1
|
Popecki MS, Rogers RL, Archer-Hartmann SA, Wares JP, Stanger-Hall KF. The role of pigments in light color variation of the firefly Photinus pyralis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614534. [PMID: 39386434 PMCID: PMC11463521 DOI: 10.1101/2024.09.23.614534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fireflies use bioluminescent signals to communicate with their mates. Luciferase has been thought to be the sole contributor to light color; however, populations of the Photinus pyralis firefly display variation in the color of their emitted signals yet have identical luciferase sequences. Here, we examined whether pigments could be present in the light organs of the twilight-active species P. pyralis and contribute to this variation. We detected patterns of expression that suggest ommochrome and pterin screening pigments are expressed in P. pyralis light organs and could filter light emitted by luciferase and play a role in signal tuning. There were no significant differences between the pigment gene expression of P. pyralis individuals with yellower and greener signals. Our study provides alternative mechanisms that could influence pigments in P. pyralis light organs that could also play a role in modifying signal color.
Collapse
|
2
|
Hamanaka Y, Hasebe M, Shiga S. Neural mechanism of circadian clock-based photoperiodism in insects and snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:601-625. [PMID: 37596422 PMCID: PMC11226556 DOI: 10.1007/s00359-023-01662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
The photoperiodic mechanism distinguishes between long and short days, and the circadian clock system is involved in this process. Although the necessity of circadian clock genes for photoperiodic responses has been demonstrated in many species, how the clock system contributes to photoperiodic mechanisms remains unclear. A comprehensive study, including the functional analysis of relevant genes and physiology of their expressing cells, is necessary to understand the molecular and cellular mechanisms. Since Drosophila melanogaster exhibits a shallow photoperiodism, photoperiodic mechanisms have been studied in non-model species, starting with brain microsurgery and neuroanatomy, followed by genetic manipulation in some insects. Here, we review and discuss the involvement of the circadian clock in photoperiodic mechanisms in terms of neural networks in insects. We also review recent advances in the neural mechanisms underlying photoperiodic responses in insects and snails, and additionally circadian clock systems in snails, whose involvement in photoperiodism has hardly been addressed yet. Brain neurosecretory cells, insulin-like peptide/diuretic hormone44-expressing pars intercerebralis neurones in the bean bug Riptortus pedestris and caudo-dorsal cell hormone-expressing caudo-dorsal cells in the snail Lymnaea stagnalis, both promote egg laying under long days, and their electrical excitability is attenuated under short and medium days, which reduces oviposition. The photoperiodic responses of the pars intercerebralis neurones are mediated by glutamate under the control of the clock gene period. Thus, we are now able to assess the photoperiodic response by neurosecretory cell activity to investigate the upstream mechanisms, that is, the photoperiodic clock and counter.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
3
|
Cardoso JCR, Mc Shane JC, Li Z, Peng M, Power DM. Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Mol Cell Endocrinol 2024; 586:112192. [PMID: 38408601 DOI: 10.1016/j.mce.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Jennifer C Mc Shane
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Liu X, Jin H, Xu G, Lai R, Wang A. Bioactive Peptides from Barnacles and Their Potential for Antifouling Development. Mar Drugs 2023; 21:480. [PMID: 37755093 PMCID: PMC10532818 DOI: 10.3390/md21090480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Barnacles, a prevalent fouler organism in intertidal zones, has long been a source of annoyance due to significant economic losses and ecological impacts. Numerous antifouling approaches have been explored, including extensive research on antifouling chemicals. However, the excessive utilization of small-molecule chemicals appears to give rise to novel environmental concerns. Therefore, it is imperative to develop new strategies. Barnacles exhibit appropriate responses to environmental challenges with complex physiological processes and unique sensory systems. Given the assumed crucial role of bioactive peptides, an increasing number of peptides with diverse activities are being discovered in barnacles. Fouling-related processes have been identified as potential targets for antifouling strategies. In this paper, we present a comprehensive review of peptides derived from barnacles, aiming to underscore their significant potential in the quest for innovative solutions in biofouling prevention and drug discovery.
Collapse
Affiliation(s)
- Xuan Liu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
| |
Collapse
|
6
|
Colizzi FS, Veenstra JA, Rezende GL, Helfrich-Förster C, Martínez-Torres D. Pigment-dispersing factor is present in circadian clock neurons of pea aphids and may mediate photoperiodic signalling to insulin-producing cells. Open Biol 2023; 13:230090. [PMID: 37369351 PMCID: PMC10299861 DOI: 10.1098/rsob.230090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The neuropeptide pigment-dispersing factor (PDF) plays a pivotal role in the circadian clock of most Ecdysozoa and is additionally involved in the timing of seasonal responses of several photoperiodic species. The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species with an annual life cycle tightly coupled to the seasonal changes in day length. Nevertheless, PDF could not be identified in A. pisum so far. In the present study, we identified a PDF-coding gene that has undergone significant changes in the otherwise highly conserved insect C-terminal amino acid sequence. A newly generated aphid-specific PDF antibody stained four neurons in each hemisphere of the aphid brain that co-express the clock protein Period and have projections to the pars lateralis that are highly plastic and change their appearance in a daily and seasonal manner, resembling those of the fruit fly PDF neurons. Most intriguingly, the PDF terminals overlap with dendrites of the insulin-like peptide (ILP) positive neurosecretory cells in the pars intercerebralis and with putative terminals of Cryptochrome (CRY) positive clock neurons. Since ILP has been previously shown to be crucial for seasonal adaptations and CRY might serve as a circadian photoreceptor vital for measuring day length, our results suggest that PDF plays a critical role in aphid seasonal timing.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Jan A. Veenstra
- Université de Bordeaux, INCIA CNRS UMR, 5287 Talence, France
| | - Gustavo L. Rezende
- Universitat de València, Institut de Biologia Integrativa de Sistemes, Parc Cientific, C/ Catedrático Agustín Escardino Benlloch no. 9, 46980 Paterna, València, Spain
| | | | - David Martínez-Torres
- Universitat de València, Institut de Biologia Integrativa de Sistemes, Parc Cientific, C/ Catedrático Agustín Escardino Benlloch no. 9, 46980 Paterna, València, Spain
| |
Collapse
|
7
|
Hamanaka Y, Lu Z, Shiga S. Morphology and synaptic connections of pigment-dispersing factor-immunoreactive neurons projecting to the lateral protocerebrum in the large black chafer, Holotrichia parallela. J Comp Neurol 2022; 530:2994-3010. [PMID: 35881849 DOI: 10.1002/cne.25391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Pigment-dispersing factor (PDF) is a well-known output neuropeptide modulator of circadian pacemakers in insects. Here, we investigated PDF-immunoreactive (ir) neurons in the brain of the large black chafer Holotrichia parallela to search for circadian neural components, which are potentially involved in its circabidian rhythm. PDF-ir cells were exclusively detected near the accessory medulla (AME) as a cluster of ∼ 100 cells with almost homogeneous size. No other cells exhibited immunoreactivity. The PDF-ir cells send beaded fibers into the proximal half of the AME and ventral elongation in an anterior region between the medulla (ME) and lobula (LO). Neither the lamina, ME, LO, nor lobula plate receives PDF-ir fibers. Primary axons derived from the PDF-ir cells extend toward the contralateral hemisphere through the dorsolateral protocerebrum anterior to the calyx to connect the bilateral AME. The axons form varicose outgrowths exclusively in the lateral protocerebrum. Double labeling with antisynapsin revealed partial overlaps between PDF-ir varicosities and synapsin-ir puncta. Thus, it was assumed that the PDF-ir fibers form output synapses there. To verify this, we investigated the ultrastructure of the PDF-ir varicosities in the lateral protocerebrum by preembedding immunoelectron microscopy. The PDF-ir profiles contain small clear synaptic vesicles as well as both PDF-positive and PDF-negative dense-core vesicles, and the profiles form output synapses upon unknown profiles and receive synapses from other PDF-ir profiles. PDF neurons near the AME are considered to be prominent circadian pacemakers in the cockroach and flies. Their possible function in the circabidian rhythm was discussed based on these anatomical insights.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Laboratory of Comparative Neurobiology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Zhiyuan Lu
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada
| | - Sakiko Shiga
- Laboratory of Comparative Neurobiology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
8
|
Kotwica-Rolinska J, Damulewicz M, Chodakova L, Kristofova L, Dolezel D. Pigment Dispersing Factor Is a Circadian Clock Output and Regulates Photoperiodic Response in the Linden Bug, Pyrrhocoris apterus. Front Physiol 2022; 13:884909. [PMID: 35574487 PMCID: PMC9099023 DOI: 10.3389/fphys.2022.884909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Daily and annually cycling conditions manifested on the Earth have forced organisms to develop time-measuring devices. Circadian clocks are responsible for adjusting physiology to the daily cycles in the environment, while the anticipation of seasonal changes is governed by the photoperiodic clock. Circadian clocks are cell-autonomous and depend on the transcriptional/translational feedback loops of the conserved clock genes. The synchronization among clock centers in the brain is achieved by the modulatory function of the clock-dependent neuropeptides. In insects, the most prominent clock neuropeptide is Pigment Dispersing Factor (PDF). Photoperiodic clock measures and computes the day and/or night length and adjusts physiology accordingly to the upcoming season. The exact mechanism of the photoperiodic clock and its direct signaling molecules are unknown but, in many insects, circadian clock genes are involved in the seasonal responses. While in Drosophila, PDF signaling participates both in the circadian clock output and in diapause regulation, the weak photoperiodic response curve of D. melanogaster is a major limitation in revealing the full role of PDF in the photoperiodic clock. Here we provide the first description of PDF in the linden bug, Pyrrhocoris apterus, an organism with a robust photoperiodic response. We characterize in detail the circadian and photoperiodic phenotype of several CRISPR/Cas9-generated pdf mutants, including three null mutants and two mutants with modified PDF. Our results show that PDF acts downstream of CRY and plays a key role as a circadian clock output. Surprisingly, in contrast to the diurnal activity of wild-type bugs, pdf null mutants show predominantly nocturnal activity, which is caused by the clock-independent direct response to the light/dark switch. Moreover, we show that together with CRY, PDF is involved in the photoperiod-dependent diapause induction, however, its lack does not disrupt the photoperiodic response completely, suggesting the presence of additional clock-regulated factors. Taken together our data provide new insight into the role of PDF in the insect’s circadian and photoperiodic systems.
Collapse
Affiliation(s)
- Joanna Kotwica-Rolinska
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- *Correspondence: Joanna Kotwica-Rolinska,
| | - Milena Damulewicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Lenka Chodakova
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lucie Kristofova
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Hasebe M, Kotaki T, Shiga S. Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104359. [PMID: 35041845 DOI: 10.1016/j.jinsphys.2022.104359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Animals in temperate regions breed in the appropriate season by sensing seasonal changes through photoperiodism. Many studies suggest the involvement of a circadian clock system in the photoperiodic regulation of reproduction. Pigment-dispersing factor (PDF) is a known brain neuropeptide involved in the circadian control in various insects. Here, we investigated the localization and projection of PDF neurons in the brain and their involvement in the photoperiodic control of reproduction in the females of the brown-winged green bug, Plautia stali. Immunohistochemical analyses revealed a dense cluster of PDF-immunoreactive cells localized in the proximal medulla of the optic lobe, which corresponded to the cluster known as PDFMe cells. PDF-immunoreactive cells projected their fibers to the lamina through the medulla surface. PDF-immunoreactive fibers were also found in the protocerebrum and seemed to connect both PDF cell bodies in the optic lobes. RNA interference-mediated knockdown of pdf inhibited oviposition arrest induced by the transfer from long- to short-day conditions. Additionally, the knockdown of pdf delayed oviposition onset after the change from short- to long-day conditions. In conclusion, the study results indicate that PDF is locally expressed in a cell cluster at the proximal medulla and involved in the photoperiodic control of reproduction in P. stali females.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Toyomi Kotaki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Alexander JL, Oliphant A, Wilcockson DC, Brendler-Spaeth T, Dircksen H, Webster SG. Pigment Dispersing Factors and Their Cognate Receptors in a Crustacean Model, With New Insights Into Distinct Neurons and Their Functions. Front Neurosci 2020; 14:595648. [PMID: 33192283 PMCID: PMC7658428 DOI: 10.3389/fnins.2020.595648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022] Open
Abstract
Pigment dispersing factors (PDFs, or PDHs in crustaceans) form a structurally related group of neuropeptides found throughout the Ecdysozoa and were first discovered as pigmentary effector hormones in crustaceans. In insects PDFs fulfill crucial neuromodulatory roles, most notably as output regulators of the circadian system, underscoring their central position in physiological and behavioral organization of arthropods. Intriguingly, decapod crustaceans express multiple isoforms of PDH originating from separate genes, yet their differential functions are still to be determined. Here, we functionally define two PDH receptors in the crab Carcinus maenas and show them to be selectively activated by four PDH isoforms: PDHR 43673 was activated by PDH-1 and PDH-2 at low nanomolar doses whilst PDHR 41189 was activated by PDH-3 and an extended 20 residue e-PDH. Detailed examination of the anatomical distribution of all four peptides and their cognate receptors indicate that they likely perform different functions as secreted hormones and/or neuromodulators, with PDH-1 and its receptor 43,673 implicated in an authentic hormonal axis. PDH-2, PDH-3, and e-PDH were limited to non-neurohemal interneuronal sites in the CNS; PDHR 41189 was largely restricted to the nervous system suggesting a neuromodulatory function. Notably PDH-3 and e-PDH were without chromatophore dispersing activity. This is the first report which functionally defines a PDHR in an endocrine system in a crustacean and to indicate this and other putative roles of this physiologically pivotal peptide group in these organisms. Thus, our findings present opportunities to further examine the endocrine and circadian machinery in this important arthropod phylum.
Collapse
Affiliation(s)
- Jodi L. Alexander
- School of Natural Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David C. Wilcockson
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
| | - Timothy Brendler-Spaeth
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Simon G. Webster
- School of Natural Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| |
Collapse
|
11
|
Van der Auwera P, Frooninckx L, Buscemi K, Vance RT, Watteyne J, Mirabeau O, Temmerman L, De Haes W, Fancsalszky L, Gottschalk A, Raizen DM, Nelson MD, Schoofs L, Beets I. RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans. Sci Rep 2020; 10:9929. [PMID: 32555288 PMCID: PMC7303124 DOI: 10.1038/s41598-020-66536-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/22/2020] [Indexed: 01/26/2023] Open
Abstract
Sleep and wakefulness are fundamental behavioral states of which the underlying molecular principles are becoming slowly elucidated. Transitions between these states require the coordination of multiple neurochemical and modulatory systems. In Caenorhabditis elegans sleep occurs during a larval transition stage called lethargus and is induced by somnogenic neuropeptides. Here, we identify two opposing neuropeptide/receptor signaling pathways: NLP-22 promotes behavioral quiescence, whereas NLP-2 promotes movement during lethargus, by signaling through gonadotropin-releasing hormone (GnRH) related receptors. Both NLP-2 and NLP-22 belong to the RPamide neuropeptide family and share sequence similarities with neuropeptides of the bilaterian GnRH, adipokinetic hormone (AKH) and corazonin family. RPamide neuropeptides dose-dependently activate the GnRH/AKH-like receptors GNRR-3 and GNRR-6 in a cellular receptor activation assay. In addition, nlp-22-induced locomotion quiescence requires the receptor gnrr-6. By contrast, wakefulness induced by nlp-2 overexpression is diminished by deletion of either gnrr-3 or gnrr-6. nlp-2 is expressed in a pair of olfactory AWA neurons and cycles with larval periodicity, as reported for nlp-22, which is expressed in RIA. Our data suggest that the somnogenic NLP-22 neuropeptide signals through GNRR-6, and that both GNRR-3 and GNRR-6 are required for the wake-promoting action of NLP-2 neuropeptides.
Collapse
Affiliation(s)
- Petrus Van der Auwera
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - Lotte Frooninckx
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, 5600 City Ave, Philadelphia, PA, 19131, USA
| | - Ryan T Vance
- Department of Biology, Saint Joseph's University, 5600 City Ave, Philadelphia, PA, 19131, USA
| | - Jan Watteyne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | | | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - Luca Fancsalszky
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, 5600 City Ave, Philadelphia, PA, 19131, USA
| | - Liliane Schoofs
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Martin C, Hering L, Metzendorf N, Hormann S, Kasten S, Fuhrmann S, Werckenthin A, Herberg FW, Stengl M, Mayer G. Analysis of Pigment-Dispersing Factor Neuropeptides and Their Receptor in a Velvet Worm. Front Endocrinol (Lausanne) 2020; 11:273. [PMID: 32477266 PMCID: PMC7235175 DOI: 10.3389/fendo.2020.00273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Pigment-dispersing factor neuropeptides (PDFs) occur in a wide range of protostomes including ecdysozoans (= molting animals) and lophotrochozoans (mollusks, annelids, flatworms, and allies). Studies in insects revealed that PDFs play a role as coupling factors of circadian pacemaker cells, thereby controlling rest-activity rhythms. While the last common ancestor of protostomes most likely possessed only one pdf gene, two pdf homologs, pdf-I and pdf-II, might have been present in the last common ancestors of Ecdysozoa and Panarthropoda (Onychophora + Tardigrada + Arthropoda). One of these homologs, however, was subsequently lost in the tardigrade and arthropod lineages followed by independent duplications of pdf-I in tardigrades and decapod crustaceans. Due to the ancestral set of two pdf genes, the study of PDFs and their receptor (PDFR) in Onychophora might reveal the ancient organization and function of the PDF/PDFR system in panarthropods. Therefore, we deorphanized the PDF receptor and generated specific antibodies to localize the two PDF peptides and their receptor in the onychophoran Euperipatoides rowelli. We further conducted bioluminescence resonance energy transfer (BRET) experiments on cultured human cells (HEK293T) using an Epac-based sensor (Epac-L) to examine cAMP responses in transfected cells and to reveal potential differences in the interaction of PDF-I and PDF-II with PDFR from E. rowelli. These data show that PDF-II has a tenfold higher potency than PDF-I as an activating ligand. Double immunolabeling revealed that both peptides are co-expressed in E. rowelli but their respective levels of expression differ between specific cells: some neurons express the same amount of both peptides, while others exhibit higher levels of either PDF-I or PDF-II. The detection of the onychophoran PDF receptor in cells that additionally express the two PDF peptides suggests autoreception, whereas spatial separation of PDFR- and PDF-expressing cells supports hormonal release of PDF into the hemolymph. This suggests a dual role of PDF peptides-as hormones and as neurotransmitters/neuromodulators-in Onychophora.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Niklas Metzendorf
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Sarah Hormann
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Sonja Kasten
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Sonja Fuhrmann
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Achim Werckenthin
- Department of Animal Physiology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Friedrich W. Herberg
- Department of Biochemistry, Institute of Biology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Department of Animal Physiology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
- *Correspondence: Georg Mayer
| |
Collapse
|
13
|
Vafopoulou X, Hindley-Smith M, Steel CGH. Neuropeptide- and serotonin- cells in the brain of Rhodnius prolixus (Hemiptera) associated with the circadian clock. Gen Comp Endocrinol 2019; 278:25-41. [PMID: 30048647 DOI: 10.1016/j.ygcen.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
The neuronal pathways of the circadian clock in the brain of R. prolixus have been described in detail previously, but there is no information concerning the cells or their pathways which relay either inputs to the clock (e.g. for light entrainment), or outputs from it to driven rhythms. Here, we employ antisera to three neuropeptides (type A allatostatin-7, crustacean cardioactive peptide and FMRFamide), and serotonin in confocal laser scanning immunohistochemistry to analyze the distribution of cell bodies and their projections in relation to the principle circadian clock cells (lateral cells, LNs) for all four neuron types. LNs are revealed following labelling with anti- pigment dispersing factor in double labelled preparations. Regions of potential communication between ramifications of the LNs and each of the four other neuron types is described (identified by close superposition of their neurites in various brain regions), as is their detailed projections within the brain. Neuromodulation is sometimes suggested by close, but not intimate, proximity of varicosities of neurites. We infer that some neuron types comprise input pathways to the LNs, some are outputs to neuroendocrine or behavioral rhythms, and others participate in both input and output pathways, sometimes by the same neuron type but in different locations. For example, one retinula cell in each ommatidium is immunoreactive for allatostatin A; its axon projects to the medulla making superpositions with LNs, as do serotonin cells in the optic lobe, indicating roles of both neuron types in light input (entrainment) to the clock. But in other brain areas, these same types appear to mediate outputs from the clock. The accessory medulla has been widely reported as the principle center of integration in other insects; but we found sparse evidence of this in R. prolixus as it contains few neurites other than those from the clock cells. Rather, the importance of neural pathways involving the medulla and the superior protocerebrum is emphasized. We conclude that there is a vast and complex web of interactions in the brain with the LNs, which potentially receive multiple pathways of inputs and outputs that could drive rhythmicity in a multitude of downstream cells, rendering a host of output pathways rhythmic, notably hormone release from neurosecretory cells and behaviors.
Collapse
|
14
|
Selcho M, Mühlbauer B, Hensgen R, Shiga S, Wegener C, Yasuyama K. Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila. J Comp Neurol 2018; 526:1307-1328. [DOI: 10.1002/cne.24408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; Würzburg D-97074 Germany
| | - Barbara Mühlbauer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; Würzburg D-97074 Germany
| | - Ronja Hensgen
- Animal Physiology, Department of Biology; Philipps-University Marburg; Marburg D-35032 Germany
| | - Sakiko Shiga
- Department of Biology and Geosciences, Graduate School of Science; Osaka City University; Osaka 558-8585 Japan
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; Würzburg D-97074 Germany
| | - Kouji Yasuyama
- Department of Natural Sciences; Kawasaki Medical School; Kurashiki 701-0192 Japan
| |
Collapse
|
15
|
Siegenthaler A, Mastin A, Dufaut C, Mondal D, Benvenuto C. Background matching in the brown shrimp Crangon crangon: adaptive camouflage and behavioural-plasticity. Sci Rep 2018; 8:3292. [PMID: 29459624 PMCID: PMC5818513 DOI: 10.1038/s41598-018-21412-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/22/2018] [Indexed: 01/12/2023] Open
Abstract
A combination of burrowing behaviour and very efficient background matching makes the brown shrimp Crangon crangon almost invisible to potential predators and prey. This raises questions on how shrimp succeed in concealing themselves in the heterogeneous and dynamic estuarine habitats they inhabit and what type of environmental variables and behavioural factors affect their colour change abilities. Using a series of behavioural experiments, we show that the brown shrimp is capable of repeated fast colour adaptations (20% change in dark pigment cover within one hour) and that its background matching ability is mainly influenced by illumination and sediment colour. Novel insights are provided on the occurrence of non-adaptive (possibly stress) responses to background changes after long-time exposure to a constant background colour or during unfavourable conditions for burying. Shrimp showed high levels of intra- and inter-individual variation, demonstrating a complex balance between behavioural-plasticity and environmental adaptation. As such, the study of crustacean colour changes represents a valuable opportunity to investigate colour adaptations in dynamic habitats and can help us to identify the mayor environmental and behavioural factors influencing the evolution of animal background matching.
Collapse
Affiliation(s)
- Andjin Siegenthaler
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Alexander Mastin
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Clément Dufaut
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Debapriya Mondal
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Chiara Benvenuto
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK.
| |
Collapse
|
16
|
Lv J, Zhang L, Liu P, Li J. Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus. PLoS One 2017; 12:e0175315. [PMID: 28394948 PMCID: PMC5386282 DOI: 10.1371/journal.pone.0175315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Background Molting is an essential biological process throughout the life history of crustaceans, which is regulated by many neuropeptide hormones expressed in the eyestalk. To better understand the molting mechanism in Portunus trituberculatus, we used digital gene expression (DGE) to analyze single eyestalk samples during the molting cycle by high-throughput sequencing. Results We obtained 14,387,942, 12,631,508 and 13,060,062 clean sequence reads from inter-molt (InM), pre-molt (PrM) and post-molt (PoM) cDNA libraries, respectively. A total of 1,394 molt-related differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analysis identified some important processes and pathways with key roles in molting regulation, such as chitin metabolism, peptidase inhibitor activity, and the ribosome. We first observed a pattern associated with the neuromodulator-related pathways during the molting cycle, which were up-regulated in PrM and down-regulated in PoM. Four categories of important molting-related transcripts were clustered and most of them had similar expression patterns, which suggests that there is a connection between these genes throughout the molt cycle. Conclusion Our work is the first molt-related investigation of P. trituberculatus focusing on the eyestalk at the whole transcriptome level. Together, our results, including DEGs, identification of molting-related biological processes and pathways, and observed expression patterns of important genes, provide a novel insight into the function of the eyestalk in molting regulation.
Collapse
Affiliation(s)
- Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao,China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China
| | - Longtao Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao,China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao,China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao,China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China
- * E-mail:
| |
Collapse
|
17
|
Siegenthaler A, Mondal D, Benvenuto C. Quantifying pigment cover to assess variation in animal colouration. Biol Methods Protoc 2017; 2:bpx003. [PMID: 32161786 PMCID: PMC6994029 DOI: 10.1093/biomethods/bpx003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
The study of animal colouration addresses fundamental and applied aspects relevant to a wide range of fields, including behavioural ecology, environmental adaptation and visual ecology. Although a variety of methods are available to measure animal colours, only few focus on chromatophores (specialized cells containing pigments) and pigment migration. Here, we illustrate a freely available and user-friendly method to quantify pigment cover (PiC) with high precision and low effort using digital images, where the foreground (i.e. pigments in chromatophores) can be detected and separated from the background. Images of the brown shrimp, Crangon crangon, were used to compare PiC with the traditional Chromatophore Index (CI). Results indicate that PiC outcompetes CI for pigment detection and transparency measures in terms of speed, accuracy and precision. The proposed methodology provides researchers with a useful tool to answer essential physiological, behavioural and evolutionary questions on animal colouration in a wide range of species.
Collapse
Affiliation(s)
- Andjin Siegenthaler
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Debapriya Mondal
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Chiara Benvenuto
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
18
|
Arendt A, Baz ES, Stengl M. Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach,Rhyparobia maderae. J Comp Neurol 2016; 525:1250-1272. [DOI: 10.1002/cne.24133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Andreas Arendt
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
| | - El-Sayed Baz
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
- Department of Zoology, Faculty of Science; Suez Canal University; 41522 Ismailia Governorate Egypt
| | - Monika Stengl
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
| |
Collapse
|
19
|
Desensitization and recovery of crayfish photoreceptors. Dependency on circadian time, and pigment-dispersing hormone. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:297-303. [PMID: 27783925 DOI: 10.1016/j.cbpa.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
In this work, we studied the characteristics of recovery from desensitization of the light-elicited current of crayfish. Applying a two-flash protocol, we found that the first flash triggers a current that activates with a noticeable latency, reaches a peak value, and thereafter decays along a single exponential time course. In comparison with the first-elicited current, the current elicited by the second flash not only presents an expected smaller peak current, depending on the time between flashes, but it also displays a different latency and decay time constant. Recovery of the first flash values of these current parameters depends on the circadian time at which the experiments are conducted, and on the presence of pigment-dispersing hormone. Our data also suggest the existence of distinctive desensitized states, whose induction depends on circadian time and the presence of pigment-dispersing hormone.
Collapse
|
20
|
Buckley SJ, Fitzgibbon QP, Smith GG, Ventura T. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire. Gen Comp Endocrinol 2016; 228:111-127. [PMID: 26850661 DOI: 10.1016/j.ygcen.2016.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Against a backdrop of food insecurity, the farming of decapod crustaceans is a rapidly expanding and globally significant source of food protein. Sagmariasus verreauxi spiny lobster, the subject of this study, are decapods of underdeveloped aquaculture potential. Crustacean neuropeptide G-protein coupled receptors (GPCRs) mediate endocrine pathways that are integral to animal fecundity, growth and survival. The potential use of novel biotechnologies to enhance GPCR-mediated physiology may assist in improving the health and productivity of farmed decapod populations. This study catalogues the GPCRs expressed in the early developmental stages, as well as adult tissues, with a view to illuminating key neuropeptide receptors. De novo assembled contiguous sequences generated from transcriptomic reads of metamorphic and post metamorphic S. verreauxi were filtered for seven transmembrane domains, and used as a reference for iterative re-mapping. Subsequent putative GPCR open reading frames (ORFs) were BLAST annotated, categorised, and compared to published orthologues based on phylogenetic analysis. A total of 85 GPCRs were digitally predicted, that represented each of the four arthropod subfamilies. They generally displayed low-level and non-differential metamorphic expression with few exceptions that we examined using RT-PCR and qPCR. Two putative CHH-like neuropeptide receptors were annotated. Three dimensional structural modelling suggests that these receptors exhibit a conserved extracellular ligand binding pocket, providing support to the notion that these receptors co-evolved with their ligands across Decapoda. This perhaps narrows the search for means to increase productivity of farmed decapod populations.
Collapse
Affiliation(s)
- Sean J Buckley
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Quinn P Fitzgibbon
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory G Smith
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
21
|
Liang Z, Schmerberg CM, Li L. Mass spectrometric measurement of neuropeptide secretion in the crab, Cancer borealis, by in vivo microdialysis. Analyst 2016; 140:3803-13. [PMID: 25537886 DOI: 10.1039/c4an02016b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuropeptides (NPs), a unique and highly important class of signaling molecules across the animal kingdom, have been extensively characterized in the neuronal tissues of various crustaceans. Because many NPs are released into circulating fluid (hemolymph) and travel to distant sites in order to exhibit physiological effects, it is important to measure the secretion of these NPs from living animals. In this study, we report on extensive characterization of NPs released in the crab Cancer borealis by utilizing in vivo microdialysis to sample NPs from the hemolymph. We determined the necessary duration for collection of microdialysis samples, enabling more comprehensive identification of NP content while maintaining the temporal resolution of sampling. Analysis of in vivo microdialysates using a hybrid quadrupole-Orbitrap™ Q-Exactive mass spectrometer revealed that more than 50 neuropeptides from 9 peptide families-including the allatostatin, RFamide, orcokinin, tachykinin-related peptide and RYamide families - were released into the circulatory system. The presence of these peptides both in neuronal tissues as well as in hemolymph indicates their putative hormonal roles, a finding that merits further investigation. Preliminary quantitative measurement of these identified NPs suggested several potential candidates that maybe associated with the circadian rhythm in Cancer borealis.
Collapse
Affiliation(s)
- Zhidan Liang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| | | | | |
Collapse
|
22
|
Christie AE, Chi M. Identification of the first neuropeptides from the enigmatic hexapod order Protura. Gen Comp Endocrinol 2015; 224:18-37. [PMID: 26055220 DOI: 10.1016/j.ygcen.2015.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
The Hexapoda consists of two classes, the Entognatha and the Insecta, with the former group considered basal to the latter. The Protura is a basal order within the Entognatha, the members of which are minute soil dwellers first identified in the early 20th century. Recently, a transcriptome shotgun assembly (TSA) was generated for the proturan Acerentomon sp., providing the first significant molecular resource for this enigmatic hexapod order. As part of an ongoing effort to predict peptidomes for little studied members of the Arthropoda, we have mined this TSA dataset for transcripts encoding putative neuropeptide precursors and predicted the structures of mature peptides from the deduced proteins. Forty-seven peptide-encoding transcripts were mined from the Acerentomon TSA dataset, with 202 distinct peptides predicted from them. The peptides identified included isoforms of adipokinetic hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, ecdysis-triggering hormone, eclosion hormone, FMRFamide-like peptide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, proctolin, pyrokinin, RYamide, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide; these are the first neuropeptides described from any proturan. Comparison of the Acerentomon precursors and mature peptides with those from other arthropods revealed features characteristic of both the insects and the crustaceans, which is consistent with the hypothesized phylogenetic position of the Protura within the Pancrustacea, i.e. at or near the point of divergence of the hexapods from the crustaceans.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
23
|
Caers J, Boonen K, Van Den Abbeele J, Van Rompay L, Schoofs L, Van Hiel MB. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2024-2038. [PMID: 26463237 DOI: 10.1007/s13361-015-1248-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Neuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380-386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca-corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Laboratory of Zoophysiology, Department of Physiology, University of Ghent, 9000, Ghent, Belgium
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
24
|
Veenstra JA. The power of next-generation sequencing as illustrated by the neuropeptidome of the crayfish Procambarus clarkii. Gen Comp Endocrinol 2015; 224:84-95. [PMID: 26149328 DOI: 10.1016/j.ygcen.2015.06.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022]
Abstract
Transcriptomes of the crayfish Procambarus clarkii were analyzed for the presence of transcripts encoding neurohormones, neuropeptides and their receptors. A total of 58 different transcripts were found to encode such ligands and another 82 for their receptors. A very large number of the neuropeptide transcripts appeared to be complete and for those that were not only small parts seemed to be lacking. Transcripts for the neuropeptide GPCRs as well as for the putative receptors for insulin, neuroparsin and eclosion hormone were often also complete or almost so. Of particular interest is the presence of three different neuroparsin genes and two putative neuroparsin receptors. There are also three pigment dispersing hormones as well three likely receptors for these neuropeptides. CNMamide, calcitonin, CCRFamide, natalisin, trissin and relaxin appear to be new crustacean neuropeptides. The recently identified crustacean female sex hormone was also found and in the crayfish appears to be not only expressed in the eyestalk, but in the ovary as well (though not in the testis). Interestingly, there are two other proteins in the crayfish with a structure similar to crustacean female sex hormone, that could be precursors of neurohormones, but these are not expressed by the ovary. The ovary also appears to contain significant numbers of transcripts encoding pigment dispersing hormones, CNMamide as well as glycoprotein B5, but not glycoprotein A2.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
25
|
Wan GJ, Wang WJ, Xu JJ, Yang QF, Dai MJ, Zhang FJ, Sword GA, Pan WD, Chen FJ. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper. PLoS One 2015; 10:e0132966. [PMID: 26173003 PMCID: PMC4501744 DOI: 10.1371/journal.pone.0132966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022] Open
Abstract
Although there are considerable reports of magnetic field effects (MFE) on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF) to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i) CRY1 and CRY2 as putative magnetosensors, (ii) JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii) CYP307A1 in the ecdysone pathway, and (iv) reproduction-related Vitellogenin (Vg). The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF) in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.
Collapse
Affiliation(s)
- Gui-Jun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wen-Jing Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing-Jing Xu
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Quan-Feng Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ming-Jiang Dai
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feng-Jiao Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Wei-Dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Fa-Jun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Suwansa-ard S, Thongbuakaew T, Wang T, Zhao M, Elizur A, Hanna PJ, Sretarugsa P, Cummins SF, Sobhon P. In silico Neuropeptidome of Female Macrobrachium rosenbergii Based on Transcriptome and Peptide Mining of Eyestalk, Central Nervous System and Ovary. PLoS One 2015; 10:e0123848. [PMID: 26023789 PMCID: PMC4449106 DOI: 10.1371/journal.pone.0123848] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/08/2015] [Indexed: 01/13/2023] Open
Abstract
Macrobrachium rosenbergii is the most economically important of the cultured freshwater crustacean species, yet there is currently a deficiency in genomic and transcriptomic information for research requirements. In this study, we present an in silico analysis of neuropeptide genes within the female M. rosenbergii eyestalk, central nervous system, and ovary. We could confidently predict 37 preproneuropeptide transcripts, including those that encode bursicons, crustacean cardioactive peptide, crustacean hyperglycemic hormones, eclosion hormone, pigment-dispersing hormones, diuretic hormones, neuropeptide F, neuroparsins, SIFamide, and sulfakinin. These transcripts are most prominent within the eyestalk and central nervous system. Transcript tissue distribution as determined by reverse transcription-polymerase chain reaction revealed the presence of selected neuropeptide genes of interest mainly in the nervous tissues while others were additionally present in the non-nervous tissues. Liquid chromatography-mass spectrometry analysis of eyestalk peptides confirmed the presence of the crustacean hyperglycemic hormone precursor. This data set provides a strong foundation for further studies into the functional roles of neuropeptides in M. rosenbergii, and will be especially helpful for developing methods to improve crustacean aquaculture.
Collapse
Affiliation(s)
- Saowaros Suwansa-ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tianfang Wang
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Min Zhao
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Abigail Elizur
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Peter J. Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pro Vice-Chancellor’s Office, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Scott F. Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- * E-mail: (SFC); (P. Sobhon)
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SFC); (P. Sobhon)
| |
Collapse
|
27
|
Mayer G, Hering L, Stosch JM, Stevenson PA, Dircksen H. Evolution of pigment-dispersing factor neuropeptides in panarthropoda: Insights from onychophora (velvet worms) and tardigrada (water bears). J Comp Neurol 2015; 523:1865-85. [DOI: 10.1002/cne.23767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Georg Mayer
- Animal Evolution and Development; Institute of Biology, University of Leipzig; D-04103 Leipzig Germany
- Department of Zoology; Institute of Biology, University of Kassel; D-34132 Kassel Germany
| | - Lars Hering
- Animal Evolution and Development; Institute of Biology, University of Leipzig; D-04103 Leipzig Germany
| | - Juliane M. Stosch
- Animal Evolution and Development; Institute of Biology, University of Leipzig; D-04103 Leipzig Germany
| | - Paul A. Stevenson
- Physiology of Animals and Behavior; Institute of Biology, University of Leipzig; D-04103 Leipzig Germany
| | - Heinrich Dircksen
- Department of Zoology; Stockholm University; S-10691 Stockholm Sweden
| |
Collapse
|
28
|
Wei H, Yasar H, Funk NW, Giese M, Baz ES, Stengl M. Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae. PLoS One 2014; 9:e108757. [PMID: 25269074 PMCID: PMC4182629 DOI: 10.1371/journal.pone.0108757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca²⁺ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca²⁺ baseline concentration and frequency of oscillating Ca²⁺ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca²⁺ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1-4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca²⁺ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K⁺ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K⁺ and Na⁺ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.
Collapse
Affiliation(s)
- Hongying Wei
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Hanzey Yasar
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Nico W. Funk
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Maria Giese
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - El-Sayed Baz
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Monika Stengl
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
- * E-mail:
| |
Collapse
|
29
|
Iga M, Nakaoka T, Suzuki Y, Kataoka H. Pigment dispersing factor regulates ecdysone biosynthesis via bombyx neuropeptide G protein coupled receptor-B2 in the prothoracic glands of Bombyx mori. PLoS One 2014; 9:e103239. [PMID: 25072638 PMCID: PMC4114559 DOI: 10.1371/journal.pone.0103239] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 06/28/2014] [Indexed: 12/22/2022] Open
Abstract
Ecdysone is the key hormone regulating insect growth and development. Ecdysone synthesis occurs in the prothoracic glands (PGs) and is regulated by several neuropeptides. Four prothoracicotropic and three prothoracicostatic factors have been identified to date, suggesting that ecdysone biosynthesis is intricately regulated. Here, we demonstrate that the neuropeptide pigment dispersing factor (PDF) stimulates ecdysone biosynthesis and that this novel signaling pathway partially overlaps with the prothoracicotropic hormone (PTTH) signaling pathway. We performed transcriptome analysis and focused on receptors predominantly expressed in the PGs. From this screen, we identified a candidate orphan G protein coupled receptor (GPCR), Bombyx neuropeptide GPCR-B2 (BNGR-B2). BNGR-B2 was predominantly expressed in ecdysteroidogenic tissues, and the expression pattern in the PGs corresponded to the ecdysteroid titer in the hemolymph. Furthermore, we identified PDF as a ligand for BNGR-B2. PDF stimulated ecdysone biosynthesis in the PGs, but the stimulation was only observed in the PGs during a specific larval stage. PDF did not affect the transcript level of known ecdysone biosynthetic enzymes, and inhibiting transcription did not suppress ecdysone biosynthesis, suggesting that the effects of PDF might be mediated by translational regulation and/or post-translational modification. In addition, the participation of protein kinase A (PKA), phosphatidylinositol 3-kinase (PI3K), target of rapamycin (TOR) and eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP) in the PDF signaling pathway was discovered.
Collapse
Affiliation(s)
- Masatoshi Iga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- * E-mail: (MI); (HK)
| | - Takayoshi Nakaoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- * E-mail: (MI); (HK)
| |
Collapse
|
30
|
Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs. PLoS One 2014; 9:e92220. [PMID: 24651821 PMCID: PMC3961327 DOI: 10.1371/journal.pone.0092220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/19/2014] [Indexed: 01/27/2023] Open
Abstract
Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.
Collapse
|
31
|
Ikeno T, Numata H, Goto SG, Shiga S. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris. ACTA ACUST UNITED AC 2013; 217:453-62. [PMID: 24198258 DOI: 10.1242/jeb.091801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The concept of insect photoperiodism based on a circadian clock has been supported by many studies demonstrating that the behavioural circadian rhythm and the photoperiodic response are driven by the same circadian clock genes. However, the neuronal mechanism of the circadian clock underlying photoperiodism is poorly understood. To examine whether circadian rhythm and photoperiodism share a neuronal mechanism, we focused on the neurons that express neuropeptide pigment-dispersing factor (PDF) in the bean bug, Riptortus pedestris. PDF has been identified as an important regulator of the insect circadian rhythm and is expressed in circadian clock neurons of various insect species. In R. pedestris, PDF immunoreactivity was detected in some clusters of cells and their fibres in the optic lobe and the protocerebrum. cDNA encoding a PDF precursor protein was highly conserved between R. pedestris and many other insects. Differences between day and night were not observed in the immunolabelling intensity in cell bodies of PDF-immunoreactive neurons and pdf mRNA expression levels in the head. Surgical removal of the region containing PDF-immunoreactive cell bodies at the medulla disrupted the photoperiodic regulation of diapause. However, gene suppression of pdf by RNA interference did not affect the photoperiodic response. These results suggest that the region containing PDF-immunoreactive somata is important for the photoperiodic response in R. pedestris, but pdf mRNA expression is probably not required for the response.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
32
|
Sim C, Denlinger DL. Insulin signaling and the regulation of insect diapause. Front Physiol 2013; 4:189. [PMID: 23885240 PMCID: PMC3717507 DOI: 10.3389/fphys.2013.00189] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 01/22/2023] Open
Abstract
A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs), ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs), and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause) to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Cheolho Sim
- Department of Biology, Baylor University Waco, TX, USA
| | | |
Collapse
|
33
|
Bloch G, Hazan E, Rafaeli A. Circadian rhythms and endocrine functions in adult insects. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:56-69. [PMID: 23103982 DOI: 10.1016/j.jinsphys.2012.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Many behavioral and physiological processes in adult insects are influenced by both the endocrine and circadian systems, suggesting that these two key physiological systems interact. We reviewed the literature and found that experiments explicitly testing these interactions in adult insects have only been conducted for a few species. There is a shortage of measurements of hormone titers throughout the day under constant conditions even for the juvenile hormones (JHs) and ecdysteroids, the best studied insect hormones. Nevertheless, the available measurements of hormone titers coupled with indirect evidence for circadian modulation of hormone biosynthesis rate, and the expression of genes encoding proteins involved in hormone biosynthesis, binding or degradation are consistent with the hypothesis that the circulating levels of many insect hormones are influenced by the circadian system. Whole genome microarray studies suggest that the modulation of farnesol oxidase levels is important for the circadian regulation of JH biosynthesis in honey bees, mosquitoes, and fruit flies. Several studies have begun to address the functional significance of circadian oscillations in endocrine signaling. The best understood system is the circadian regulation of Pheromone Biosynthesis Activating Neuropeptide (PBAN) titers which is important for the temporal organization of sexual behavior in female moths. The evidence that the circadian and endocrine systems interact has important implications for studies of insect physiology and behavior. Additional studies on diverse species and physiological processes are needed for identifying basic principles underlying the interactions between the circadian and endocrine systems in insects.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
34
|
Yan XC, Chen ZF, Sun J, Matsumura K, Wu RSS, Qian PY. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement. PLoS One 2012; 7:e46513. [PMID: 23056329 PMCID: PMC3462748 DOI: 10.1371/journal.pone.0046513] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/01/2012] [Indexed: 01/18/2023] Open
Abstract
The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process.
Collapse
Affiliation(s)
- Xing-Cheng Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhang-Fan Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rudolf S. S. Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
35
|
Meelkop E, Temmerman L, Janssen T, Suetens N, Beets I, Van Rompay L, Shanmugam N, Husson SJ, Schoofs L. PDF receptor signaling in Caenorhabditis elegans modulates locomotion and egg-laying. Mol Cell Endocrinol 2012; 361:232-40. [PMID: 22579613 DOI: 10.1016/j.mce.2012.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/26/2012] [Accepted: 05/02/2012] [Indexed: 01/22/2023]
Abstract
In Caenorhabditis elegans, pdfr-1 encodes three receptors of the secretin receptor family. These G protein-coupled receptors are activated by three neuropeptides, pigment dispersing factors 1a, 1b and 2, which are encoded by pdf-1 and pdf-2. We isolated a PDF receptor loss-of-function allele (lst34) by means of a mutagenesis screen and show that the PDF signaling system is involved in locomotion and egg-laying. We demonstrate that the pdfr-1 mutant phenocopies the defective locomotor behavior of the pdf-1 mutant and that pdf-1 and pdf-2 behave antagonistically. All three PDF receptor splice variants are involved in the regulation of locomotor behavior. Cell specific rescue experiments show that this pdf mediated behavior is regulated by neurons rather than body wall muscles. We also show that egg-laying patterns of pdf-1 and pdf-2 mutants are affected, but not those of pdfr-1 mutants, pointing to a novel role for the PDF-system in the regulation of egg-laying.
Collapse
Affiliation(s)
- Ellen Meelkop
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pigment dispersing hormone modulates spontaneous electrical activity of the cerebroid ganglion and synchronizes electroretinogram circadian rhythm in crayfish Procambarus clarkii. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:450-5. [DOI: 10.1016/j.cbpa.2012.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/24/2011] [Accepted: 01/04/2012] [Indexed: 11/24/2022]
|
37
|
Temmerman L, Bogaerts A, Meelkop E, Cardoen D, Boerjan B, Janssen T, Schoofs L. A proteomic approach to neuropeptide function elucidation. Peptides 2012; 34:3-9. [PMID: 21920396 DOI: 10.1016/j.peptides.2011.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
Many of the diverse functions of neuropeptides are still elusive. As they are ideally suited to modulate traditional signaling, their added actions are not always detectable under standard laboratory conditions. The search for function assignment to peptide encoding genes can therefore greatly benefit from molecular information. Specific molecular changes resulting from neuropeptide signaling may direct researchers to yet unknown processes or conditions, for which studying these signaling systems may eventually lead to phenotypic confirmation. Here, we applied gel-based proteomics after pdf-1 neuropeptide gene knockout in the model organism Caenorhabditis elegans. It has previously been described that pdf-1 null mutants display a locomotion defect, being slower and making more turns and reversals than wild type worms. The vertebrate functional homolog of PDF-1, vasocative intestinal peptide (VIP), is known to influence a plethora of processes, which have so far not been investigated for pdf-1. Because proteins represent the actual effectors inside an organism, proteomic analysis can guide our view to novel pdf-1 actions in the nematode worm. Our data show that knocking out pdf-1 results in alteration of levels of proteins involved in fat metabolism, stress resistance and development. This indicates a possible conservation of VIP-like actions for pdf-1 in C. elegans.
Collapse
Affiliation(s)
- L Temmerman
- Functional Genomics and Proteomics, Naamsestraat 59, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Meelkop E, Marco HG, Janssen T, Temmerman L, Vanhove MPM, Schoofs L. A structural and functional comparison of nematode and crustacean PDH-like sequences. Peptides 2012; 34:74-81. [PMID: 22115566 DOI: 10.1016/j.peptides.2011.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 01/15/2023]
Abstract
The elucidation of the whole genome of the nematode Caenorhabditis elegans allowed for the identification of ortholog genes belonging to the pigment dispersing hormone/factor (PDH/PDF) peptide family. Members of this peptide family are known from crustaceans, insects and nematodes and seem to exist exclusively in ecdysozoans where they play a role in different processes, ranging from the dispersion of integumental and eye (retinal) pigments in decapod crustaceans to circadian rhythms in insects and locomotion in C. elegans. Two pdf genes (pdf-1 and pdf-2) encoding three different peptides: PDF-1a, PDF-1b and PDF-2 have been identified in C. elegans. These three C. elegans PDH-like peptides are similar but not identical in primary structure to PDHs from decapod crustaceans. We investigate whether this divergence has an influence on the pigment dispersing function of the peptides in a decapod crustacean, namely the shrimp Palaemon pacificus. We show that C. elegans PDF-1a and b peptides display cross-functional activity by dispersing pigments in the epithelium of P. pacificus at physiological doses. Moreover, by means of a comparative amino acid sequence analysis of nematode and crustacean PDH-like peptides, we can pinpoint several potentially important residues for eliciting pigment dispersing activity in decapod crustaceans. Although there is no sequence information on a receptor for PDH in decapod crustaceans, we postulate that there is general conservation of the PDH/PDF signaling system based on structural similarities of precursor proteins and receptors (including those from a branchiopod crustacean and from C. elegans).
Collapse
Affiliation(s)
- E Meelkop
- Laboratory of Functional Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
39
|
Bendena WG, Campbell J, Zara L, Tobe SS, Chin-Sang ID. Select Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster. Front Endocrinol (Lausanne) 2012; 3:93. [PMID: 22908006 PMCID: PMC3414713 DOI: 10.3389/fendo.2012.00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/14/2012] [Indexed: 12/18/2022] Open
Abstract
The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery. Drosophila melanogaster and Caenorhabditis elegans are genetic model organisms that have proved useful in characterizing neuropeptide GPCRs. The strength of a genetic approach leads to an appreciation of the behavioral plasticity that can result from subtle alterations in GPCRs or regulatory proteins in the pathways that GPCRs control. Many of these invertebrate neuropeptides, GPCRs, and signaling pathway components serve as models for mammalian counterparts as they have conserved sequences and function. This review provides an overview of the methods to match neuropeptides to their cognate receptor and a state of the art account of neuropeptide GPCRs that have been characterized in D. melanogaster and C. elegans and the behaviors that have been uncovered through genetic manipulation.
Collapse
Affiliation(s)
- William G. Bendena
- Department of Biology, Queen’s UniversityKingston, ON, Canada
- *Correspondence: William G. Bendena, Department of Biology, Queen’s University, Kingston, ON, Canada K7L 3N6. e-mail:
| | - Jason Campbell
- Department of Biology, Queen’s UniversityKingston, ON, Canada
| | - Lian Zara
- Department of Biology, Queen’s UniversityKingston, ON, Canada
| | | | | |
Collapse
|
40
|
Caers J, Verlinden H, Zels S, Vandersmissen HP, Vuerinckx K, Schoofs L. More than two decades of research on insect neuropeptide GPCRs: an overview. Front Endocrinol (Lausanne) 2012; 3:151. [PMID: 23226142 PMCID: PMC3510462 DOI: 10.3389/fendo.2012.00151] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022] Open
Abstract
This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- *Correspondence: Liliane Schoofs, Department of Biology, Research Group of Functional Genomics and Proteomics, Naamsestraat 59, KU Leuven, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|
41
|
Frooninckx L, Van Rompay L, Temmerman L, Van Sinay E, Beets I, Janssen T, Husson SJ, Schoofs L. Neuropeptide GPCRs in C. elegans. Front Endocrinol (Lausanne) 2012; 3:167. [PMID: 23267347 PMCID: PMC3527849 DOI: 10.3389/fendo.2012.00167] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022] Open
Abstract
Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm's complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans.
Collapse
Affiliation(s)
- Lotte Frooninckx
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbeth Van Rompay
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbet Temmerman
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Elien Van Sinay
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Isabel Beets
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Tom Janssen
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Steven J. Husson
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liliane Schoofs
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
- *Correspondence: Liliane Schoofs, Laboratory of Functional Genomics and Proteomics, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|