1
|
Jasieniecka-Gazarkiewicz K, Połońska A, Gong Y, Banaś A. Acyl-CoA: lysophosphatidylcholine acyltransferase from diatom P. Tricornutum efficiently remodels phosphatidylcholine containing polyunsaturated fatty acids. Sci Rep 2024; 14:30970. [PMID: 39730635 DOI: 10.1038/s41598-024-82124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
This study presents characterisation of diatom's PtLPCAT1 (acyl-CoA: lysophosphatidylcholine acyltransferase) activity in phospholipid remodelling. In this research microsomal fractions of yeast Δale1 mutant overexpressing PtLPCAT1 were used as a source of the tested enzyme. In the assays evaluating remodelling of different phospholipids by PtLPCAT1 not modified microsomal fractions of the tested yeast were used. The enzyme most intensively remodelled fatty acid composition of microsomal phosphatidylcholine (PC), however, it was also able to remodel phosphatidylethanolamine (PE) and phosphatidic acid (PA). To study the ability of the tested enzyme to remodel PC molecules containing fatty acids from the VLC-PUFA biosynthetic pathway the tested microsomes were enriched biochemically with: sn-1-18:1-sn-2-18:3(n-3)-PC, sn-1-18:1-sn-2-18:3(n-6)-PC, sn-1-18:1-sn-2-18:4(n-3)-PC, sn-1-18:1-sn-2-20:4(n-3)-PC and sn-1-18:1-sn-2-20:5(n-3)-PC. Further on it was shown that PtLPCAT1 was able to remodel PC of such modified microsomes with higher intensity than PC of unmodified microsomes. The remodelling efficiency of PtLPCAT1 was affected also by fatty acid donors; the process was most efficient when acyl-CoAs with unsaturated fatty acids were in the assays. In comparative studies the properties of Arabidopsis AtLPCAT1 and yeast ALE1 were tested. Effect of the temperature and pH values on the remodelling activity of PtLPCAT1 was also examined.
Collapse
Affiliation(s)
| | - Ada Połońska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, 80-307, Poland
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, 80-307, Poland
| |
Collapse
|
2
|
Windhagauer M, Doblin MA, Signal B, Kuzhiumparambil U, Fabris M, Abbriano RM. Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 2024; 108:104. [PMID: 38212969 DOI: 10.1007/s00253-023-12823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.
Collapse
Affiliation(s)
- Matthias Windhagauer
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | | | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, 5230, Odense M, Denmark
| | - Raffaela M Abbriano
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
3
|
Zhu J, Li S, Chen W, Xu X, Wang X, Wang X, Han J, Jouhet J, Amato A, Maréchal E, Hu H, Allen AE, Gong Y, Jiang H. Delta-5 elongase knockout reduces docosahexaenoic acid and lipid synthesis and increases heat sensitivity in a diatom. PLANT PHYSIOLOGY 2024; 196:1356-1373. [PMID: 38796833 DOI: 10.1093/plphys/kiae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22 °C), and were more sensitive to elevated temperature (28 °C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.
Collapse
Affiliation(s)
- Junkai Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuangqing Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Life and Ecology Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinde Xu
- Department of Human Nutrition, Zhejiang Medicine Co. Ltd., Xinchang 312500, China
- Department of Human Nutrition, Zhejiang Keming Biopharmaceuticals Co. Ltd., Xinchang 312500, China
| | - Xiaoping Wang
- Department of Human Nutrition, Zhejiang Medicine Co. Ltd., Xinchang 312500, China
- Department of Human Nutrition, Zhejiang Keming Biopharmaceuticals Co. Ltd., Xinchang 312500, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jichang Han
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Life and Ecology Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
4
|
Zhang K, Tan X, Zhang Q. Nutritional Quality of Basal Resource in Stream Food Webs Increased with Light Reduction-Implications for Riparian Revegetation. MICROBIAL ECOLOGY 2024; 87:114. [PMID: 39259373 PMCID: PMC11390794 DOI: 10.1007/s00248-024-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Biofilms are considered a basal resource with high nutritional quality in stream food webs, as periphytic algae are abundant of polyunsaturated fatty acids (PUFAs). PUFAs are essential for growth and reproduction of consumers who cannot or have very limited capacity to biosynthesize. Yet, how the nutritional quality based on PUFA of basal food sources changes with light intensity remains unclear. We conducted a manipulative experiment in mesocosms to explore the response and mechanisms of nutritional quality to shading, simulating riparian restoration. We found a significant increase in PUFA% (including arachidonic acid, ARA) under shading conditions. The increased PUFA is caused by the algal community succession from Cyanobacteria and Chlorophyta to Bacillariophyta which is abundant of PUFA (especially eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA). On the other hand, shading increased PUFA via upregulating enzymes such as Δ12 desaturase (FAD2, EC:1.14.19.6) and 3-ketoacyl-CoA synthase (KCS, EC:2.3.1.199) in the biosynthesis of unsaturated fatty acid elongation pathways. Our findings imply that riparian reforestation by decreasing light intensity increases the nutritional quality of basal resources in streams, which may enhance transfer of good quality carbon to consumers in higher trophic levels through bottom-up effects.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China
- University of Chinese Academy of Sciences, Beijing, 100049, P R China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China.
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China.
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China.
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China.
| |
Collapse
|
5
|
Fair H, Hamilton TL, Smiley PC, Liu Q. Determinants of microbial community structure in supraglacial pool sediments of monsoonal Tibetan Plateau. Microbiol Spectr 2024; 12:e0075424. [PMID: 39078165 PMCID: PMC11370254 DOI: 10.1128/spectrum.00754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 07/31/2024] Open
Abstract
Supraglacial pools are prevalent on debris-covered mountain glaciers, yet only limited information is available on the microbial communities within these habitats. Our research questions for this preliminary study were: (1) What microbes occur in supraglacial pool sediments of monsoonal Tibet?; (2) Which abiotic and biotic habitat variables have the most influence on the microbial community structure?; and (3) Does microbial composition of supraglacial pool sediments differ from that of glacial-melt stream pool sediments? We collected microbial samples for 16S rRNA sequencing and invertebrates for enumeration and identification and measured 14 abiotic variables from 46 supraglacial pools and nine glacial-melt stream pools in 2018 and 2019. Generalized linear model analyses, small sample Akaike information criterion, and variable importance scores were used to identify the best predictor variables of microbial community structure. Multi-response permutation procedure (MRPP) was used to compare taxa composition between supraglacial pools and stream pools. The most abundant phyla in supraglacial pool sediments were Proteobacteria, Actinobacteria, Bacteroidota, Chloroflexi, and Cyanobacteria. Genera richness, indicator genera richness, and Polaromonas relative abundance were best predicted by Chironomidae larvae abundance. Angustibacter and Oryzihumus relative abundance were best predicted by pH, Acidiphilium relative abundance was best predicted by turbidity, and Sphingomonas relative abundance was best predicted by glacier zone. Taxa composition was similar between supraglacial and stream pools at the class, genus, and ASV taxonomic levels. Our results indicate that Chironomidae larvae may play a keystone species role in shaping bacterial communities of supraglacial pools on debris-covered glaciers.IMPORTANCEGlacier meltwater habitats (cryoconite holes, supraglacial pools, supraglacial ponds and lakes, glacial streams) and their biota have not been well-studied, especially on debris-covered glaciers in temperate monsoonal regions. Our study is the first to document the microbial community-habitat relationships in supraglacial pools on a debris-covered glacier in Tibet. Microbial genera richness, indicator genera richness, and Polaromonas relative abundance declined with increasing larval Chironomidae abundance, which is a novel finding that highlights the importance of larval insects in structuring microbial communities in supraglacial pools.
Collapse
Affiliation(s)
- Heather Fair
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
- Soil Drainage Research Unit, Agricultural Research Service, USDA, Columbus, Ohio, USA
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
- the Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter C. Smiley
- Soil Drainage Research Unit, Agricultural Research Service, USDA, Columbus, Ohio, USA
| | - Qiao Liu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
6
|
Dorrell RG, Zhang Y, Liang Y, Gueguen N, Nonoyama T, Croteau D, Penot-Raquin M, Adiba S, Bailleul B, Gros V, Pierella Karlusich JJ, Zweig N, Fernie AR, Jouhet J, Maréchal E, Bowler C. Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid. THE PLANT CELL 2024; 36:3584-3610. [PMID: 38842420 PMCID: PMC11371179 DOI: 10.1093/plcell/koae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.
Collapse
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France
| | - Youjun Zhang
- Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Liang
- Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Nolwenn Gueguen
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Tomomi Nonoyama
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Dany Croteau
- Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France
| | - Mathias Penot-Raquin
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France
| | - Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France
| | - Valérie Gros
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Juan José Pierella Karlusich
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Nathanaël Zweig
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Alisdair R Fernie
- Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Chris Bowler
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| |
Collapse
|
7
|
Vrba R, Lavoie I, Creusot N, Eon M, Millan-Navarro D, Feurtet-Mazel A, Mazzella N, Moreira A, Planas D, Morin S. Experimental testing of two urban stressors on freshwater biofilms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106972. [PMID: 38815346 DOI: 10.1016/j.aquatox.2024.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Aquatic ecosystems and their communities are exposed to numerous stressors of various natures (chemical and physical), whose impacts are often poorly documented. In urban areas, the use of biocides such as dodecyldimethylbenzylammonium chloride (DDBAC) and their subsequent release in wastewater result in their transfer to urban aquatic ecosystems. DDBAC is known to be toxic to most aquatic organisms. Artificial light at night (ALAN) is another stressor that is increasing globally, especially in urban areas. ALAN may have a negative impact on photosynthetic cycles of periphytic biofilms, which in turn may result in changes in their metabolic functioning. Moreover, studies suggest that exposure to artificial light could increase the biocidal effect of DDBAC on biofilms. The present study investigates the individual and combined effects of DDBAC and/or ALAN on the functioning and structure of photosynthetic biofilms. We exposed biofilms in artificial channels to a nominal concentration of 30 mg.L-1 of DDBAC and/or ALAN for 10 days. ALAN modified DDBAC exposure, decreasing concentrations in the water but not accumulation in biofilms. DDBAC had negative impacts on biofilm functioning and structure. Photosynthetic activity was inhibited by > 90% after 2 days of exposure, compared to the controls, and did not recover over the duration of the experiment. Biofilm composition was also impacted, with a marked decrease in green algae and the disappearance of microfauna under DDBAC exposure. The integrity of algal cells was compromised where DDBAC exposure altered the chloroplasts and chlorophyll content. Impacts on autotrophs were also observed through a shift in lipid profiles, in particular a strong decrease in glycolipid content was noted. We found no significant interactive effect of ALAN and DDBAC on the studied endpoints.
Collapse
Affiliation(s)
- Romain Vrba
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France; INRS-ETE, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Isabelle Lavoie
- INRS-ETE, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Nicolas Creusot
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Mélissa Eon
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | | | | | | | - Aurélie Moreira
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Dolors Planas
- UQAM, GRIL-Département des sciences biologiques, 141 Avenue du Président-Kennedy, Montréal, QC H2 × 1Y4, Canada
| | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France.
| |
Collapse
|
8
|
Edwards BR, Thamatrakoln K, Fredricks HF, Bidle KD, Van Mooy BAS. Viral Infection Leads to a Unique Suite of Allelopathic Chemical Signals in Three Diatom Host-Virus Pairs. Mar Drugs 2024; 22:228. [PMID: 38786618 PMCID: PMC11123003 DOI: 10.3390/md22050228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.
Collapse
Affiliation(s)
- Bethanie R. Edwards
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA; (H.F.F.); (B.A.S.V.M.)
- Department of Earth and Planetary Science, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Kimberlee Thamatrakoln
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (K.T.); (K.D.B.)
| | - Helen F. Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA; (H.F.F.); (B.A.S.V.M.)
| | - Kay D. Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (K.T.); (K.D.B.)
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA; (H.F.F.); (B.A.S.V.M.)
| |
Collapse
|
9
|
Song Y, Wang F, Chen L, Zhang W. Engineering Fatty Acid Biosynthesis in Microalgae: Recent Progress and Perspectives. Mar Drugs 2024; 22:216. [PMID: 38786607 PMCID: PMC11122798 DOI: 10.3390/md22050216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Microalgal lipids hold significant potential for the production of biodiesel and dietary supplements. To enhance their cost-effectiveness and commercial competitiveness, it is imperative to improve microalgal lipid productivity. Metabolic engineering that targets the key enzymes of the fatty acid synthesis pathway, along with transcription factor engineering, are effective strategies for improving lipid productivity in microalgae. This review provides a summary of the advancements made in the past 5 years in engineering the fatty acid biosynthetic pathway in eukaryotic microalgae. Furthermore, this review offers insights into transcriptional regulatory mechanisms and transcription factor engineering aimed at enhancing lipid production in eukaryotic microalgae. Finally, the review discusses the challenges and future perspectives associated with utilizing microalgae for the efficient production of lipids.
Collapse
Affiliation(s)
- Yanhui Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
McCutcheon JP, Garber AI, Spencer N, Warren JM. How do bacterial endosymbionts work with so few genes? PLoS Biol 2024; 22:e3002577. [PMID: 38626194 PMCID: PMC11020763 DOI: 10.1371/journal.pbio.3002577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.
Collapse
Affiliation(s)
- John P. McCutcheon
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Arkadiy I. Garber
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Noah Spencer
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jessica M. Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
11
|
Solomonova E, Shoman N, Akimov A. Physiological responses of the microalgae Thalassiosira weissflogii to the presence of the herbicide glyphosate in the medium. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23205. [PMID: 38669460 DOI: 10.1071/fp23205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
We evaluated changes in growth, chlorophyll fluorescence and basic physiological and biochemical parameters of the microalgae Thalassiosira weissflogii cells under the influence of the herbicide glyphosate in concentrations 0, 25, 95 and 150μgL-1 . The toxic effect of glyphosate on algae is weakly dependent on the level of cell mineral nutrition. High concentrations of the herbicide do not lead to the death of microalgae but block the process of algae cell division. An increase in the glyphosate concentration in the medium leads to a slowdown or stop of algal growth, a decrease in their final biomass, an increase in the production of reactive oxygen species (ROS), depolarisation of mitochondrial membranes and metabolic activity of algae. Glyphosate inhibits the photosynthetic activity of cells and inhibits the relative rate of electron transport in the photosynthetic apparatus. Glyphosate at the studied concentrations does not affect the size characteristics of cells and the intracellular content of chlorophyll in T. weissflogii . The studied herbicide or products of its decay retain their toxic properties in the environment for at least 9days. This result shows the need for further in-depth studies to assess the physiological response and possible acclimation changes in the functional state of oxygenic phototrophs in response to the herbicide action. The species specificity of microalgae to the effects of glyphosate in natural conditions is potentially dangerous due to a possible change in the species structure of biocoenoses, in particular, a decrease in the contribution of diatoms.
Collapse
Affiliation(s)
- Ekaterina Solomonova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Avenue, Sevastopol, Russian Federation
| | - Natalia Shoman
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Avenue, Sevastopol, Russian Federation
| | - Arkady Akimov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Avenue, Sevastopol, Russian Federation
| |
Collapse
|
12
|
Santos JP, Li W, Keller AA, Slaveykova VI. Mercury species induce metabolic reprogramming in freshwater diatom Cyclotella meneghiniana. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133245. [PMID: 38150761 DOI: 10.1016/j.jhazmat.2023.133245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Mercury is a hazardous pollutant of global concern. While advances have been made in identifying the detrimental effects caused by Hg species in phytoplankton, knowledge gaps remain regarding the metabolomic perturbations induced by inorganic mercury (Hg(II)) and monomethylmercury (MeHg) in these organisms. Diatoms represent a major phytoplankton group essential in various global biogeochemical cycles. The current study combined targeted metabolomics, bioaccumulation, and physiological response assays to investigate metabolic perturbations in diatom Cyclotella meneghiniana exposed for 2 h to nanomolar concentrations of Hg(II) and MeHg. Our findings highlight that such exposures induce reprogramming of the metabolism of amino acids, nucleotides, fatty acids, carboxylic acids and antioxidants. These alterations were primarily mercury-species dependent. MeHg exposure induced more pronounced reprogramming of the metabolism of diatoms than Hg(II), which led to less pronounced effects on ROS generation, membrane permeability and chlorophyll concentrations. Hg(II) treatments presented distinct physiological responses, with more robust metabolic perturbations at higher exposures. The present study provides first-time insights into the main metabolic alterations in diatom C. meneghiniana during short-term exposure to Hg species, deepening our understanding of the molecular basis of these perturbations.
Collapse
Affiliation(s)
- João P Santos
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| | - Weiwei Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106-5131, United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106-5131, United States
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| |
Collapse
|
13
|
Berdun F, Valiñas M, Pagnussat G, Zabaleta E. Mobilization of Plasmids From Bacteria Into Diatoms by Conjugation Technique. Bio Protoc 2024; 14:e4945. [PMID: 38464938 PMCID: PMC10917694 DOI: 10.21769/bioprotoc.4945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
Diatoms serve as a source for a variety of compounds with particular biotechnological interest. Therefore, redirecting the flow to a specific pathway requires the elucidation of the gene's specific function. The most commonly used method in diatoms is biolistic transformation, which is a very expensive and time-consuming method. The use of episomes that are maintained as closed circles at a copy number equivalent to native chromosomes has become a useful genetic system for protein expression that avoids multiple insertions, position-specific effects on expression, and potential knockout of non-targeted genes. These episomes can be introduced from bacteria into diatoms via conjugation. Here, we describe a detailed protocol for gene expression that includes 1) the gateway cloning strategy and 2) the conjugation protocol for the mobilization of plasmids from bacteria to diatoms.
Collapse
Affiliation(s)
- Federico Berdun
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Matías Valiñas
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
14
|
Carroll KN. Impact of Climate Change on Dietary Nutritional Quality and Implications for Asthma and Allergy. Immunol Allergy Clin North Am 2024; 44:85-96. [PMID: 37973262 PMCID: PMC11233177 DOI: 10.1016/j.iac.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Asthma and allergic disorders are common in childhood with genetic and environmental determinants of disease that include prenatal nutritional exposures such as long-chain polyunsaturated fatty acids and antioxidants. Global climate change is implicated in asthma and allergic disorder morbidity with potential mechanisms including perturbations of ecosystems. There is support that environmental and climatic changes such as increasing global temperate and carbon dioxide levels affect aquatic and agricultural ecosystems with subsequent alterations in long-chain polyunsaturated fatty acid availability and nutrient quality and antioxidant capacity of certain crops, respectively. This article discusses asthma epidemiology and the influence of global climate change.
Collapse
Affiliation(s)
- Kecia N Carroll
- Division of General Pediatrics, Departments of Pediatrics and Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1198, New York, NY 10029, USA.
| |
Collapse
|
15
|
Grubišić M, Šantek B, Kuzmić M, Čož-Rakovac R, Ivančić Šantek M. Enhancement of Biomass Production of Diatom Nitzschia sp. S5 through Optimisation of Growth Medium Composition and Fed-Batch Cultivation. Mar Drugs 2024; 22:46. [PMID: 38248671 PMCID: PMC11154399 DOI: 10.3390/md22010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The growing commercial application of microalgae in different industry sectors, including the production of bioenergy, pharmaceuticals, nutraceuticals, chemicals, feed, and food, demands large quantities of microalgal biomass with specific compositions produced at reasonable prices. Extensive studies have been carried out on the design of new and improvement of current cultivation systems and the optimisation of growth medium composition for high productivity of microalgal biomass. In this study, the concentrations of the main macronutrients, silicon, nitrogen and phosphorus, essential for the growth of diatom Nitzschia sp. S5 were optimised to obtain a high biomass concentration. The effect of main macronutrients on growth kinetics and cell composition was also studied. Silicon had the most significant effect on diatom growth during batch cultivation. The concentration of biomass increased 5.45-fold (0.49 g L-1) at 1 mM silicon concentration in modified growth medium compared to the original Guillard f/2 medium. Optimisation of silicon, nitrogen, and phosphorus quantities and ratios further increased biomass concentration. The molar ratio of Si:N:P = 7:23:1 mol:mol:mol yielded the highest biomass concentration of 0.73 g L-1. Finally, the fed-batch diatom cultivation of diatom using an optimised Guillard f/2 growth medium with four additions of concentrated macronutrient solution resulted in 1.63 g L-1 of microalgal biomass. The proteins were the most abundant macromolecules in microalgal biomass, with a lower content of carbohydrates and lipids under all studied conditions.
Collapse
Affiliation(s)
- Marina Grubišić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Marija Kuzmić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| |
Collapse
|
16
|
Zhu F, Tan X, Wang X, Zhang Q. Does periphyton turn less palatable under grazing pressure? ISME COMMUNICATIONS 2024; 4:ycae146. [PMID: 39759835 PMCID: PMC11697170 DOI: 10.1093/ismeco/ycae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/16/2024] [Indexed: 01/07/2025]
Abstract
Periphyton acts as an important primary producer in stream food webs with bottom-up grazing pressure and is also subject to effects of top-down grazing pressure. However, the underlying mechanisms of these interactions remain unclear. In this study we conducted a mesocosm experiment to explore the periphyton response to grazing pressure by the freshwater snail Bellamya aeruginosa in relation to food quality indicated by polyunsaturated fatty acid (PUFA) biomarkers, including eicosapentaenoic acid (20:5n3) and the 22C fatty acid docosahexaenoic acid (22:6n3), which are essential for cell growth and reproduction and cannot be synthesized by most consumers of periphyton. Results indicated that periphyton grazing pressure led to a decrease in Bacillariophyta, which contain high-quality PUFAs such as eicsapentaenoic acid and docosahexaenoic acid, and an increase in Cyanophyta and Chlorophyta, which are rich in 18C PUFAs such as linoleic acid (18:2n6) and alpha-linolenic acid (18:3n3). We observed upregulation of genes that participate in lipid metabolism promoting unsaturated fatty acid biosynthesis, alpha-linolenic acid metabolism, and glycerophospholipid metabolism, which are related to the carbohydrate and energy metabolism maintaining the energy stability of periphyton. These results demonstrate that the food quality of periphyton decreased under grazing pressure and also elucidate the compositional, chemical, and molecular perspectives of the interactive bottom-up and top-down effects on structuring stream food webs.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P.R. China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650031, P.R. China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, P.R. China
| | - Xingzhong Wang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, P.R. China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, P.R. China
| |
Collapse
|
17
|
Murison V, Hérault J, Côme M, Guinio S, Lebon A, Chamot C, Bénard M, Galas L, Schoefs B, Marchand J, Bardor M, Ulmann L. Comparison of two Phaeodactylum tricornutum ecotypes under nitrogen starvation and resupply reveals distinct lipid accumulation strategies but a common degradation process. FRONTIERS IN PLANT SCIENCE 2023; 14:1257500. [PMID: 37810403 PMCID: PMC10556672 DOI: 10.3389/fpls.2023.1257500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Introduction Phaeodactylum tricornutum is a model species frequently used to study lipid metabolism in diatoms. When exposed to a nutrient limitation or starvation, diatoms are known to accumulate neutral lipids in cytoplasmic lipid droplets (LDs). Those lipids are produced partly de novo and partly from the recycle of plastid membrane lipids. Under a nitrogen resupply, the accumulated lipids are catabolized, a phenomenon about which only a few data are available. Various strains of P. tricornutum have been isolated around the world that may differ in lipid accumulation patterns. Methods To get further information on this topic, two genetically distant ecotypes of P. tricornutum (Pt1 and Pt4) have been cultivated under nitrogen deprivation during 11 days followed by a resupply period of 3 days. The importance of cytoplasmic LDs relative to the plastid was assessed by a combination of confocal laser scanning microscopy and cell volume estimation using bright field microscopy pictures. Results and discussion We observed that in addition to a basal population of small LDs (0.005 μm3 to 0.7 μm3) present in both strains all along the experiment, Pt4 cells immediately produced two large LDs (up to 12 μm3 after 11 days) while Pt1 cells progressively produced a higher number of smaller LDs (up to 7 μm3 after 11 days). In this work we showed that, in addition to intracellular available space, lipid accumulation may be limited by the pre-starvation size of the plastid as a source of membrane lipids to be recycled. After resupplying nitrogen and for both ecotypes, a fragmentation of the largest LDs was observed as well as a possible migration of LDs to the vacuoles that would suggest an autophagic degradation. Altogether, our results deepen the understanding of LDs dynamics and open research avenues for a better knowledge of lipid degradation in diatoms.
Collapse
Affiliation(s)
- Victor Murison
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Josiane Hérault
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Martine Côme
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Sabrina Guinio
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Alexis Lebon
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Christophe Chamot
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Magalie Bénard
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Ludovic Galas
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Benoît Schoefs
- Biology of Organisms, Stress, Health and Environment, UFR Sciences et Techniques, Le Mans Université, IUML-FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Biology of Organisms, Stress, Health and Environment, UFR Sciences et Techniques, Le Mans Université, IUML-FR 3473 CNRS, Le Mans, France
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen, France
| | - Lionel Ulmann
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| |
Collapse
|
18
|
Koh HG, Cho JM, Jeon S, Chang YK, Lee B, Kang NK. Transcriptional insights into Chlorella sp. ABC-001: a comparative study of carbon fixation and lipid synthesis under different CO 2 conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:113. [PMID: 37454088 PMCID: PMC10350272 DOI: 10.1186/s13068-023-02358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Microalgae's low tolerance to high CO2 concentrations presents a significant challenge for its industrial application, especially when considering the utilization of industrial exhaust gas streams with high CO2 content-an economically and environmentally attractive option. Therefore, the objectives of this study were to investigate the metabolic changes in carbon fixation and lipid accumulation of microalgae under ambient air and high CO2 conditions, deepen our understanding of the molecular mechanisms driving these processes, and identify potential target genes for metabolic engineering in microalgae. To accomplish these goals, we conducted a transcriptomic analysis of the high CO2-tolerant strain, Chlorella sp. ABC-001, under two different carbon dioxide levels (ambient air and 10% CO2) and at various growth phases. RESULTS Cells cultivated with 10% CO2 exhibited significantly better growth and lipid accumulation rates, achieving up to 2.5-fold higher cell density and twice the lipid content by day 7. To understand the relationship between CO2 concentrations and phenotypes, transcriptomic analysis was conducted across different CO2 conditions and growth phases. According to the analysis of differentially expressed genes and gene ontology, Chlorella sp. ABC-001 exhibited the development of chloroplast organelles during the early exponential phase under high CO2 conditions, resulting in improved CO2 fixation and enhanced photosynthesis. Cobalamin-independent methionine synthase expression was also significantly elevated during the early growth stage, likely contributing to the methionine supply required for various metabolic activities and active proliferation. Conversely, the cells showed sustained repression of carbonic anhydrase and ferredoxin hydrogenase, involved in the carbon concentrating mechanism, throughout the cultivation period under high CO2 conditions. This study also delved into the transcriptomic profiles in the Calvin cycle, nitrogen reductase, and lipid synthesis. Particularly, Chlorella sp. ABC-001 showed high expression levels of genes involved in lipid synthesis, such as glycerol-3-phosphate dehydrogenase and phospholipid-diacylglycerol acyltransferase. These findings suggest potential targets for metabolic engineering aimed at enhancing lipid production in microalgae. CONCLUSIONS We expect that our findings will help understand the carbon concentrating mechanism, photosynthesis, nitrogen assimilation, and lipid accumulation metabolisms of green algae according to CO2 concentrations. This study also provides insights into systems metabolic engineering of microalgae for improved performance in the future.
Collapse
Affiliation(s)
- Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jun Muk Cho
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Bongsoo Lee
- Department of Microbial Biotechnology, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea.
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
19
|
Yang X, Yan Z, Li X, Li Y, Li K. Chemical cues in the interaction of herbivory-prey induce consumer-specific morphological and chemical defenses in Phaeocystis globosa. HARMFUL ALGAE 2023; 126:102450. [PMID: 37290885 DOI: 10.1016/j.hal.2023.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
Bloom-forming algae Phaeocystis globosa is one of the most successful blooming algae in the oceans due to its capacity to sense grazer-associated chemical cues and respond adaptively to these grazer-specific cues with opposing shifts in phenotype. P. globosa produces toxic and deterrent compounds as chemical defenses. However, the origin of the signals and underlying mechanisms that triggered the morphological and chemical defenses remain enigmatic. Rotifer was chosen to establish an herbivore-phytoplankton interaction with P. globosa. The influences of rotifer kairomone and conspecific-grazed cue on morphological and chemical defenses in P. globosa were investigated. As a result, rotifer kairomones elicited morphological defenses and broad-spectrum chemical defenses, whereas algae-grazed cues elicited morphological defenses and consumer-specific chemical defenses. According to multi-omics findings, the difference in hemolytic toxicity caused by different stimuli may be related to the upregulation of lipid metabolism pathways and increased lipid metabolite content, while the inhibition of colonial formation and development of P. globosa may be caused by the downscaled production and secretion of glycosaminoglycans. The study demonstrated that zooplankton consumption cues were recognized by intraspecific prey and elicited consumer-specific chemical defenses, highlighting the chemical ecology of herbivore-phytoplankton interactions in the marine ecosystem.
Collapse
Affiliation(s)
- Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 266071, China
| | - Xiaodong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
20
|
Félix JW, Granados-Alegría MI, Gómez-Tah R, Tzec-Simá M, Ruíz-May E, Canto-Canché B, Zamora-Briseño JA, Bojórquez-Velázquez E, Oropeza-Salín C, Islas-Flores I. Proteome Landscape during Ripening of Solid Endosperm from Two Different Coconut Cultivars Reveals Contrasting Carbohydrate and Fatty Acid Metabolic Pathway Modulation. Int J Mol Sci 2023; 24:10431. [PMID: 37445609 DOI: 10.3390/ijms241310431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Cocos nucifera L. is a crop grown in the humid tropics. It is grouped into two classes of varieties: dwarf and tall; regardless of the variety, the endosperm of the coconut accumulates carbohydrates in the early stages of maturation and fatty acids in the later stages, although the biochemical factors that determine such behavior remain unknown. We used tandem mass tagging with synchronous precursor selection (TMT-SPS-MS3) to analyze the proteomes of solid endosperms from Yucatan green dwarf (YGD) and Mexican pacific tall (MPT) coconut cultivars. The analysis was conducted at immature, intermediate, and mature development stages to better understand the regulation of carbohydrate and lipid metabolisms. Proteomic analyses showed 244 proteins in YGD and 347 in MPT; from these, 155 proteins were shared between both cultivars. Furthermore, the proteomes related to glycolysis, photosynthesis, and gluconeogenesis, and those associated with the biosynthesis and elongation of fatty acids, were up-accumulated in the solid endosperm of MPT, while in YGD, they were down-accumulated. These results support that carbohydrate and fatty acid metabolisms differ among the developmental stages of the solid endosperm and between the dwarf and tall cultivars. This is the first proteomics study comparing different stages of maturity in two contrasting coconut cultivars and may help in understanding the maturity process in other palms.
Collapse
Affiliation(s)
- Jean Wildort Félix
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - María Inés Granados-Alegría
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Carlos Oropeza-Salín
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
21
|
Ding W, Ye Y, Yu L, Liu M, Liu J. Physiochemical and molecular responses of the diatom Phaeodactylum tricornutum to illumination transitions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:103. [PMID: 37328885 DOI: 10.1186/s13068-023-02352-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Light is a key regulatory factor for photosynthesis and metabolism of microalgae. The diatom Phaeodactylum tricornutum is capable of exhibiting metabolic flexibility in response to light fluctuations. However, the metabolic switching and underlying molecular mechanisms upon illumination transitions remain poorly understood for this industrially relevant marine alga. To address these, the physiochemical and molecular responses of P. tricornutum upon high light (HL) and recovery (HLR) were probed. RESULTS Upon HL, P. tricornutum exhibited quick responses, including decreases in cell division, major light harvesting pigments (e.g., chlorophyll a, β-carotene, and fucoxanthin), chloroplastidic membrane lipids (e.g., monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), and long-chain polyunsaturated fatty acids (e.g., C20:5), as well as increases in carbohydrates and neutral lipids particularly triacylglycerol. During HLR stage when the stress was removed, these physiochemical phenotypes were generally recovered, indicative of a rapid and reversible changes of P. tricornutum to cope with illumination transitions for survival and growth. Through the integrated analysis with time-resolved transcriptomics, we revealed the transcriptional control of photosynthesis and carbon metabolism in P. tricornutum responding to HL, which could be reversed more or less during the HLR stage. Furthermore, we highlighted key enzymes involved in carotenoid biosynthesis and lipid metabolism of P. tricornutum and identified monooxygenases putatively responsible for catalyzing the ketolation step towards fucoxanthin synthesis from neoxanthin. CONCLUSIONS The detailed profiling of physiochemical and transcriptional responses of P. tricornutum to HL-HLR treatments advances our understanding on the adaption of the alga to illumination transitions and provides new insights into engineering of the alga for improved production of value-added carotenoids and lipids.
Collapse
Affiliation(s)
- Wei Ding
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Mesquita AF, Jesus F, Gonçalves FJM, Gonçalves AMM. Ecotoxicological and biochemical effects of a binary mixture of pesticides on the marine diatom Thalassiosira weissflogii in a scenario of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162737. [PMID: 36907391 DOI: 10.1016/j.scitotenv.2023.162737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Under the current scenario of global warming, it is ecologically relevant to understand how increased temperature influences the combined toxicity of pesticides to aquatic species. Hence, this work aims to: a) determine the temperature effect (15 °C, 20 °C and 25 °C) on the toxicity of two pesticides (oxyfluorfen and Copper (Cu)), on the growth of Thalassiosira weissflogii; b) assess whether temperature affects the type of toxicity interaction between these chemicals; and c) assess the temperature effect on biochemical responses (fatty acids (FA) and sugar profiles) of the pesticides on T. weissflogii. Temperature increased the tolerance of the diatoms to the pesticides with EC50 values between 3.176 and 9.929 μg L-1 for oxyfluorfen and 42.50-230.75 μg L-1 for Cu, respectively, at 15 °C and 25 °C. The mixtures toxicity was better described by the IA model, but temperature altered the type of deviation from dose ratio (15 °C and 20 °C) to antagonism (25 °C). Temperature, as well as the pesticide concentrations, affected the FA and sugar profiles. Increased temperature increased saturated FA and decreased unsaturated FA; it also affected the sugar profiles with a pronounced minimum at 20 °C. Results highlight effects on the nutritional value of these diatoms, with potential repercussion on food webs.
Collapse
Affiliation(s)
- Andreia F Mesquita
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Fátima Jesus
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
23
|
Merz CR, Arora N, Welch M, Lo E, Philippidis GP. Microalgal cultivation characteristics using commercially available air-cushion packaging material as a photobioreactor. Sci Rep 2023; 13:3792. [PMID: 36882465 PMCID: PMC9992509 DOI: 10.1038/s41598-023-30080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Air-cushion (AC) packaging has become widely used worldwide. ACs are air-filled, dual plastic packaging solutions commonly found surrounding and protecting items of value within shipping enclosures during transit. Herein, we report on a laboratory assessment employing ACs as a microalgal photobioreactor (PBR). Such a PBR inherently addresses many of the operational issues typically encountered with open raceway ponds and closed photobioreactors, such as evaporative water loss, external contamination, and predation. Using half-filled ACs, the performance of microalgal species Chlorella vulgaris, Nannochloropsis oculata, and Cyclotella cryptica (diatom) was examined and the ash-free dry cell weight and overall biomass productivity determined to be 2.39 g/L and 298.55 mg/L/day for N. oculata, 0.85 g/L and 141.36 mg/L/day for C. vulgaris, and 0.67 g/L and 96.08 mg/L/day for C. cryptica. Furthermore, maximum lipid productivity of 25.54 mg/L/day AFDCW and carbohydrate productivity of 53.69 mg/L/day AFDCW were achieved by C. cryptica, while maximum protein productivity of 247.42 mg/L/day AFDCW was attained by N. oculata. Data from this work will be useful in determining the applicability and life-cycle profile of repurposed and reused ACs as potential microalgal photobioreactors depending upon the end product of interest, scale utilized, and production costs.
Collapse
Affiliation(s)
- Clifford R Merz
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA.
| | - Neha Arora
- Department of Cell, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Michael Welch
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - Enlin Lo
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - George P Philippidis
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| |
Collapse
|
24
|
Russo MT, Santin A, Zuccarotto A, Leone S, Palumbo A, Ferrante MI, Castellano I. The first genetic engineered system for ovothiol biosynthesis in diatoms reveals a mitochondrial localization for the sulfoxide synthase OvoA. Open Biol 2023; 13:220309. [PMID: 36722300 PMCID: PMC9890322 DOI: 10.1098/rsob.220309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 02/02/2023] Open
Abstract
Diatoms represent one of the most abundant groups of microalgae in the ocean and are responsible for approximately 20% of photosynthetically fixed CO2 on Earth. Due to their complex evolutionary history and ability to adapt to different environments, diatoms are endowed with striking molecular biodiversity and unique metabolic activities. Their high growth rate and the possibility to optimize their biomass make them very promising 'biofactories' for biotechnological applications. Among bioactive compounds, diatoms can produce ovothiols, histidine-derivatives, endowed with unique antioxidant and anti-inflammatory properties, and occurring in many marine invertebrates, bacteria and pathogenic protozoa. However, the functional role of ovothiols biosynthesis in organisms remains almost unexplored. In this work, we have characterized the thiol fraction of Phaeodactylum tricornutum, providing the first evidence of the presence of ovothiol B in pennate diatoms. We have used P. tricornutum to overexpress the 5-histidylcysteine sulfoxide synthase ovoA, the gene encoding the key enzyme involved in ovothiol biosynthesis and we have discovered that OvoA localizes in the mitochondria, a finding that uncovers new concepts in cellular redox biochemistry. We have also obtained engineered biolistic clones that can produce higher amount of ovothiol B compared to wild-type cells, suggesting a new strategy for the eco-sustainable production of these molecules.
Collapse
Affiliation(s)
- Monia Teresa Russo
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Santin
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Annalisa Zuccarotto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Maria Immacolata Ferrante
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
25
|
Abstract
Lipids are structurally diverse biomolecules that serve multiple roles in cells. As such, they are used as biomarkers in the modern ocean and as paleoproxies to explore the geological past. Here, I review lipid geochemistry, biosynthesis, and compartmentalization; the varied uses of lipids as biomarkers; and the evolution of analytical techniques used to measure and characterize lipids. Advancements in high-resolution accurate-mass mass spectrometry have revolutionized the lipidomic and metabolomic fields, both of which are quickly being integrated into marine meta-omic studies. Lipidomics allows us to analyze tens of thousands of features, providing an open analytical window and the ability to quantify unknown compounds that can be structurally elucidated later. However, lipidome annotation is not a trivial matter and represents one of the biggest challenges for oceanographers, owing in part to the lack of marine lipids in current in silico databases and data repositories. A case study reveals the gaps in our knowledge and open opportunities to answer fundamental questions about molecular-level control of chemical reactions and global-scale patterns in the lipidscape.
Collapse
Affiliation(s)
- Bethanie R Edwards
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
| |
Collapse
|
26
|
Comparison of Growth and Chemical Profile of Diatom Skeletonema grevillei in Bioreactor and Incubation-Shaking Cabinet in Two Growth Phases. Mar Drugs 2022; 20:md20110697. [PMID: 36355020 PMCID: PMC9695663 DOI: 10.3390/md20110697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Marine microalgae, diatoms, are considered a source of a wide range of high-value compounds, and numerous studies indicate their biotechnological potential in the food and feed industry, cosmetic industry, nanotechnology, pharmaceutical industry, biodiesel production, fertilizers, and wastewater treatment. The aim of this study was to compare the growth, chemical profiles, and antioxidant activity of the diatom Skeletonema grevillei cultivated in a bioreactor and an incubation-shaking cabinet at different growth phases (after 192 and 312 h). Growth was monitored by evaluating cell density with the Sedgewick Rafter chamber, and the collected biomass was extracted with 70% ethanol assisted by ultrasound. Extracts were evaporated to dryness and compounds were identified in derivatized form by gas chromatography and mass spectrometry (GC-MS) analysis, while antioxidant capacity was evaluated by DPPH and ORAC. Significantly faster growth was observed in the bioreactor than in the incubation-shaking cabinet. Oleamide, palmitelaidic acid, glycerol monostearate, myristic acid, cholesterol, eicosapentaenoic acid, 1-monopalmitin, and 24-methylene cholesterol were identified as the major compounds in both systems. Among them, oleamide was the dominant compound in both systems. It is also shown that prolonging the cultivation period had a direct effect on increasing the extract yield. The highest DPPH inhibition (11.4 ± 1%) and ORAC values (93.3 ± 8.4 mM TE) were obtained for the S. grevillei extract recovered from the bioreactor after 312 h. The obtained results contribute to the possibility of using S. grevillei for various biotechnological applications in the future.
Collapse
|
27
|
Saravanan A, Deivayanai VC, Senthil Kumar P, Rangasamy G, Varjani S. CO 2 bio-mitigation using genetically modified algae and biofuel production towards a carbon net-zero society. BIORESOURCE TECHNOLOGY 2022; 363:127982. [PMID: 36126842 DOI: 10.1016/j.biortech.2022.127982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
CO2 sequestration carried by biological methodologies shows enhanced potential and has the advantage that biomass produced from the captured CO2 can be used for different applications. Bio-mitigation of carbons through a micro-algal system addresses a promising and feasible option. This review mostly focused on the role of algae, particular mechanisms, bioreactors in algae cultivation, and genetically modified algae in CO2 fixation and energy generation systems. A combination of CO2 bio-mitigation and biofuel production might deliver an extremely promising alternative to current CO2 mitigation systems. Bio mitigation in which the excess carbon is captured and bio fixation which the carbon is captured by algae or autotrophs and used for producing biofuel. This review revealed that steps for biofuel production from algae include factors affecting, harvesting techniques, oil extraction and transesterification. This review helps environmentalists and researchers to assess the effect of algae-based biorefinery on the green environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - V C Deivayanai
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| |
Collapse
|
28
|
Fierli D, Barone ME, Graceffa V, Touzet N. Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae). Bioprocess Biosyst Eng 2022; 45:1967-1977. [PMID: 36264371 DOI: 10.1007/s00449-022-02800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
Abstract
Compounds from microalgae such as ω3-fatty acids or carotenoid are commercially exploited within the pharmacology, nutraceutical, or cosmetic sectors. The co-stimulation of several compounds of interest may improve the cost-effectiveness of microalgal biorefinery pipelines. This study focussed on Phaeodactylum tricornutum to investigate the effects on lipogenesis and carotenogenesis of combined stressors, here cold temperature and addition of NaCl salt or the phytohormone abscisic acid, using a two-stage cultivation strategy. Cold stress with NaCl or phytohormone addition increased the neutral lipid content of the biomass (20 to 35%). These treatments also enhanced the proportions of EPA (22% greater than control) in the fatty acid profile. Also, these treatments had a stimulatory effect on carotenogenesis, especially the combination of cold stress with NaCl addition, which returned the highest production of fucoxanthin (33% increase). The gene expression of diacylglycerol acyltransferase (DGAT) and the ω-3 desaturase precursor (PTD15) were enhanced 4- and 16-fold relative to the control, respectively. In addition, zeaxanthin epoxidase 3 (ZEP3), was downregulated at low temperature when combined with abscisic acid. These results highlight the benefits of applying a combination of low temperature and salinity stress, to simultaneously enhance the yields of the valuable metabolites EPA and fucoxanthin in Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- David Fierli
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland.
| | - Maria Elena Barone
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| | - Valeria Graceffa
- School of Science, Department of Life Sciences, Cellular Health and Toxicology Research Group (CHAT), Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| |
Collapse
|
29
|
Liu J, Yin W, Zhang X, Xie X, Dong G, Lu Y, Tao B, Gong Q, Chen X, Shi C, Qin Y, Zeng R, Li D, Li H, Zhao C, Zhang H. RNA-seq analysis reveals genes related to photosynthetic carbon partitioning and lipid production in Phaeodactylum tricornutum under alkaline conditions. Front Microbiol 2022; 13:969639. [PMID: 36051763 PMCID: PMC9425035 DOI: 10.3389/fmicb.2022.969639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Alkaline pH can induce triacylglyceride accumulation in microalgae, however its molecular mechanism remains elusive. Here, we investigated the effect of 2-[N-cyclohexylamino]-ethane-sulfonic acid (CHES) -induced intracellular alkalization on the lipid production in Phaeodactylum tricornutum. Intracellular pH was increased upon CHES treatment, displaying a high BCECF fluorescence ratio. CHES treatment significantly induced lipid accumulation but had no change in cell density and biomass. The expression of genes involved in photoreaction, carbon fixation, glycolysis, pentose phosphate pathway, amino acid catabolism, GS/GOGAT cycle, TCA cycle, triacylglyceride assembly, de novo fatty acid synthesis were up-regulated, while that in amino acid biosynthesis were down-regulated under CHES conditions. Correspondingly, the activity of phosphoribulokinase, carbonic anhydrase, pyruvate dehydrogenase and acetaldehyde dehydrogenase were enhanced by CHES treatment. Chloroplast-specific biological processes were activated by CHES treatment in P. tricornutum, which redirects the flux of carbon into lipid biosynthesis, meanwhile stimulates de novo fatty acid biosynthesis, leading to lipid accumulation under CHES conditions. These indicate an enhancement of intermediate metabolism, resulting in lipid accumulation by CHES.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weihua Yin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinya Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuan Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guanghui Dong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yao Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baoxiang Tao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiangbin Gong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyan Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Shi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute of Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dawei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hongye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chao Zhao
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiying Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Huiying Zhang,
| |
Collapse
|
30
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
31
|
Shi M, Yu L, Shi J, Liu J. A conserved MYB transcription factor is involved in regulating lipid metabolic pathways for oil biosynthesis in green algae. THE NEW PHYTOLOGIST 2022; 235:576-594. [PMID: 35342951 DOI: 10.1111/nph.18119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Green algae can accumulate high levels of triacylglycerol (TAG), yet knowledge remains fragmented on the regulation of lipid metabolic pathways by transcription factors (TFs). Here, via bioinformatics and in vitro and in vivo analyses, we revealed the roles of a myeloblastosis (MYB) TF in regulating TAG accumulation in green algae. CzMYB1, an R2R3-MYB from Chromochloris zofingiensis, was transcriptionally upregulated upon TAG-inducing conditions and correlated well with many genes involved in the de novo fatty acid synthesis, fatty acid activation and desaturation, membrane lipid turnover, and TAG assembly. Most promoters of these genes were transactivated by CzMYB1 in the yeast one-hybrid assay and contained the binding elements CNGTTA that were recognized by CzMYB1 through the electrophoretic mobility shift assay. CrMYB1, a close homologue of CzMYB1 from Chlamydomonas reinhardtii that recognized similar elements for binding, also transcriptionally correlated with many lipid metabolic genes. Insertional disruption of CrMYB1 severely suppressed the transcriptional expression of CrMYB1, as well as of key lipogenic genes, and impaired TAG level considerably under stress conditions. Our results reveal that this MYB, conserved in green algae, is involved in regulating global lipid metabolic pathways for TAG biosynthesis and accumulation.
Collapse
Affiliation(s)
- Meicheng Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianan Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
Karpagam R, Jawaharraj K, Ashokkumar B, Pugalendhi A, Varalakshmi P. A cheap two-step cultivation of Phaeodactylum tricornutum for increased TAG production and differential expression of TAG biosynthesis associated genes. J Biotechnol 2022; 354:53-62. [PMID: 35709890 DOI: 10.1016/j.jbiotec.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 12/28/2022]
Abstract
A cheap cultivation of microalgae greatly reduces the biodiesel production cost. Subsequently in this study, citric acid and effluents from sugar and tannery industries were used as the nutritional supplements for the improvement of biomass and TAG production in Phaeodactylum tricornutum using two-step cultivation. When compared to control (media without supplementation), a considerable increase in biomass and chlorophyll a was obtained with citric acid (CA) and sugar industry effluent (SIE) supplemented media. In the two-step cultivation method, biomass raised from CA (100mg·L-1) and SIE (1.5mL·L-1) supplementations in the first step, viz. biomass production (BP) step was allowed for lipid accumulation in the second step, viz. lipid production (LP) step, and thus yielded enhanced lipids of 11.5 ± 0.7mg·L-1·day-1 and 13.5 ± 1.9mg·L-1·day-1 respectively, with improved TAG synthesis. Further, differential expression analysis of TAG biosynthetic genes of P. tricornutum under single-step and two-step cultivation modes were performed, and the gene expression patterns were studied.
Collapse
Affiliation(s)
- Rathinasamy Karpagam
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Kalimuthu Jawaharraj
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Arivazhagan Pugalendhi
- Innovative Green Product Syntheis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, TonDuc Thang University, Ho Chi Minh City, Vietnam
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
33
|
Lipid Constituents of Diatoms (Halamphora) as Components for Production of Lipid Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14061171. [PMID: 35745742 PMCID: PMC9227233 DOI: 10.3390/pharmaceutics14061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
Lipid nanocarriers smaller than 200 nm may be used as pharmaceutical/cosmetic raw materials as they are able to penetrate the skin. The nanostructured lipid carriers (NLCs) based on microalgae oil (Schizochytrium) and lipids extracted from diatoms (Halamphora cf. salinicola (strain SZCZM1454A)) were produced by the HSH (high shear homogenization) method. Fatty acid profile of crude oil from diatoms indicated the presence of palmitoleic, palmitic, stearic acid, oleic and myristic acids as the most common fatty acids in the strain investigated. The quantitative composition and the synthesis condition of NLC dispersions were optimized by using the full factorial designs. The physicochemical parameters of the obtained lipid nanocarriers were characterized by SEM, DSC and XRD measurements and the fraction with the optimum parameters (size below 200 nm, polydispersity index not exceeding 0.2 and zeta potential higher than +45 mV) was selected for further study. The positive charge of the obtained lipid nanoparticles is beneficial as permits electrostatic bonding with the negatively charged skin surface. As follows from stability tests, the NLCs obtained could be stored at room temperature.
Collapse
|
34
|
Chen J, Huang Y, Shu Y, Hu X, Wu D, Jiang H, Wang K, Liu W, Fu W. Recent Progress on Systems and Synthetic Biology of Diatoms for Improving Algal Productivity. Front Bioeng Biotechnol 2022; 10:908804. [PMID: 35646842 PMCID: PMC9136054 DOI: 10.3389/fbioe.2022.908804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae have drawn much attention for their potential applications as a sustainable source for developing bioactive compounds, functional foods, feeds, and biofuels. Diatoms, as one major group of microalgae with high yields and strong adaptability to the environment, have shown advantages in developing photosynthetic cell factories to produce value-added compounds, including heterologous bioactive products. However, the commercialization of diatoms has encountered several obstacles that limit the potential mass production, such as the limitation of algal productivity and low photosynthetic efficiency. In recent years, systems and synthetic biology have dramatically improved the efficiency of diatom cell factories. In this review, we discussed first the genome sequencing and genome-scale metabolic models (GEMs) of diatoms. Then, approaches to optimizing photosynthetic efficiency are introduced with a focus on the enhancement of biomass productivity in diatoms. We also reviewed genome engineering technologies, including CRISPR (clustered regularly interspaced short palindromic repeats) gene-editing to produce bioactive compounds in diatoms. Finally, we summarized the recent progress on the diatom cell factory for producing heterologous compounds through genome engineering to introduce foreign genes into host diatoms. This review also pinpointed the bottlenecks in algal engineering development and provided critical insights into the future direction of algal production.
Collapse
Affiliation(s)
- Jiwei Chen
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Yifan Huang
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Yuexuan Shu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Xiaoyue Hu
- Center for Data Science, Zhejiang University, Hangzhou, China
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Di Wu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Kui Wang
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Weihua Liu
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Weiqi Fu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
- Center for Systems Biology and Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
- *Correspondence: Weiqi Fu,
| |
Collapse
|
35
|
Dhanker R, Kumar R, Tiwari A, Kumar V. Diatoms as a biotechnological resource for the sustainable biofuel production: a state-of-the-art review. Biotechnol Genet Eng Rev 2022; 38:111-131. [PMID: 35343391 DOI: 10.1080/02648725.2022.2053319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The greenhouse gas emission from fossil fuel and higher economic cost in its transportation are stimulating scientists to explore biomass energy production at the local level. In the present review, the authors have explored the prospects of commercial-scale biofuels production from the microalgal group, diatoms. Insights on suitability of mass cultivation systems for large-scale production of diatoms have been deliberated based on published literature. Diatoms can proliferate extracting nutrients from the wastewater and the same biomass can be harvested for biofuel production. Residues can be further utilized for the formation of other bioproducts and biofertilizers. The residual applications of diatoms from mass culture are estimated to compensate for the additional costs incurred in the removal of impurities. Well-planned research is required to optimize the commercial-scale production of biofuels from diatoms. The aim of this review is therefore, to demonstrate the economically feasible, hygienically safe cultivation of diatoms on nutrients from wastewater, limitations in using diatoms for biofuel production, and how these limitations can be shorted out for optimum utilization of diatom for biofuel production.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Ram Kumar
- Ecosystem Research Laboratory, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Fatehpur, Gaya, Bihar, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Vineet Kumar
- Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)Waste Re-processing, Nehru Marg, Nagpur, Maharashtra, India
| |
Collapse
|
36
|
Tan K, Zhang H, Zheng H. Climate change and n-3 LC-PUFA availability. Prog Lipid Res 2022; 86:101161. [PMID: 35301036 DOI: 10.1016/j.plipres.2022.101161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are essential fatty acids for the growth, development and survival of virtually all organisms. There is increasing evidence that anthropogenic climate change has a direct and indirect impact on the availability of natural n-3 LC-PUFA. However, this information is fragmented and not well organized. Therefore, this article reviewed published data from laboratory experiments, field experiments and model simulations to reveal the impact of climate change on the global supply of natural n-3 LC-PUFA and how this will limit the availability of n-3 LC-PUFA in the future food web. In general, climate change can significantly reduce the availability of natural n-3 LC-PUFA in grazing food webs in the following ways: 1) decrease the total biomass of phytoplankton and shift the plankton community structure to a smaller size, which also reduce the biomass of animals in higher trophics; 2) reduce the n-3 LC-PUFA content and/or quality (n-3: n-6 ratio) of all marine organisms; 3) reduce the transfer efficiency of n-3 LC-PUFA in grazing food web. In addition, as an anthropogenic climate adaptation measure, this review also proposed some alternative sources of n-3 LC-PUFA and determined the direction of future research. The information in this article is very useful for providing a critical analysis of the impact of climate change on the supply of natural n-3 LC-PUFA. Such information will aid to establish climate adaptation or management measures, and determine the direction of future research.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
37
|
Isolation of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid - EPA and docosahexaenoic acid - DHA) from diatom biomass using different extraction methods. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Wang Z, Sun X, Ru S, Wang J, Xiong J, Yang L, Hao L, Zhang J, Zhang X. Effects of co-exposure of the triazine herbicides atrazine, prometryn and terbutryn on Phaeodactylum tricornutum photosynthesis and nutritional value. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150609. [PMID: 34619212 DOI: 10.1016/j.scitotenv.2021.150609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Triazine herbicides are widely used in agricultural production, and large amounts of herbicide residue enter the ocean through surface runoff. In this study, the toxicities of the triazine herbicides atrazine, prometryn and terbutryn (separately and mixed) to Phaeodactylum tricornutum were investigated. The EC50 values of atrazine, prometryn and terbutryn were 28.38 μg L-1, 8.86 μg L-1, and 1.38 μg L-1, respectively. The EC50 of an equitoxic mixture of the three herbicides was 0.78 TU, indicating that they had synergistic effects. The equitoxic mixture accumulated in P. tricornutum, which damaged chloroplast and mitochondria structures and significantly decrease the biomass, levels of key cellular components (such as chlorophyll a (chl a), carbon (C) and nitrogen (N) content, fatty acid content) and the effective photochemical quantum yield of photosystem II (PSII, ∆Fv/Fm). The mixture also downregulated key genes in the light response (PsbD, PetF), dark response (PGK, PRK), tricarboxylic acid (TCA) cycle (CS, ID, OGD, and MS) and fatty acid synthesis (FABB, SCD, and PTD9). P. tricornutum partially alleviates the effects of the mixture on photosynthesis and fatty acid synthesis by upregulating PetD, PsaB, RbcL and FabI expression. The triazine herbicide mixture reduced the biomass and nutritional value of marine phytoplankton by inhibiting photosynthesis and energy metabolism.
Collapse
Affiliation(s)
- Zengyuan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaojie Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiuqiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
39
|
Scarsini M, Thiriet-Rupert S, Veidl B, Mondeguer F, Hu H, Marchand J, Schoefs B. The Transition Toward Nitrogen Deprivation in Diatoms Requires Chloroplast Stand-By and Deep Metabolic Reshuffling. FRONTIERS IN PLANT SCIENCE 2022; 12:760516. [PMID: 35126407 PMCID: PMC8811913 DOI: 10.3389/fpls.2021.760516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Microalgae have adapted to face abiotic stresses by accumulating energy storage molecules such as lipids, which are also of interest to industries. Unfortunately, the impairment in cell division during the accumulation of these molecules constitutes a major bottleneck for the development of efficient microalgae-based biotechnology processes. To address the bottleneck, a multidisciplinary approach was used to study the mechanisms involved in the transition from nitrogen repletion to nitrogen starvation conditions in the marine diatom Phaeodactylum tricornutum that was cultured in a turbidostat. Combining data demonstrate that the different steps of nitrogen deficiency clustered together in a single state in which cells are in equilibrium with their environment. The switch between the nitrogen-replete and the nitrogen-deficient equilibrium is driven by intracellular nitrogen availability. The switch induces a major gene expression change, which is reflected in the reorientation of the carbon metabolism toward an energy storage mode while still operating as a metabolic flywheel. Although the photosynthetic activity is reduced, the chloroplast is kept in a stand-by mode allowing a fast resuming upon nitrogen repletion. Altogether, these results contribute to the understanding of the intricate response of diatoms under stress.
Collapse
Affiliation(s)
- Matteo Scarsini
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Stanislas Thiriet-Rupert
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
- Institut Pasteur, Genetics of Biofilms Laboratory, Paris, France
| | - Brigitte Veidl
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Florence Mondeguer
- Phycotoxins Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Chinese Academy of Sciences, Wuhan, China
| | - Justine Marchand
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| |
Collapse
|
40
|
Maia IB, Carneiro M, Magina T, Malcata FX, Otero A, Navalho J, Varela J, Pereira H. Diel biochemical and photosynthetic monitorization of Skeletonema costatum and Phaeodactylum tricornutum grown in outdoor pilot-scale flat panel photobioreactors. J Biotechnol 2022; 343:110-119. [PMID: 34856224 DOI: 10.1016/j.jbiotec.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022]
Abstract
Diatoms are currently considered valuable feedstocks for different biotechnological applications. To deepen the knowledge on the production of these microalgae, the diel pattern of batch growth, photosystem II performance, and accumulation of target metabolites of two commercially relevant diatoms, Phaeodactylum tricornutum and Skeletonema costatum, were followed outdoors in 100-L flat panel photobioreactors. S. costatum presented a higher light-to-biomass conversion resulting in higher growth than P. tricornutum. Both fluorescence data and principal component analysis pointed to temperature as a limiting factor for the growth of P. tricornutum. Higher protein and carbohydrate contents were found in P. tricornutum, whereas S. costatum fatty acids were characterized by a higher unsaturation degree. Higher productivities were found at 1 p.m. for protein, lipid, and ash in the case of S. costatum. Overall, S. costatum showed great potential for outdoor cultivation, revealing a broader temperature tolerance and increased biomass productivity than P. tricornutum.
Collapse
Affiliation(s)
- Inês B Maia
- CCMAR - Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal; Necton S.A., Belamandil, 8700-152 Olhão, Algarve, Portugal
| | - Mariana Carneiro
- Necton S.A., Belamandil, 8700-152 Olhão, Algarve, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia Magina
- Necton S.A., Belamandil, 8700-152 Olhão, Algarve, Portugal
| | - F Xavier Malcata
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Otero
- USC - Instituto de Acuicultura y Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - João Navalho
- Necton S.A., Belamandil, 8700-152 Olhão, Algarve, Portugal
| | - João Varela
- CCMAR - Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal; GreenCoLab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Hugo Pereira
- GreenCoLab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
41
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
42
|
Genetic engineering of microalgae for enhanced lipid production. Biotechnol Adv 2021; 52:107836. [PMID: 34534633 DOI: 10.1016/j.biotechadv.2021.107836] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Microalgae have the potential to become microbial cell factories for lipid production. Their ability to convert sunlight and CO2 into valuable lipid compounds has attracted interest from cosmetic, biofuel, food and feed industries. In order to make microalgae-derived products cost-effective and commercially competitive, enhanced growth rates and lipid productivities are needed, which require optimization of cultivation systems and strain improvement. Advances in genetic tool development and omics technologies have increased our understanding of lipid metabolism, which has opened up possibilities for targeted metabolic engineering. In this review we provide a comprehensive overview on the developments made to genetically engineer microalgal strains over the last 30 years. We focus on the strategies that lead to an increased lipid content and altered fatty acid profile. These include the genetic engineering of the fatty acid synthesis pathway, Kennedy pathway, polyunsaturated fatty acid and triacylglycerol metabolisms and fatty acid catabolism. Moreover, genetic engineering of specific transcription factors, NADPH generation and central carbon metabolism, which lead to increase of lipid accumulation are also reviewed.
Collapse
|
43
|
Iwai M, Yamada-Oshima Y, Asami K, Kanamori T, Yuasa H, Shimojima M, Ohta H. Recycling of the major thylakoid lipid MGDG and its role in lipid homeostasis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2021; 187:1341-1356. [PMID: 34618048 PMCID: PMC8566231 DOI: 10.1093/plphys/kiab340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 06/01/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG), the most abundant lipid in thylakoid membranes, is involved in photosynthesis and chloroplast development. MGDG lipase has an important role in lipid remodeling in Chlamydomonas reinhardtii. However, the process related to turnover of the lysogalactolipid that results from MGDG degradation, monogalactosylmonoacylglycerol (MGMG), remains to be clarified. Here we identified a homolog of Arabidopsis thaliana lysophosphatidylcholine acyltransferase (LPCAT) and characterized two independent knockdown (KD) alleles in C. reinhardtii. The enzyme designated as C. reinhardtiiLysolipid Acyltransferase 1 (CrLAT1) has a conserved membrane-bound O-acyl transferase domain. LPCAT from Arabidopsis has a key role in deacylation of phosphatidylcholine (PC). Chlamydomonas reinhardtii, however, lacks PC, and thus we hypothesized that CrLAT1 has some other important function in major lipid flow in this organism. In the CrLAT1 KD mutants, the amount of MGMG was increased, but triacylglycerols (TAGs) were decreased. The proportion of more saturated 18:1 (9) MGDG was lower in the KD mutants than in their parental strain, CC-4533. In contrast, the proportion of MGMG has decreased in the CrLAT1 overexpression (OE) mutants, and the proportion of 18:1 (9) MGDG was higher in the OE mutants than in the empty vector control cells. Thus, CrLAT1 is involved in the recycling of MGDG in the chloroplast and maintains lipid homeostasis in C. reinhardtii.
Collapse
Affiliation(s)
- Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yui Yamada-Oshima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Kota Asami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
44
|
Połońska A, Jasieniecka-Gazarkiewicz K, You L, Hao X, Klińska S, Gong Y, Banaś A. Diatoms and Plants Acyl-CoA:lysophosphatidylcholine Acyltransferases (LPCATs) Exhibit Diverse Substrate Specificity and Biochemical Properties. Int J Mol Sci 2021; 22:ijms22169056. [PMID: 34445762 PMCID: PMC8396554 DOI: 10.3390/ijms22169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The search of the Phaeodactylum tricornutum genome database revealed the existence of six genes potentially encoding lysophospholipid acyltransferases. One of these genes, Phatr3_J20460, after introduction to yeast ale1 mutant disrupted in the LPCAT gene, produced a very active acyl-CoA:lysophosphatidylcholine (LPCAT) enzyme. Using in vitro assays applying different radioactive and non-radioactive substrates and microsomal fractions from such yeast, we have characterized the biochemical properties and substrate specificities of this PtLPCAT1. We have found that the substrate specificity of this enzyme indicates that it can completely supply phosphatidylcholine (PC) with all fatty acids connected with a biosynthetic pathway of very long-chain polyunsaturated fatty acids (VLC-PUFAs) used further for the desaturation process. Additionally, we have shown that biochemical properties of the PtLPCAT1 in comparison to plant LPCATs are in some cases similar (such as the dependency of its activity on pH value), differ moderately (such as in response to temperature changes), or express completely different properties (such as in reaction to calcium and magnesium ions or toward some acyl-CoA with 20C polyunsaturated fatty acids). Moreover, the obtained results suggest that cloned “Phatr3_J20460” gene can be useful in oilseeds plant engineering toward efficient production of VLC-PUFA as LPCAT it encodes can (contrary to plant LPCATs) introduce 20:4-CoA (n-3) to PC for further desaturation to 20:5 (EPA, eicosapentaenoic acid).
Collapse
Affiliation(s)
- Ada Połońska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, 80-307 Gdansk, Poland; (K.J.-G.); (S.K.)
- Correspondence: (A.P.); (A.B.)
| | - Katarzyna Jasieniecka-Gazarkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, 80-307 Gdansk, Poland; (K.J.-G.); (S.K.)
| | - Lingjie You
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (X.H.); (Y.G.)
| | - Xiahui Hao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (X.H.); (Y.G.)
| | - Sylwia Klińska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, 80-307 Gdansk, Poland; (K.J.-G.); (S.K.)
| | - Yangmin Gong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (X.H.); (Y.G.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, 80-307 Gdansk, Poland; (K.J.-G.); (S.K.)
- Correspondence: (A.P.); (A.B.)
| |
Collapse
|
45
|
Castiglia D, Landi S, Esposito S. Advanced Applications for Protein and Compounds from Microalgae. PLANTS (BASEL, SWITZERLAND) 2021; 10:1686. [PMID: 34451730 PMCID: PMC8398235 DOI: 10.3390/plants10081686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
Algal species still show unrevealed and unexplored potentiality for the identification of new compounds. Photosynthetic organisms represent a valuable resource to exploit and sustain the urgent need of sustainable and green technologies. Particularly, unconventional organisms from extreme environments could hide properties to be employed in a wide range of biotechnology applications, due to their peculiar alleles, proteins, and molecules. In this review we report a detailed dissection about the latest and advanced applications of protein derived from algae. Furthermore, the innovative use of modified algae as bio-reactors to generate proteins or bioactive compounds was discussed. The latest progress about pharmaceutical applications, including the possibility to obtain drugs to counteract virus (as SARS-CoV-2) were also examined. The last paragraph will survey recent cases of the utilization of extremophiles as bio-factories for specific protein and molecule production.
Collapse
Affiliation(s)
- Daniela Castiglia
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| |
Collapse
|
46
|
Biochemical Effects of Two Pesticides in Three Different Temperature Scenarios on the Diatom Thalassiosira weissflogii. Processes (Basel) 2021. [DOI: 10.3390/pr9071247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The exponential increase of the human population demands the overuse of fertilizers and pesticides in agriculture practices to suppress food production needs. The excessive use of these chemicals (fertilizers and pesticides) can comport deleterious effects to the ecosystems, including aquatic systems and communities. Oxyfluorfen is a fluorine-based herbicide, and its application has increased, since it is seen as an alternative to control glyphosate-resistant weeds. Copper sulfate is an inorganic pesticide based on copper which is being used in several chemical formulations, and it is the second main constituent of fungicides. Besides the known effects of such products in organisms, climatic changes pose an additional issue, being a main concern among scientists and politicians worldwide, since these alterations may worsen ecosystems’ and organisms’ sensitivity to stress conditions, such as the exposure to pollutants. Thalassiosira weissflogii (Grunow) G. A. Fryxell & Hasle, 1977 plays an important role in aquatic food webs as a primary producer and an essential food source to zooplankton. Thus, alterations on the diatom’s abundance and nutritional value may lead to consequences along the trophic chain. However, few studies have evaluated the biochemical impacts of oxyfluorfen and copper sulfate exposure on diatoms. This study intends to (1) evaluate the effects on the growth rate of both contaminants on T. weissfloggi at three temperatures, considering the actual scenario of climatic changes, and (2) assess biochemical changes on the diatom when exposed to the chemicals at different temperatures. To achieve these aims, the marine diatom was exposed to the two chemicals individually at different temperatures. The results showed an increase in the growth rate with increasing temperatures. Oxyfluorfen exhibited higher toxicity than copper sulfate. At the biochemical level, the microalgae were greatly affected when exposed to oxyfluorfen at 20 °C and 25 °C and when exposed to copper sulfate at 15 °C. Moreover, a general increase was observed for the polysaccharide content along the copper sulfate and oxyfluorfen concentrations. Therefore, the contaminants show the ability to interfere with the diatom growth and the nutritive value, with their effects dependent on the temperature.
Collapse
|
47
|
Lovio-Fragoso JP, de Jesús-Campos D, López-Elías JA, Medina-Juárez LÁ, Fimbres-Olivarría D, Hayano-Kanashiro C. Biochemical and Molecular Aspects of Phosphorus Limitation in Diatoms and Their Relationship with Biomolecule Accumulation. BIOLOGY 2021; 10:biology10070565. [PMID: 34206287 PMCID: PMC8301168 DOI: 10.3390/biology10070565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Phosphorus (P) is a key nutrient involved in the transfer of energy and the synthesis of several cellular components. It has been reported that P limitation in diatoms induces the synthesis of biomolecules and the accumulation of storage compounds, such as pigments, carbohydrates and lipids, with diverse biological activities, which can be used in diverse biotechnological applications. However, the molecular and biochemical mechanisms related to how diatoms cope with P deficiency are not clear, and research into this has been limited to a few species. The integration of results obtained from omics sciences could provide a broad understanding of the response of diatoms to P limitation, and the information obtained could help to solve challenges such as biomass production, by-products yield and genetic improvement of strains. Abstract Diatoms are the most abundant group of phytoplankton, and their success lies in their significant adaptation ability to stress conditions, such as nutrient limitation. Phosphorus (P) is a key nutrient involved in the transfer of energy and the synthesis of several cellular components. Molecular and biochemical mechanisms related to how diatoms cope with P deficiency are not clear, and research into this has been limited to a few species. Among the molecular responses that have been reported in diatoms cultured under P deficient conditions is the upregulation of genes encoding enzymes related to the transport, assimilation, remobilization and recycling of this nutrient. Regarding biochemical responses, due to the reduction of the requirements for carbon structures for the synthesis of proteins and phospholipids, more CO2 is fixed than is consumed by the Calvin cycle. To deal with this excess, diatoms redirect the carbon flow toward the synthesis of storage compounds such as triacylglycerides and carbohydrates, which are excreted as extracellular polymeric substances. This review aimed to gather all current knowledge regarding the biochemical and molecular mechanisms of diatoms related to managing P deficiency in order to provide a wider insight into and understanding of their responses, as well as the metabolic pathways affected by the limitation of this nutrient.
Collapse
|
48
|
Sittmann J, Bae M, Mevers E, Li M, Quinn A, Sriram G, Clardy J, Liu Z. Bacterial diketopiperazines stimulate diatom growth and lipid accumulation. PLANT PHYSIOLOGY 2021; 186:1159-1170. [PMID: 33620482 PMCID: PMC8195512 DOI: 10.1093/plphys/kiab080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/03/2021] [Indexed: 06/10/2023]
Abstract
Diatoms are photosynthetic microalgae that fix a significant fraction of the world's carbon. Because of their photosynthetic efficiency and high-lipid content, diatoms are priority candidates for biofuel production. Here, we report that sporulating Bacillus thuringiensis and other members of the Bacillus cereus group, when in co-culture with the marine diatom Phaeodactylum tricornutum, significantly increase diatom cell count. Bioassay-guided purification of the mother cell lysate of B. thuringiensis led to the identification of two diketopiperazines (DKPs) that stimulate both P. tricornutum growth and increase its lipid content. These findings may be exploited to enhance P. tricornutum growth and microalgae-based biofuel production. As increasing numbers of DKPs are isolated from marine microbes, the work gives potential clues to bacterial-produced growth factors for marine microalgae.
Collapse
Affiliation(s)
- John Sittmann
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Andrew Quinn
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
49
|
Chen H, Wang Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biol Rev Camb Philos Soc 2021; 96:2373-2391. [PMID: 34101323 DOI: 10.1111/brv.12759] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023]
Abstract
Microalgal lipids are highly promising feedstocks for biofuel production. Microalgal lipids, especially triacylglycerol, and practical applications of these compounds have received increasing attention in recent years. For the commercial use of microalgal lipids to be feasible, many fundamental biological questions must be addressed based on detailed studies of algal biology, including how lipid biosynthesis occurs and is regulated. Here, we review the current understanding of microalgal lipid biosynthesis, with a focus on the underlying regulatory mechanisms. We also present possible solutions for overcoming various obstacles to understanding the basic biology of microalgal lipid biosynthesis and the practical application of microalgae-based lipids. This review will provide a theoretical reference for both algal researchers and decision makers regarding the future directions of microalgal research, particularly pertaining to microalgal-based lipid biosynthesis.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
50
|
Melliti Ben Garali S, Sahraoui I, Ben Othman H, Kouki A, de la Iglesia P, Diogène J, Lafabrie C, Andree KB, Fernández-Tejedor M, Mejri K, Meddeb M, Pringault O, Hlaili AS. Capacity of the potentially toxic diatoms Pseudo-nitzschia mannii and Pseudo-nitzschia hasleana to tolerate polycyclic aromatic hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112082. [PMID: 33721579 DOI: 10.1016/j.ecoenv.2021.112082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the effects of polycyclic aromatic hydrocarbons (PAHs) on two potentially toxic Pseudo-nitzschia hasleana and P. mannii, isolated from a PAH contaminated marine environment. Both species, maintained in non-axenic cultures, have been exposed during 144 h to increasing concentrations of a 15 PAHs mixture. Analysis of the domoic acid, showed very low concentrations. Dose-response curves for growth and photosynthesis inhibition were determined. Both species have maintained their growth until the end of incubation even at the highest concentration tested (120 µg l-1), Nevertheless, P mannii showed faster growth and seemed to be more tolerant than P. hasleana. To reduce PAH toxicity, both species have enhanced their biovolume, with a higher increase for P. mannii relative to P hasleana. Both species were also capable of bio-concentrating PAHs and were able to degrade them probably in synergy with their associated bacteria. The highest biodegradation was observed for P. mannii, which could harbored more efficient hydrocarbon-degrading bacteria. This study provides the first evidence that PAHs can control the growth and physiology of potentially toxic diatoms. Future studies should investigate the bacterial community associated with Pseudo-nitzschia species, as responses to pollutants or to other environmental stressors could be strongly influence by associated bacteria.
Collapse
Affiliation(s)
- Sondes Melliti Ben Garali
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia.
| | - Inès Sahraoui
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Hiba Ben Othman
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Abdessalem Kouki
- Laboratoire de Microscopie électronique et de Microanalyse, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Pablo de la Iglesia
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Jorge Diogène
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Céline Lafabrie
- UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugéne Bataillon, Case 093, 34095 Montpellier Cedex 5, France
| | - Karl B Andree
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Margarita Fernández-Tejedor
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Kaouther Mejri
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Marouan Meddeb
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugéne Bataillon, Case 093, 34095 Montpellier Cedex 5, France; UMR 110 MOI Institut Méditerranéen d'Océanologie, UniversitéAix Marseille, Université de Toulon, CNRS, IRD, Marseille, France
| | - Asma Sakka Hlaili
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| |
Collapse
|