1
|
Lin R, Gu JG, Wang ZF, Zeng XX, Xiao HW, Chen JC, He J. Mechanism of action of Shaoyao-Gancao decoction in relieving chronic inflammatory pain via Sema3G protein regulation in the dorsal root ganglion. Heliyon 2024; 10:e23617. [PMID: 38192809 PMCID: PMC10772129 DOI: 10.1016/j.heliyon.2023.e23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Objective The purpose of this study was to analyze the impact of Shaoyao-Gancao decoction (SGD) on proteins with significant changes in the dorsal root ganglion (DRG) in rats and to explore the role of the Semaphorin 3G (Sema3G) protein in the DRG and its downstream factors, interleukin-6 (IL-6) and CC-motif chemokine ligand 2(CCL2), in the treatment of chronic inflammatory pain (CIP). Methods We created a CIP rat model using 100 μL of complete Freund's adjuvant (CFA) that was injected into the left posterior plantar of rats. Then, we administered SGD intragastrically. We tested the animals for behavioral changes and protein expression levels in DRG pre- and post-drug intervention. Results Rats in the SGD group showed significantly increased paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and relative expression levels of the Sema3G protein in the DRG (all P < 0.05), while the relative mRNA expression levels of IL-6 and CCL2 in the DRG of the rats were significantly decreased (P < 0.05) when compared with the model group. Conclusion In this study, we found that Shaoyao-Gancao decoction was effective in improving the PWT and PWL of rats with CIP. It reduced CIP by upregulating the expression of Sema3G in the DRG and inhibiting the relative mRNA expression levels of IL-6 and CCL2.
Collapse
Affiliation(s)
- Rong Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun-Gang Gu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zhi-Fu Wang
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Xiao-Xia Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Hong-Wei Xiao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jin-Cheng Chen
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Jian He
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| |
Collapse
|
2
|
Liu N, Zhang L, Tian T, Cheng J, Zhang B, Qiu S, Geng Z, Cui G, Zhang Q, Liao W, Yu Y, Zhang H, Gao B, Xu X, Han T, Yao Z, Qin W, Liu F, Liang M, Xu Q, Fu J, Xu J, Zhu W, Zhang P, Li W, Shi D, Wang C, Lui S, Yan Z, Chen F, Li J, Zhang J, Wang D, Shen W, Miao Y, Xian J, Gao JH, Zhang X, Li MJ, Xu K, Zuo XN, Wang M, Ye Z, Yu C. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nat Genet 2023:10.1038/s41588-023-01425-8. [PMID: 37337106 DOI: 10.1038/s41588-023-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
The hippocampus is critical for memory and cognition and neuropsychiatric disorders, and its subfields differ in architecture and function. Genome-wide association studies on hippocampal and subfield volumes are mainly conducted in European populations; however, other ancestral populations are under-represented. Here we conduct cross-ancestry genome-wide association meta-analyses in 65,791 individuals for hippocampal volume and 38,977 for subfield volumes, including 7,009 individuals of East Asian ancestry. We identify 339 variant-trait associations at P < 1.13 × 10-9 for 44 hippocampal traits, including 23 new associations. Common genetic variants have similar effects on hippocampal traits across ancestries, although ancestry-specific associations exist. Cross-ancestry analysis improves the fine-mapping precision and the prediction performance of polygenic scores in under-represented populations. These genetic variants are enriched for Wnt signaling and neuron differentiation and affect cognition, emotion and neuropsychiatric disorders. These findings may provide insight into the genetic architectures of hippocampal and subfield volumes.
Collapse
Affiliation(s)
- Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shijun Qiu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dapeng Shi
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center at IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Su Y, Wang X, Yang Y, Chen L, Xia W, Hoi KK, Li H, Wang Q, Yu G, Chen X, Wang S, Wang Y, Xiao L, Verkhratsky A, Fancy SPJ, Yi C, Niu J. Astrocyte endfoot formation controls the termination of oligodendrocyte precursor cell perivascular migration during development. Neuron 2023; 111:190-201.e8. [PMID: 36384142 PMCID: PMC9922530 DOI: 10.1016/j.neuron.2022.10.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/14/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) undergo an extensive and coordinated migration in the developing CNS, using the pre-formed scaffold of developed blood vessels as their physical substrate for migration. While OPC association with vasculature is critical for dispersal, equally important for permitting differentiation and proper myelination of target axons is their appropriate and timely detachment, but regulation of this process remains unclear. Here we demonstrate a correlation between the developmental formation of astrocytic endfeet on vessels and the termination of OPC perivascular migration. Ex vivo and in vivo live imaging shows that astrocyte endfeet physically displace OPCs from vasculature, and genetic abrogation of endfoot formation hinders both OPC detachment from vessels and subsequent differentiation. Astrocyte-derived semaphorins 3a and 6a act to repel OPCs from blood vessels at the cessation of their perivascular migration and, in so doing, permit subsequent OPC differentiation by insulating them from a maturation inhibitory endothelial niche.
Collapse
Affiliation(s)
- Yixun Su
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China; Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Yujian Yang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China; Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing 400042, China
| | - Liang Chen
- Department of Orthopedics, Army Specialty Medical Center, Third Military Medical University, Chongqing 400042, China
| | - Wenlong Xia
- Department of Neurology, Department of Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Kimberly K Hoi
- Department of Neurology, Department of Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hui Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China; Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qi Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China; Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Guangdan Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Shouyu Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Yuxin Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M139PL, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao 48011, Spain
| | - Stephen P J Fancy
- Department of Neurology, Department of Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
4
|
Stüfchen I, Beckervordersandforth R, Fischer S, Kappelmann M, Bosserhoff AK, Beyer F. Two novel CreER T2 transgenic mouse lines to study melanocytic cells in vivo. Pigment Cell Melanoma Res 2022; 35:613-621. [PMID: 35920064 DOI: 10.1111/pcmr.13061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
The skin of adult mammals protects from radiation, physical and chemical insults. While melanocytes and melanocyte-producing stem cells contribute to proper skin function in healthy organisms, dysfunction of these cells can lead to the generation of malignant melanoma - the deadliest type of skin cancer. Addressing cells of the melanocyte lineage in vivo represents a prerequisite for the understanding of melanoma on cellular level and the development of preventive and treatment strategies. Here, the inducible Cre-loxP-system has emerged as a promising tool to specifically target, monitor and modulate cells in adult mice. Re-analysis of existing sequencing data sets of melanocytic cells revealed that genes with a known function in neural cells, including neural stem cells (Aldh1L1 and Nestin), are also expressed in melanocytic cells. Therefore, in this study we explored whether the promoter activity of Nestin and Aldh1L1 can serve to target cells of the melanocyte lineage using the inducible CreERT2 -loxP-system. Using an immunohistochemical approach and different time-points of analysis, we were able to map the melanocytic fate of recombined stem cells in the adult hair follicle of Nestin-CreERT2 and Aldh1L1-CreERT2 transgenic mice. Thus, we here present two new mouse models and propose their use to study and putatively modulate adult melanocytic cells in vivo.
Collapse
Affiliation(s)
- Isabel Stüfchen
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Melanie Kappelmann
- Faculty of Computer Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Beyer
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Cordovado A, Schaettin M, Jeanne M, Panasenkava V, Denommé-Pichon AS, Keren B, Mignot C, Doco-Fenzy M, Rodan L, Ramsey K, Narayanan V, Jones JR, Prijoles EJ, Mitchell WG, Ozmore JR, Juliette K, Torti E, Normand EA, Granger L, Petersen AK, Au MG, Matheny JP, Phornphutkul C, Chambers MK, Fernández-Ramos JA, López-Laso E, Kruer MC, Bakhtiari S, Zollino M, Morleo M, Marangi G, Mei D, Pisano T, Guerrini R, Louie RJ, Childers A, Everman DB, Isidor B, Audebert-Bellanger S, Odent S, Bonneau D, Gilbert-Dussardier B, Redon R, Bézieau S, Laumonnier F, Stoeckli ET, Toutain A, Vuillaume ML. SEMA6B variants cause intellectual disability and alter dendritic spine density and axon guidance. Hum Mol Genet 2022; 31:3325-3340. [PMID: 35604360 DOI: 10.1093/hmg/ddac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Intellectual disability is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for intellectual disability to different centres. Whereas until now SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider, and also includes non-syndromic intellectual disability without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in HEK293T cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalisation of SEMA6B protein in HEK293T cells and to a reduced spine density due to loss of mature spines in neuronal cultures. Sema6b knock-down also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knock-down of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with intellectual disability, and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation, and in axon guidance. This study adds SEMA6B to the list of intellectual disability-related genes.
Collapse
Affiliation(s)
- Amélie Cordovado
- UMR 1253, iBrain, University of Tours, Inserm, 37032 Tours, France
| | - Martina Schaettin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich 8057, Switzerland
| | - Médéric Jeanne
- UMR 1253, iBrain, University of Tours, Inserm, 37032 Tours, France.,Genetics Department, University Hospital of Tours, 37044 Tours, France
| | | | - Anne-Sophie Denommé-Pichon
- Functional Unit in Innovative Genomic Diagnosis of Rare Diseases, FHU-TRANSLAD, Dijon-Bourgogne University Hospital, Dijon, France.,UMR1231 GAD, Inserm - Bourgogne-Franche Comté University, Dijon, France
| | - Boris Keren
- Genetics Department, Pitié-Salpêtrière Hospital, AP-HP. Sorbonne University, 75651 Paris, France
| | - Cyril Mignot
- Genetics Department, Pitié-Salpêtrière Hospital, AP-HP. Sorbonne University, 75651 Paris, France
| | - Martine Doco-Fenzy
- University Hospital Reims, AMH2, Genetics Division, SFR CAP santé EA3801, Reims, France
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Julie R Jones
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | | | - Wendy G Mitchell
- Neurology Division, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, USA
| | | | - Kali Juliette
- Gillette Children's Specialty Healthcare: Neurology Department, St Paul, MN 55101, USA
| | | | | | - Leslie Granger
- Genetics Division, Department of Pediatric Development and Rehabilitation, Randall Children's Hospital, Portland, OR 97227, USA
| | - Andrea K Petersen
- Genetics Division, Department of Pediatric Development and Rehabilitation, Randall Children's Hospital, Portland, OR 97227, USA
| | - Margaret G Au
- University of Kentucky: Department of Genetics and Metabolism, Lexington, KY 40536, USA
| | - Juliann P Matheny
- University of Kentucky: Department of Genetics and Metabolism, Lexington, KY 40536, USA
| | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI 02903, USA
| | - Mary-Kathryn Chambers
- Division of Genetics, Rhode Island Hospital, Hasbro Children's Hospital, Providence, RI 02903, USA
| | | | - Eduardo López-Laso
- Pediatric Neurology Unit, department of Pediatrics, University Hospital Reina Sofía, IMIBIC and CIBERER, Córdoba, Spain
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Marcella Zollino
- Università Cattolica Sacro Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Roma, Italy.,Fondazione Policlinico A. Gemelli IRCCS, U. O. C. Genetica Medica, Roma, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Giuseppe Marangi
- Università Cattolica Sacro Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Roma, Italy.,Fondazione Policlinico A. Gemelli IRCCS, U. O. C. Genetica Medica, Roma, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - Raymond J Louie
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - Anna Childers
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - David B Everman
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - Betrand Isidor
- Medical Genetics Service, Clinical Genetics Unit, University Hospital of Nantes, Hôtel Dieu, 44093 Nantes, France
| | | | - Sylvie Odent
- Clinical Genetics Service, University Hospital, Genetic and Development Institute of Rennes IGDR, UMR 6290 University of Rennes, ITHACA ERN, 35203 Rennes, France
| | - Dominique Bonneau
- Department of Medical Genetics, University Hospital of Angers and Mitovasc INSERM 1083, CNRS 6015, 49000 Angers, France
| | | | - Richard Redon
- INSERM, CNRS, UNIV Nantes, Thorax Institute, 44007 Nantes, France
| | - Stéphane Bézieau
- INSERM, CNRS, UNIV Nantes, Thorax Institute, 44007 Nantes, France.,University Hospital of Nantes, Medical Genetics Service 44093 Nantes, France
| | | | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich 8057, Switzerland
| | - Annick Toutain
- UMR 1253, iBrain, University of Tours, Inserm, 37032 Tours, France.,Genetics Department, University Hospital of Tours, 37044 Tours, France
| | - Marie-Laure Vuillaume
- UMR 1253, iBrain, University of Tours, Inserm, 37032 Tours, France.,Genetics Department, University Hospital of Tours, 37044 Tours, France
| |
Collapse
|
6
|
Roque M, de Souza DAR, Rangel-Sosa MM, Altounian M, Hocine M, Deloulme JC, Barbier EL, Mann F, Chauvet S. VPS35 deficiency in the embryonic cortex leads to prenatal cell loss and abnormal development of axonal connectivity. Mol Cell Neurosci 2022; 120:103726. [DOI: 10.1016/j.mcn.2022.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022] Open
|
7
|
Urtatiz O, Haage A, Tanentzapf G, Van Raamsdonk CD. Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. eLife 2021; 10:71825. [PMID: 34939927 PMCID: PMC8747508 DOI: 10.7554/elife.71825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Different melanoma subtypes exhibit specific and non-overlapping sets of oncogene and tumor suppressor mutations, despite a common cell of origin in melanocytes. For example, activation of the Gαq/11 signaling pathway is a characteristic initiating event in primary melanomas that arise in the dermis, uveal tract, or central nervous system. It is rare in melanomas arising in the epidermis. The mechanism for this specificity is unknown. Here, we present evidence that in the mouse, crosstalk with the epidermal microenvironment actively impairs the survival of melanocytes expressing the GNAQQ209L oncogene. We found that GNAQQ209L, in combination with signaling from the interfollicular epidermis (IFE), stimulates dendrite extension, leads to actin cytoskeleton disorganization, inhibits proliferation, and promotes apoptosis in melanocytes. The effect was reversible and paracrine. In contrast, the epidermal environment increased the survival of wildtype and BrafV600E expressing melanocytes. Hence, our studies reveal the flip side of Gαq/11 signaling, which was hitherto unsuspected. In the future, the identification of the epidermal signals that restrain the GNAQQ209L oncogene could suggest novel therapies for GNAQ and GNA11 mutant melanomas.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
8
|
Karatas KS, Bahceci I, Telatar TG, Bahceci B, Hocaoglu C. Relationship between disease and disease severity and semaphorin 5A and hemogram level in obsessive-compulsive disorder. Nord J Psychiatry 2021; 75:509-515. [PMID: 33771090 DOI: 10.1080/08039488.2021.1896779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Semaphorin 5A (SEMA 5A) is a neuroprotein that regulates the formation of excitatory synapses between neurons, important in autoimmunity, inflammatory processes and behaviors. This study aimed to investigate the SEMA 5A levels in patients with obsessive-compulsive disorder (OCD) diagnosed for the first time and evaluate the relationship of disease and disease severity with the blood SEMA 5A level and hemogram. METHODS More than 41,465 patients who applied to the psychiatry clinic from January 2018 to December 2020 were evaluated according to the DSM-5 criteria; 57 patients diagnosed with OCD for the first time, who met the inclusion criteria, were included in the study. Disease severity was investigated administering the Yale Brown Obsessive Compulsion Scale. The peripheral blood SEMA 5A level and hemogram were measured and evaluated in relation to platelet (PLT) activity, neutrophil-lymphocyte ratio (NLR), PLT-lymphocyte ratio (PLR), monocyte-lymphocyte ratio (MLR), C-reactive protein (CRP), and compared with control group of 26 people. RESULTS The comparison of the groups revealed a significant difference in SEMA 5A and CRP level, neutrophil count and percentage, lymphocyte count, PLT activity. A significant correlation was found between disease and SEMA 5A level, NLR, PLR, and PLT parameters in diagnosis of OCD. As the severity of OCD increased, the SEMA 5A level and PLT count decreased, while the PDW and MLR values increased. CONCLUSION In patients with OCD, a relationship was found between plasma SEMA 5A, PLT activity, NLR, PLR, and MLR activity levels with disease and the disease severity.
Collapse
Affiliation(s)
- Kader Semra Karatas
- Psychiatry Department, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Ilkay Bahceci
- Medical Microbiology and Clinical Microbiology Department, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Tahsin Gokhan Telatar
- Public Health Department, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Bulent Bahceci
- Psychiatry Department, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Cicek Hocaoglu
- Psychiatry Department, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| |
Collapse
|
9
|
Zhang L, Qi Z, Li J, Li M, Du X, Wang S, Zhou G, Xu B, Liu W, Xi S, Xu Z, Deng Y. Roles and Mechanisms of Axon-Guidance Molecules in Alzheimer's Disease. Mol Neurobiol 2021; 58:3290-3307. [PMID: 33675023 DOI: 10.1007/s12035-021-02311-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by progressive memory decline and cognitive dysfunctions. Although the causes of AD have not yet been established, many mechanisms have been proposed. Axon-guidance molecules play the roles in the occurrence and development of AD by participating in different mechanisms. Therefore, what roles do axon-guidance molecules play in AD? This study aimed at elucidating how axon-guidance molecules Netrins, Slits, Semaphorins, and Ephrins regulate the levels of Aβ, hyperphosphorylation of tau protein, Reelin, and other ways through different signaling pathways, in order to show the roles of axon-guidance molecules in the occurrence and development of AD. And it is hoped that this study can provide a theoretical basis and new perspectives in the search for new therapeutic targets for AD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Guoyu Zhou
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuhua Xi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
10
|
Emerson SE, Stergas HR, Bupp-Chickering SO, Ebert AM. Shootin-1 is required for nervous system development in zebrafish. Dev Dyn 2020; 249:1285-1295. [PMID: 32406957 DOI: 10.1002/dvdy.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/09/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Semaphorin6A (Sema6A) and its PlexinA2 (PlxnA2) receptor canonically function as repulsive axon guidance cues. To understand downstream signaling mechanisms, we performed a microarray screen and identified the "clutch molecule" shootin-1 (shtn-1) as a transcriptionally repressed target. Shtn-1 is a key proponent of cell migration and neuronal polarization and must be regulated during nervous system development. The mechanisms of Shtn-1 regulation and the phenotypic consequences of loss of repression are poorly understood. RESULTS We demonstrate shtn-1 overexpression results in impaired migration of the optic vesicles, lack of retinal pigmented epithelium, and pathfinding errors of retinotectal projections. We also observed patterning defects in the peripheral nervous system. Importantly, these phenotypes were rescued by overexpressing PlxnA2. CONCLUSIONS We demonstrate a functional role for repression of shtn-1 by PlxnA2 in development of the eyes and peripheral nervous system in zebrafish. These results demonstrate that careful regulation of shtn-1 is critical for development of the nervous system.
Collapse
Affiliation(s)
- Sarah E Emerson
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Helaina R Stergas
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | | | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
11
|
Neuropilin 2 Signaling Mediates Corticostriatal Transmission, Spine Maintenance, and Goal-Directed Learning in Mice. J Neurosci 2019; 39:8845-8859. [PMID: 31541021 DOI: 10.1523/jneurosci.1006-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/09/2019] [Accepted: 09/12/2019] [Indexed: 01/25/2023] Open
Abstract
The striatum represents the main input structure of the basal ganglia, receiving massive excitatory input from the cortex and the thalamus. The development and maintenance of cortical input to the striatum is crucial for all striatal function including many forms of sensorimotor integration, learning, and action control. The molecular mechanisms regulating the development and maintenance of corticostriatal synaptic transmission are unclear. Here we show that the guidance cue, Semaphorin 3F and its receptor Neuropilin 2 (Nrp2), influence dendritic spine maintenance, corticostriatal short-term plasticity, and learning in adult male and female mice. We found that Nrp2 is enriched in adult layer V pyramidal neurons, corticostriatal terminals, and in developing and adult striatal spiny projection neurons (SPNs). Loss of Nrp2 increases SPN excitability and spine number, reduces short-term facilitation at corticostriatal synapses, and impairs goal-directed learning in an instrumental task. Acute deletion of Nrp2 selectively in adult layer V cortical neurons produces a similar increase in the number of dendritic spines and presynaptic modifications at the corticostriatal synapse in the Nrp2 -/- mouse, but does not affect the intrinsic excitability of SPNs. Furthermore, conditional loss of Nrp2 impairs sensorimotor learning on the accelerating rotarod without affecting goal-directed instrumental learning. Collectively, our results identify Nrp2 signaling as essential for the development and maintenance of the corticostriatal pathway and may shed novel insights on neurodevelopmental disorders linked to the corticostriatal pathway and Semaphorin signaling.SIGNIFICANCE STATEMENT The corticostriatal pathway controls sensorimotor, learning, and action control behaviors and its dysregulation is linked to neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here we demonstrate that Neuropilin 2 (Nrp2), a receptor for the axon guidance cue semaphorin 3F, has important and previously unappreciated functions in the development and adult maintenance of dendritic spines on striatal spiny projection neurons (SPNs), corticostriatal short-term plasticity, intrinsic physiological properties of SPNs, and learning in mice. Our findings, coupled with the association of Nrp2 with ASD in human populations, suggest that Nrp2 may play an important role in ASD pathophysiology. Overall, our work demonstrates Nrp2 to be a key regulator of corticostriatal development, maintenance, and function, and may lead to better understanding of neurodevelopmental disease mechanisms.
Collapse
|
12
|
Wang Q, Liu Z, Lin Z, Zhang R, Lu Y, Su W, Li F, Xu X, Tu M, Lou Y, Zhao J, Zheng X. De Novo Germline Mutations in SEMA5A Associated With Infantile Spasms. Front Genet 2019; 10:605. [PMID: 31354784 PMCID: PMC6635550 DOI: 10.3389/fgene.2019.00605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Infantile spasm (IS) is an early-onset epileptic encephalopathy that usually presents with hypsarrhythmia on an electroencephalogram with developmental impairment or regression. In this study, whole-exome sequencing was performed to detect potential pathogenic de novo mutations, and finally we identified a novel damaging de novo mutation in SEMA5A and a compound heterozygous mutation in CLTCL1 in three sporadic trios with IS. The expression profiling of SEMA5A in the human brain showed that it was mainly highly expressed in the cerebral cortex, during the early brain development stage (8 to 9 post-conception weeks and 0 to 5 months after birth). In addition, we identified a close protein-protein interaction network between SEMA5A and candidate genes associated with epilepsy, autism spectrum disorder (ASD) or intellectual disability. Gene enrichment and function analysis demonstrated that genes interacting with SEMA5A were significantly enriched in several brain regions across early fetal development, including the cortex, cerebellum, striatum and thalamus (q < 0.05), and were involved in axonal, neuronal and synapse-associated processes. Furthermore, SEMA5A and its interacting genes were associated with ASD, epilepsy syndrome and developmental disorders of mental health. Our results provide insightful information indicating that SEMA5A may contribute to the development of the brain and is associated with IS. However, further genetic studies are still needed to evaluate the role of SEMA5A in IS to definitively establish the role of SEMA5A in this disorder.
Collapse
Affiliation(s)
- Qiongdan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ru Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yutian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijue Su
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyun Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Deng J, Xu T, Yang J, Zhang KM, Li Q, Yu XY, Li R, Fu J, Jiang Q, Ma JX, Chen YM. Sema7A, a brain immune regulator, regulates seizure activity in PTZ-kindled epileptic rats. CNS Neurosci Ther 2019; 26:101-116. [PMID: 31179640 PMCID: PMC6930824 DOI: 10.1111/cns.13181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Aims Semaphorin7A (Sema7A) plays an important role in the immunoregulation of the brain. In our study, we aimed to investigate the expression patterns of Sema7A in epilepsy and further explore the roles of Sema7A in the regulation of seizure activity and the inflammatory response in PTZ‐kindled epileptic rats. Methods First, we measured the Sema7A expression levels in patients with temporal lobe epilepsy (TLE) and in rats of a PTZ‐kindled epilepsy rat model. Second, to explore the role of Sema7A in the regulation of seizure activity, we conducted epilepsy‐related behavioral experiments after knockdown and overexpression of Sema7A in the rat hippocampal dentate gyrus (DG). Possible Sema7A‐related brain immune regulators (eg, ERK phosphorylation, IL‐6, and TNF‐α) were also investigated. Additionally, the growth of mossy fibers was visualized by anterograde tracing using injections of biotinylated dextran amine (BDA) into the DG region. Results Sema7A expression was markedly upregulated in the brain tissues of TLE patients and rats of the epileptic model after PTZ kindling. After knockdown of Sema7A, seizure activity was suppressed based on the latency to the first epileptic seizure, number of seizures, and duration of seizures. Conversely, overexpression of Sema7A promoted seizures. Overexpression of Sema7A increased the expression levels of the inflammatory cytokines, IL‐6 and TNF‐α, ERK phosphorylation, and growth of mossy fibers in PTZ‐kindled epileptic rats. Conclusion Sema7A is upregulated in the epileptic brain and plays a potential role in the regulation of seizure activity in PTZ‐kindled epileptic rats, which may be related to neuroinflammation. Sema7A promotes the inflammatory cytokines TNF‐α and IL‐6 as well as the growth of mossy fibers through the ERK pathway, suggesting that Sema7A may promote seizures by increasing neuroinflammation and activating pathological neural circuits. Sema7A plays a critical role in epilepsy and could be a potential therapeutic target for this neurological disorder.
Collapse
Affiliation(s)
- Jing Deng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chonqing, China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Juan Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Ke-Ming Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Xin-Yuan Yu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Rong Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Jie Fu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qian Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Jing-Xi Ma
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chonqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Yang-Mei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| |
Collapse
|
14
|
Gil V, Del Río JA. Functions of Plexins/Neuropilins and Their Ligands during Hippocampal Development and Neurodegeneration. Cells 2019; 8:E206. [PMID: 30823454 PMCID: PMC6468495 DOI: 10.3390/cells8030206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
15
|
Körner S, Thau-Habermann N, Kefalakes E, Bursch F, Petri S. Expression of the axon-guidance protein receptor Neuropilin 1 is increased in the spinal cord and decreased in muscle of a mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2019; 49:1529-1543. [PMID: 30589468 DOI: 10.1111/ejn.14326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a degenerative motor neuron disorder. It is supposed that ALS is at least in part an axonopathy. Neuropilin 1 is an important receptor of the axon repellent Semaphorin 3A and a co-receptor of vascular endothelial growth factor. It is probably involved in neuronal and axonal de-/regeneration and might be of high relevance for ALS pathogenesis and/or disease progression. To elucidate whether the expression of either Neuropilin1 or Semaphorin3A is altered in ALS we investigated these proteins in human brain, spinal cord and muscle tissue of ALS-patients and controls as well as transgenic SOD1G93A and control mice. Neuropilin1 and Semaphorin3A gene and protein expression were assessed by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. Groups were compared using either Student t-test or Mann-Whitney U test. We observed a consistent increase of Neuropilin1 expression in the spinal cord and decrease of Neuropilin1 and Semaphorin3A in muscle tissue of transgenic SOD1G93A mice at the mRNA and protein level. Previous studies have shown that damage of neurons physiologically causes Neuropilin1 and Semaphorin3A increase in the central nervous system and decrease in the peripheral nervous system. Our results indicate that this also occurs in ALS. Pharmacological modulation of expression and function of axon repellents could be a promising future therapeutic option in ALS.
Collapse
Affiliation(s)
- Sonja Körner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Ekaterini Kefalakes
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Franziska Bursch
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
16
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Expression of semaphorin class 3 is higher in the proliferative phase on the human endometrium. Arch Gynecol Obstet 2018; 297:1175-1179. [PMID: 29450692 DOI: 10.1007/s00404-018-4719-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE The semaphorins are related to angiogenesis and cell proliferation depending on the tissue. The purpose of this study was to assess gene expression of class 3 semaphorin (SEMA3A-F) and protein expression of semaphorin 3A (SEMA3A) within human endometrium throughout the menstrual cycle. METHODS Gene expression of SEMA3A-F was analyzed by real-time PCR (qRT-PCR) and protein expression of SEMA3A was analyzed by ELISA in endometrial biopsies in the proliferative and secretory phase of the menstrual cycle. RESULTS Gene expression of SEMA3A, SEMA3C, SEMA3D, and SEMA3E was statistically significant decreased in secretory compared to proliferative phase endometrium (p < 0.05). Accordingly, SEMA3A protein expression in the secretory phase was lower than protein expression in proliferative phase endometrium (p ≤ 0.05). CONCLUSION SEMA3A, 3C, 3D, and 3E are possibly related to cell proliferation in the endometrium, being more expressed in the proliferative phase of the cycle. This finding may stimulate studies of class 3 semaphorins as a possible target for treatment of endometrial pathologies.
Collapse
|
18
|
Drobná Z, Henriksen AD, Wolstenholme JT, Montiel C, Lambeth PS, Shang S, Harris EP, Zhou C, Flaws JA, Adli M, Rissman EF. Transgenerational Effects of Bisphenol A on Gene Expression and DNA Methylation of Imprinted Genes in Brain. Endocrinology 2018; 159:132-144. [PMID: 29165653 PMCID: PMC5761590 DOI: 10.1210/en.2017-00730] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous man-made endocrine disrupting compound (EDC). Developmental exposure to BPA changes behavioral and reproductive phenotypes, and these effects can last for generations. We exposed embryos to BPA, producing two lineages: controls and BPA exposed. In the third filial generation (F3), brain tissues containing the preoptic area, the bed nucleus of the stria terminalis, and the anterior hypothalamus were collected. RNA sequencing (RNA-seq) and subsequent data analyses revealed 50 differentially regulated genes in the brains of F3 juveniles from BPA vs control lineages. BPA exposure can lead to loss of imprinting, and one of the two imprinted genes in our data set, maternally expressed gene 3 (Meg3), has been associated with EDCs and neurobehavioral phenotypes. We used quantitative polymerase chain reaction to examine the two imprinted genes in our data set, Meg3 and microRNA-containing gene Mirg (residing in the same loci). Confirming the RNA-seq, Meg3 messenger RNA was higher in F3 brains from the BPA lineage than in control brains. This was true in brains from mice produced with two different BPA paradigms. Next, we used pyrosequencing to probe differentially methylated regions of Meg3. We found transgenerational effects of BPA on imprinted genes in brain. Given these results, and data on Meg3 methylation in humans, we suggest this gene may be a biomarker indicative of early life environmental perturbation.
Collapse
Affiliation(s)
- Zuzana Drobná
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Anne D Henriksen
- Department of Integrated Science and Technology, MSC 4102, James Madison University, Harrisonburg, Virginia
| | - Jennifer T Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Catalina Montiel
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Philip S Lambeth
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Erin P Harris
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Changqing Zhou
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Emilie F Rissman
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
19
|
Blondeau A, Lucier JF, Matteau D, Dumont L, Rodrigue S, Jacques PÉ, Blouin R. Dual leucine zipper kinase regulates expression of axon guidance genes in mouse neuronal cells. Neural Dev 2016; 11:13. [PMID: 27468987 PMCID: PMC4965899 DOI: 10.1186/s13064-016-0068-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Recent genetic studies in model organisms, such as Drosophila, C. elegans and mice, have highlighted a critical role for dual leucine zipper kinase (DLK) in neural development and axonal responses to injury. However, exactly how DLK fulfills these functions remains to be determined. Using RNA-seq profiling, we evaluated the global changes in gene expression that are caused by shRNA-mediated knockdown of endogenous DLK in differentiated Neuro-2a neuroblastoma cells. Results Our analysis led to the identification of numerous up- and down-regulated genes, among which several were found to be associated with system development and axon guidance according to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, respectively. Because of their importance in axonal growth, pruning and regeneration during development and adult life, we then examined by quantitative RT-PCR the mRNA expression levels of the identified axon guidance genes in DLK-depleted cells. Consistent with the RNA-seq data, our results confirmed that loss of DLK altered expression of the genes encoding neuropilin 1 (Nrp1), plexin A4 (Plxna4), Eph receptor A7 (Epha7), Rho family GTPase 1 (Rnd1) and semaphorin 6B (Sema6b). Interestingly, this regulation of Nrp1 and Plxna4 mRNA expression by DLK in Neuro-2a cells was also reflected at the protein level, implicating DLK in the modulation of the function of these axon guidance molecules. Conclusions Collectively, these results provide the first evidence that axon guidance genes are downstream targets of the DLK signaling pathway, which through their regulation probably modulates neuronal cell development, structure and function. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0068-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andréanne Blondeau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Jean-François Lucier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Dominick Matteau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Lauralyne Dumont
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Pierre-Étienne Jacques
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.,Département d'informatique, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada
| | - Richard Blouin
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
20
|
RNA sequencing reveals region-specific molecular mechanisms associated with epileptogenesis in a model of classical hippocampal sclerosis. Sci Rep 2016; 6:22416. [PMID: 26935982 PMCID: PMC4776103 DOI: 10.1038/srep22416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 01/20/2023] Open
Abstract
We report here the first complete transcriptome analysis of the dorsal (dDG) and ventral dentate gyrus (vDG) of a rat epilepsy model presenting a hippocampal lesion with a strict resemblance to classical hippocampal sclerosis (HS). We collected the dDG and vDG by laser microdissection 15 days after electrical stimulation and performed high-throughput RNA-sequencing. There were many differentially regulated genes, some of which were specific to either of the two sub-regions in stimulated animals. Gene ontology analysis indicated an enrichment of inflammation-related processes in both sub-regions and of axonal guidance and calcium signaling processes exclusively in the vDG. There was also a differential regulation of genes encoding molecules involved in synaptic function, neural electrical activity and neuropeptides in stimulated rats. The data presented here suggests, in the time point analyzed, a remarkable interaction among several molecular components which takes place in the damaged hippocampi. Furthermore, even though similar mechanisms may function in different regions of the DG, the molecular components involved seem to be region specific.
Collapse
|
21
|
Körner S, Böselt S, Wichmann K, Thau-Habermann N, Zapf A, Knippenberg S, Dengler R, Petri S. The Axon Guidance Protein Semaphorin 3A Is Increased in the Motor Cortex of Patients With Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2016; 75:326-333. [PMID: 26921371 DOI: 10.1093/jnen/nlw003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disorder that leads to progressive paralysis of skeletal muscles and death by respiratory failure. There is increasing evidence that ALS is at least in part an axonopathy and that mechanisms regulating axonal degeneration and regeneration might be pathogenetically relevant. Semaphorin 3A (Sema3A) is an axon guidance protein; it acts as an axon repellent and prevents axonal regeneration. Increased Sema3A expression has been described in a mouse model of ALS in which it may contribute to motor neuron degeneration. This study aimed to investigate Sema3A mRNA and protein expression in human CNS tissues. We assessed Sema3A expression using quantitative real-time PCR, in situ hybridization, and immunohistochemistry in motor cortex and spinal cord tissue of 8 ALS patients and 6 controls. We found a consistent increase of Sema3A expression in the motor cortex of ALS patients by all 3 methods. In situ hybridization further confirmed that Sema3A expression was present in motor neurons. These findings indicate that upregulation of Sema3A may contribute to axonal degeneration and failure of regeneration in ALS patients. The inhibition of Sema3A therefore might be a promising future therapeutic option for patients with this disease.
Collapse
Affiliation(s)
- Sonja Körner
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP).
| | - Sebastian Böselt
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Klaudia Wichmann
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Nadine Thau-Habermann
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Antonia Zapf
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Sarah Knippenberg
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Reinhard Dengler
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Susanne Petri
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| |
Collapse
|
22
|
Matsuda I, Shoji H, Yamasaki N, Miyakawa T, Aiba A. Comprehensive behavioral phenotyping of a new Semaphorin 3 F mutant mouse. Mol Brain 2016; 9:15. [PMID: 26856818 PMCID: PMC4746810 DOI: 10.1186/s13041-016-0196-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Semaphorin 3 F (Sema3F) is a secreted type of the Semaphorin family of axon guidance molecules. Sema3F and its receptor neuropilin-2 (Npn-2) are expressed in a mutually exclusive manner in the embryonic mouse brain regions including olfactory bulb, hippocampus, and cerebral cortex. Sema3F is thought to have physiological functions in the formation of neuronal circuitry and its refinement. However, functional roles of Sema3F in the brain remain to be clarified. Here, we examined behavioral effects of Sema3F deficiency through a comprehensive behavioral test battery in Sema3F knockout (KO) male mice to understand the possible functions of Sema3F in the brain. RESULTS Male Sema3F KO and wild-type (WT) control mice were subjected to a battery of behavioral tests, including neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, social interaction, Porsolt forced swim, tail suspension, Barnes maze, and fear conditioning tests. In the open field test, Sema3F KO mice traveled shorter distance and spent less time in the center of the field than WT controls during the early testing period. In the light/dark transition test, Sema3F KO mice also exhibited decreased distance traveled, fewer number of transitions, and longer latency to enter the light chamber compared with WT mice. In addition, Sema3F KO mice traveled shorter distance than WT mice in the elevated plus maze test, although there were no differences between genotypes in open arm entries and time spent in open arms. Similarly, Sema3F KO mice showed decreased distance traveled in the social interaction test. Sema3F KO mice displayed reduced immobility in the Porsolt forced swim test whereas there was no difference in immobility between genotypes in the tail suspension test. In the fear conditioning test, Sema3F KO mice exhibited increased freezing behavior when exposed to a conditioning context and an altered context in absence of a conditioned stimulus. In the tests for assessing motor function, pain sensitivity, startle response to an acoustic stimulus, sensorimotor gating, or spatial reference memory, there were no significant behavioral differences between Sema3F KO and WT mice. CONCLUSIONS These results suggest that Sema3F deficiency induces decreased locomotor activity and possibly abnormal anxiety-related behaviors and also enhances contextual memory and generalized fear in mice. Thus, our findings suggest that Sema3F plays important roles in the development of neuronal circuitry underlying the regulation of some aspects of anxiety and fear responses.
Collapse
Affiliation(s)
- Ikuo Matsuda
- Division of Cell Biology, Department of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan. .,Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Nobuyuki Yamasaki
- Kyoto Prefectural Rakunan Hospital, 2 Hirookadani, Gokasho, Uji, Kyoto, 611-0011, Japan. .,Genetic Engineering and Functional Genomics Group, Horizontal Medical Research Organization (HMRO), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan. .,Genetic Engineering and Functional Genomics Group, Horizontal Medical Research Organization (HMRO), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan. .,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| | - Atsu Aiba
- Division of Cell Biology, Department of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan. .,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Identification of Central Nervous System Proteins in Human Blood Serum and Plasma. Bull Exp Biol Med 2015; 160:35-9. [PMID: 26612625 DOI: 10.1007/s10517-015-3092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 10/22/2022]
Abstract
Mass-spectrometric identification of proteins in human blood plasma and serum was performed by comparing mass-spectra of fragmented peptides using Swiss-Prot and UniProtKB databases of amino acid sequences. After choosing the appropriate identification conditions we found that combination of spectrum search parameters are optimal for identification of CNS proteins. In the studied plasma and serum samples, 9 proteins involved into pathological processes in the nervous tissue were identified; 7 of them were identified in both plasma and serum.
Collapse
|
24
|
Liu Y, Wu C, Wang Y, Wen S, Wang J, Chen Z, He Q, Feng D. Loss of plexin-B3 in hepatocellular carcinoma. Exp Ther Med 2015; 9:1247-1252. [PMID: 25780417 PMCID: PMC4353781 DOI: 10.3892/etm.2015.2243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/19/2014] [Indexed: 12/11/2022] Open
Abstract
Plexins are the primary receptors of semaphorins, and participate in the majority of intracellular pathways triggered by semaphorins, including the regulation of cell adhesion and the motility of numerous cell types. Recently, several studies have reported that plexins can significantly affect different aspects of cancer cell biology, and the aberrant expression of plexins has been observed in a wide variety of tumor types. However, the expression and role of plexin-B3 in hepatocellular carcinoma (HCC) is yet to be investigated. In the present study, plexin-B3 expression was measured in 14 paired HCC samples and the corresponding adjacent non-cancerous tissue by quantitative polymerase chain reaction and western blot analysis. The results indicated that the mRNA and protein expression levels of plexin-B3 were downregulated in HCC samples when compared with the corresponding adjacent non-cancerous tissue. In order to elucidate the correlation between clinicopathological data and the expression of plexin-B3 in patients with HCC, 84 HCC archived specimens were analyzed by immunohistochemistry (IHC). The IHC results revealed that the protein expression level of plexin-B3 was lower in the HCC samples compared with the corresponding adjacent non-cancerous tissue, and plexin-B3 underexpression was correlated with the patient gender and tumor size. In conclusion, these results indicated that loss of plexin-B3 in HCC may be of predictive value for the occurrence and progression of HCC. Thus, plexin-B3 may be a promising biomarker for the diagnosis and treatment of tumors in the future.
Collapse
Affiliation(s)
- Yuwu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China ; Department of Morphology, The Institute of Advanced Occupation Technology, Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Chang Wu
- Department of Pathology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Shenzhen, Guangdong 518052, P.R. China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Sailan Wen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhihong Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiongqiong He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Deyun Feng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
25
|
Gutekunst CA, Gross RE. Plexin a4 expression in adult rat cranial nerves. J Chem Neuroanat 2014; 61-62:13-9. [PMID: 24970554 PMCID: PMC4267999 DOI: 10.1016/j.jchemneu.2014.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/21/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022]
Abstract
PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.
Collapse
Affiliation(s)
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
26
|
O'Malley AM, Shanley DK, Kelly AT, Barry DS. Towards an understanding of semaphorin signalling in the spinal cord. Gene 2014; 553:69-74. [PMID: 25300255 DOI: 10.1016/j.gene.2014.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/05/2014] [Indexed: 01/11/2023]
Abstract
Semaphorins are a large family of proteins that are classically associated with axon guidance. These proteins and their interacting partners, the neuropilins and plexins are now known to be key mediators in a variety of processes throughout the nervous system ranging from synaptic refinement to the correct positioning of neuronal and glial cell bodies. Recently, much attention has been given to the roles semaphorins play in other body tissues including the immune and vascular systems. This review wishes to draw attention back to the nervous system, specifically focusing on the role of semaphorins in the development of the spinal cord and their proposed roles in the adult. In addition, their functions in spinal cord injury at the glial scar are also discussed.
Collapse
Affiliation(s)
- Aisling M O'Malley
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel K Shanley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Albert T Kelly
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Denis S Barry
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
27
|
Abstract
Semaphorin family proteins are well-known axon guidance ligands. Recent studies indicate that certain transmembrane Semaphorins can also function as guidance receptors to mediate axon-axon attraction or repulsion. The mechanisms by which Semaphorin reverse signaling modulates axon-surface affinity, however, remain unknown. In this study, we reveal a novel mechanism underlying upregulation of axon-axon attraction by Semaphorin-1a (Sema1a) reverse signaling in the developing Drosophila visual system. Sema1a promotes the phosphorylation and activation of Moesin (Moe), a member of the ezrin/radixin/moesin family of proteins, and downregulates the level of active Rho1 in photoreceptor axons. We propose that Sema1a reverse signaling activates Moe, which in turn upregulates Fas2-mediated axon-axon attraction by inhibiting Rho1.
Collapse
|
28
|
Scar-modulating treatments for central nervous system injury. Neurosci Bull 2014; 30:967-984. [PMID: 24957881 DOI: 10.1007/s12264-013-1456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/09/2014] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.
Collapse
|
29
|
Treps L, Le Guelte A, Gavard J. Emerging roles of Semaphorins in the regulation of epithelial and endothelial junctions. Tissue Barriers 2014; 1:e23272. [PMID: 24665374 PMCID: PMC3879177 DOI: 10.4161/tisb.23272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
Tissue barriers maintain homeostasis, protect underlying tissues, are remodeled during organogenesis and injury and limit aberrant proliferation and dissemination. In this context, endothelial and epithelial intercellular junctions are the primary targets of various cues. This cellular adaptation requires plasticity and dynamics of adhesion molecules and the associated cytoskeleton, as well as the adhesive-linked signaling platforms. It is therefore not surprising that the guidance molecules from the Semaphorin family arise as novel modifiers of epithelia and endothelia in development and diseases. This review will focus on the actions of Semaphorins, and their cognate receptors, Plexins and Neuropilins, on epithelial and endothelial barrier properties.
Collapse
Affiliation(s)
- Lucas Treps
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Armelle Le Guelte
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Julie Gavard
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| |
Collapse
|
30
|
Jacobi A, Schmalz A, Bareyre FM. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord. PLoS One 2014; 9:e88449. [PMID: 24523897 PMCID: PMC3921160 DOI: 10.1371/journal.pone.0088449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
Background Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. Methodology/Principal Findings To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. Conclusions Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the remodelling of axonal connections in the injured spinal cord.
Collapse
Affiliation(s)
- Anne Jacobi
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Anja Schmalz
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Florence M. Bareyre
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail:
| |
Collapse
|
31
|
Abstract
Crib-biting in horses is a stereotypic oral behaviour. Genetic susceptibility has been suggested on a causal basis, together with environmental factors such as stress, gastric discomfort and frustration caused by stall restrictions. This study aimed to test the associations of known or suspected stereotypic genes with equine crib-biting, including Ghrelin, Ghrelin receptor, Leptin, Dopamine receptor, μ-opioid receptor, N-cadherin, Serotonin receptor and Semaphorin. We conducted a candidate gene study with a case-control design, including 98 crib-biting and 135 control horses of two breeds, Finnhorses and half-breds. Detailed phenotypic information on crib-biting behaviour was surveyed through an owner-completed questionnaire. Control horses were more than 10 years old and without a history of crib-biting. Single nucleotide polymorphisms flanking the candidate genes were genotyped using either Sanger sequencing or Taqman assays. According to the survey, the affected horses started crib-biting at a young age, had exhibited crib-biting for more than a year, and expressed the behaviour after feeding or when stressed. Comparison of allele frequencies between the cases and controls for each breed separately did not provide evidence of an association at any of the tested loci. These results suggest that the previously known stereotypic genes are not major risk factors for crib-biting in horses, and further genome-wide studies are warranted on larger sample cohorts.
Collapse
|
32
|
Movassagh H, Shan L, Halayko AJ, Roth M, Tamm M, Chakir J, Gounni AS. Neuronal chemorepellent Semaphorin 3E inhibits human airway smooth muscle cell proliferation and migration. J Allergy Clin Immunol 2013; 133:560-7. [PMID: 23932461 DOI: 10.1016/j.jaci.2013.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/11/2013] [Accepted: 06/11/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Chronic airway diseases, including asthma, are characterized by increased airway smooth muscle (ASM) mass that is due in part to growth factor-mediated ASM cell proliferation and migration. However, the molecular mechanisms underlying these effects are not completely understood. Semaphorin 3E (Sema3E) has emerged as an essential mediator involved in cell migration, proliferation, and angiogenesis, although its role in ASM cell function is not investigated. OBJECTIVES We sought to determine the expression of Sema3E receptor, plexinD1, in human ASM cells (HASMCs); effect of Sema3E on basal and platelet-derived growth factor (PDGF)-induced proliferation and migration; and underlying signaling pathways. METHODS Expression of plexinD1 in HASMCs was studied with RT-PCR, immunostaining, and flow cytometry. The effect of Sema3E on HASMC proliferation and migration was evaluated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation, cell count, and Boyden chamber assay. Sema3E-mediated intracellular signaling was investigated with fluorescent microscopy, flow cytometry, Rac1 activation, and Western blot analysis. RESULTS HASMCs from healthy persons expressed plexinD1 more than HASMCs from asthmatic patients. Sema3E increased plexinD1 expression in HASMCs from asthmatic patients. Recombinant Sema3E inhibited PDGF-mediated HASMC proliferation and migration, which was associated with F-actin depolymerization, suppression of PDGF-induced Rac1 guanosine triphosphatase activity, and Akt and extracellular signal-regulated kinase 1 and 2 phosphorylation. Bronchial biopsies from patients with mild asthma displayed immunoreactivity of plexinD1, suggesting the potential in vivo role of Sema3E-PlexinD1 axis in HASMC function. CONCLUSION This study provides the first evidence that Sema3E receptor is expressed and plays functional roles in HASMCs. Our data suggest a regulatory role of Sema3E in PDGF-mediated proliferation and migration, leading to downregulation of ASM remodeling.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lianyu Shan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael Roth
- University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Tamm
- University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jamila Chakir
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie du Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Abdelilah S Gounni
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
33
|
Niquille M, Minocha S, Hornung JP, Rufer N, Valloton D, Kessaris N, Alfonsi F, Vitalis T, Yanagawa Y, Devenoges C, Dayer A, Lebrand C. Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons. Dev Neurobiol 2013; 73:647-72. [PMID: 23420573 DOI: 10.1002/dneu.22075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/22/2022]
Abstract
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways.
Collapse
Affiliation(s)
- Mathieu Niquille
- Département des neurosciences fondamentales, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jeong S, Juhaszova K, Kolodkin AL. The Control of semaphorin-1a-mediated reverse signaling by opposing pebble and RhoGAPp190 functions in drosophila. Neuron 2013. [PMID: 23177958 DOI: 10.1016/j.neuron.2012.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transmembrane semaphorins (Semas) serve evolutionarily conserved guidance roles, and some function as both ligands and receptors. However, the molecular mechanisms underlying the transduction of these signals to the cytoskeleton remain largely unknown. We have identified two direct regulators of Rho family small GTPases, pebble (a Rho guanine nucleotide exchange factor [GEF]) and RhoGAPp190 (a GTPase activating protein [GAP]), that show robust interactions with the cytoplasmic domain of the Drosophila Sema-1a protein. Neuronal pebble and RhoGAPp190 are required to control motor axon defasciculation at specific pathway choice points and also for target recognition during Drosophila neuromuscular development. Sema-1a-mediated motor axon defasciculation is promoted by pebble and inhibited by RhoGAPp190. Genetic analyses show that opposing pebble and RhoGAPp190 functions mediate Sema-1a reverse signaling through the regulation of Rho1 activity. Therefore, pebble and RhoGAPp190 transduce transmembrane semaphorin-mediated guidance cue information that regulates the establishment of neuronal connectivity during Drosophila development.
Collapse
Affiliation(s)
- Sangyun Jeong
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
35
|
Baudet ML, Bellon A, Holt CE. Role of microRNAs in Semaphorin function and neural circuit formation. Semin Cell Dev Biol 2012; 24:146-55. [PMID: 23219835 DOI: 10.1016/j.semcdb.2012.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/19/2012] [Accepted: 11/28/2012] [Indexed: 01/23/2023]
Abstract
Since the discovery of the first microRNA (miRNA) almost 20 years ago, insight into their functional role has gradually been accumulating. This class of non-coding RNAs has recently been implicated as key molecular regulators in the biology of most eukaryotic cells, contributing to the physiology of various systems including immune, cardiovascular, nervous systems and also to the pathophysiology of cancers. Interestingly, Semaphorins, a class of evolutionarily conserved signalling molecules, are acknowledged to play major roles in these systems also. This, combined with the fact that Semaphorin signalling requires tight spatiotemporal regulation, a hallmark of miRNA expression, suggests that miRNAs could be crucial regulators of Semaphorin function. Here, we review evidence suggesting that Semaphorin signalling is regulated by miRNAs in various systems in health and disease. In particular, we focus on neural circuit formation, including axon guidance, where Semaphorin function was first discovered.
Collapse
|
36
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
37
|
Grondona JM, Hoyo-Becerra C, Visser R, Fernández-Llebrez P, López-Ávalos MD. The subcommissural organ and the development of the posterior commissure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:63-137. [PMID: 22559938 DOI: 10.1016/b978-0-12-394307-1.00002-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growing axons navigate through the developing brain by means of axon guidance molecules. Intermediate targets producing such signal molecules are used as guideposts to find distal targets. Glial, and sometimes neuronal, midline structures represent intermediate targets when axons cross the midline to reach the contralateral hemisphere. The subcommissural organ (SCO), a specialized neuroepithelium located at the dorsal midline underneath the posterior commissure, releases SCO-spondin, a large glycoprotein belonging to the thrombospondin superfamily that shares molecular domains with axonal pathfinding molecules. Several evidences suggest that the SCO could be involved in the development of the PC. First, both structures display a close spatiotemporal relationship. Second, certain mutants lacking an SCO present an abnormal PC. Third, some axonal guidance molecules are expressed by SCO cells. Finally, SCO cells, the Reissner's fiber (the aggregated form of SCO-spondin), or synthetic peptides from SCO-spondin affect the neurite outgrowth or neuronal aggregation in vitro.
Collapse
Affiliation(s)
- Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | | | | | |
Collapse
|
38
|
Tillo M, Ruhrberg C, Mackenzie F. Emerging roles for semaphorins and VEGFs in synaptogenesis and synaptic plasticity. Cell Adh Migr 2012; 6:541-6. [PMID: 23076132 PMCID: PMC3547901 DOI: 10.4161/cam.22408] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synapse formation, maintenance and plasticity are critical for the correct function of the nervous system and its target organs. During development, these processes enable the establishment of appropriate neural circuits. During adulthood, they allow adaptation to both physiological and environmental changes. In this review, we discuss emerging roles for two families of classical axon and vascular guidance cues in synaptogenesis and synaptic plasticity, the semaphorins and the vascular endothelial growth factors (VEGFs). Their contribution to synapse formation and function add a new facet to the spectrum of overlapping and complementary roles for these molecules in development, adulthood and disease.
Collapse
Affiliation(s)
- Miguel Tillo
- Institute of Ophthalmology, University College London, London, UK
| | | | | |
Collapse
|
39
|
Abstract
Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes--including neuronal polarization, topographical mapping and axon sorting--that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.
Collapse
|
40
|
Prestoz L, Jaber M, Gaillard A. Dopaminergic axon guidance: which makes what? Front Cell Neurosci 2012; 6:32. [PMID: 22866028 PMCID: PMC3408579 DOI: 10.3389/fncel.2012.00032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/15/2012] [Indexed: 01/30/2023] Open
Abstract
Mesotelencephalic pathways in the adult central nervous system have been studied in great detail because of their implication in major physiological functions as well as in psychiatric, neurological, and neurodegenerative diseases. However, the ontogeny of these pathways and the molecular mechanisms that guide dopaminergic axons during embryogenesis have been only recently studied. This line of research is of crucial interest for the repair of lesioned circuits in adulthood following neurodegenerative diseases or common traumatic injuries. For instance, in the adult, the anatomic and functional repair of the nigrostriatal pathway following dopaminergic embryonic neuron transplantation suggests that specific guidance cues exist which govern embryonic fibers outgrowth, and suggests that axons from transplanted embryonic cells are able to respond to theses cues, which then guide them to their final targets. In this review, we first synthesize the work that has been performed in the last few years on developing mesotelencephalic pathways, and summarize the current knowledge on the identity of cellular and molecular signals thought to be involved in establishing mesotelencephalic dopaminergic neuronal connectivity during embryogenesis in the central nervous system of rodents. Then, we review the modulation of expression of these molecular signals in the lesioned adult brain and discuss their potential role in remodeling the mesotelencephalic dopaminergic circuitry, with a particular focus on Parkinson's disease (PD). Identifying guidance molecules involved in the connection of grafted cells may be useful for cellular therapy in Parkinsonian patients, as these molecules may help direct axons from grafted cells along the long distance they have to travel from the substantia nigra to the striatum.
Collapse
Affiliation(s)
- Laetitia Prestoz
- Experimental and Clinical Neurosciences Laboratory, Research Group on Cellular Therapies in Brain Diseases, INSERM U1084, University of PoitiersPoitiers, France.
| | | | | |
Collapse
|
41
|
Yoshida Y. Semaphorin signaling in vertebrate neural circuit assembly. Front Mol Neurosci 2012; 5:71. [PMID: 22685427 PMCID: PMC3368236 DOI: 10.3389/fnmol.2012.00071] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/17/2012] [Indexed: 11/13/2022] Open
Abstract
Neural circuit formation requires the coordination of many complex developmental processes. First, neurons project axons over long distances to find their final targets and then establish appropriate connectivity essential for the formation of neuronal circuitry. Growth cones, the leading edges of axons, navigate by interacting with a variety of attractive and repulsive axon guidance cues along their trajectories and at final target regions. In addition to guidance of axons, neuronal polarization, neuronal migration, and dendrite development must be precisely regulated during development to establish proper neural circuitry. Semaphorins consist of a large protein family, which includes secreted and cell surface proteins, and they play important roles in many steps of neural circuit formation. The major semaphorin receptors are plexins and neuropilins, however other receptors and co-receptors also mediate signaling by semaphorins. Upon semaphorin binding to their receptors, downstream signaling molecules transduce this event within cells to mediate further events, including alteration of microtubule and actin cytoskeletal dynamics. Here, I review recent studies on semaphorin signaling in vertebrate neural circuit assembly, with the goal of highlighting how this diverse family of cues and receptors imparts exquisite specificity to neural complex connectivity.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| |
Collapse
|
42
|
Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012; 26:623-34. [PMID: 22310921 PMCID: PMC3285385 DOI: 10.1016/j.bbi.2012.01.015] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother's immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism.
Collapse
Affiliation(s)
- Devon B. Oskvig
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Abdel G. Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, NIH, Bethesda, MD, 20892 USA
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Terry M. Phillips
- Ultramicro Immunodiagnostics Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA,Corresponding Author: Address: Bldg. 35, Rm. 1C913, Bethesda, MD 20892-3724, USA. (M. Herkenham)
| |
Collapse
|
43
|
Gutekunst CA, Stewart EN, Franz CK, English AW, Gross RE. PlexinA4 distribution in the adult rat spinal cord and dorsal root ganglia. J Chem Neuroanat 2012; 44:1-13. [PMID: 22465808 DOI: 10.1016/j.jchemneu.2012.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/29/2012] [Accepted: 03/15/2012] [Indexed: 11/24/2022]
Abstract
PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2, PlexinA4 being the latest member of the PlexinA subfamily to be identified. Little is known about the cellular distribution of PlexinA4 in the spinal cord and dorsal root ganglion (DRG). Here, immunohistochemical studies using antibodies to PlexinA4 revealed immunolabeling in neurons in both dorsal and, to a greater extent, ventral horns of the spinal cord. Ventral horn PlexinA4 positive neurons exhibited morphology, size, and location consistent with both motor neurons and interneurons. Labeling was found in motor axons exiting through the ventral roots, and more widespread labeling was observed in ascending and descending white matter tracts. Within the DRG, immunostaining was observed in neuronal cell bodies as well as the central and peripheral processes of these cells. PlexinA4 is expressed in the peripheral nervous system where its expression is regulated upon nerve injury. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult spinal cord and DRG, and it will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.
Collapse
Affiliation(s)
- Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Rünker AE, O'Tuathaigh C, Dunleavy M, Morris DW, Little GE, Corvin AP, Gill M, Henshall DC, Waddington JL, Mitchell KJ. Mutation of Semaphorin-6A disrupts limbic and cortical connectivity and models neurodevelopmental psychopathology. PLoS One 2011; 6:e26488. [PMID: 22132072 PMCID: PMC3221675 DOI: 10.1371/journal.pone.0026488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/28/2011] [Indexed: 12/18/2022] Open
Abstract
Psychiatric disorders such as schizophrenia and autism are characterised by cellular disorganisation and dysconnectivity across the brain and can be caused by mutations in genes that control neurodevelopmental processes. To examine how neurodevelopmental defects can affect brain function and behaviour, we have comprehensively investigated the consequences of mutation of one such gene, Semaphorin-6A, on cellular organisation, axonal projection patterns, behaviour and physiology in mice. These analyses reveal a spectrum of widespread but subtle anatomical defects in Sema6A mutants, notably in limbic and cortical cellular organisation, lamination and connectivity. These mutants display concomitant alterations in the electroencephalogram and hyper-exploratory behaviour, which are characteristic of models of psychosis and reversible by the antipsychotic clozapine. They also show altered social interaction and deficits in object recognition and working memory. Mice with mutations in Sema6A or the interacting genes may thus represent a highly informative model for how neurodevelopmental defects can lead to anatomical dysconnectivity, resulting, either directly or through reactive mechanisms, in dysfunction at the level of neuronal networks with associated behavioural phenotypes of relevance to psychiatric disorders. The biological data presented here also make these genes plausible candidates to explain human linkage findings for schizophrenia and autism.
Collapse
Affiliation(s)
- Annette E. Rünker
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Colm O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark Dunleavy
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Derek W. Morris
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Graham E. Little
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Aiden P. Corvin
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine and Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - David C. Henshall
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L. Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacol Ther 2011; 132:57-71. [DOI: 10.1016/j.pharmthera.2011.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 12/26/2022]
|
47
|
Tamariz E, Wan ACA, Pek YS, Giordano M, Hernández-Padrón G, Varela-Echavarría A, Velasco I, Castaño VM. Delivery of chemotropic proteins and improvement of dopaminergic neuron outgrowth through a thixotropic hybrid nano-gel. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2097-2109. [PMID: 21744103 DOI: 10.1007/s10856-011-4385-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/25/2011] [Indexed: 05/31/2023]
Abstract
Chemotropic proteins guide neuronal projections to their final target during embryo development and are useful to guide axons of neurons used in transplantation therapies. Site-specific delivery of the proteins however is needed for their application in the brain to avoid degradation and pleiotropic affects. In the present study we report the use of Poly (ethylene glycol)-Silica (PEG-Si) nanocomposite gel with thixotropic properties that make it injectable and suitable for delivery of the chemotropic protein semaphorin 3A. PEG-Si gel forms a functional gradient of semaphorin that enhances axon outgrowth of dopaminergic neurons from rat embryos or differentiated from stem cells in culture. It is not cytotoxic and its properties allowed its injection into the striatum without inflammatory response in the short term. Long term implantation however led to an increase in macrophages and glial cells. The inflammatory response could have resulted from non-degraded silica particles, as observed in biodegradation assays.
Collapse
Affiliation(s)
- Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, VER, México.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hung RJ, Terman JR. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton (Hoboken) 2011; 68:415-33. [PMID: 21800438 PMCID: PMC3612987 DOI: 10.1002/cm.20527] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multidomain oxidoreductase (Redox) enzyme Molecule Interacting with CasL (MICAL), an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Gunn RK, Huentelman MJ, Brown RE. Are Sema5a mutant mice a good model of autism? A behavioral analysis of sensory systems, emotionality and cognition. Behav Brain Res 2011; 225:142-50. [PMID: 21777623 DOI: 10.1016/j.bbr.2011.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
Semaphorin 5A (Sema5A) expression is reduced in the brain of individuals with autism, thus mice with reduced Sema5A levels may serve as a model of this neurodevelopmental disorder. We tested male and female Sema5a knockout mice (B6.129P2SEMA5A(<)™(1DGEN>)/J) and C57BL/6J controls for emotionality, visual ability, prepulse inhibition, motor learning and cognition. Overall, there were only two genotype differences in emotionality: Sema5a mutant mice had more stretch-attend postures in the elevated plus-maze and more defecations in the open field. All mice could see, but Sema5a mice had better visual ability than C57BL/6J mice. There were no genotype differences in sensory-motor gating. Sema5a mice showed higher levels of activity in the elevated plus-maze and light/dark transition box, and there were sex by genotype differences in the Rotarod, suggesting a sex difference in balance and coordination differentially affected by Sema5a. There were no genotype effects on cognition: Sema5a mice did not differ from C57BL/6J in the Morris water maze, set-shifting or cued and contextual fear conditioning. In the social recognition test, all mice preferred social stimuli, but there was no preference for social novelty, thus the Sema5A mice do not have a deficit in social behavior. Overall, there were a number of sex differences, with females showing greater activity and males performing better in tests of spatial learning and memory, but no deficits in the behavior of Sema5A mice. We conclude that the Sema5a mice do not meet the behavioral criteria for a mouse model of autism.
Collapse
Affiliation(s)
- Rhian K Gunn
- Psychology Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | | | | |
Collapse
|
50
|
Wu Z, Sweeney LB, Ayoob JC, Chak K, Andreone BJ, Ohyama T, Kerr R, Luo L, Zlatic M, Kolodkin AL. A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 2011; 70:281-98. [PMID: 21521614 DOI: 10.1016/j.neuron.2011.02.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2011] [Indexed: 01/19/2023]
Abstract
Longitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We show here that establishment of select CNS longitudinal tracts and formation of precise mechanosensory afferent innervation to the same CNS region are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but serve distinct guidance functions. Localized Sema-2b attraction promotes the initial assembly of a subset of CNS longitudinal projections and subsequent targeting of chordotonal sensory afferent axons to these same longitudinal connectives, whereas broader Sema-2a repulsion serves to prevent aberrant innervation. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at PlexB and are critical for functional neural circuit assembly.
Collapse
Affiliation(s)
- Zhuhao Wu
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|