesquiterpene synthesis (3%). Our findings provide an overall assessment of the different responses of VOC synthesis to severe water deficit that may help unravel the molecular mechanisms underlying drought tolerance in P. strobus.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seo Hyun Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chan Oh Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ah reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
| |
Collapse
|
18
|
Shanker AK, Amirineni S, Bhanu D, Yadav SK, Jyothilakshmi N, Vanaja M, Singh J, Sarkar B, Maheswari M, Singh VK. High-resolution dissection of photosystem II electron transport reveals differential response to water deficit and heat stress in isolation and combination in pearl millet [ Pennisetum glaucum (L.) R. Br.]. FRONTIERS IN PLANT SCIENCE 2022; 13:892676. [PMID: 36035679 PMCID: PMC9412916 DOI: 10.3389/fpls.2022.892676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Heat and Water Deficit Stress (WDS) tend to impede and restrict the efficiency of photosynthesis, chlorophyll fluorescence, and maximum photochemical quantum yield in plants based on their characteristic ability to interfere with the electron transport system in photosystem II. Dissection of the electron transport pathway in Photosystem II (PSII) under water deficit and Heat Stress (HS) can be insightful in gaining knowledge on the various attributes of the photosynthetic performance of a plant. We attempt a high-resolution dissection of electron transport in PSII with studies on chlorophyll a fast fluorescence kinetics and non-photochemical quenching (NPQ) as a response to and recovery from these stresses in pearl millet [Pennisetum glaucum (L.) R. Br.] in isolation and combination. In this study, we bring out the mechanisms by which both heat and water stress, in isolation and in combination, affect the photosynthetic electron transport in Photosystem II. Our results indicate that oxygen evolution complex (OEC) damage is the primary effect of heat stress and is not seen with the same intensity in the water-stressed plants. Low exciton absorption flux in heat stress and combined stress was seen due to OEC damage, and this caused an electron transport traffic jam in the donor side of PS II. Both the specific energy flux model and the phenomenological flux model developed from the derived values in our study show that water deficit stress in combination with heat stress has a much stronger effect than the stresses in isolation on the overall electron transport pathway of the PS II in pearl millet plants.
Collapse
|
19
|
Lu W, Wei G, Zhou B, Liu J, Zhang S, Guo J. A comparative analysis of photosynthetic function and reactive oxygen species metabolism responses in two hibiscus cultivars under saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:87-97. [PMID: 35636335 DOI: 10.1016/j.plaphy.2022.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Hibiscus (Hibiscus syriacus Linn.) is considered to be an important flowering shrub in Asia, and has high medicinal value. However, there are few studies on its cultivation and application in salinity soils. To understand the photosynthetic adaptive strategies employed by hibiscus to deal with saline conditions, the potential tolerant [H. syriacus 'Duede Brabaul' (DB)] and sensitive [H. syriacus 'Blueberry Smoothie' (BS)] cultivars were grown under 0-200 mM NaCl concentrations followed by a comprehensive assessment of their photosynthetic function and reactive oxygen species (ROS) metabolism. NaCl treatment significantly reduced the chlorophyll content of the two hibiscus cultivars, and the photosynthetic carbon assimilation capacity of the hibiscus leaves decreased, which was a result of stomatal and nonstomatal limiting factors. With the extension of NaCl stress days, nonphotochemical quenching (NPQ) can be significantly increased, which can effectively activate the nonradiant heat energy dissipation mechanism to release excess excitation energy to reduce the damage from the stressful environment and protect itself. Moreover, DB showed high antioxidant activities of reduced glutathione, and lower accumulation of ROS compared to BS. Taken together, this work suggests that the greater oxidative damage of the sensitive cultivar BS leaves is an important reason for its higher degree of photoinhibition to PSII than those of the tolerant cultivar DB leaves under NaCl stress.
Collapse
Affiliation(s)
- Wenjing Lu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Guoqing Wei
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Bowen Zhou
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Jinying Liu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Shuyong Zhang
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.
| | - Jing Guo
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
20
|
Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:96-110. [PMID: 35576892 DOI: 10.1016/j.plaphy.2022.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity has become a major threat to land degradation worldwide. The application of organic amendments is a promising alternative to restore salt-degraded soils and alleviate the deleterious effects of soil salt ions on crop growth and productivity. The aim of present study was to explore the potential impact of biochar and vermicompost, applied individually or in combination, on soil enzyme activity and the growth, yield and quality of Hybrid Pennisetum plants suffered moderate salt stress (5.0 g kg-1 NaCl in the soil). Our results showed that biochar and/or vermicompost promoted Na+ exclusion and K+ accumulation, relieved stomatal limitation, increased leaf pigment contents, enhanced electron transport efficiency and net photosynthesis, improved root activity, and minimized the oxidative damage in Hybrid Pennisetum caused by soil salinity stress. In addition, soil enzymes were also activated by biochar and vermicompost. These amendments increased the biomass and crude protein content, and decreased the acid detergent fiber and neutral detergent fiber contents in salt-stressed Hybrid Pennisetum. Biochar and vermicompost addition increased the biomass and quality of Hybrid Pennisetum due to the direct effects related to plant growth parameters and the indirect effects via soil enzyme activity. Finally, among the different treatments, the use of vermicompost showed better results than biochar alone or the biochar-compost combination did, suggesting that the addition of vermicompost to the soil is an effective and valuable method for reclamation of salt-affected soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jiaxuan Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
21
|
He J, Koh DJQ, Qin L. LED spectral quality and NaCl salinity interact to affect growth, photosynthesis and phytochemical production of Mesembryanthemum crystallinum. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:483-495. [PMID: 33972013 DOI: 10.1071/fp20375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 05/27/2023]
Abstract
The edible halophyte Mesembryanthemum crystallinum L. was grown at different NaCl salinities under different combined red and blue light-emitting diode (LED) light treatments. High salinity (500 mM NaCl) decreased biomass, leaf growth, and leaf water content. Interactions between LED ratio and salinity were detected for shoot biomass and leaf growth. All plants had F v /F m ratios close to 0.8 in dark-adapted leaves, suggesting that they were all healthy with similar maximal efficiency of PSII photochemistry. However, measured under the actinic light near or above the growth light, the electron transport rate (ETR) and photochemical quenching (qP) of M. crystallinum grown at 100 and 250 mM NaCl were higher than at 500 mM NaCl. Grown under red/blue LED ratios of 0.9, M. crystallinum had higher ETR and qP across all salinities indicating higher light energy utilisation. Crassulacean acid metabolism (CAM) was induced in M. crystallinum grown at 500 mM NaCl. CAM-induced leaves had much higher non-photochemical quenching (NPQ), suggesting that NPQ can be used to estimate CAM induction. M. crystallinum grown at 250 and 500 mM NaCl had higher total chlorophyll and carotenoids contents than at 100 mM NaCl. Proline, total soluble sugar, ascorbic acid, and total phenolic compounds were higher in plants at 250 and 500 mM NaCl compared with those at 100 mM NaCl. An interaction between LED ratio and salinity was detected for proline content. Findings of this study suggest that both salinity and light quality affect productivity, photosynthetic light use efficiency, and proline accumulation of M. crystallinum .
Collapse
Affiliation(s)
- Jie He
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616; and Corresponding author
| | - Dominic J Q Koh
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| | - Lin Qin
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| |
Collapse
|
22
|
Saleem MH, Wang X, Parveen A, Perveen S, Mehmood S, Fiaz S, Ali S, Hussain S, Adnan M, Iqbal N, Alatawi A, Ali S. Alleviation of drought stress by root-applied thiourea is related to elevated photosynthetic pigments, osmoprotectants, antioxidant enzymes, and tubers yield and suppressed oxidative stress in potatoes cultivars. PeerJ 2022; 10:e13121. [PMID: 35415014 PMCID: PMC8995019 DOI: 10.7717/peerj.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/24/2022] [Indexed: 01/12/2023] Open
Abstract
The growth and productivity of plants are enhanced by the use of thiourea (TU) under stressful conditions. When TU is applied as a rooting medium, it improves plant growth characteristics and other physiological parameters in stressed environment. A pot experiment was conducted in the botanical garden of the Government College University, Faisalabad 38000, Pakistan to examine the TU-mediated fluctuations in some crucial physio-biochemical parameters and the oxidative defense of potatoes under a restricted water supply. For this purpose, two potato cultivars (potato-SH-5 and potato-FD-73) were sown in pots containing 10 kg of soil. Water was regularly applied to the pots until germination. After 2 weeks of germination, drought stress with 65% field capacity was imposed, while the control was subjected to 100% field capacity. TU, as a rooting medium, was applied at the vegetative stage (0 (no application), 0.5, 0.75 mM). A substantial reduction in the total number of leaves, leaf area, tuber biomass (fresh and dry weight), photosynthetic pigments, membrane permeability, and leaf relative water content (RWC) was recorded in plants under drought stress conditions as compared to control plants. The damaging effects of water stress were more critical for cv. potato-FD-73 as compared to cv. potato-SH-5. In contrast, drought stress enhanced the malondialdehyde (MDA) and hydrogen peroxide (H2O2) content while also increased antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) and triggered the accumulation of soluble proteins, soluble sugars, proline, and phenolic and anthocyanin contents. However, TU applied as rooting medium at 0.5 and 0.75 mM was effective in reducing the detrimental effects of water stress in both cultivars. Furthermore, increasing levels of TU enhanced chlorophyll pigments, dissolved proteins, complete dissolved sugars, and enzymatic capabilities of POD, SOD, and CAT, while reducing the MDA and H2O2 in both cultivars under stress conditions. In conclusion, TU improved the yield and chlorophyll pigments of potato plants by mitigating the adverse effects of drought stress through reduced EL, MDA, and H2O2 contents and improved activities of enzymatic and non-enzymatic antioxidants and osmoprotectants.
Collapse
Affiliation(s)
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Saqib Mehmood
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda, Pakistan
| | - Sajjad Hussain
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Muhammad Adnan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Naeem Iqbal
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Aishah Alatawi
- Biology Department, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
23
|
Song X, Li C, Chen W. Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113389. [PMID: 35272194 DOI: 10.1016/j.ecoenv.2022.113389] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Soils co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and cadmium (Cd) have serious environmental impacts and are highly toxic to humans and ecosystems. Phytoremediation is an effective biotechnology for the remediation and restoration of PAH- and Cd-polluted soils. Pot experiments were conducted to investigate the individual and combined effects of PAHs (1238.62 mg kg-1) and Cd (23.1 mg kg-1) on the phytoremediation potential of Bermuda grass grown in contaminated soils. Bermuda grass exhibited a significant decrease in plant growth rate, leaf pigment content, root activity, plant height and biomass and a remarkable increase in malondialdehyde content and electrolyte leakage when grown in PAH- and Cd-contaminated soils compared with grass grown in uncontaminated soils. The activity of soil enzymes, including urease, alkaline phosphatase, sucrose, and fluorescein diacetate hydrolysis, were reduced in soil with PAH and Cd stress. Furthermore, the toxicity of combined PAHs and Cd on Bermuda grass growth and soil enzyme activity was much higher than that of PAH or Cd stress alone, suggesting a synergistic effect of PAHs and Cd on cytotoxicity. To scavenge redundant reactive oxygen species and avoid oxidative damage, Bermuda grass increased plant catalase, superoxide dismutase, and peroxidase activity and soluble sugar and proline content. The bioconcentration factor of Cd in Bermuda grass grown under Cd alone and combined PAH and Cd exposure was greater than 1 for both, suggesting that Bermuda grass has a high Cd accumulation ability. Under PAH alone and combined PAH and Cd exposure conditions, a higher PAH removal rate (41.5-56.8%) was observed in soils planted with Bermuda grass than in unplanted soils (24.8-29.8%), indicating that Bermuda grass has a great ability to degrade PAHs. Bermuda grass showed great phytoremediation potential for the degradation of PAHs and phytoextraction of Cd in co-contaminated soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Engineering & Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China
| | - Changjiang Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Engineering & Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China.
| |
Collapse
|
24
|
Teng L, Liu H, Chu X, Song X, Shi L. Effect of precipitation change on the photosynthetic performance of Phragmites australis under elevated temperature conditions. PeerJ 2022; 10:e13087. [PMID: 35291483 PMCID: PMC8918233 DOI: 10.7717/peerj.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background As a fundamental metabolism, leaf photosynthesis not only provides necessary energy for plant survival and growth but also plays an important role in global carbon fixation. However, photosynthesis is highly susceptible to environmental stresses and can be significantly influenced by future climate change. Methods In this study, we examined the photosynthetic responses of Phragmites australis (P. australis) to three precipitation treatments (control, decreased 30%, and increased 30%) under two thermal regimes (ambient temperature and +4 °C) in environment-controlled chambers. Results Our results showed that the net CO2 assimilation rate (P n), maximal rate of Rubisco (V cmax), maximal rate of ribulose-bisphosphate (RuBP) regeneration (J max) and chlorophyll (Chl) content were enhanced under increased precipitation condition, but were declined drastically under the condition of water deficit. The increased precipitation had no significant effect on malondialdehyde (MDA) content (p > 0.05), but water deficit drastically enhanced the MDA content by 10.1%. Meanwhile, a high temperature inhibited the positive effects of increased precipitation, aggravated the adverse effects of drought. The combination of high temperature and water deficit had more detrimental effect on P. australis than a single factor. Moreover, non-stomatal limitation caused by precipitation change played a major role in determining carbon assimilation rate. Under ambient temperature, Chl content had close relationship with P n (R2 = 0.86, p < 0.01). Under high temperature, P n was ralated to MDA content (R2 = 0.81, p < 0.01). High temperature disrupted the balance between V cmax and J max (the ratio of J max to V cmax decreased from 1.88 to 1.12) which resulted in a negative effect on the photosynthesis of P. australis. Furthermore, by the analysis of Chl fluorescence, we found that the xanthophyll cycle-mediated thermal dissipation played a major role in PSII photoprotection, resulting in no significant change on actual PSII quantum yield (Φ PSII) under both changing precipitation and high temperature conditions. Conclusions Our results highlight the significant role of precipitation change in regulating the photosynthetic performance of P. australis under elevated temperature conditions, which may exacerbate the drought-induced primary productivity reduction of P. australis under future climate scenarios.
Collapse
Affiliation(s)
| | | | | | | | - Lianhui Shi
- Shandong Agricultural University, Taian, China
| |
Collapse
|
25
|
Seed Germination Behavior, Growth, Physiology and Antioxidant Metabolism of Four Contrasting Cultivars under Combined Drought and Salinity in Soybean. Antioxidants (Basel) 2022; 11:antiox11030498. [PMID: 35326148 PMCID: PMC8944481 DOI: 10.3390/antiox11030498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Drought and salinity stresses are persistent threat to field crops and are frequently mentioned as major constraints on worldwide agricultural productivity. Moreover, their severity and frequency are predicted to rise in the near future. Therefore, in the present study we investigated the mechanisms underlying plant responses to drought (5, 10 and 15% polyethylene glycol, PEG-6000), salinity (50, 100, and 150 mM NaCl), and their combination, particularly at the seed germination stage, in terms of photosynthesis and antioxidant activity, in four soybean cultivars, viz., PI408105A (PI5A), PI567731 (PI31), PI567690 (PI90), and PI416937 (PI37). Results showed that seed germination was enhanced by 10% PEG and decreased by 15% PEG treatments compared to the control, while seed germination was drastically decreased under all levels of NaCl treatment. Furthermore, combined drought and salinity treatment reduced plant height and root length, shoot and root total weights, and relative water content compared with that of control. However, the reductions were not similar among the varieties, and definite growth retardations were observed in cultivar PI5A under drought and in PI37 under salinity. In addition, all treatments resulted in substantially reduced contents of chlorophyll pigment, anthocyanin, and chlorophyll fluorescence; and increased lipid peroxidation, electrolyte leakage, and non-photochemical quenching in all varieties of soybean as compared to the control plants. However, proline, amino acids, sugars, and secondary metabolites were increased with the drought and salinity stresses alone. Moreover, the reactive oxygen species accumulation was accompanied by improved enzymatic antioxidant activity, such as that of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase. However, the enhancement was most noticeable in PI31 and PI90 under both treatments. In conclusion, the cultivar PI31 has efficient drought and salinity stress tolerance mechanisms, as illustrated by its superior photosynthesis, osmolyte accumulation, antioxidative enzyme activity, and secondary metabolite regulation, compared to the other cultivars, when stressed.
Collapse
|
26
|
Wang C, Gu Q, Zhao L, Li C, Ren J, Zhang J. Photochemical Efficiency of Photosystem II in Inverted Leaves of Soybean [ Glycine max (L.) Merr.] Affected by Elevated Temperature and High Light. FRONTIERS IN PLANT SCIENCE 2022; 12:772644. [PMID: 35251060 PMCID: PMC8888862 DOI: 10.3389/fpls.2021.772644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
In summer, high light and elevated temperature are the most common abiotic stresses. The frequent occurrence of monsoon exposes the abaxial surface of soybean [Glycine max (L.) Merr.] leaves to direct solar radiation, resulting in irreversible damage to plant photosynthesis. In this study, chlorophyll a fluorescence was used to evaluate the functional status of photosystem II (PSII) in inverted leaves under elevated temperature and high light. In two consecutive growing seasons, we tested the fluorescence and gas exchange parameters of soybean leaves for 10 days and 15 days (5 days after recovery). Inverted leaves had lower tolerance compared to normal leaves and exhibited lower photosynthetic performance, quantum yield, and electron transport efficiency under combined elevated temperature and high light stress, along with a significant increase in absorption flux per reaction center (RC) and the energy dissipation of the RC, resulting in significantly lower performance indexes (PIABS and PItotal) and net photosynthetic rate (P n ) in inverted leaves. High light and elevated temperature caused irreversible membrane damage in inverted leaves, as photosynthetic performance parameters (P n , PIABS, and PItotal) did not return to control levels after inverted leaves recovered. In conclusion, inverted leaves exhibited lower photosynthetic performance and PSII activity under elevated temperature and high light stress compared to normal leaves.
Collapse
Affiliation(s)
- Cong Wang
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Qiuli Gu
- Agriculture and Rural Bureau of Qapqal County, Qapqal County, China
| | - Lianjia Zhao
- Research Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunyan Li
- Agriculture and Rural Bureau of Qapqal County, Qapqal County, China
| | - Jintao Ren
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Jianxin Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
27
|
Abstract
Drought and waterlogging seriously affect the growth of plants and are considered severe constraints on agricultural and forestry productivity; their frequency and degree have increased over time due to global climate change. The morphology, photosynthetic activity, antioxidant enzyme system and hormone levels of plants could change in response to water stress. The mechanisms of these changes are introduced in this review, along with research on key transcription factors and genes. Both drought and waterlogging stress similarly impact leaf morphology (such as wilting and crimping) and inhibit photosynthesis. The former affects the absorption and transportation mechanisms of plants, and the lack of water and nutrients inhibits the formation of chlorophyll, which leads to reduced photosynthetic capacity. Constitutive overexpression of 9-cis-epoxydioxygenase (NCED) and acetaldehyde dehydrogenase (ALDH), key enzymes in abscisic acid (ABA) biosynthesis, increases drought resistance. The latter forces leaf stomata to close in response to chemical signals, which are produced by the roots and transferred aboveground, affecting the absorption capacity of CO2, and reducing photosynthetic substrates. The root system produces adventitious roots and forms aerenchymal to adapt the stresses. Ethylene (ETH) is the main response hormone of plants to waterlogging stress, and is a member of the ERFVII subfamily, which includes response factors involved in hypoxia-induced gene expression, and responds to energy expenditure through anaerobic respiration. There are two potential adaptation mechanisms of plants (“static” or “escape”) through ETH-mediated gibberellin (GA) dynamic equilibrium to waterlogging stress in the present studies. Plant signal transduction pathways, after receiving stress stimulus signals as well as the regulatory mechanism of the subsequent synthesis of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes to produce ethanol under a hypoxic environment caused by waterlogging, should be considered. This review provides a theoretical basis for plants to improve water stress tolerance and water-resistant breeding.
Collapse
|
28
|
Teng L, Zhu Y, Li H, Song X, Shi L. The phytotoxicity of microplastics to the photosynthetic performance and transcriptome profiling of Nicotiana tabacum seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113155. [PMID: 35007831 DOI: 10.1016/j.ecoenv.2021.113155] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging "new generation" organic contaminants, have attracted extensive attention regarding their severe toxicity to aquatic and terrestrial organisms. However, the responses of plant photosynthesis to soil MP pollution are unclear. In this study, Nicotiana tabacum seedlings were grown in soils containing 0~1000 g·kg-1 polyethylene (PE)-MPs for 48 days. PE-MPs significantly increased the superoxide anion content by 15.3~44.8% but decreased the chlorophyll content and Rubisco activity by 4.3~14.0% and 4.23~30.9%, respectively. PE-MPs also inhibited RuBP carboxylation activation and regeneration, restrained light use efficiency, and prevented dark respiration, thereby reducing the light-saturated photosynthesis rate. The changed shape of OJIP transients indicated that PE-MP toxicity inhibited not only the primary photochemistry rate but also photoelectrochemical quenching, resulting in decreased quantum yields. RNA-Seq revealed thousands of differentially expressed genes (DEGs), among which 79 highly expressed DEGs were enriched in photosynthesis-related processes. Functional annotation revealed that the reduction in environment stress was mainly due to the repressed expression of light harvesting-, electron transport- and photosystem-related genes in chloroplasts. This study regarding the physiological and molecular responses of photosynthetic performance to soil PE-MP pollution provides a new viewpoint for exploring the plant photosynthesis regulating and protective mechanisms under soil MP stresses.
Collapse
Affiliation(s)
- Linhong Teng
- College of Life Sciences, Dezhou University, De'zhou 253023, China
| | - Yihao Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
29
|
Liu C, Wang H, Zhang X, Ma F, Guo T, Li C. Activation of the ABA Signal Pathway Mediated by GABA Improves the Drought Resistance of Apple Seedlings. Int J Mol Sci 2021; 22:ijms222312676. [PMID: 34884481 PMCID: PMC8657939 DOI: 10.3390/ijms222312676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Drought seriously affects the yield and quality of apples. γ-aminobutyric acid (GABA) plays an important role in the responses of plants to various stresses. However, the role and possible mechanism of GABA in the drought response of apple seedlings remain unknown. To explore the effect of GABA on apple seedlings under drought stress, seedlings of Malus hupehensis were treated with seven concentrations of GABA, and the response of seedlings under 15-day drought stress was observed. The results showed that 0.5 mM GABA was the most effective at relieving drought stress. Treatment with GABA reduced the relative electrical conductivity and MDA content of leaves induced by drought stress and significantly increased the relative water content of leaves. Exogenous GABA significantly decreased the stomatal conductance and intercellular carbon dioxide concentration and transpiration rate, and it significantly increased the photosynthetic rate under drought. GABA also reduced the accumulation of superoxide anions and hydrogen peroxide in leaf tissues under drought and increased the activities of POD, SOD, and CAT and the content of GABA. Exogenous treatment with GABA acted through the accumulation of abscisic acid (ABA) in the leaves to significantly decrease stomatal conductance and increase the stomatal closure rate, and the levels of expression of ABA-related genes PYL4, ABI1, ABI2, HAB1, ABF3, and OST1 changed in response to drought. Taken together, exogenous GABA can enhance the drought tolerance of apple seedlings.
Collapse
|
30
|
Hassan A, Fasiha Amjad S, Hamzah Saleem M, Yasmin H, Imran M, Riaz M, Ali Q, Ahmad Joyia F, Mobeen, Ahmed S, Ali S, Abdullah Alsahli A, Nasser Alyemeni M. Foliar application of ascorbic acid enhances salinity stress tolerance in barley ( Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J Biol Sci 2021; 28:4276-4290. [PMID: 34354410 PMCID: PMC8324950 DOI: 10.1016/j.sjbs.2021.03.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.
Collapse
Affiliation(s)
- Amara Hassan
- Department of Botany, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Syeda Fasiha Amjad
- Department of Botany University of Agriculture Faisalabad, Punjab, Pakistan
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Humaira Yasmin
- Department of Bio-Sciences, COMSATS University, Islamabad 45550, Pakistan
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Muhammad Riaz
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qurban Ali
- Key Laboratory of Plant Pathology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad
| | - Mobeen
- Department of Botany, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, 11451-Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, 11451-Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Abstract
Nowadays, crop insufficiency resulting from soil salinization is threatening the world. On the basis that soil salinization has become a worldwide problem, studying the mechanisms of plant salt tolerance is of great theoretical and practical significance to improve crop yield, to cultivate new salt-tolerant varieties, and to make full use of saline land. Based on previous studies, this paper reviews the damage of salt stress to plants, including suppression of photosynthesis, disturbance of ion homeostasis, and membrane peroxidation. We have also summarized the physiological mechanisms of salt tolerance, including reactive oxygen species (ROS) scavenging and osmotic adjustment. Four main stress-related signaling pathways, salt overly sensitive (SOS) pathway, calcium-dependent protein kinase (CDPK) pathway, mitogen-activated protein kinase (MAPKs) pathway, and abscisic acid (ABA) pathway, are included. We have also enumerated some salt stress-responsive genes that correspond to physiological mechanisms. In the end, we have outlined the present approaches and techniques to improve salt tolerance of plants. All in all, we reviewed those aspects above, in the hope of providing valuable background knowledge for the future cultivation of agricultural and forestry plants.
Collapse
|
32
|
Alam H, Khattak JZK, Ksiksi TS, Saleem MH, Fahad S, Sohail H, Ali Q, Zamin M, El-Esawi MA, Saud S, Jiang X, Alwahibi MS, Alkahtani J. Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. PHYSIOLOGIA PLANTARUM 2021; 172:1336-1351. [PMID: 33179272 DOI: 10.1111/ppl.13273] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 05/22/2023]
Abstract
Tetraena mandavillei L. is a perennial shrub native to the Middle Eastern countries of Asia, which is extensively regarded as a drought-tolerant plant. However, the plant reduces growth and biomass when grown in high concentrations of sodium chloride in the soil. We conducted a pot experiment to influence the negative impact of different levels of salinity (0, 10, and 20 dSm-1 ) and drought stress (100, 80, 60, and 40% water field capacity), to study different growth-related parameters, physiological alterations and ion uptake by T. mandavillei. Both salinity and drought stress caused a negative impact by affecting several attributes of T. mandavillei, but the plants showed some resistance against drought stress conditions in terms of growth and biomass. In addition to that, we noticed that a combinatorial and individual impact of drought and salinity stress decreased photosynthetic pigments and gas exchange parameters in T. mandavillei. Results also depicted that the combination of the abiotic stress conditions drought and salinity induced reactive oxygen species (ROS), indicating that the plants undergo oxidative damaged. However, due to the active plant defense system, the plant enhanced its performance under abiotic stress conditions, but due to the severe drought condition (40% water field capacity), a significant (P < 0.05) decrease in the activities of antioxidant compounds was caused. Furthermore, osmolytes also increased under both salinity and drought stress conditions in this study. Our results also showed that increased salinity and drought stress in the soil caused a significant increase in sodium (Na+ ) and chloride (Cl- ) ions in roots and shoots of T. mandavillei. In contrast to that, the contents of Calcium (Ca2+ ) and potassium (K+ ) were decreased in all organs of the plants with increasing levels of salinity and drought stress. Taken together, T. mandavillei can be classified as a facultative halophyte with the ability to tolerate drought stress and using salt accumulation mechanisms to tolerate salinity stress.
Collapse
Affiliation(s)
- Hasnain Alam
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Jabar Z K Khattak
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Taoufik S Ksiksi
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhammad H Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Muhammad Zamin
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agriculture University, Harbin, China
| | - Xue Jiang
- College of Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|