1
|
Nam KH. Evaluation of AlphaFold3 for the fatty acids docking to human fatty acid-binding proteins. J Mol Graph Model 2024; 133:108872. [PMID: 39362060 DOI: 10.1016/j.jmgm.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
Human fatty acid-binding proteins (FABPs) are involved in many aspects of lipid metabolism, such as the uptake, transport, and storage of lipophilic molecules, as well as cellular functions. Understanding how FABPs recognize fatty acids (FAs) is crucial for identifying FABP function and applications, such as in inhibitor design or biomarker development. The recently developed AlphaFold3 (AF3) demonstrates significantly higher accuracy than other prediction tools, particularly in predicting protein-ligand interactions with state-of-the-art docking tools. Studies on whether AF3 can be used to identify the FAs of FABP are lacking. To assess the accuracy of FA docking to FABPs using AF3, models of FA docked into FABP generated using AF3 were compared with experimentally determined FA-bound FABP structures. FA ligands in AF3 structures docked reliably into the FA-binding pocket of FABPs; however, the detailed binding configuration of most FA ligands docked into FABPs and the interaction between FA and FABP determined using AF3 and experimentally differed. These results will aid in understanding FA docking to FABPs and other FA-binding proteins using AF3.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
2
|
Sharma S, Rehan A, Dutta A. A data mining approach to identify key radioresponsive genes in mouse model of radiation-induced intestinal injury. Biomarkers 2024; 29:505-517. [PMID: 39431989 DOI: 10.1080/1354750x.2024.2420196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Radiation-mediated GI injury (RIGI) is observed in humans either due to accidental or intentional exposures. This can only be managed with supporting care and no approved countermeasures are available till now. Early detection and monitoring of RIGI is important for effective medical management and improve survival chances of exposed individuals. OBJECTIVE The present study aims to identify new signatures of RIGI using data mining approach followed by validation of selected hub genes in mice. METHODS Data mining study was performed using microarray datasets from Gene Expression Omnibus database. The differentially expressed genes were identified and further validated in total-body irradiated mice. RESULTS Based on KEGG pathway analysis, lipid metabolism was found as one of the predominant pathways altered in irradiated intestine. Extensive alteration in lipid profile and lipid modification was observed in this tissue. A protein-protein interaction network revealed top 08 hub genes related to lipid metabolism, namely Fabp1, Fabp2, Fabp6, Npc1l1, Ppar-α, Abcg8, Hnf-4α, and Insig1. qRT-PCR analysis revealed significant up-regulation of Fabp6 and Hnf-4α and down-regulation of Fabp1, Fabp2 and Insig1 transcripts in irradiated intestine. Radiation dose and time kinetics study revealed that the selected 05 genes were altered differentially in response to radiation in intestine. CONCLUSION Finding suggests that lipid metabolism is one of the key targets of radiation and its mediators may act as biomarkers in detection and progression of RIGI.
Collapse
Affiliation(s)
- Suchitra Sharma
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| | - Aliza Rehan
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| | - Ajaswrata Dutta
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| |
Collapse
|
3
|
Narum M, Seljeflot I, Bratseth V, Berg TJ, Sveen KA. Intestinal fatty acid binding protein is associated with coronary artery disease in long-term type 1 diabetes-the Dialong study. Cardiovasc Diabetol 2024; 23:419. [PMID: 39563343 PMCID: PMC11575117 DOI: 10.1186/s12933-024-02509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Individuals with type 1 diabetes are at increased risk of accelerated atherosclerosis, causing coronary artery disease (CAD). The underlying mechanisms remain unclear, but new theories proposed are damage of gut mucosa causing leakage and translocation of gut microbiota products into the circulation, leading to inflammatory responses and atherosclerosis. We therefore aimed to study the associations between gut related inflammatory biomarkers and coronary atherosclerosis in individuals with long-term type 1 diabetes. METHODS In this cross-sectional, controlled study of 102 participants with type 1 diabetes and 63 control subjects, we measured circulating levels of intestinal fatty acid binding protein (I-FABP), soluble cluster of differentiation 14 (sCD14), lipopolysaccharide binding protein (LBP) and interleukin 18 (IL-18) by enzyme-linked immunosorbent assay (ELISA), and further gene expression of CD14 and toll-like receptor 4 (TLR4) by real time PCR in circulating leukocytes and peripheral blood mononuclear cells (PBMCs). The participants had either established coronary heart disease (CHD) or underwent computed tomography coronary angiography (CTCA) to assess for coronary atherosclerosis, including total, calcified and soft/mixed plaque volumes. RESULTS In the diabetes group, the levels of I-FABP were significantly higher in participants with established CHD or significant stenosis on CTCA compared to the participants with normal arteries or non-significant stenosis, with median 1.67 ng/ml (interquartile range [IQR] 1.02-2.32) vs. median 1.09 ng/ml (IQR 0.82-1.58), p = 0.003. I-FABP was associated with significant coronary artery stenosis by CTCA (> 50%) or previously established CHD in the adjusted analysis (odds ratio [OR] = 2.32, 95% confidence interval [CI]: 1.09-4.95; p = 0.029). The levels of I-FABP correlated also to total coronary plaque volume (r = 0.22, p < 0.05). This association remained significant after adjusting for age, sex, persistent albuminuria, eGFR, statin treatment, diabetes duration and mean time-weighted variables; HbA1c, LDL-cholesterol and systolic blood pressure (OR = 1.97, 95% CI: 1.28-3.01; p = 0.002). CONCLUSIONS In this cohort of individuals with long-term type 1 diabetes I-FABP associated significantly with coronary artery stenosis, suggesting a potential role of gut mucosa damage in the process of atherosclerosis in type 1 diabetes.
Collapse
Affiliation(s)
- Marte Narum
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| | - Vibeke Bratseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| | - Tore Julsrud Berg
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kari Anne Sveen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Hervás-Rivero C, Mejuto-Vázquez N, López-Carbonell D, Altarriba J, Diaz C, Molina A, Rodríguez-Bermúdez R, Piedrafita J, Baro JA, Varona L. Runs of Homozygosity Islands in Autochthonous Spanish Cattle Breeds. Genes (Basel) 2024; 15:1477. [PMID: 39596677 PMCID: PMC11593383 DOI: 10.3390/genes15111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the genetic architecture of autochthonous European cattle breeds is important for developing effective conservation strategies and sustainable breeding programs. Spanish beef cattle, which trace their origins to ancient migrations from the Near East with later admixture from African populations, exhibit a rich genetic diversity shaped by environmental adaptation and selective breeding. Runs of Homozygosity (ROH) are extended stretches of identical genetic material inherited from both parents. They serve as indicators of inbreeding and selection signatures within populations. ROH islands, or regions of the genome where ROH segments are highly concentrated across individuals within a breed, indicate genomic regions under selective pressure. METHODS This study explores the distribution of ROH islands across seven Spanish beef cattle breeds (Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Retinta, Pirenaica, and Rubia Gallega). By analyzing high-density SNP data, we characterized ROH patterns and identified genomic regions with high levels of homozygosity, which may indicate selection pressures or common ancestry. RESULTS Our findings revealed breed-specific ROH patterns as well as shared ROH islands, underscoring genetic relationships and differentiation among the breeds. Notably, Morucha displayed the highest number of ROH, while Asturiana de los Valles had the fewest. FROH values, which indicate genomic inbreeding, varied among the breeds, with Morucha and Retinta being associated with higher values. We identified 57 ROH islands, with shared regions among populations that suggest common ancestral selection pressures. Key genes within these regions, like MSTN, are associated with muscle growth, body weight, and fertility. CONCLUSIONS This study offers valuable insights for breeding strategies and conservation efforts, highlighting the genetic diversity and historical background of Spanish cattle breeds.
Collapse
Affiliation(s)
- C. Hervás-Rivero
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - N. Mejuto-Vázquez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - D. López-Carbonell
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - J. Altarriba
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - C. Diaz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
| | - A. Molina
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - R. Rodríguez-Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - J. Piedrafita
- Departamento de Ciencia Animal y de los Alimentos, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - J. A. Baro
- Departamento de Ciencias Agroforestales, ETS de Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain;
| | - L. Varona
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| |
Collapse
|
5
|
Subhadra M, Mir DA, Ankita K, Sindunathy M, Kishore HD, Ravichandiran V, Balamurugan K. Exploring diabesity pathophysiology through proteomic analysis using Caenorhabditis elegans. Front Endocrinol (Lausanne) 2024; 15:1383520. [PMID: 39539936 PMCID: PMC11557309 DOI: 10.3389/fendo.2024.1383520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diabesity, characterized by obesity-driven Type 2 diabetes mellitus (T2DM), arises from intricate genetic and environmental interplays that induce various metabolic disorders. The systemic lipid and glucose homeostasis is controlled by an intricate cross-talk of internal glucose/insulin and fatty acid molecules to maintain a steady state of internal environment. Methods In this study, Caenorhabditis elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients to delve into the mechanistic foundations of diabesity. Various assays were conducted to measure intracellular triglyceride levels, lifespan, pharyngeal pumping rate, oxidative stress indicators, locomotor behavior, and dopamine signaling. Proteomic analysis was also performed to identify differentially regulated proteins and dysregulated KEGG pathways, and microscopy and immunofluorescence staining were employed to assess collagen production and anatomical integrity. Results Worms raised on diets high in glucose and cholesterol exhibited notably increased intracellular triglyceride levels, a decrease in both mean and maximum lifespan, and reduced pharyngeal pumping. The diabesity condition induced oxidative stress, evident from heightened ROS levels and distinct FT-IR spectroscopy patterns revealing lipid and protein alterations. Furthermore, impaired dopamine signaling and diminished locomotors behavior in diabesity-afflicted worms correlated with reduced motility. Through proteomic analysis, differentially regulated proteins encompassing dysregulated KEGG pathways included insulin signaling, Alzheimer's disease, and nicotinic acetylcholine receptor signaling pathways were observed. Moreover, diabesity led to decreased collagen production, resulting in anatomical disruptions validated through microscopy and immunofluorescence staining. Discussion This underscores the impact of diabesity on cellular components and structural integrity in C. elegans, providing insights into diabesity-associated mechanisms.
Collapse
Affiliation(s)
- Malaimegu Subhadra
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Koley Ankita
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Hambram David Kishore
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | | |
Collapse
|
6
|
Hernández-Martín M, Garcimartín A, Bocanegra A, Macho-González A, García-Fernández RA, de Pascual-Teresa S, Redondo-Castillejo R, Bastida S, Sánchez-Muniz FJ, Benedí J, López-Oliva ME. Silicon-Enriched Meat Ameliorates Diabetic Dyslipidemia by Improving Cholesterol, Bile Acid Metabolism and Ileal Barrier Integrity in Rats with Late-Stage Type 2 Diabetes. Int J Mol Sci 2024; 25:11405. [PMID: 39518958 PMCID: PMC11547133 DOI: 10.3390/ijms252111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Silicon as a functional ingredient of restructured meat (RM) shows antidiabetic and hypocholesterolemic effects in a type 2 diabetes mellitus (T2DM) rat model. The present paper investigated the mechanisms involved in this cholesterol-lowering effect by studying the impact of silicon-RM consumption on bile acid (BA) and cholesterol metabolism. In addition, the main effects of cecal BA and short-chain fatty acids derived from the microbiota on intestinal barrier integrity were also tested. Rats were fed an RM high-saturated-fat, high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection (LD group) and for an 8 wk. period. Silicon-RM was included in the HSFHCD as a functional food (LD-Si group). An early-stage T2DM group fed a high-saturated-fat diet (ED group) was used as a reference. Silicon decreased the BA pool with a higher hydrophilic BA profile and a lower ability to digest fat and decreased the damaging effects, increasing the occludin levels and the integrity of the intestinal barrier. The ileal BA uptake and hepatic BA synthesis through CYP7A1 were reduced by FXR/FGF15 signaling activation. The silicon up-regulated the hepatic and ileal FXR and LXRα/β, improving transintestinal cholesterol (TICE), biliary BA and cholesterol effluxes. The inclusion of silicon in meat products could be used as a new therapeutic nutritional tool in the treatment of diabetic dyslipidemia.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
| | - Alba Garcimartín
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Adrián Macho-González
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosa A. García-Fernández
- Animal Medicine and Surgery Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain;
| | - Rocío Redondo-Castillejo
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Mª Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
| |
Collapse
|
7
|
Cheng CK, Ye L, Zuo Y, Wang Y, Wang L, Li F, Chen S, Huang Y. Aged Gut Microbiome Induces Metabolic Impairment and Hallmarks of Vascular and Intestinal Aging in Young Mice. Antioxidants (Basel) 2024; 13:1250. [PMID: 39456503 PMCID: PMC11505429 DOI: 10.3390/antiox13101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Aging, an independent risk factor for cardiometabolic diseases, refers to a progressive deterioration in physiological function, characterized by 12 established hallmarks. Vascular aging is driven by endothelial dysfunction, telomere dysfunction, oxidative stress, and vascular inflammation. This study investigated whether aged gut microbiome promotes vascular aging and metabolic impairment. Fecal microbiome transfer (FMT) was conducted from aged (>75 weeks old) to young C57BL/6 mice (8 weeks old) for 6 weeks. Wire myography was used to evaluate endothelial function in aortas and mesenteric arteries. ROS levels were measured by dihydroethidium (DHE) staining and lucigenin-enhanced chemiluminescence. Vascular and intestinal telomere function, in terms of relative telomere length, telomerase reverse transcriptase expression and telomerase activity, were measured. Systemic inflammation, endotoxemia and intestinal integrity of mice were assessed. Gut microbiome profiles were studied by 16S rRNA sequencing. Some middle-aged mice (40-42 weeks old) were subjected to chronic metformin treatment and exercise training for 4 weeks to evaluate their anti-aging benefits. Six-week FMT impaired glucose homeostasis and caused vascular dysfunction in aortas and mesenteric arteries in young mice. FMT triggered vascular inflammation and oxidative stress, along with declined telomerase activity and shorter telomere length in aortas. Additionally, FMT impaired intestinal integrity, and triggered AMPK inactivation and telomere dysfunction in intestines, potentially attributed to the altered gut microbial profiles. Metformin treatment and moderate exercise improved integrity, AMPK activation and telomere function in mouse intestines. Our data highlight aged microbiome as a mechanism that accelerates intestinal and vascular aging, suggesting the gut-vascular connection as a potential intervention target against cardiovascular aging and complications.
Collapse
Affiliation(s)
- Chak-Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China; (L.Y.); (F.L.)
| | - Yuanyuan Zuo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Yaling Wang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; (Y.W.); (S.C.)
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China; (L.Y.); (F.L.)
| | - Sheng Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; (Y.W.); (S.C.)
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
8
|
Gawlik-Kotelnicka O, Czarnecka-Chrebelska K, Margulska A, Pikus E, Wasiak J, Skowrońska A, Brzeziańska-Lasota E, Strzelecki D. Associations between intestinal fatty-acid binding protein and clinical and metabolic characteristics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111170. [PMID: 39393435 DOI: 10.1016/j.pnpbp.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION The topic of increased intestinal permeability is associated with disruption of the intestinal barrier, leading to the "leaky gut" syndrome. Depressive disorders often coexist with abdominal obesity, metabolic syndrome, or its components and complications. Intestinal permeability has been proven to relate to all of the above. METHODS In this cross-sectional study, we aimed to assess the "leaky gut" blood biomarker - intestinal fatty acid-binding protein (I-FABP) - in 114 adult patients diagnosed with depressive disorders depending on abdominal obesity comorbidity, depression, anxiety, and stress level, or antidepressant use. The corrected p-value was set at 0.02. We analyzed patients' mental state, diet, anthropometric parameters, metabolic laboratory markers and I-FABP. RESULTS There was no difference in circulating I-FABP levels between obese and non-obese patients with depressive disorders (p = 0.648). Similarly, I-FABP levels were not different in patients with different emotional symptoms severity (p = 0.829 for self-assessed depression, p = 0.164 for anxiety, and p = 0.543 for stress). But, I-FABP levels differed significantly between patients treated and not treated with antidepressants (p = 0.011). In general linear model analysis treatment with antidepressants, anxiety severity level, their interaction, along with smoking status, drinks intake, and using dietary supplements were shown to significantly explain I-FABP variance (p < 0.001, R2adj = 0.261). CONCLUSIONS Comorbid obesity did not increase intestinal permeability circulating marker, I-FABP, in the population of patients with depressive disorders. Treatment with antidepressants may be connected to higher I-FABP levels. Using dietary supplements, drinks intake, smoking status, or anxiety level may serve as explanatory factors.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| | | | - Aleksandra Margulska
- Department of Child and Adolescent Psychiatry, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| | - Ewa Pikus
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Jakub Wasiak
- Faculty of Medicine, Medical University of Lodz, Kościuszki 4, 90-419 Lodz, Poland.
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| |
Collapse
|
9
|
Chen L, Wang B, Li H, Mao J, Liang Z, Chen Y, Yu M, Liu Y, Liao Z, Yang Y, Wu X, Wang H, Yang Y, Xiang R, Zhang L, Li Z. Design, synthesis, and biological evaluation of novel highly selective non-carboxylic acid FABP1 inhibitors. Eur J Med Chem 2024; 276:116705. [PMID: 39067439 DOI: 10.1016/j.ejmech.2024.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Histologic spectrum studies in patients revealed fatty acid binding proteins 1 (FABP1) as a potential new target for the treatment of metabolic associated fatty liver disease. However, there is no FABP1 inhibitor has been reported except the first-in-class FABP1 inhibitor bearing acid moiety reported by our laboratory. Herein, we firstly report the structure-activity relationship of novel non-carboxylic acid FABP1 inhibitors, which resulted in the identification of the potent and selective FABP1 inhibitor 30. The IC50 value of compound 30 for subtype FABP4 in the same family was greater than 80 μM. Moreover, compound 30 significantly alleviated the hepatic steatosis in DIO mice, which is equivalent to that of clinical drug obeticholic acid. This study might be provided a promising probe for the development of FABP1 inhibitors and thus can help to further elucidate the pharmacology of FABP1.
Collapse
Affiliation(s)
- Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hongming Li
- Fujian Provincial Key Laboratory of Hepatic Drug Research, Ningde, 355300, PR China
| | - Jianming Mao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhiling Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mingyang Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zibin Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuanqian Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xiaojing Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huazheng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yonghong Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ruojing Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Luyong Zhang
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Ren X, Shi B, Chang Z, Zhang J, Wang S, Liu R, Sang M, Dong H, Wu Q. Relationship between pathogenic E.coli O78-induced intestinal epithelial barrier damage and Zonulin expression levels in yaks. Front Cell Infect Microbiol 2024; 14:1456356. [PMID: 39376662 PMCID: PMC11456573 DOI: 10.3389/fcimb.2024.1456356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
To explore whether the intestinal damage of yak colibacillosis resulted from the regulation of Zonulin expression by its pathogenic bacteria, the overexpression and interference plasmids of Zonulin were designed and cultured in Tranwell after cell transfection. Then qRT-PCR and Western blot were used to detect the results of cell transfection, 200 mL 1×105 CFU/mL E.coli O78 was added for 4 hours, transmembrane resistance was measured by transmembrane resistance meter, FD4 fluorescence concentration in the lower chamber was detected by enzyme labeling instrument, bacterial translocation was measured by CFU counting method, and epithelial mucin (MUC1, MUC2) and tight junction protein (FABP2, Occludin, ZO-1) were detected by qRT-PCR. Results The Zonulin gene overexpression and knockout cell lines were successfully constructed, the TEER value of the barrier of Zonulin overexpression cell lines began to decrease at 1 h after the addition of E.coli O78 and reached the lowest value at 4 h, and the TEER value of Zonulin interference cell lines decreased within 1-4 h after the addition of E.coli O78. At 4 h, the FD4 passing capacity of Zonulin overexpression cell lines was significantly higher than that of interfering cell lines, reaching twice as much as siRNA-1. The amount of bacterial translocation in overexpressed cell lines increased rapidly within 1-4 h, and the concentration of E.coli in the lower chamber was significantly higher than that in the siRNA-1 group at 4 h, but there was no significant change in the siRNA-1 group in the 1-4 h. There was no significant change in the mRNA level of MUC1 in Zonulin overexpression and interference cell lines after the addition of E.coli O78. In the overexpression group, the mRNA levels of MUC2, Occludin, and ZO-1 were significantly decreased, and the mRNA level of FABP2 was increased considerably. These results suggest stimulate epithelial cells to secrete Zonulin protein. Many Zonulin proteins regulate the opening of tight junction structures, reduce the transmembrane resistance of the cell barrier, and improve the permeability of the cell barrier and the amount of bacterial translocation.
Collapse
Affiliation(s)
- Xiaoli Ren
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Sciences, Xizang Lhasa, China
| | - Zhenyu Chang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Jingbo Zhang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Mudan Sang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Hailong Dong
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
11
|
Zhang Q, Liu M, Xu Y, Lee J, Jones B, Li B, Huang W, Ye Y, Zheng W. Tilorone mitigates the propagation of α-synucleinopathy in a midbrain-like organoid model. J Transl Med 2024; 22:816. [PMID: 39223664 PMCID: PMC11370279 DOI: 10.1186/s12967-024-05551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons and the accumulation of Lewy-body protein aggregates containing misfolded α-synuclein (α-syn) in a phosphorylated form. The lack of effective models for drug screens has hindered drug development studies for PD. However, the recent development of in vitro brain-like organoids provides a new opportunity for evaluating therapeutic agents to slow the progression of this chronic disease. METHODS In this study, we used a 3D brain-like organoid model to investigate the potential of repurposing Tilorone, an anti-viral drug, for impeding the propagation of α-synucleinopathy. We assessed the effect of Tilorone on the uptake of fluorescently labeled α-syn preformed fibrils (sPFF) and sPFF-induced apoptosis using confocal microscopy. We also examined Tilorone's impact on the phosphorylation of endogenous α-syn induced by pathogenic sPFF by immunoblotting midbrain-like organoid extracts. Additionally, quantitative RT-PCR and proteomic profiling of sPFF-treated organoids were conducted to evaluate the global impact of Tilorone treatment on tissue homeostasis in the 3D organoid model. RESULTS Tilorone inhibits the uptake of sPFF in both mouse primary neurons and human midbrain-like organoids. Tilorone also reduces the phosphorylation of endogenous α-syn induced by pathogenic α-syn fibrils and mitigates α-syn fibril-induced apoptosis in midbrain-like organoids. Proteomic profiling of fibril-treated organoids reveals substantial alterations in lipid homeostasis by α-syn fibrils, which are reversed by Tilorone treatment. Given its safety profile in clinics, Tilorone may be further developed as a therapeutic intervention to alleviate the propagation of synucleinopathy in PD patients.
Collapse
Affiliation(s)
- Qi Zhang
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Meng Liu
- Cancer Data Science laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brothely Jones
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Bing Li
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Wenwei Huang
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Wei Zheng
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA.
| |
Collapse
|
12
|
Davoudi P, Do DN, Rathgeber B, Colombo S, Sargolzaei M, Plastow G, Wang Z, Miar Y. Characterization of runs of homozygosity islands in American mink using whole-genome sequencing data. J Anim Breed Genet 2024; 141:507-520. [PMID: 38389405 DOI: 10.1111/jbg.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
The genome-wide analysis of runs of homozygosity (ROH) islands can be an effective strategy for identifying shared variants within a population and uncovering important genomic regions related to complex traits. The current study performed ROH analysis to characterize the genome-wide patterns of homozygosity, identify ROH islands and annotated genes within these candidate regions using whole-genome sequencing data from 100 American mink (Neogale vison). After sequence processing, variants were called using GATK and Samtools pipelines. Subsequent to quality control, 8,373,854 bi-allelic variants identified by both pipelines remained for further analysis. A total of 34,652 ROH segments were identified in all individuals, among which shorter segments (0.3-1 Mb) were abundant throughout the genome, approximately accounting for 84.39% of all ROH. Within these segments, we identified 63 ROH islands housing 156 annotated genes. The genes located in ROH islands were associated with fur quality (EDNRA, FGF2, FOXA2 and SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS and PHF3), immune capacity (IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2 and TNIP3) and reproduction (ADAD1, KHDRBS2, INSL6, PGRMC2 and HSPA4L). Furthermore, Gene Ontology and KEGG pathway enrichment analyses revealed 56 and 9 significant terms (FDR-corrected p-value < 0.05), respectively, among which cGMP-PKG signalling pathway, regulation of actin cytoskeleton, and calcium signalling pathway were highlighted due to their functional roles in growth and fur characteristics. This is the first study to present ROH islands in American mink. The candidate genes from ROH islands and functional enrichment analysis suggest possible signatures of selection in response to the mink breeding targets, such as increased body length, reproductive performance and fur quality. These findings contribute to our understanding of genetic characteristics, and provide complementary information to assist with implementation of breeding strategies for genetic improvement in American mink.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Stefanie Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- Select Sires Inc., Plain City, Ohio, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
13
|
Sato K, Hirayama Y, Mizutani A, Yao J, Higashino J, Kamitaka Y, Muranaka Y, Yamazaki K, Nishii R, Kobayashi M, Kawai K. Potential Application of the Myocardial Scintigraphy Agent [ 123I]BMIPP in Colon Cancer Cell Imaging. Int J Mol Sci 2024; 25:7747. [PMID: 39062992 PMCID: PMC11277422 DOI: 10.3390/ijms25147747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
[123I]β-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [123I]BMIPP in cancer cells. We compared the accumulation of [123I]BMIPP in cancer cells with that of [18F]FDG and found that [123I]BMIPP was a much higher accumulation than [18F]FDG. The accumulation of [123I]BMIPP was evaluated in the presence of sulfosuccinimidyl oleate (SSO), a CD36 inhibitor, and lipofermata, a fatty acid transport protein (FATP) inhibitor, under low-temperature conditions and in the presence of etomoxir, a carnitine palmitoyl transferase I (CPT1) inhibitor. The results showed that [123I]BMIPP accumulation was decreased in the presence of SSO and lipofermata in H441, LS180, and DLD-1 cells, suggesting that FATPs and CD36 are involved in [123I]BMIPP uptake in cancer cells. [123I]BMIPP accumulation in all cancer cell lines was significantly decreased at 4 °C compared to that at 37 °C and increased in the presence of etomoxir in all cancer cell lines, suggesting that the accumulation of [123I]BMIPP in cancer cells is metabolically dependent. In a biological distribution study conducted using tumor-bearing mice transplanted with LS180 cells, [123I]BMIPP highly accumulated in not only LS180 cells but also normal tissues and organs (including blood and muscle). The tumor-to-intestine or large intestine ratios of [123I]BMIPP were similar to those of [18F]FDG, and the tumor-to-large-intestine ratios exceeded 1.0 during 30 min after [123I]BMIPP administration in the in vivo study. [123I]BMIPP is taken up by cancer cells via CD36 and FATP and incorporated into mitochondria via CPT1. Therefore, [123I]BMIPP may be useful for imaging cancers with activated fatty acid metabolism, such as colon cancer. However, the development of novel imaging radiotracers based on the chemical structure analog of [123I]BMIPP is needed.
Collapse
Affiliation(s)
- Kakeru Sato
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
- Radiological Center, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Yuka Hirayama
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
| | - Jianwei Yao
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Jinya Higashino
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
| | - Yuto Kamitaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (K.S.); (Y.H.); (J.Y.); (J.H.); (Y.K.)
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuka Muranaka
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Ryuichi Nishii
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko Minami, Higashi-ku, Nagoya 461-8673, Japan;
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan; (A.M.); (K.K.)
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
14
|
Mitsui A, Iioka H, Ling Y, Okuda S, Kurose A, Schopperle M, Kondo T, Sakaguchi M, Saito K, Kondo E. Pathological and Biological Significance of the Specific Glycan, TRA-1-60, on Aggressive Gastric Adenocarcinoma. J Transl Med 2024; 104:102073. [PMID: 38718982 DOI: 10.1016/j.labinv.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024] Open
Abstract
The glycans form a unique complex on the surface of cancer cells and play a pivotal role in tumor progression, impacting proliferation, invasion, and metastasis. TRA-1-60 is a glycan that was identified as a critical marker for the establishment of fully reprogrammed inducible pluripotent stem cells. Its expression has been detected in multiple cancer tissues, including embryonal carcinoma, prostate cancer, and pancreatic cancer, but the biological and pathological characterization of TRA-1-60-expressing tumor cells remains unclear within various types of malignancies. Here, we report the biological characteristics of TRA-1-60-expressing gastric cancer cells, especially those with its cell surface expression, and the therapeutic significance of targeting TRA-1-60. The cells with cell membrane expression of TRA-1-60 were mainly observed in the invasive area of patient gastric cancer tissues and correlated with advanced stages of the disease based on histopathological and clinicopathological analyses. In vitro analysis using a scirrhous gastric adenocarcinoma line, HSC-58, which highly expresses TRA-1-60 on its plasma membrane, revealed increased stress-resistant mechanisms, supported by the upregulation of glutathione synthetase and NCF-1 (p47phox) via lipid-ROS regulatory pathways, as detected by RNA-seq analysis followed by oxidative stress gene profiling. Our in vivo therapeutic study using the TRA-1-60-targeting antibody-drug conjugate, namely, Bstrongomab-conjugated monomethyl auristatin E, showed robust efficacy in a mouse model of peritoneal carcinomatosis induced by intraperitoneal xenograft of HSC-58, by markedly reducing massive tumor ascites. Thus, targeting the specific cell surface glycan, TRA-1-60, shows a significant therapeutic impact in advanced-stage gastric cancers.
Collapse
Affiliation(s)
- Ayaka Mitsui
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Tomoko Kondo
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Saito
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
15
|
Liu T, Zhen X, Lei H, Li J, Wang Y, Gou D, Zhao J. Investigating the physicochemical characteristics and importance of insoluble dietary fiber extracted from legumes: An in-depth study on its biological functions. Food Chem X 2024; 22:101424. [PMID: 38840726 PMCID: PMC11152658 DOI: 10.1016/j.fochx.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Legumes are widely appreciated for their abundant reserves of insoluble dietary fiber, which are characterized by their high fiber content and diverse bioactive compounds. Insoluble dietary fiber in leguminous crops is primarily localized in the structural cell walls and outer integument and exhibits strong hydrophilic properties that enable water absorption and volumetric expansion, resulting in increased food bulk and viscosity. This contributes to enhanced satiety and accelerated gastrointestinal transit. The benefits of legume insoluble dietary fiber extend to its notable antioxidant, anti-inflammatory, and anti-cancer properties, as well as its ability to modulate the composition of the intestinal microbiota, promoting the growth of beneficial bacteria while suppressing the proliferation of harmful pathogens, thereby promoting optimal intestinal health. It is highly valued as a valuable thickening agent, stabilizer, and emulsifier, contributing to the texture and stability of a wide range of food products.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Junbo Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| |
Collapse
|
16
|
Zhang M, Song X, Liu S, Zhang N, Yang M, Gao P, Geng Z, Zuo L, Zhang X, Wang L, Wang Y, Li J, Hu J. Magnolin inhibits intestinal epithelial cell apoptosis alleviating Crohn's disease-like colitis by suppressing the PI3K/AKT signalling pathway. Int Immunopharmacol 2024; 134:112181. [PMID: 38733829 DOI: 10.1016/j.intimp.2024.112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND AIMS Previous reports have shown that preventing excessive intestinal epithelial cell (IEC) apoptosis is a crucial approach for protecting the intestinal barrier in patients with Crohn's disease (CD). Magnolin (MGL) has various biological activities, including antiapoptotic activities, but its role in CD has largely not been determined. This study investigated how MGL impacts CD-like colitis and the underlying mechanism involved. METHODS Mice were treated with TNBS to establish a disease model, and these mice were used to assess the therapeutic effects of MGL on CD-like colitis. TNF-α-treated colon organoids were used to evaluate the impact of MGL on intestinal barrier function and IEC apoptosis. Enrichment analysis was performed to examine the potential pathways through which MGL inhibits IEC apoptosis. Finally, rescue experiments showed the mechanism by which MGL suppresses IEC apoptosis. RESULTS The animal experiments demonstrated that MGL treatment alleviated the weight loss, colon shortening, elevated disease activity index (DAI) scores, increased colitis histological scores and upregulated inflammatory factor expression that were observed in model mice. MGL ameliorated intestinal barrier dysfunction and the loss of tight junction (TJ) proteins (ZO-1 and Claudin-1) by inhibiting IEC apoptosis in both TNBS-treated mice and TNF-α-treated colon organoids. MGL inhibited the PI3K/AKT signalling pathway, thus safeguarding the intestinal barrier and alleviating CD-like colitis in vivo and in vitro. CONCLUSIONS MGL improves the intestinal barrier integrity and prevents CD-like colitis by inhibiting IEC apoptosis. The potential mechanism of its anti-apoptotic impact on IECs could be associated with the PI3K/AKT pathway, presenting novel approaches and avenues for the clinical management of CD.
Collapse
Affiliation(s)
- Min Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Department of Laboratory Medicine, Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Shengbao Liu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Nuo Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Department of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Ming Yang
- Department of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Pengcheng Gao
- Department of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China.
| |
Collapse
|
17
|
Li H, Niu S, Pan H, Wang G, Xie J, Tian J, Zhang K, Xia Y, Li Z, Yu E, Xie W, Gong W. Modulation of the gut microbiota by processed food and natural food: evidence from the Siniperca chuatsi microbiome. PeerJ 2024; 12:e17520. [PMID: 38887619 PMCID: PMC11182020 DOI: 10.7717/peerj.17520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Habitual dietary changes have the potential to induce alterations in the host's gut microbiota. Mandarin fish (Siniperca chuatsi), an aquatic vertebrate species with distinct feeding habits, were fed with natural feeds (NF) and artificial feeds (AF) to simulate the effects of natural and processed food consumption on host gut microbiota assemblages. The results showed that the alpha diversity index was reduced in the AF diet treatment, as lower abundance and diversity of the gut microbiota were observed, which could be attributed to the colonized microorganisms of the diet itself and the incorporation of plant-derived proteins or carbohydrates. The β-diversity analysis indicated that the two dietary treatments were associated with distinct bacterial communities. The AF diet had a significantly higher abundance of Bacteroidota and a lower abundance of Actinomycetota, Acidobacteriota, and Chloroflexota compared to the NF group. In addition, Bacteroidota was the biomarker in the gut of mandarin fish from the AF treatment, while Acidobacteriota was distinguished in the NF treatments. Additionally, the increased abundance of Bacteroidota in the AF diet group contributed to the improved fermentation and nutrient assimilation, as supported by the metabolic functional prediction and transcriptome verification. Overall, the present work used the mandarin fish as a vertebrate model to uncover the effects of habitual dietary changes on the evolution of the host microbiota, which may provide potential insights for the substitution of natural foods by processed foods in mammals.
Collapse
Affiliation(s)
- Hongyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Shuhui Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Houjun Pan
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Guangjun Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Jun Xie
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Jingjing Tian
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Kai Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Yun Xia
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Zhifei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Ermeng Yu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Wenping Xie
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Wangbao Gong
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| |
Collapse
|
18
|
Wang Y, Zeng D, Wei L, Chen J, Li H, Wen L, Huang G, Dai Z, Luo J, Sun J, Xi Q, Zhang Y, Chen T. Effects of emulsifiers on lipid metabolism and performance of yellow-feathered broilers. BMC Vet Res 2024; 20:246. [PMID: 38849831 PMCID: PMC11157903 DOI: 10.1186/s12917-024-04095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Reducing production costs while producing high-quality livestock and poultry products is an ongoing concern in the livestock industry. The addition of oil to livestock and poultry diets can enhance feed palatability and improve growth performance. Emulsifiers can be used as potential feed supplements to improve dietary energy utilization and maintain the efficient productivity of broilers. Therefore, further investigation is warranted to evaluate whether dietary emulsifier supplementation can improve the efficiency of fat utilization in the diet of yellow-feathered broilers. In the present study, the effects of adding emulsifier to the diet on lipid metabolism and the performance of yellow-feathered broilers were tested. A total of 240 yellow-feasted broilers (21-day-old) were randomly divided into 4 groups (6 replicates per group, 10 broilers per replicate, half male and half female within each replicate). The groups were as follows: the control group (fed with basal diet), the group fed with basal diet supplemented with 500 mg/kg emulsifier, the group fed with a reduced oil diet (reduced by 1%) supplemented with 500 mg/kg emulsifier, and the group fed with a reduced oil diet supplemented with 500 mg/kg emulsifier. The trial lasted for 42 days, during which the average daily feed intake, average daily gain, and feed-to-gain ratio were measured. Additionally, the expression levels of lipid metabolism-related genes in the liver, abdominal fat and each intestinal segment were assessed. RESULTS The results showed that compared with the basal diet group, (1) The average daily gain of the basal diet + 500 mg/kg emulsifier group significantly increased (P < 0.05), and the half-even-chamber rate was significantly increased (P < 0.05); (2) The mRNA expression levels of Cd36, Dgat2, Apob, Fatp4, Fabp2, and Mttp in the small intestine were significantly increased (P < 0.05). (3) Furthermore, liver TG content significantly decreased (P < 0.05), and the mRNA expression level of Fasn in liver was significantly decreased (P < 0.05), while the expression of Apob, Lpl, Cpt-1, and Pparα significantly increased (P < 0.05). (4) The mRNA expression levels of Lpl and Fatp4 in adipose tissue were significantly increased (P < 0.05), while the expression of Atgl was significantly decreased (P < 0.05). (5) Compared with the reduced oil diet group, the half-evading rate and abdominal fat rate of broilers in the reduced oil diet + 500 mg/kg emulsifier group were significantly increased (P < 0.05), and the serum level of LDL-C increased significantly (P < 0.05)0.6) The mRNA expression levels of Cd36, Fatp4, Dgat2, Apob, and Mttp in the small intestine were significantly increased (P < 0.05). 7) The mRNA expression levels of Fasn and Acc were significantly decreased in the liver (P < 0.05), while the mRNA expression levels of Lpin1, Dgat2, Apob, Lpl, Cpt-1, and Pparα were significantly increased (P < 0.05). CONCLUSIONS These results suggest that dietary emulsifier can enhance the fat utilization efficiency of broilers by increasing the small intestinal fatty acid uptake capacity, inhibiting hepatic fatty acid synthesis and promoting hepatic TG synthesis and transport capacity. This study provides valuable insights for the potential use of emulsifier supplementation to improve the performance of broiler chickens.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Dewei Zeng
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, Hainan, 571100, China
| | - Jingshen Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongyi Li
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Lijun Wen
- Guangdong Hainachuan Biotechnology Co., LTD, Guangzhou, Guangdong, 528515, China
| | - Guangming Huang
- Guangdong Hainachuan Biotechnology Co., LTD, Guangzhou, Guangdong, 528515, China
| | - Zhenqing Dai
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
19
|
Daly AC, Cambuli F, Äijö T, Lötstedt B, Marjanovic N, Kuksenko O, Smith-Erb M, Fernandez S, Domovic D, Van Wittenberghe N, Drokhlyansky E, Griffin GK, Phatnani H, Bonneau R, Regev A, Vickovic S. Tissue and cellular spatiotemporal dynamics in colon aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590125. [PMID: 38712088 PMCID: PMC11071407 DOI: 10.1101/2024.04.22.590125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue structure and molecular circuitry in the colon can be profoundly impacted by systemic age-related effects, but many of the underlying molecular cues remain unclear. Here, we built a cellular and spatial atlas of the colon across three anatomical regions and 11 age groups, encompassing ~1,500 mouse gut tissues profiled by spatial transcriptomics and ~400,000 single nucleus RNA-seq profiles. We developed a new computational framework, cSplotch, which learns a hierarchical Bayesian model of spatially resolved cellular expression associated with age, tissue region, and sex, by leveraging histological features to share information across tissue samples and data modalities. Using this model, we identified cellular and molecular gradients along the adult colonic tract and across the main crypt axis, and multicellular programs associated with aging in the large intestine. Our multi-modal framework for the investigation of cell and tissue organization can aid in the understanding of cellular roles in tissue-level pathology.
Collapse
Affiliation(s)
- Aidan C. Daly
- New York Genome Center, New York, NY, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Britta Lötstedt
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nemanja Marjanovic
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olena Kuksenko
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | - Eugene Drokhlyansky
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriel K Griffin
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Center for Data Science, New York University, New York, NY, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Wang Z, Qin X, Yuan J, Yin H, Qu R, Zhong C, Ding W. MicroRNA-483-3p Inhibitor Ameliorates Sepsis-Induced Intestinal Injury by Attenuating Cell Apoptosis and Cytotoxicity Via Regulating HIPK2. Mol Biotechnol 2024; 66:233-240. [PMID: 37074551 DOI: 10.1007/s12033-023-00734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Sepsis is a life-threatening syndrome that can result in multi-organ dysfunction. MicroRNA (miR)-483-3p was previously demonstrated to be upregulated in sepsis patients; however, its specific functions in sepsis-triggered intestinal injury remain unclarified. Human intestinal epithelial NCM460 cell line was stimulated with lipopolysaccharide (LPS) to mimic sepsis-induced intestinal injury in vitro. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining was utilized for examining cell apoptosis. Western blotting and real time quantitative polymerase chain reaction (RT-qPCR) were used for detecting molecular protein and RNA levels. LPS-induced cytotoxicity was determined by measuring concentrations of lactate dehydrogenase (LDH), diamine oxidase (DAO) and fatty acid binding protein 2 (FABP2). Luciferase reporter assay was utilized for verifying the interaction between miR-483-3p and homeodomain interacting protein kinase 2 (HIPK2). Inhibiting miR-483-3p alleviates LPS-triggered NCM460 cell apoptosis and cytotoxicity. miR-483-3p targeted HIPK2 in LPS-stimulated NCM460 cells. Knockdown of HIPK2 reversed the above effects mediated by miR-483-3p inhibitor. Inhibiting miR-483-3p ameliorates LPS-triggered apoptosis and cytotoxicity by targeting HIPK2.
Collapse
Affiliation(s)
- Zhen Wang
- Department of General Practice, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xuemei Qin
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jin Yuan
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hongzhen Yin
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Rui Qu
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Changshun Zhong
- Department of Critical Care Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Wei Ding
- Department of Burn and Plastic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No 2, Zheshan West Rd, Wuhu, 241000, Anhui, China.
| |
Collapse
|
21
|
Calabrese FM, Celano G, Riezzo G, D’Attoma B, Ignazzi A, Di Chito M, Sila A, De Nucci S, Rinaldi R, Linsalata M, Vacca M, Apa CA, De Angelis M, Giannelli G, De Pergola G, Russo F. Metabolomic Profiling of Obese Patients with Altered Intestinal Permeability Undergoing a Very Low-Calorie Ketogenic Diet. Nutrients 2023; 15:5026. [PMID: 38140285 PMCID: PMC10745951 DOI: 10.3390/nu15245026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
A healthy intestinal permeability facilitates the selective transport of nutrients, metabolites, water, and bacterial products, involving cellular, neural, hormonal, and immune factors. An altered intestinal permeability indicates pathologic phenotypes and is associated with the exacerbation of obesity and related comorbidities. To investigate the impact of altered permeability in obese patients undergoing a calorie-restrictive dietary regimen (VLCKD), we collected urinary and fecal samples from obese patients with both normal and altered permeability (determined based on the lactulose/mannitol ratio) before and after treatment. The analysis of volatile organic compounds (VOCs) aids in understanding the metabolites produced by the intestinal microbiota in this unique ecological niche. Furthermore, we examined clinical and anthropometric variables from the cohort and compared them to significant VOC panels. Consequently, we identified specific markers in the metabolomics data that differentiated between normal and altered profiles before and after the diet. These markers indicated how the variable contribution specifically accounted for interleukins and lipopolysaccharides (LPS). The targeted metabolomics experiment detected no differences in measured short-chain fatty acids (SCFA). In summary, our study evaluated metabolomic markers capable of distinguishing low-grade inflammation conditions, exacerbated in more advanced stages of obesity with altered intestinal permeability.
Collapse
Affiliation(s)
- Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Antonia Ignazzi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Annamaria Sila
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Sara De Nucci
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Roberta Rinaldi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| |
Collapse
|
22
|
Zhang M, Hou L, Tang W, Lei W, Lin H, Wang Y, Long H, Lin S, Chen Z, Wang G, Zhao G. Oridonin attenuates atherosclerosis by inhibiting foam macrophage formation and inflammation through FABP4/PPARγ signalling. J Cell Mol Med 2023; 27:4155-4170. [PMID: 37905351 PMCID: PMC10746953 DOI: 10.1111/jcmm.18000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Both lipid accumulation and inflammatory response in lesion macrophages fuel the progression of atherosclerosis, leading to high mortality of cardiovascular disease. A therapeutic strategy concurrently targeting these two risk factors is promising, but still scarce. Oridonin, the bioactive medicinal compound, is known to protect against inflammatory response and lipid dysfunction. However, its effect on atherosclerosis and the underlying molecular mechanism remain elusive. Here, we showed that oridonin attenuated atherosclerosis in hyperlipidemic ApoE knockout mice. Meanwhile, we confirmed the protective effect of oridonin on the oxidized low-density lipoprotein (oxLDL)-induced foam macrophage formation, resulting from increased cholesterol efflux, as well as reduced inflammatory response. Mechanistically, the network pharmacology prediction and further experiments revealed that oridonin dramatically facilitated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), thereby regulating liver X receptor-alpha (LXRα)-induced ATP-binding cassette transporter A1 (ABCA1) expression and nuclear factor NF-kappa-B (NF-κB) translocation. Antagonist of PPARγ reversed the cholesterol accumulation and inflammatory response mediated by oridonin. Besides, RNA sequencing analysis revealed that fatty acid binding protein 4 (FABP4) was altered responding to lipid modulation effect of oridonin. Overexpression of FABP4 inhibited PPARγ activation and blunted the benefit effect of oridonin on foam macrophages. Taken together, oridonin might have potential to protect against atherosclerosis by modulating the formation and inflammatory response in foam macrophages through FABP4/PPARγ signalling.
Collapse
Affiliation(s)
- Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Wanying Tang
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | | | - Huiling Lin
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yu Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
- Xiangya Hospital, Central South UniversityChangshaChina
| | - Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Zhi Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Guangliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| |
Collapse
|
23
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Nendl A, Raju SC, Broch K, Mayerhofer CCK, Holm K, Halvorsen B, Lappegård KT, Moscavitch S, Hov JR, Seljeflot I, Trøseid M, Awoyemi A. Intestinal fatty acid binding protein is associated with cardiac function and gut dysbiosis in chronic heart failure. Front Cardiovasc Med 2023; 10:1160030. [PMID: 37332580 PMCID: PMC10272617 DOI: 10.3389/fcvm.2023.1160030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background The gut microbiota in patients with chronic heart failure (HF) is characterized by low bacterial diversity and reduced ability to synthesize beneficial metabolites. These changes may facilitate leakage of whole bacteria or bacterial products from the gut into the bloodstream, which may activate the innate immune system and contribute to the low-grade inflammation seen in HF. In this exploratory cross-sectional study, we aimed to investigate relationships between gut microbiota diversity, markers of gut barrier dysfunction, inflammatory markers, and cardiac function in chronic HF patients. Methods In total, 151 adult patients with stable HF and left ventricular ejection fraction (LVEF) < 40% were enrolled. We measured lipopolysaccharide (LPS), LPS-binding protein (LBP), intestinal fatty acid binding protein (I-FABP), and soluble cluster of differentiation 14 (sCD14) as markers of gut barrier dysfunction. N-terminal pro-B-type natriuretic peptide (NT-proBNP) level above median was used as a marker of severe HF. LVEF was measured by 2D-echocardiography. Stool samples were sequenced using 16S ribosomal RNA gene amplification. Shannon diversity index was used as a measure of microbiota diversity. Results Patients with severe HF (NT-proBNP > 895 pg/ml) had increased I-FABP (p < 0.001) and LBP (p = 0.03) levels. ROC analysis for I-FABP yielded an AUC of 0.70 (95% CI 0.61-0.79, p < 0.001) for predicting severe HF. A multivariate logistic regression model showed increasing I-FABP levels across quartiles of NT-proBNP (OR 2.09, 95% CI 1.28-3.41, p = 0.003). I-FABP was negatively correlated with Shannon diversity index (rho = -0.30, p = <0.001), and the bacterial genera Ruminococcus gauvreauii group, Bifidobacterium, Clostridium sensu stricto, and Parasutterella, which were depleted in patients with severe HF. Conclusions In patients with HF, I-FABP, a marker of enterocyte damage, is associated with HF severity and low microbial diversity as part of an altered gut microbiota composition. I-FABP may reflect dysbiosis and may be a marker of gut involvement in patients with HF.
Collapse
Affiliation(s)
- Andraž Nendl
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sajan C. Raju
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Kristian Holm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut Tore Lappegård
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Samuel Moscavitch
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Johannes Roksund Hov
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Marius Trøseid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ayodeji Awoyemi
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
25
|
Yabut KCB, Isoherranen N. Impact of Intracellular Lipid Binding Proteins on Endogenous and Xenobiotic Ligand Metabolism and Disposition. Drug Metab Dispos 2023; 51:700-717. [PMID: 37012074 PMCID: PMC10197203 DOI: 10.1124/dmd.122.001010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/16/2023] [Accepted: 02/10/2023] [Indexed: 04/05/2023] Open
Abstract
The family of intracellular lipid binding proteins (iLBPs) is comprised of 16 members of structurally related binding proteins that have ubiquitous tissue expression in humans. iLBPs collectively bind diverse essential endogenous lipids and xenobiotics. iLBPs solubilize and traffic lipophilic ligands through the aqueous milieu of the cell. Their expression is correlated with increased rates of ligand uptake into tissues and altered ligand metabolism. The importance of iLBPs in maintaining lipid homeostasis is well established. Fatty acid binding proteins (FABPs) make up the majority of iLBPs and are expressed in major organs relevant to xenobiotic absorption, distribution, and metabolism. FABPs bind a variety of xenobiotics including nonsteroidal anti-inflammatory drugs, psychoactive cannabinoids, benzodiazepines, antinociceptives, and peroxisome proliferators. FABP function is also associated with metabolic disease, making FABPs currently a target for drug development. Yet the potential contribution of FABP binding to distribution of xenobiotics into tissues and the mechanistic impact iLBPs may have on xenobiotic metabolism are largely undefined. This review examines the tissue-specific expression and functions of iLBPs, the ligand binding characteristics of iLBPs, their known endogenous and xenobiotic ligands, methods for measuring ligand binding, and mechanisms of ligand delivery from iLBPs to membranes and enzymes. Current knowledge of the importance of iLBPs in affecting disposition of xenobiotics is collectively described. SIGNIFICANCE STATEMENT: The data reviewed here show that FABPs bind many drugs and suggest that binding of drugs to FABPs in various tissues will affect drug distribution into tissues. The extensive work and findings with endogenous ligands suggest that FABPs may also alter the metabolism and transport of drugs. This review illustrates the potential significance of this understudied area.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
26
|
Zhang J, Wang S, Wang J, Liu W, Gong H, Zhang Z, Lyu B, Yu H. Insoluble Dietary Fiber from Soybean Residue (Okara) Exerts Anti-Obesity Effects by Promoting Hepatic Mitochondrial Fatty Acid Oxidation. Foods 2023; 12:foods12102081. [PMID: 37238899 DOI: 10.3390/foods12102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Numerous investigations have shown that insoluble dietary fiber (IDF) has a potentially positive effect on obesity due to a high-fat diet (HFD). Our previous findings based on proteomic data revealed that high-purity IDF from soybean residue (okara) (HPSIDF) prevented obesity by regulating hepatic fatty acid synthesis and degradation pathways, while its intervention mechanism is uncharted. Consequently, the goal of this work is to find out the potential regulatory mechanisms of HPSIDF on hepatic fatty acid oxidation by determining changes in fatty acid oxidation-related enzymes in mitochondria and peroxisomes, the production of oxidation intermediates and final products, the composition and content of fatty acids, and the expression levels of fatty acid oxidation-related proteins in mice fed with HFD. We found that supplementation with HPSIDF significantly ameliorated body weight gain, fat accumulation, dyslipidemia, and hepatic steatosis caused by HFD. Importantly, HPSIDF intervention promotes medium- and long-chain fatty acid oxidation in hepatic mitochondria by improving the contents of acyl-coenzyme A oxidase 1 (ACOX1), malonyl coenzyme A (Malonyl CoA), acetyl coenzyme A synthase (ACS), acetyl coenzyme A carboxylase (ACC), and carnitine palmitoyl transferase-1 (CPT-1). Moreover, HPSIDF effectively regulated the expression levels of proteins involved with hepatic fatty acid β-oxidation. Our study indicated that HPSIDF treatment prevents obesity by promoting hepatic mitochondrial fatty acid oxidation.
Collapse
Affiliation(s)
- Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Junyao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wenhao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hao Gong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhao Zhang
- Sinoglory Health Food Co., Ltd., Liaocheng 252000, China
| | - Bo Lyu
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
27
|
Li H, Zhang Y, Xie J, Wang C, Yi D, Wu T, Wang L, Zhao D, Hou Y. Dietary Supplementation with Mono-Lactate Glyceride Enhances Intestinal Function of Weaned Piglets. Animals (Basel) 2023; 13:ani13081303. [PMID: 37106866 PMCID: PMC10135088 DOI: 10.3390/ani13081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Mono-lactate glyceride (LG) is a short-chain fatty acid ester. It has been shown that short-chain fatty acid esters play an important role in maintaining intestinal structure and function. The aim of this study is to investigate the effects of mono-lactate glyceride on growth performance and intestinal morphology and function in weaned piglets. Sixteen 21-day-old weaned piglets of similar weight were distributed arbitrarily to two treatments: The control group (basal diet) and the LG group (basal diet + 0.6% mono-lactate glyceride). The experiment lasted for 21 days. On day 21 of the trial, piglets were weighed, and blood and intestinal samples were collected for further analysis. Results showed that dietary supplementation with 0.6% mono-lactate glyceride decreased (p < 0.05) the diarrhea rate and the contents of malondialdehyde and hydrogen peroxide in the ileum and jejunum and increased (p < 0.05) the expression of intestinal tight junction protein (Occludin) and the activities of superoxide dismutase and catalase in the ileum and colon. In addition, mono-lactate glyceride supplementation could enhance intestinal mucosal growth by increasing (p < 0.05) the mRNA levels of extracellular regulated protein kinases, promote intestinal mucosal water and nutrient transport and lipid metabolism by increasing (p < 0.05) the mRNA levels of b0,+ amino acid transporter, aquaporin 3, aquaporin 10, gap junction protein alpha 1, intestinal fatty acid-binding protein, and lipoprotein lipase, enhance antiviral and immune function by increasing (p < 0.05) the mRNA levels of nuclear factor kappa-B, interferon-β, mucovirus resistance protein II, 2'-5'-oligoadenylate synthetase-like, interferon-γ, C-C motif chemokine ligand 2, and toll-like receptor 4, and enhance antioxidant capacity by increasing (p < 0.05) the mRNA levels of NF-E2-related factor 2 and glutathione S-transferase omega 2 and decreasing (p < 0.05) the mRNA level of NADPH oxidase 2. These results suggested that dietary supplementation with mono-lactate glyceride could decrease the diarrhea rate by improving intestinal antioxidant capacity, intestinal mucosal barrier, intestinal immune defense function, and intestinal mucosal water and nutrient transport. Collectively, dietary supplementation with 0.6% mono-lactate glyceride improved the intestinal function of weaned piglets.
Collapse
Affiliation(s)
- Hanbo Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaqian Xie
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
28
|
Cao M, Zhang Y, Chen D, Zhong J, Zhang X, Yang L, Li X, Fang L, Liu B, Gong F, Zhou C. Polymorphism in genes encoding two fatty acid binding proteins increases risk of ischemic stroke in a Chinese Han population. Front Genet 2023; 14:1056186. [PMID: 37091779 PMCID: PMC10117902 DOI: 10.3389/fgene.2023.1056186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Dyslipidemia is an independent predictor of ischemic stroke (IS). Genetic variations in lipid-metabolism related genes may increase the risk of IS. Fatty acid-binding protein 1 (FABP1) and fatty acid-binding protein 2 (FABP2) are lipid chaperones responsible for lipid transport and metabolism. The present study aimed to determine the association between FABP1 or FABP2 and ischemic stroke.Methods: A total of 251 participants were recruited composed of 138 patients with ischemic stroke and 113 healthy subjects. DNA was extracted from peripheral blood samples. The rs2241883 polymorphism in FABP1 and rs1799883 polymorphism in FABP2 were genotyped using polymerase chain reaction-restriction fragment length polymorphism. Generalized multifactor dimensionality reduction (GMDR) was used to find out the interaction combinations between two SNPs and environmental factors.Results: The GA genotype of FABP2 rs1799883 increased susceptibility to ischemic stroke under overdominant inheritance model (p = 0.042). After adjusting for the risk factors of IS, it was associated with a significantly higher risk of IS in the codominant inheritance model (adjust OR = 3.431, 95%CI = 1.060–11.103, p = 0.04). The interactions of FABP1 rs2241883 and FABP2 rs1799883 were not associated with IS risk (p = 0.172). Moreover, interaction analysis of two genes (rs1799883 and rs2241883) and two environmental factors (smoking and alcohol consumption) was associated with an increased risk of IS (p = 0.011).Conclusion: The GA genotype of FABP2 rs1799883, interactions between rs1799883, rs2241883 and smoking and alcohol consumption were associated with IS risk in Chinese Han populations.
Collapse
Affiliation(s)
- Maolin Cao
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, China
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yifei Zhang
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, China
| | - Dan Chen
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, China
| | - Jiaju Zhong
- Department of Rehabilitation Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Li
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, China
| | - Liang Fang
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Beizhong Liu
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fang Gong
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, China
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Fang Gong, ; Chanjuan Zhou,
| | - Chanjuan Zhou
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Fang Gong, ; Chanjuan Zhou,
| |
Collapse
|
29
|
Integrative Analysis of Proteomics and Transcriptomics of Longissimus dorsi with Different Feeding Systems in Yaks. Foods 2023; 12:foods12020257. [PMID: 36673349 PMCID: PMC9858148 DOI: 10.3390/foods12020257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Yaks (Bos grunniens) are a critical livestock breed in the plateau region, and changing the feeding system of yaks can significantly improve their growth performance. The effects of different feeding regimes on the growth performance and meat quality of yaks were comprehensively compared here. The transcriptome and proteome of the Longissimus dorsi muscle were determined using RNA-seq and Tandem Mass Tag (TMT) techniques. Indoor feeding significantly improved the growth performance (such as the average daily gain and carcass weight) and meat quality characteristics compared with traditional grazing feeding. In the grazing (Group G) vs. in-house fed group (Group HF) comparison, 40 differentially expressed genes/differentially abundant proteins exhibited the same mRNA and protein expression trends. These genes were associated with collagen binding, the lipoxygenase pathway, and the arachidonic acid metabolic process. Parallel reaction monitoring verified whether the TMT results were reliable. Moreover, some pathways, such as the AMPK signaling pathway, FoxO signaling pathway, PPAR signaling pathway, and fatty acid metabolism, were significantly enriched. These results expand our knowledge about meat quality in yaks and provide practical information and more evidence for further insight into the biological mechanisms underlying meat quality traits.
Collapse
|
30
|
Seven Fatty Acid Metabolism-Related Genes as Potential Biomarkers for Predicting the Prognosis and Immunotherapy Responses in Patients with Esophageal Cancer. Vaccines (Basel) 2022; 10:vaccines10101721. [PMID: 36298586 PMCID: PMC9610070 DOI: 10.3390/vaccines10101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Esophageal cancer (ESCA) is a major cause of cancer-related mortality worldwide. Altered fatty acid metabolism is a hallmark of cancer. However, studies on the roles of fatty acid metabolism-related genes (FRGs) in ESCA remain limited. Method: We identified differentially expressed FRGs (DE-FRGs). Then, the DE-FRGs prognostic model was constructed and validated using a comprehensive analysis. Moreover, the correlation between the risk model and clinical characteristics was investigated. A nomogram for predicting survival was established and evaluated. Subsequently, the difference in tumor microenvironment (TME) was compared between two risk groups. The sensitivity of key DE-FRGs to chemotherapeutic interventions and their correlation with immune cells were investigated. Finally, DEGs between two risk groups were measured and the prognostic value of key DE-FRGs in ESCA was confirmed in other databases. Results: A prognostic model was constructed based on seven selected DEG-FRGs. TNM staging and CD8+ T cells were significantly correlated with high-risk groups. Low-risk groups exhibited more infiltrated M0 macrophages, an activation of type II interferon (IFN-γ) responses, and were found to be more suitable for immunotherapy. Seven key DE-FRGs with prognostic value were found to be considerably influenced by different chemotherapy drugs. Conclusion: A prognostic model based on seven DE-FRGs may efficiently predict patient prognosis and immunotherapy response, helping to develop individualized treatment strategies in ESCA.
Collapse
|
31
|
Xia Q, Dong H, Guo Y, Fang K, Hu M, Xu L, Lu F, Gong J. The role of lacteal integrity and junction transformation in obesity: A promising therapeutic target? Front Endocrinol (Lausanne) 2022; 13:1007856. [PMID: 36506056 PMCID: PMC9729342 DOI: 10.3389/fendo.2022.1007856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Lacteals are the central lymphatic vessels in the villi of the small intestine and perform nutrient absorption, especially dietary lipids, and the transportation of antigen and antigen-presenting cells. Remodeling, proliferation, and cell-cell junctions of lymphatic endothelial cells (LECs) in lacteals are the basis of the maintenance of lacteal integrity and dietary lipid absorption. Normal lipid absorption in the diet depends on sound lacteal development and proliferation, especially integrity maintenance, namely, maintaining the appropriate proportion of button-like and zipper-like junctions. Maintaining the integrity and transforming button-to-zipper junctions in lacteals are strongly connected with obesity, which could be regulated by intestinal flora and molecular signalings, such as vascular endothelial growth factor C-vascular endothelial growth receptor 3 (VEGFC-VEGFR3) signaling, Hippo signaling, Notch signaling, angiopoietin-TIE signaling, VEGF-A/VEGFR2 signaling, and PROX1. This manuscript reviews the molecular mechanism of development, integrity maintenance, and junction transformation in lacteal related to obesity.
Collapse
Affiliation(s)
- Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jing Gong, ; Fuer Lu,
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jing Gong, ; Fuer Lu,
| |
Collapse
|