1
|
Konecny J, Misiachna A, Chvojkova M, Kleteckova L, Kolcheva M, Novak M, Prchal L, Ladislav M, Hemelikova K, Netolicky J, Hrabinova M, Kobrlova T, Karasova JZ, Pejchal J, Fibigar J, Vecera Z, Kucera T, Jendelova P, Zahumenska P, Langore E, Doderovic J, Pang YP, Vales K, Korabecny J, Soukup O, Horak M. Dizocilpine derivatives as neuroprotective NMDA receptor antagonists without psychomimetic side effects. Eur J Med Chem 2024; 280:116981. [PMID: 39442339 DOI: 10.1016/j.ejmech.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
We aimed to prepare novel dibenzo [a,d][7]annulen derivatives that act on N-methyl-d-aspartate (NMDA) receptors with potential neuroprotective effects. Our approach involved modifying the tropane moiety of MK-801, a potent open-channel blocker known for its psychomimetic side effects, by introducing a seven-membered ring with substituted base moieties specifically to alleviate these undesirable effects. Our in silico analyses showed that these derivatives should have high gastrointestinal absorption and cross the blood-brain barrier (BBB). Our pharmacokinetic studies in rats supported this conclusion and confirmed the ability of leading compounds 3l and 6f to penetrate the BBB. Electrophysiological experiments showed that all compounds exhibited different inhibitory activity towards the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B. Of the selected compounds intentionally differing in the inhibitory efficacy, 6f showed high relative inhibition (∼90 % for GluN1/GluN2A), while 3l showed moderate inhibition (∼50 %). An in vivo toxicity study determined that compounds 3l and 6f were safe at 10 mg/kg doses with no adverse effects. Behavioral studies demonstrated that these compounds did not induce hyperlocomotion or impair prepulse inhibition of startle response in rats. Neuroprotective assays using a model of NMDA-induced hippocampal neurodegeneration showed that compound 3l at a concentration of 30 μM significantly reduced hippocampal damage in rats. These results suggest that these novel dibenzo [a,d][7]annulen derivatives are promising candidates for developing NMDA receptor-targeted therapies with minimal psychotomimetic side effects.
Collapse
Affiliation(s)
- Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lenka Kleteckova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martin Novak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Katarina Hemelikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Fibigar
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zbynek Vecera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Petra Zahumenska
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Emily Langore
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jovana Doderovic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, 55905, MN, USA
| | - Karel Vales
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic.
| |
Collapse
|
2
|
Sampedro-Viana D, Cañete T, Ancil-Gascón P, Cisci S, Tobeña A, Fernández-Teruel A. Contrasting Effects of Oxytocin on MK801-Induced Social and Non-Social Behavior Impairment and Hyperactivity in a Genetic Rat Model of Schizophrenia-Linked Features. Brain Sci 2024; 14:920. [PMID: 39335415 PMCID: PMC11430565 DOI: 10.3390/brainsci14090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Social withdrawal in rodents is a measure of asociality, an important negative symptom of schizophrenia. The Roman high- (RHA) and low-avoidance (RLA) rat strains have been reported to exhibit differential profiles in schizophrenia-relevant behavioral phenotypes. This investigation was focused on the study of social and non-social behavior of these two rat strains following acute administration of dizocilpine (MK801, an NMDA receptor antagonist), a pharmacological model of schizophrenia-like features used to produce asociality and hyperactivity. Also, since oxytocin (OXT) has been proposed as a natural antipsychotic and a potential adjunctive therapy for social deficits in schizophrenia, we have evaluated the effects of OXT administration and its ability to reverse the MK801-impairing effects on social and non-social behavior and MK801-induced hyperactivity. MK801 administration produced hyperlocomotion and a decrease in social and non-social behavior in both rat strains, but these drug effects were clearly more marked in RHA rats. OXT (0.04 mg/kg and 0.2 mg/kg) attenuated MK801-induced hyperlocomotion in both rat strains, although this effect was more marked in RHA rats. The MK801-decreasing effect on exploration of the "social hole" was moderately but significantly attenuated only in RLA rats. This study is the first to demonstrate the differential effects of OXT on MK801-induced impairments in the two Roman rat strains, providing some support for the potential therapeutic effects of OXT against schizophrenia-like symptoms, including both a positive-like symptom (i.e., MK801-induced hyperlocomotion) and a negative-like symptom (i.e., MK801 decrease in social behavior), while highlighting the importance of the genetic background (i.e., the rat strain) in influencing the effects of both MK801 and oxytocin.
Collapse
Affiliation(s)
- Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| | - Paula Ancil-Gascón
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| | - Sonia Cisci
- Department of Life and Environmental Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, 09042 Cagliari, Italy;
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| |
Collapse
|
3
|
Misiachna A, Konecny J, Kolcheva M, Ladislav M, Prchal L, Netolicky J, Kortus S, Zahumenska P, Langore E, Novak M, Hemelikova K, Hermanova Z, Hrochova M, Pelikanova A, Odvarkova J, Pejchal J, Kassa J, Zdarova Karasova J, Korabecny J, Soukup O, Horak M. Potent and reversible open-channel blocker of NMDA receptor derived from dizocilpine with enhanced membrane-to-channel inhibition. Biomed Pharmacother 2024; 178:117201. [PMID: 39053419 DOI: 10.1016/j.biopha.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a significant role in developing several central nervous system (CNS) disorders. Currently, memantine, used for treating Alzheimer's disease, and ketamine, known for its anesthetic and antidepressant properties, are two clinically used NMDAR open-channel blockers. However, despite extensive research into NMDAR modulators, many have shown either harmful side effects or inadequate effectiveness. For instance, dizocilpine (MK-801) is recognized for its powerful psychomimetic effects due to its high-affinity and nearly irreversible inhibition of the GluN1/GluN2 NMDAR subtypes. Unlike ketamine, memantine and MK-801 also act through a unique, low-affinity "membrane-to-channel inhibition" (MCI). We aimed to develop an open-channel blocker based on MK-801 with distinct inhibitory characteristics from memantine and MK-801. Our novel compound, K2060, demonstrated effective voltage-dependent inhibition in the micromolar range at key NMDAR subtypes, GluN1/GluN2A and GluN1/GluN2B, even in the presence of Mg2+. K2060 showed reversible inhibitory dynamics and a partially trapping open-channel blocking mechanism with a significantly stronger MCI than memantine. Using hippocampal slices, 30 µM K2060 inhibited excitatory postsynaptic currents in CA1 hippocampal neurons by ∼51 %, outperforming 30 µM memantine (∼21 % inhibition). K2060 exhibited No Observed Adverse Effect Level (NOAEL) of 15 mg/kg upon intraperitoneal administration in mice. Administering K2060 at a 10 mg/kg dosage resulted in brain concentrations of approximately 2 µM, with peak concentrations (Tmax) achieved within 15 minutes. Finally, applying K2060 with trimedoxime and atropine in mice exposed to tabun improved treatment outcomes. These results underscore K2060's potential as a therapeutic agent for CNS disorders linked to NMDAR dysfunction.
Collapse
Affiliation(s)
- Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Jan Konecny
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Lukas Prchal
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Stepan Kortus
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Petra Zahumenska
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Emily Langore
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Martin Novak
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Katarina Hemelikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Michaela Hrochova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Anezka Pelikanova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Jitka Odvarkova
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Jaroslav Pejchal
- University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Jiri Kassa
- University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Jana Zdarova Karasova
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Jan Korabecny
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Center, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defense, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 50005, Czech Republic.
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic.
| |
Collapse
|
4
|
Lim CJM, Bray J, Janhunen SK, Platt B, Riedel G. Mouse Exploratory Behaviour in the Open Field with and without NAT-1 EEG Device: Effects of MK801 and Scopolamine. Biomolecules 2024; 14:1008. [PMID: 39199395 PMCID: PMC11352671 DOI: 10.3390/biom14081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
One aspect of reproducibility in preclinical research that is frequently overlooked is the physical condition in which physiological, pharmacological, or behavioural recordings are conducted. In this study, the physical conditions of mice were altered through the attachments of wireless electrophysiological recording devices (Neural Activity Tracker-1, NAT-1). NAT-1 devices are miniaturised multichannel devices with onboard memory for direct high-resolution recording of brain activity for >48 h. Such devices may limit the mobility of animals and affect their behavioural performance due to the added weight (total weight of approximately 3.4 g). The mice were additionally treated with saline (control), N-methyl-D-aspartate (NMDA) receptor antagonist MK801 (0.85 mg/kg), or the muscarinic acetylcholine receptor blocker scopolamine (0.65 mg/kg) to allow exploration of the effect of NAT-1 attachments in pharmacologically treated mice. We found only minimal differences in behavioural outcomes with NAT-1 attachments in standard parameters of locomotor activity widely reported for the open field test between the drug treatments. Hypoactivity was globally observed as a consistent outcome in the MK801-treated mice and hyperactivity in scopolamine groups regardless of NAT-1 attachments. These data collectively confirm the reproducibility for combined behavioural, pharmacological, and physiological endpoints even in the presence of lightweight wireless data loggers. The NAT-1 therefore constitutes a pertinent tool for investigating brain activity in, e.g., drug discovery and models of neuropsychiatric and/or neurodegenerative diseases with minimal effects on pharmacological and behavioural outcomes.
Collapse
Affiliation(s)
- Charmaine J. M. Lim
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | - Jack Bray
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | | | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| |
Collapse
|
5
|
Hu J, Lian Z, Weng Z, Xu Z, Gao J, Liu Y, Luo T, Wang X. Intranasal Delivery of Near-Infrared and Magnetic Dual-Response Nanospheres to Rapidly Produce Antidepressant-Like and Cognitive Enhancement Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405547. [PMID: 38778461 DOI: 10.1002/adma.202405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Restricted by synaptic plasticity, dopamine receptor (DR) upregulation takes a long time to work. Moreover, the impact of the blood-brain barrier (BBB) on delivery efficiency restricts the development of drugs. Taking inspiration from snuff bottles, a convenient, fast-acting, and nonaddictive nasal drug delivery system has been developed to rapidly reshape the balance of synaptic transmitters. This optical and magnetic response system called CFs@DP, comprised of carbonized MIL-100 (Fe) frameworks (CFs) and domperidone (DP), which can enter the brain via nasal administration. Under dual stimulation of near-infrared (NIR) irradiation and catecholamine-induced complexation, CFs@DP disintegrates to release iron ions and DP, causing upregulation of the dopamine type 1 (D1), type 2 (D2) receptors, and brain-derived neurotrophic factor (BDNF) to achieve a therapeutic effect. In vivo experiments demonstrate that the DR density of mice (postnatal day 50-60) increased in the prefrontal cortex (PFC) and the hippocampus (HPC) after 10 days of therapy, resulting in antidepressant-like and cognitive enhancement effects. Interestingly, the cognitive enhancement effect of CFs@DP is even working in noniron deficiency (normal fed) mice, making it a promising candidate for application in enhancing learning ability.
Collapse
Affiliation(s)
- Jiangnan Hu
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenglong Lian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenzhen Weng
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zihao Xu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Yuanyuan Liu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Tao Luo
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| |
Collapse
|
6
|
Mellios N, Papageorgiou G, Gorgievski V, Maxson G, Hernandez M, Otero M, Varangis M, Dell'Orco M, Perrone-Bizzozero N, Tzavara E. Regulation of neuronal circHomer1 biogenesis by PKA/CREB/ERK-mediated pathways and effects of glutamate and dopamine receptor blockade. RESEARCH SQUARE 2024:rs.3.rs-3547375. [PMID: 38260249 PMCID: PMC10802743 DOI: 10.21203/rs.3.rs-3547375/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules. CircHomer1 is a neuronal-enriched, activity-dependent circRNA, derived from the precursor of the long HOMER1B mRNA isoform, which is significantly downregulated in the prefrontal cortex of subjects with psychosis and is able to regulate cognitive function. Even though its relevance to psychiatric disorders and its role in brain function and synaptic plasticity have been well established, little is known about the molecular mechanisms that underlie circHomer1 biogenesis in response to neuronal activity and psychiatric drug treatment. Here we suggest that the RNA-binding protein (RBP) FUS positively regulates neuronal circHomer1 expression. Furthermore, we show that the MEK/ERK and PKA/CREB pathways positively regulate neuronal circHomer1 expression, as well as promote the transcription of Fus and Eif4a3, another RBP previously shown to activate circHomer1 biogenesis. We then demonstrate via both in vitro and in vivo studies that NMDA and mGluR5 receptors are upstream modulators of circHomer1 expression. Lastly, we report that in vivo D2R antagonism increases circHomer1 expression, whereas 5HT2AR blockade reduces circHomer1 levels in multiple brain regions. Taken together, this study allows us to gain novel insights into the molecular circuits that underlie the biogenesis of a psychiatric disease-associated circRNA.
Collapse
|
7
|
Vojtechova I, Tuckova K, Juza R, Stuchlik A, Kelemen E, Korabecny J, Soukup O, Petrasek T. Dopaminergic and glutamatergic models of psychosis show differential sensitivity to aripiprazole and a novel experimental compound modulating D 2/5-HT receptor activity. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110819. [PMID: 37379895 DOI: 10.1016/j.pnpbp.2023.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Dopamine type 2 receptors (D2Rs) constitute the main molecular target in the pharmacotherapy of schizophrenia. However, the second and third generation of antipsychotics comprises multi-target ligands, also binding serotonin type 3 receptors (5-HT3Rs) and other receptor classes as well. Here, we examined two experimental compounds (marked compound K1697 and K1700) from the group of 1,4-di-substituted aromatic piperazines, previously described in the study of Juza et al., 2021, and compared them with the chosen reference antipsychotic, aripiprazole. Their efficacy against schizophrenia-like behavior was tested in two different models of psychosis in the rat, induced by acute administration of either amphetamine (1.5 mg/kg) or dizocilpine (0.1 mg/kg), reflecting the dopaminergic and glutamatergic hypotheses of schizophrenia. The two models exhibited broadly similar behavioral manifestations: hyperlocomotion, disrupted social behavior and impaired prepulse inhibition of the startle response. However, they differed in their treatment responses as hyperlocomotion and prepulse inhibition deficit in the dizocilpine model were resistant to antipsychotic treatment, unlike the amphetamine model. One of the experimental compounds, K1700, ameliorated all the observed schizophrenia-like behaviors in the amphetamine model with an efficacy comparable to or greater than aripiprazole. Whereas social impairments caused by dizocilpine were strongly suppressed by aripiprazole, K1700 was less efficient. Taken together, K1700 showed antipsychotic properties comparable to those of aripiprazole, although the efficacy of the two drugs differed in specific domains of behavior and was also model-dependent. Our present results highlight the differences in these two schizophrenia models and their responsiveness to pharmacotherapy, and confirm compound K1700 as a promising drug candidate.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Radomir Juza
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ales Stuchlik
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Eduard Kelemen
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
8
|
Sampedro-Viana D, Cañete T, Sanna F, Oliveras I, Lavín V, Torrecilla P, Río-Álamos C, Tapias-Espinosa C, Sánchez-González A, Tobeña A, Fernández-Teruel A. Atypical antipsychotics attenuate MK801-induced social withdrawal and hyperlocomotion in the RHA rat model of schizophrenia-relevant features. Psychopharmacology (Berl) 2023; 240:1931-1945. [PMID: 37442829 DOI: 10.1007/s00213-023-06411-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
RATIONALE The administration of NMDA receptor (NMDAR) antagonists constitutes a widely used model that produce both positive (e.g., hyperactivity) and negative (e.g., social withdrawal) symptoms relevant for schizophrenia in rodents. These effects can be reversed with the administration of atypical (second and third generation) antipsychotics. OBJECTIVES In this study we combined the NMDAR-antagonist model with the Roman High-Avoidance (RHA) strain, a psychogenetically selected model of schizophrenia-relevant features. We also studied whether some atypical antipsychotic drugs (clozapine, ziprasidone, and aripiprazole) would be able to attenuate or reverse the behavioural alterations induced by MK801 and whether such effects might be dependent on the rat strain. METHODS MK801 dose-response study was conducted in RHA and Roman Low-Avoidance (RLA) male rats. After that, the 0.15 mg/kg MK801 dose was selected to carry out pharmacological studies versus atypical antipsychotics. RESULTS In the first experiment we establish that MK801 (dizocilpine), a NMDAR antagonist, produces dose-related hyperactivity and social withdrawal, which are more marked in RHA than RLA rats. The administration of the atypical antipsychotics clozapine (2.5 mg/kg) or ziprasidone (2.5 mg/kg) partially reversed or attenuated some of the social behaviour deficits and hyperactivity induced by the administration of MK801. Aripiprazole (3 mg/kg), a third-generation antipsychotic, reversed or attenuated the social preference deficit, the hyperactivity and the impairment of social latency induced by MK801. CONCLUSIONS These results seem to be in line with previous studies with the NMDAR-antagonist model and add face (MK801-induced social withdrawal and hyperactivity) and predictive (attenuation of MK801-induced effects by atypical antipsychotics) validity to the RHA rat strain as a model of schizophrenia-relevant features.
Collapse
Affiliation(s)
- Daniel Sampedro-Viana
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Toni Cañete
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Francesco Sanna
- Department of Life & Environmental Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Ignasi Oliveras
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Valeria Lavín
- Department of Clinical & Health Psychology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Pilar Torrecilla
- Department of Clinical & Health Psychology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Cristóbal Río-Álamos
- Department of Psychology, School of Medicine, Austral University of Chile, Valdivia, Chile
| | - Carles Tapias-Espinosa
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Ana Sánchez-González
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
9
|
Shangase KB, Luvuno M, Mabandla MV. Investigating the Robustness of a Rodent "Double Hit" (Post-Weaning Social Isolation and NMDA Receptor Antagonist) Model as an Animal Model for Schizophrenia: A Systematic Review. Brain Sci 2023; 13:848. [PMID: 37371328 DOI: 10.3390/brainsci13060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder comprising positive, negative, and cognitive impairments. Most of the animal models developed to understand the neurobiology and mechanism of schizophrenia do not produce all the symptoms of the disease. Therefore, researchers need to develop new animal models with greater translational reliability, and the ability to produce most if not all symptoms of schizophrenia. This review aimed to evaluate the effectiveness of the rodent "double hit" (post-weaning social isolation and N-methyl-D-aspartate (NMDA) receptor antagonist) model to produce symptoms of schizophrenia. This systematic review was developed according to the 2020 PRISMA guidelines and checklist. The MEDLINE (PubMed) and Ebscohost databases were used to search for studies. The systematic review is based on quantitative animal studies. Studies in languages other than English that could be translated sufficiently using Google translate were also included. Data extraction was performed individually by two independent reviewers and discrepancies between them were resolved by a third reviewer. SYRCLE's risk-of-bias tool was used to test the quality and biases of included studies. Our primary search yielded a total of 47 articles, through different study selection processes. Seventeen articles met the inclusion criteria for this systematic review. Ten of the seventeen studies found that the "double hit" model was more effective in developing various symptoms of schizophrenia. Most studies showed that the "double hit" model is robust and capable of inducing cognitive impairments and positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Khanyiso Bright Shangase
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Mluleki Luvuno
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Musa V Mabandla
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
10
|
Perdikaris P, Dermon CR. Altered GABAergic, glutamatergic and endocannabinoid signaling is accompanied by neuroinflammatory response in a zebrafish model of social withdrawal behavior. Front Mol Neurosci 2023; 16:1120993. [PMID: 37284463 PMCID: PMC10239971 DOI: 10.3389/fnmol.2023.1120993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Deficits in social communication are in the core of clinical symptoms characterizing many neuropsychiatric disorders such as schizophrenia and autism spectrum disorder. The occurrence of anxiety-related behavior, a common co-morbid condition in individuals with impairments in social domain, suggests the presence of overlapping neurobiological mechanisms between these two pathologies. Dysregulated excitation/inhibition balance and excessive neuroinflammation, in specific neural circuits, are proposed as common etiological mechanisms implicated in both pathologies. Methods and Results In the present study we evaluated changes in glutamatergic/GABAergic neurotransmission as well as the presence of neuroinflammation within the regions of the Social Decision-Making Network (SDMN) using a zebrafish model of NMDA receptor hypofunction, following sub-chronic MK-801 administration. MK-801-treated zebrafish are characterized by impaired social communication together with increased anxiety levels. At the molecular level, the behavioral phenotype was accompanied by increased mGluR5 and GAD67 but decreased PSD-95 protein expression levels in telencephalon and midbrain. In parallel, MK-801-treated zebrafish exhibited altered endocannabinoid signaling as indicated by the upregulation of cannabinoid receptor 1 (CB1R) in the telencephalon. Interestingly, glutamatergic dysfunction was positively correlated with social withdrawal behavior whereas defective GABAergic and endocannabinoid activity were positively associated with anxiety-like behavior. Moreover, neuronal and astrocytic IL-1β expression was increased in regions of the SDMN, supporting the role of neuroinflammatory responses in the manifestation of MK-801 behavioral phenotype. Colocalization of interleukin-1β (IL-1β) with β2-adrenergic receptors (β2-ARs) underlies the possible influence of noradrenergic neurotransmission to increased IL-1β expression in comorbidity between social deficits and elevated anxiety comorbidity. Discussion Overall, our results indicate the contribution of altered excitatory and inhibitory synaptic transmission as well as excessive neuroinflammatory responses in the manifestation of social deficits and anxiety-like behavior of MK-801-treated fish, identifying possible novel targets for amelioration of these symptoms.
Collapse
|
11
|
Bae HJ, Kim JY, Choi SH, Kim SY, Kim HJ, Cho YE, Choi YY, An JY, Cho SY, Ryu JH, Park SJ. Paeonol, the active component of Cynanchum paniculatum, ameliorated schizophrenia-like behaviors by regulating the PI3K-Akt-GSK3β-NF-κB signalling pathway in MK-801-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116627. [PMID: 37164258 DOI: 10.1016/j.jep.2023.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynanchum paniculatum (Bunge) Kitag. ex H. Hara (Asclepiadaceae) have been traditionally used in East Asia as analgesic or antiviral agents. Interestingly, some Chinese and Korean traditional medicinal books reported that the use of C. paniculatum in the treatment of psychotic symptoms, such as hallucinations and delusions. AIM OF THE STUDY In this study, we aimed to investigate whether C. paniculatum could improve sensorimotor gating disruption in mice with MK-801-induced schizophrenia-like behaviors. We also aimed to identify the active component of C. paniculatum that could potentially serve as a treatment for schizophrenia and found that paeonol, the major constituent compound of C. paniculatum, showed potential as a treatment for schizophrenia. MATERIALS AND METHODS To assess the effect of paeonol on mice with MK-801-induced schizophrenia-like behaviors, we carried out a series of behavioral tests related with symptoms of schizophrenia. In addition, we utilized Western blotting and ELISA techniques to investigate the antipsychotic actions of paeonol. RESULT C. paniculatum extract (100 or 300 mg/kg) and paenol (10 or 30 mg/kg) significantly reversed MK-801-induced prepulse deficits in acoustic startle response test. In addition, paeonol (10 or 30 mg/kg) attenuated social novelty preference and novel object recognition memory on MK-801-induced schizophrenia-like behaviour in mice. Furthermore, the phosphorylation levels of PI3K, Akt, GSK3β and NF-κB, as well as related pro-inflammatory cytokine, such as IL-1β and TNF-α, were significantly reversed by the administration of paeonol (10 or 30 mg/kg) in the prefrontal cortex of MK-801-treated mice. CONCLUSIONS Collectively, these data show that paeonol can potentially be used as an agent for treating sensorimotor gating deficits, negative symptoms, and cognitive deficits, such as those observed in schizophrenia with few adverse effects.
Collapse
Affiliation(s)
- Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jae Youn Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Seung-Hyuk Choi
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - So-Yeon Kim
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Hyun-Jeong Kim
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ye Eun Cho
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yu-Yeong Choi
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ju-Yeon An
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - So-Young Cho
- Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Se Jin Park
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, Republic of Korea; Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
12
|
A Comparative Study of the Impact of NO-Related Agents on MK-801- or Scopolamine-Induced Cognitive Impairments in the Morris Water Maze. Brain Sci 2023; 13:brainsci13030410. [PMID: 36979220 PMCID: PMC10046674 DOI: 10.3390/brainsci13030410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Learning and memory deficits accompany numerous brain dysfunctions, including schizophrenia and Alzheimer’s disease (AD), and many studies point to the role of nitric oxide (NO) in these processes. The present investigations constitute the follow-up of our previous research, in which we investigated the activity of NO releasers and a selective inhibitor of neuronal NO synthase (nNOS) to prevent short-term memory deficits in novel object recognition and T-maze. Here, the ability of the compounds to prevent the induction of long-term memory deficits by MK-801 or scopolamine administration was investigated. The Morris Water Maze test, a reliable and valid test of spatial learning and memory, was used, in which escape latency in the acquisition phase and nine different parameters in the retention phase were measured. A fast NO releaser (spermine NONOate), a slow NO releaser (DETA NONOate), and a nNOS inhibitor, N(ω)-propyl-L-arginine (NPLA), were used. The compounds were administered i.p. at a dose range of 0.05–0.5 mg/kg. All compounds prevented learning deficits in the acquisition phase and reversed reference memory deficits in the retention phase of the scopolamine-treated mice. Spermine NONOate was the least effective. In contrast, the drugs poorly antagonised MK-801-induced deficits, and only the administration of DETA NONOate induced some improvements in the retention trial.
Collapse
|
13
|
Bae HJ, Bae HJ, Kim JY, Park K, Yang X, Jung SY, Park SJ, Kim DH, Shin CY, Ryu JH. The effect of lansoprazole on MK-801-induced schizophrenia-like behaviors in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110646. [PMID: 36191804 DOI: 10.1016/j.pnpbp.2022.110646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
Abstract
As a heterogeneous disorder, schizophrenia is known to be associated with neuroinflammation. A recent study showed that several cytokines are higher in the plasma and cerebrospinal fluid of schizophrenia patients. Lansoprazole, a proton pump inhibitor used for treating erosive esophagitis, has been reported to reduce INF-γ-induced neurotoxicity and decrease inflammatory cytokines including IL-1β, IL-6, and TNF-α. These findings persuaded us to examine whether lansoprazole ameliorates schizophrenia-like symptoms. The schizophrenia mouse model was induced by the acute administration of MK-801, an NMDA receptor antagonist. Sensorimotor gating, Barnes maze, and social novelty preference tests were conducted to evaluate schizophrenia-like behaviors. We found that lansoprazole (0.3, 1, or 3 mg/kg) ameliorated sensorimotor gating deficits, spatial learning, and social deficits caused by MK-801 treatment (0.2 mg/kg). The catalepsy test, balance beam test, and rotarod test were performed to reveal the adverse effects of lansoprazole on motor coordination. The behavioral results indicated that lansoprazole did not result in any motor function deficits. Moreover, lansoprazole decreased inflammatory cytokines including IL-6 and TNF-α only in the cortex, but not in the hippocampus. Collectively, these results suggest that lansoprazole could be a potential candidate for treating schizophrenia patients who suffer from sensorimotor gating deficits or social disability without any motor-related adverse effects.
Collapse
Affiliation(s)
- Hyo Jeoung Bae
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Xingquan Yang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
14
|
Ji Y, Zhang X, Wu Y, Dang ZL, Han WW, Wang SC, Dong SB, Zhang QZ. Oxidative Cyanation of Tertiary Amines for Facile Synthesis of Tetrahydroisoquinolines with Quaternary Centers. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Luessen DJ, Gallinger IM, Ferranti AS, Foster DJ, Melancon BJ, Lindsley CW, Niswender CM, Conn PJ. mGlu 1-mediated restoration of prefrontal cortex inhibitory signaling reverses social and cognitive deficits in an NMDA hypofunction model in mice. Neuropsychopharmacology 2022; 47:1826-1835. [PMID: 35643819 PMCID: PMC9372079 DOI: 10.1038/s41386-022-01350-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Abstract
Extensive evidence supports the hypothesis that deficits in inhibitory GABA transmission in the prefrontal cortex (PFC) may drive pathophysiological changes underlying symptoms of schizophrenia that are not currently treated by available medications, including cognitive and social impairments. Recently, the mGlu1 subtype of metabotropic glutamate (mGlu) receptor has been implicated as a novel target to restore GABAergic transmission in the PFC. A recent study reported that activation of mGlu1 increases inhibitory transmission in the PFC through excitation of somatostatin-expressing GABAergic interneurons, implicating mGlu1 PAMs as a potential treatment strategy for schizophrenia. Here, we leveraged positive allosteric modulators (PAMs) of mGlu1 to examine whether mGlu1 activation might reverse physiological effects and behavioral deficits induced by MK-801, an NMDA receptor antagonist commonly used to model cortical deficits observed in schizophrenia patients. Using ex vivo whole-cell patch-clamp electrophysiology, we found that MK-801 decreased the frequency of spontaneous inhibitory postsynaptic currents onto layer V pyramidal cells of the PFC and this cortical disinhibition was reversed by mGlu1 activation. Furthermore, acute MK-801 treatment selectively induced inhibitory deficits onto layer V pyramidal cells that project to the basolateral amygdala, but not to the nucleus accumbens, and these deficits were restored by selective mGlu1 activation. Importantly, the mGlu1 PAM VU6004909 effectively reversed deficits in sociability and social novelty preference in a three-chamber assay and improved novel objection recognition following MK-801 treatment. Together, these findings provide compelling evidence that mGlu1 PAMs could serve as a novel approach to reduce social and cognitive deficits associated with schizophrenia by enhancing inhibitory transmission in the PFC, thus providing an exciting improvement over current antipsychotic medication.
Collapse
Affiliation(s)
- Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA.
| | - Isabel M Gallinger
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bruce J Melancon
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA.
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Center for Addiction Research, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
16
|
Smith BJ, Brandão-Teles C, Zuccoli GS, Reis-de-Oliveira G, Fioramonte M, Saia-Cereda VM, Martins-de-Souza D. Protein Succinylation and Malonylation as Potential Biomarkers in Schizophrenia. J Pers Med 2022; 12:jpm12091408. [PMID: 36143193 PMCID: PMC9500613 DOI: 10.3390/jpm12091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Two protein post-translational modifications, lysine succinylation and malonylation, are implicated in protein regulation, glycolysis, and energy metabolism. The precursors of these modifications, succinyl-CoA and malonyl-CoA, are key players in central metabolic processes. Both modification profiles have been proven to be responsive to metabolic stimuli, such as hypoxia. As mitochondrial dysfunction and metabolic dysregulation are implicated in schizophrenia and other psychiatric illnesses, these modification profiles have the potential to reveal yet another layer of protein regulation and can furthermore represent targets for biomarkers that are indicative of disease as well as its progression and treatment. In this work, data from shotgun mass spectrometry-based quantitative proteomics were compiled and analyzed to probe the succinylome and malonylome of postmortem brain tissue from patients with schizophrenia against controls and the human oligodendrocyte precursor cell line MO3.13 with the dizocilpine chemical model for schizophrenia, three antipsychotics, and co-treatments. Several changes in the succinylome and malonylome were seen in these comparisons, revealing these modifications to be a largely under-studied yet important form of protein regulation with broad potential applications.
Collapse
Affiliation(s)
- Bradley Joseph Smith
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
- Correspondence: (B.J.S.); (D.M.-d.-S.); Tel.: +55-(19)-3521-6129 (D.M.-d.-S.)
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Giuliana S. Zuccoli
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Verônica M. Saia-Cereda
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-000, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, Brazil
- D’Or Institute for Research and Education (IDOR), São Paulo 04501-000, Brazil
- Correspondence: (B.J.S.); (D.M.-d.-S.); Tel.: +55-(19)-3521-6129 (D.M.-d.-S.)
| |
Collapse
|
17
|
A Mini-Review Regarding the Modalities to Study Neurodevelopmental Disorders-Like Impairments in Zebrafish—Focussing on Neurobehavioural and Psychological Responses. Brain Sci 2022; 12:brainsci12091147. [PMID: 36138883 PMCID: PMC9496774 DOI: 10.3390/brainsci12091147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are complex disorders which can be associated with many comorbidities and exhibit multifactorial-dependent phenotypes. An important characteristic is represented by the early onset of the symptoms, during childhood or young adulthood, with a great impact on the socio-cognitive functioning of the affected individuals. Thus, the aim of our review is to describe and to argue the necessity of early developmental stages zebrafish models, focusing on NDDs, especially autism spectrum disorders (ASD) and also on schizophrenia. The utility of the animal models in NDDs or schizophrenia research remains quite controversial. Relevant discussions can be opened regarding the specific characteristics of the animal models and the relationship with the etiologies, physiopathology, and development of these disorders. The zebrafish models behaviors displayed as early as during the pre-hatching embryo stage (locomotor activity prone to repetitive behavior), and post-hatching embryo stage, such as memory, perception, affective-like, and social behaviors can be relevant in ASD and schizophrenia research. The neurophysiological processes impaired in both ASD and schizophrenia are generally highly conserved across all vertebrates. However, the relatively late individual development and conscious social behavior exhibited later in the larval stage are some of the most important limitations of these model animal species.
Collapse
|
18
|
Hazani R, Lavidor M, Weller A. Treatments for Social Interaction Impairment in Animal Models of Schizophrenia: A Critical Review and Meta-analysis. Schizophr Bull 2022; 48:1179-1193. [PMID: 35925025 PMCID: PMC9673263 DOI: 10.1093/schbul/sbac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND While pharmacological treatments for positive symptoms of schizophrenia are widely used, their beneficial effect on negative symptoms, particularly social impairment, is insufficiently studied. Therefore, there is an increasing interest in preclinical research of potentially beneficial treatments, with mixed results. The current review aims to evaluate the efficacy of available treatments for social deficits in different animal models of schizophrenia. STUDY DESIGN A systematic literature search generated 145 outcomes for the measures "total time" and "number" of social interactions. Standardized mean differences (SMD) and 95% confidence interval (CI) were calculated, and heterogeneity was tested using Q statistics in a random-effect meta-analytic model. Given the vast heterogeneity in effect sizes, the animal model, treatment group, and sample size were all examined as potential moderators. STUDY RESULTS The results showed that in almost all models, treatment significantly improved social deficit (total time: SMD = 1.24; number: SMD = 1.1). The moderator analyses discovered significant subgroup differences across models and treatment subgroups. Perinatal and adult pharmacological models showed the most substantial influence of treatments on social deficits, reflecting relative pharmacological validity. Furthermore, atypical antipsychotic drugs had the highest SMD within each model subgroup. CONCLUSIONS Our findings indicate that the improvement in social interaction behaviors is dependent on the animal model and treatment family used. Implications for the preclinical and clinical fields are discussed.
Collapse
Affiliation(s)
- Reut Hazani
- To whom correspondence should be addressed; Department of Psychology, Bar-Ilan University, Ramat-Gan 5290002, Israel; tel: 972-3-531-8548, fax: 972-3-738-4173, e-mail:
| | - Michal Lavidor
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
19
|
Białoń M, Wąsik A. Advantages and Limitations of Animal Schizophrenia Models. Int J Mol Sci 2022; 23:5968. [PMID: 35682647 PMCID: PMC9181262 DOI: 10.3390/ijms23115968] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Mental illness modeling is still a major challenge for scientists. Animal models of schizophrenia are essential to gain a better understanding of the disease etiopathology and mechanism of action of currently used antipsychotic drugs and help in the search for new and more effective therapies. We can distinguish among pharmacological, genetic, and neurodevelopmental models offering various neuroanatomical disorders and a different spectrum of symptoms of schizophrenia. Modeling schizophrenia is based on inducing damage or changes in the activity of relevant regions in the rodent brain (mainly the prefrontal cortex and hippocampus). Such artificially induced dysfunctions approximately correspond to the lesions found in patients with schizophrenia. However, notably, animal models of mental illness have numerous limitations and never fully reflect the disease state observed in humans.
Collapse
Affiliation(s)
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland;
| |
Collapse
|
20
|
Zhang H, Gao X. Effects of scalp cluster needling on cognition and oxidative stress in a rat model of schizophrenia. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Wu XL, Yan QJ, Zhu F. Abnormal synaptic plasticity and impaired cognition in schizophrenia. World J Psychiatry 2022; 12:541-557. [PMID: 35582335 PMCID: PMC9048451 DOI: 10.5498/wjp.v12.i4.541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/28/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a severe mental illness that affects several brain domains with relation to cognition and behaviour. SCZ symptoms are typically classified into three categories, namely, positive, negative, and cognitive. The etiology of SCZ is thought to be multifactorial and poorly understood. Accumulating evidence has indicated abnormal synaptic plasticity and cognitive impairments in SCZ. Synaptic plasticity is thought to be induced at appropriate synapses during memory formation and has a critical role in the cognitive symptoms of SCZ. Many factors, including synaptic structure changes, aberrant expression of plasticity-related genes, and abnormal synaptic transmission, may influence synaptic plasticity and play vital roles in SCZ. In this article, we briefly summarize the morphology of the synapse, the neurobiology of synaptic plasticity, and the role of synaptic plasticity, and review potential mechanisms underlying abnormal synaptic plasticity in SCZ. These abnormalities involve dendritic spines, postsynaptic density, and long-term potentiation-like plasticity. We also focus on cognitive dysfunction, which reflects impaired connectivity in SCZ. Additionally, the potential targets for the treatment of SCZ are discussed in this article. Therefore, understanding abnormal synaptic plasticity and impaired cognition in SCZ has an essential role in drug therapy.
Collapse
Affiliation(s)
- Xiu-Lin Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Qiu-Jin Yan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
22
|
Tsujihara T, Sasaki R, Fukkoshi M, Hatakeyama S, Takehara T, Suzuki T, Kawano T. Synthesis of 6,7-benzene-fused tropane derivatives from isoindoline-aminal hybrid compound. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zhang YX, Xing B, Li YC, Yan CX, Gao WJ. NMDA receptor-mediated synaptic transmission in prefrontal neurons underlies social memory retrieval in female mice. Neuropharmacology 2022; 204:108895. [PMID: 34813859 PMCID: PMC8688302 DOI: 10.1016/j.neuropharm.2021.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/16/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Social memory is the ability to discriminate familiar conspecific from the unknown ones. Prefrontal neurons are essentially required for social memory, but the mechanism associated with this regulation remains unknown. It is also unclear to what extent the neuronal representations of social memory formation and retrieval events overlap in the prefrontal cortex (PFC) and which event drives social memory strength. Here we asked these questions by using a repeated social training paradigm for social recognition in FosTRAP mice. We found that after 4 days' repeated social training, female mice developed stable social memory. Specifically, repeated social training activated more cells that were labeled with tdTomato during memory retrieval compared with the first day of memory encoding. Besides, combining TRAP with c-Fos immunostaining, we found about 30% of the FosTRAPed cells were reactivated during retrieval. Moreover, the number of retrieval-induced but not first-day encoding-induced tdTomato neurons correlates with the social recognition ratio in the prelimbic but not other subregions. The activated cells during the retrieval session also showed increased NMDA receptor-mediated synaptic transmission compared with that in non-labeled pyramidal neurons. Blocking NMDA receptors by MK-801 impaired social memory but not sociability. Therefore, our results reveal that repetitive training elevates mPFC involvement in social memory retrieval via enhancing NMDA receptor-mediated synaptic transmission, thus rendering stable social memory.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA,College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
24
|
Bauminger H, Zaidan H, Akirav I, Gaisler-Salomon I. Anandamide Hydrolysis Inhibition Reverses the Long-Term Behavioral and Gene Expression Alterations Induced by MK-801 in Male Rats: Differential CB1 and CB2 Receptor-Mediated Effects. Schizophr Bull 2022; 48:795-803. [PMID: 35092675 PMCID: PMC9212101 DOI: 10.1093/schbul/sbab153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NMDA receptor blockade in rodents is commonly used to induce schizophrenia-like behavioral abnormalities, including cognitive deficits and social dysfunction. Aberrant glutamate and GABA transmission, particularly in adolescence, is implicated in these behavioral abnormalities. The endocannabinoid system modulates glutamate and GABA transmission, but the impact of endocannabinoid modulation on cognitive and social dysfunction is unclear. Here, we asked whether late-adolescence administration of the anandamide hydrolysis inhibitor URB597 can reverse behavioral deficits induced by early-adolescence administration of the NMDA receptor blocker MK-801. In parallel, we assessed the impact of MK-801 and URB597 on mRNA expression of glutamate and GABA markers. We found that URB597 prevented MK-801-induced novel object recognition deficits and social interaction abnormalities in adult rats, and reversed glutamate and GABA aberrations in the prelimbic PFC. URB597-mediated reversal of MK-801-induced social interaction deficits was mediated by the CB1 receptor, whereas the reversal of cognitive deficits was mediated by the CB2 receptor. This was paralleled by the reversal of CB1 and CB2 receptor expression abnormalities in the basolateral amygdala and prelimbic PFC, respectively. Together, our findings show that interfering with NMDA receptor function in early adolescence has a lasting impact on phenotypes resembling the negative symptoms and cognitive deficits of schizophrenia and on glutamate and GABA marker expression in the PFC. Prevention of behavioral and molecular abnormalities by late-adolescence URB597 via CB1 and CB2 receptors suggests that endocannabinoid stimulation may have therapeutic potential in addressing treatment-resistant symptoms.
Collapse
Affiliation(s)
- Hagar Bauminger
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Hiba Zaidan
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Inna Gaisler-Salomon
- To whom correspondence should be addressed; tel: +972-4-8249674, fax: +972-4-8263157, e-mail:
| |
Collapse
|
25
|
Vukojevic J, Milavić M, Perović D, Ilić S, Čilić AZ, Đuran N, Štrbe S, Zoričić Z, Filipčić I, Brečić P, Seiverth S, Sikirić P. Pentadecapeptide BPC 157 and the central nervous system. Neural Regen Res 2022; 17:482-487. [PMID: 34380875 PMCID: PMC8504390 DOI: 10.4103/1673-5374.320969] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We reviewed the pleiotropic beneficial effects of the stable gastric pentadecapeptide BPC 157, three very recent demonstrations that may be essential in the gut-brain and brain-gut axis operation, and therapy application in the central nervous system disorders, in particular. Firstly, given in the reperfusion, BPC 157 counteracted bilateral clamping of the common carotid arteries-induced stroke, sustained brain neuronal damages were resolved in rats as well as disturbed memory, locomotion, and coordination. This therapy effect supports particular gene expression in hippocampal tissues that appeared in BPC 157-treated rats. Secondly, there are L-NG-nitro arginine methyl ester (L-NAME)- and haloperidol-induced catalepsy as well as the rat acute and chronic models of 'positive-like' schizophrenia symptoms, that BPC 157 counteracted, and resolved the complex relationship of the nitric oxide-system with amphetamine and apomorphine (dopamine agents application), MK-801 (non-competitive antagonist of the N-methyl-D-aspartate receptor) and chronic methamphetamine administration (to induce sensitivity). Thirdly, after rat spinal cord compression, there were advanced healing and functional recovery (counteracted tail paralysis). Likewise, in BPC 157 therapy, there is specific support for each of these topics: counteracted encephalopathies; alleviated vascular occlusion disturbances (stroke); counteracted dopamine disturbances (dopamine receptors blockade, receptors super sensitivity development, or receptor activation, over-release, nigrostriatal damage, vesicles depletion), and nitric oxide-system disturbances ("L-NAME non-responsive, L-arginine responsive," and "L-NAME responsive, L-arginine responsive") (schizophrenia therapy); inflammation reduction, nerve recovery in addition to alleviated hemostasis and vessels function after compression (spinal cord injury therapy). Thus, these disturbances may be all resolved within the same agent's beneficial activity, i.e., the stable gastric pentadecapeptide BPC 157.
Collapse
Affiliation(s)
- Jakša Vukojevic
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Marija Milavić
- Department of Pathology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Darko Perović
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Spomenko Ilić
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | | | - Nataša Đuran
- University Psychiatric Hospital "Vrapče", Zagreb, Croatia
| | - Sanja Štrbe
- University Clinical Hospital Center "Zagreb", Zagreb, Croatia
| | - Zoran Zoričić
- University Clinical Hospital Center "Sestre Milosrdnice", Zagreb, Croatia
| | | | - Petrana Brečić
- University Psychiatric Hospital "Vrapče", Zagreb, Croatia
| | - Sven Seiverth
- Department of Pathology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikirić
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
26
|
Franscescon F, Souza TP, Müller TE, Michelotti P, Canzian J, Stefanello FV, Rosemberg DB. Taurine prevents MK-801-induced shoal dispersion and altered cortisol responses in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110399. [PMID: 34246730 DOI: 10.1016/j.pnpbp.2021.110399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric disorder characterized by a shortened lifespan and significant impaired social and vocational functioning. Schizophrenic patients can present hypothalamic-pituitary-adrenal (HPA) axis dysfunctions and cortisol dysregulation, which play an important role on the etiology onset, exacerbation, and relapsing of symptoms. Based on its intrinsic neuroprotective properties, taurine is considered a promising substance with beneficial role on various brain disorders, including schizophrenia. Here, we evaluated the effects of taurine on shoaling behavior and whole-body cortisol levels in zebrafish treated with dizocilpine (MK-801), which elicits schizophrenia-like phenotypes in animal models. Briefly, zebrafish shoals (4 fish per shoal) were exposed to dechlorinated water or taurine (42, 150, or 400 mg/L) for 60 min. Then, saline (PBS, pH 7.4 or 2.0 mg/kg MK-801) were intraperitoneally injected and zebrafish behavior was recorded 15 min later. In general, MK-801 disrupted shoaling behavior and reduced whole-body cortisol levels in zebrafish. All taurine pretreatments prevented MK-801-induced increase in shoal area, while 400 mg/L taurine prevented the MK-801-induced alterations in neuroendocrine responses. Moreover, all taurine-pretreated groups showed increased geotaxis, supporting a modulatory role in the overall dispersion pattern of the shoal. Collectively, our novel findings show a potential protective effect of taurine on MK-801-induced shoal dispersion and altered neuroendocrine responses, fostering the use of zebrafish models to assess schizophrenia-like phenotypes.
Collapse
Affiliation(s)
- Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Thiele P Souza
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Paula Michelotti
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
27
|
Zuccoli GS, Reis-de-Oliveira G, Garbes B, Falkai P, Schmitt A, Nakaya HI, Martins-de-Souza D. Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 2021; 271:1579-1586. [PMID: 33751207 DOI: 10.1007/s00406-021-01248-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Glutamatergic neurotransmission dysfunction and the early involvement of the hippocampus have been proposed to be important aspects of the pathophysiology of schizophrenia. Here, we performed proteomic analysis of hippocampus postmortem samples from schizophrenia patients as well as neural cells-neurons and oligodendrocytes-treated with MK-801, an NMDA receptor antagonist. There were similarities in processes such as oxidative stress and apoptotic process when comparing hippocampus samples with MK-801-treated neurons, and in proteins synthesis when comparing hippocampus samples with MK-801-treated oligodendrocytes. This reveals that studying the effects of glutamatergic dysfunction in different neural cells can contribute to a better understanding of what it is observed in schizophrenia patients' postmortem brains.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruna Garbes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University of Munich (LMU), Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University of Munich (LMU), Munich, Germany
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil. .,Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brasil. .,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil. .,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
28
|
Ji Y, Zhang X, Han W, Wang S, Wu Y, Zhang K, Yang P, Xiao P, Wei Y. Concise synthesis of α-cyano tetrahydroisoquinolines with a quaternary center via Strecker reaction. RSC Adv 2021; 11:38712-38716. [PMID: 35493240 PMCID: PMC9044453 DOI: 10.1039/d1ra08469k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
A concise synthesis of α-cyano tetrahydroisoquinolines with a quaternary center via the Strecker reaction was successfully realized by employing TMSCN as cyano source and KF as fluoride source, furnishing the products with up to 99% yield. An isomerization of α-cyano tetrahydroisoquinoline was observed under alkaline conditions to give the isomer via [1,3]-H shift. Concise synthesis of α-cyano tetrahydroisoquinolines with a quaternary center was successfully realized, furnishing products with up to 99% yield and an isomerization was observed under alkaline conditions, giving the isomer via [1,3]-H shift.![]()
Collapse
Affiliation(s)
- Yue Ji
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Xue Zhang
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Weiwei Han
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Sichang Wang
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Ya Wu
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Keliang Zhang
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Penghui Yang
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Pei Xiao
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Yitao Wei
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| |
Collapse
|
29
|
Vales K, Holubova K. Minireview: Animal model of schizophrenia from the perspective of behavioral pharmacology: Effect of treatment on cognitive functions. Neurosci Lett 2021; 761:136098. [PMID: 34224793 DOI: 10.1016/j.neulet.2021.136098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a debilitating mental disorder characterized by positive, negative and cognitive symptoms. Whereas positive symptoms are satisfactorily addressed by current antipsychotic treatment, negative and cognitive symptomatic treatment remains largely ineffective. This review investigates the treatment efficacy regarding cognitive symptoms and evaluates the contribution of different monoamine receptor systems involved in schizophrenia pathophysiology to cognition. In the review, we included preclinical studies assessing the effect of different treatments on cognition in pre-pulse inhibition and two spatial cognitive tests. While pre-pulse inhibition investigates pre-attentive processes operating outside of conscious awareness, the spatial tasks require continuous attention and active engagement in task solving for a successful outcome. The schizophrenia-like phenotype was attained by acute or subchronic administration of non-competitive NMDA receptor antagonist MK-801.
Collapse
Affiliation(s)
- K Vales
- The National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Institute of Physiology CAS, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - K Holubova
- The National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| |
Collapse
|
30
|
Sartim AG, Marques J, Silveira KM, Gobira PH, Guimarães FS, Wegener G, Joca SR. Co-administration of cannabidiol and ketamine induces antidepressant-like effects devoid of hyperlocomotor side-effects. Neuropharmacology 2021; 195:108679. [PMID: 34157363 DOI: 10.1016/j.neuropharm.2021.108679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE Although useful as a rapid-acting antidepressant drug, ketamine is known to induce psychotomimetic effects, which may interfere with its therapeutic use. Cannabidiol (CBD) is a non-psychostimulant compound from Cannabis sativa, which has shown promising antidepressant effects without inducing hyperlocomotion. AMPA receptor activation is involved in the antidepressant effect induced by ketamine, but its relevance for the effects of CBD is not known. Moreover, given that CBD has antipsychotic and antidepressant properties, it is unknown whether adding CBD to ketamine could potentiate the antidepressant properties of ketamine while also attenuating its psychostimulant effects. EXPERIMENTAL APPROACH S-Ketamine (2.5, 3, 5, 10, 30 mg/kg) and cannabidiol (3, 10, 30 mg/kg) were administered alone or in combination to male Swiss mice. Independent groups received NBQX (AMPA receptor antagonist) 5 min before administration of CBD or S-ketamine. The antidepressant-like effect was assessed in the forced swimming test (FST), and the open field test (OFT) evaluated the psychostimulant effect. KEY RESULTS CBD induced significant dose-dependent antidepressant effects without causing hyperlocomotion in the OFT. S-ketamine produced an antidepressant effect associated with hyperlocomotion in the higher dose. NBQX inhibited the antidepressant effect of both ketamine and CBD. Pretreatment with CBD (10 mg/kg) attenuated the ketamine-induced hyperlocomotion while preserving its antidepressant effect. CONCLUSION AND IMPLICATIONS: Similar to ketamine, the antidepressant-like effect elicited by CBD involves AMPA receptor activation. Additionally, CBD prevents the hyperlocomotion induced by S-ketamine without affecting its antidepressant-like effect. Our findings suggest that CBD and ketamine's combined administration can be a promising therapeutic strategy for achieving an appropriate antidepressant effect without unwanted side-effects. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- A G Sartim
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - J Marques
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - K M Silveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Denmark
| | - P H Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - F S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - G Wegener
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Denmark
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark.
| |
Collapse
|
31
|
Majcher MJ, Babar A, Lofts A, Leung A, Li X, Abu-Hijleh F, Smeets NMB, Mishra RK, Hoare T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Control Release 2020; 330:738-752. [PMID: 33383097 DOI: 10.1016/j.jconrel.2020.12.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023]
Abstract
Existing oral or injectable antipsychotic drug delivery strategies typically demonstrate low bioavailability to targeted brain regions, incentivizing the development of alternative delivery strategies. Delivery via the nasal cavity circumvents multiple barriers for reaching the brain but requires drug delivery vehicles with very specific properties to be effective. Herein, we report in situ-gelling and degradable bulk nanoparticle network hydrogels consisting of oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) that enable intranasal delivery via spray, high nasal mucosal retention, and functional controlled release of the peptide drug PAOPA, a positive allosteric modulator of dopamine D2 receptor. PAOPA-loaded SNP-CMCh hydrogels can alleviate negative symptoms like behavioural abnormalities associated with schizophrenia (i.e. decreased social interaction time) for up to 72 h in an MK-801-induced pre-clinical rat model of schizophrenia at a low drug dosage (0.5 mg/kg); in comparison, conventional PAOPA administration via the intraperitoneal route requires twice the PAOPA dose to achieve a therapeutic effect that persists for only a few hours. This strategy offers potential for substantially decreasing re-administration frequencies and overall drug doses (and thus side-effects) of a range of potential antipsychotic drugs via a minimally-invasive administration route.
Collapse
Affiliation(s)
- Michael J Majcher
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Ali Babar
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Ashlyn Leung
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Xiaoyun Li
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Fahed Abu-Hijleh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Niels M B Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada
| | - Ram K Mishra
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
32
|
Antipsychotic Drugs Reverse MK801-Inhibited Cell Migration and F-actin Condensation by Modulating the Rho Signaling Pathway in B35 Cells. Behav Neurol 2020. [DOI: 10.1155/2020/4163274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background and Aim. MK801-induced psychotic symptoms and also the Ras homolog family member A (RhoA) expression and cell division control protein 42 (cdc42) mRNA modulation in the rat brain have been investigated. Antipsychotic drugs (APDs) have been reported to induce Rho GDP-dissociation inhibitor (RhoGDI) pathway regulation related to cytoskeleton reorganization in neuronal cells. It will be necessary to clarify the effects of APDs on MK801-induced RhoGDI signaling regulation in neuronal cells. Methods. B35 neuronal cells were treated with MK801 for 7 days then treated with MK801 in combination with haloperidol or clozapine for a further 7 days. Cell migration, F-actin condensation, and RhoGDI signaling regulation were examined to investigate the regulatory effects of MK801, haloperidol, and clozapine in B35 neuronal cells. Results. MK801 reduced B35 cell migration, whereas both haloperidol and clozapine reversed the reduction in cell migration induced by MK801. Haloperidol and clozapine restored F-actin condensation after it was diminished by MK801 in B35 cell nuclei. MK801 increased the RhoGDI1 and RhoA expression, which was diminished by the addition of haloperidol and clozapine. MK801 reduced the CDC42 expression, which was restored by haloperidol and clozapine. MK801 reduced the Rho-associated coiled-coil containing protein kinase 1 (ROCK1), profilin1 (PFN1), and neuronal Wiskott–Aldrich Syndrome protein (N-WASP) expression, which was further reduced by haloperidol and clozapine. MK801 also increased the phosphorylated myosin light chain 2 (p-MLC2), postsynaptic density protein 95 (PSD-95), and c-jun expression, which was decreased by haloperidol and clozapine. p21 (RAC1-) activated kinase 1 (PAK1) expression was not affected by MK801.
Collapse
|
33
|
Sun XJ, Zhao X, Xie JN, Wan H. Crocin alleviates schizophrenia-like symptoms in rats by upregulating silent information regulator-1 and brain derived neurotrophic factor. Compr Psychiatry 2020; 103:152209. [PMID: 33045669 DOI: 10.1016/j.comppsych.2020.152209] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In neonatal rats, MK-801 treatments can produce schizophrenia-like symptoms. Crocin is a water soluble carotenoid in Saffron that exerts potent neuroprotective effects. This work aimed to demonstrate the function of crocin in the alleviation of motor and cognitive impairments elicited by MK-801 in a neonatal rodent schizophrenia model, and to illustrate the underlying molecular mechanisms. METHODS Rats were treated with vehicle, MK-801 (1 mg/kg), MK-801 + 25 mg/kg crocin, or MK-801 + 50 mg/kg crocin. Motor learning and coordination, locomotion and exploratory activities, as well as spatial memory were assessed using the rotarod test, pen field test, and the Morris water maze test, respectively. Relative mRNA and protein levels of genes of interest were analyzed using qRT-PCR and Western blot assays, respectively. RESULTS In the hippocampus of rats with MK-801-elicited schizophrenia, administration of crocin elevated the expression of silent information regulator-1 (SIRT1) and brain derived neurotrophic factor (BDNF), and relieved the oxidative stress. The learning deficits and motor perturbations caused by MK-801 treatments were also alleviated by the crocin administration. CONCLUSION Collectively, crocin has exerted neuroprotective effects in the rat model of MK-801-elicited schizophrenia, via regulations of SIRT1 and downstream BDNF expression in the hippocampus.
Collapse
Affiliation(s)
- Xi-Juan Sun
- Open Mental Department of Qingdao Mental Health Center, Qingdao University, No. 299 Nanjing Road, Qingdao 266034, Shandong, China
| | - Xin Zhao
- Open Mental Department of Qingdao Mental Health Center, Qingdao University, No. 299 Nanjing Road, Qingdao 266034, Shandong, China
| | - Jun-Ning Xie
- Open Mental Department of Qingdao Mental Health Center, Qingdao University, No. 299 Nanjing Road, Qingdao 266034, Shandong, China
| | - Hao Wan
- Open Mental Department of Qingdao Mental Health Center, Qingdao University, No. 299 Nanjing Road, Qingdao 266034, Shandong, China.
| |
Collapse
|
34
|
Zemba Cilic A, Zemba M, Cilic M, Balenovic I, Strbe S, Ilic S, Vukojevic J, Zoricic Z, Filipcic I, Kokot A, Drmic D, Blagaic AB, Tvrdeic A, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 counteracts L-NAME-induced catalepsy. BPC 157, L-NAME, L-arginine, NO-relation, in the suited rat acute and chronic models resembling 'positive-like' symptoms of schizophrenia. Behav Brain Res 2020; 396:112919. [PMID: 32956773 DOI: 10.1016/j.bbr.2020.112919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/15/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
In the suited rat-models, we focused on the stable pentadecapeptide BPC 157, L-NAME, NOS-inhibitor, and L-arginine, NOS-substrate, relation, the effect on schizophrenia-like symptoms. Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), BPC 157 (0.01), given alone and/or together, at 5 min before the challenge for the acutely disturbed motor activity (dopamine-indirect/direct agonists (amphetamine (3.0), apomorphine (2.5)), NMDA-receptor non-competitive antagonist (MK-801 (0.2)), or catalepsy, (dopamine-receptor antagonist haloperidol (2.0)). Alternatively, BPC 157 10 μg/kg was given immediately after L-NAME 40 mg/kg intraperitoneally. To induce or prevent sensitization, we used chronic methamphetamine administration, alternating 3 days during the first 3 weeks, and challenge after next 4 weeks, and described medication (L-NAME, L-arginine, BPC 157) at 5 min before the methamphetamine at the second and third week. Given alone, BPC 157 or L-arginine counteracted the amphetamine-, apomorphine-, and MK-801-induced effect, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization. L-NAME did not affect the apomorphine-, and MK-801-induced effects, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization, but counteracted the acute amphetamine-induced effect. In combinations (L-NAME + L-arginine), as NO-specific counteraction, L-NAME counteracts L-arginine-induced counteractions in the apomorphine-, MK-801-, haloperidol- and methamphetamine-rats, but not in amphetamine-rats. Unlike L-arginine, BPC 157 maintains its counteracting effect in the presence of the NOS-blockade (L-NAME + BPC 157) or NO-system-over-stimulation (L-arginine + BPC 157). Illustrating the BPC 157-L-arginine relationships, BPC 157 restored the antagonization (L-NAME + L-arginine + BPC 157) when it had been abolished by the co-administration of L-NAME with L-arginine (L-NAME + L-arginine). Finally, BPC 157 directly inhibits the L-NAME high dose-induced catalepsy. Further studies would determine precise BPC 157/dopamine/glutamate/NO-system relationships and clinical application.
Collapse
Affiliation(s)
- Andrea Zemba Cilic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Zemba
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Matija Cilic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Igor Balenovic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Spomenko Ilic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jaksa Vukojevic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Zoricic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Igor Filipcic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drmic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ante Tvrdeic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
35
|
Modirshanechi G, Eslampour MA, Abdolmaleki Z. Agonist and antagonist NMDA receptor effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture. Andrologia 2020; 52:e13764. [PMID: 32920884 DOI: 10.1111/and.13764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022] Open
Abstract
In this work, agonist and antagonist N-methyl-D-aspartate (NMDA) receptor activation effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture were studied. Afterwards, the effect of D-serine, retinoic acid (RA) and MK801 on spermatogenesis development was investigated. The animals were injected a single dose (40 mg/kg, intraperitoneal) of busulfan. After confirming the model, ten 5-day-old NMRI mice were used as spermatogonial stem cells (SSCs) transplantation donors. The SSCs were confirmed by detecting the promyelocytic leukaemia zinc finger (PLZF) protein. Then, tissue culture of the azoospermia model which had received SSCs was performed in various conditions (seven groups). The apoptosis markers levels of cells were significantly decreased in differentiation media containing RA and serine. In contrast, the expression of apoptotic markers including caspase 3, caspase 9 and Bax was increased in the presence of MK801. In conclusion, a new in vitro system capable of producing mature spermatozoa was developed that would be useful for investigating the medicinal effects of agents on the male reproductive system. Also, a comparison of spermatogenesis development in different media revealed that the presence of D-serine and RA (retinoic acid) in the culture medium has a positive effect on spermatogenesis.
Collapse
Affiliation(s)
- Ghazaleh Modirshanechi
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Eslampour
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
36
|
Ike KG, de Boer SF, Buwalda B, Kas MJ. Social withdrawal: An initially adaptive behavior that becomes maladaptive when expressed excessively. Neurosci Biobehav Rev 2020; 116:251-267. [DOI: 10.1016/j.neubiorev.2020.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022]
|
37
|
Langova V, Vales K, Horka P, Horacek J. The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research. Front Psychiatry 2020; 11:703. [PMID: 33101067 PMCID: PMC7500259 DOI: 10.3389/fpsyt.2020.00703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
Collapse
Affiliation(s)
- Veronika Langova
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Karel Vales
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
| | - Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Jiri Horacek
- Third Faculty of Medicine, Charles University, Prague, Czechia
- Brain Electrophysiology, National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
38
|
Zhou ZC, Huang WA, Yu Y, Negahbani E, Stitt IM, Alexander ML, Hamm JP, Kato HK, Fröhlich F. Stimulus-specific regulation of visual oddball differentiation in posterior parietal cortex. Sci Rep 2020; 10:13973. [PMID: 32811878 PMCID: PMC7435179 DOI: 10.1038/s41598-020-70448-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/22/2020] [Indexed: 11/08/2022] Open
Abstract
The frequency at which a stimulus is presented determines how it is interpreted. For example, a repeated image may be of less interest than an image that violates the prior sequence. This process involves integration of sensory information and internal representations of stimulus history, functions carried out in higher-order sensory areas such as the posterior parietal cortex (PPC). Thus far, there are few detailed reports investigating the single-neuron mechanisms for processing of stimulus presentation frequency in PPC. To address this gap in knowledge, we recorded PPC activity using 2-photon calcium imaging and electrophysiology during a visual oddball paradigm. Calcium imaging results reveal differentiation at the level of single neurons for frequent versus rare conditions which varied depending on whether the stimulus was preferred or non-preferred by the recorded neural population. Such differentiation of oddball conditions was mediated primarily by stimulus-independent adaptation in the frequent condition.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Wei Angel Huang
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yiyi Yu
- Department of Biomedical Sciences, University of California at Santa Barbara, Los Angeles, CA, 90048, USA
| | - Ehsan Negahbani
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Iain M Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Morgan L Alexander
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - Hiroyuki K Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, 6018A, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
39
|
Niu J, Cao Y, Ji Y. Resveratrol, a SIRT1 Activator, Ameliorates MK-801-Induced Cognitive and Motor Impairments in a Neonatal Rat Model of Schizophrenia. Front Psychiatry 2020; 11:716. [PMID: 32793005 PMCID: PMC7393240 DOI: 10.3389/fpsyt.2020.00716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In neonatal rats, MK-801 treatment generates schizophrenia-like symptoms. Resveratrol (RSV) is a phenolic compound and a potent neuroprotective agent. This research aimed to illustrate the effect of RSV on the amelioration of MK-801-induced cognitive and motor impairments in a neonatal rat schizophrenia model and the related potential molecular changes. METHODS Rats were administrated with MK-801, MK-801 + RSV (40 mg/kg), or MK-801 + RSV (80 mg/kg). Motor learning, coordination, locomotor and exploratory activity, and spatial memory were measured by rotarod test, pen field test, and Morris water maze test. Relative protein levels were analyzed by Western blot and ELISA. mRNA levels were shown by qRT-PCR. RESULTS In the hippocampus of MK-801-induced schizophrenia rat model, RSV enhanced silent information regulator 1 (SIRT1) and brain derived neurotrophic factor (BDNF) expression and alleviated oxidative stress. Motor perturbations and learning impairments by MK-801 treatment were ameliorated by the administration of RSV. CONCLUSION In conclusion, RSV showed neuroprotective effect on MK-801-induced schizophrenia rat model through regulating SIRT1 and downstream BDNF expression in the hippocampus.
Collapse
Affiliation(s)
- Juan Niu
- Psychological Clinic, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuquan Cao
- Rizhao Mental Health Center, Rizhao, China
| | - Yongjuan Ji
- Department of Mental Health, Qingdao Women and Children’s Hospital, Qingdao, China
| |
Collapse
|
40
|
Humer E, Probst T, Pieh C. Metabolomics in Psychiatric Disorders: What We Learn from Animal Models. Metabolites 2020; 10:E72. [PMID: 32079262 PMCID: PMC7074444 DOI: 10.3390/metabo10020072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Biomarkers are a recent research target within biological factors of psychiatric disorders. There is growing evidence for deriving biomarkers within psychiatric disorders in serum or urine samples in humans, however, few studies have investigated this differentiation in brain or cerebral fluid samples in psychiatric disorders. As brain samples from humans are only available at autopsy, animal models are commonly applied to determine the pathogenesis of psychiatric diseases and to test treatment strategies. The aim of this review is to summarize studies on biomarkers in animal models for psychiatric disorders. For depression, anxiety and addiction disorders studies, biomarkers in animal brains are available. Furthermore, several studies have investigated psychiatric medication, e.g., antipsychotics, antidepressants, or mood stabilizers, in animals. The most notable changes in biomarkers in depressed animal models were related to the glutamate-γ-aminobutyric acid-glutamine-cycle. In anxiety models, alterations in amino acid and energy metabolism (i.e., mitochondrial regulation) were observed. Addicted animals showed several biomarkers according to the induced drugs. In summary, animal models provide some direct insights into the cellular metabolites that are produced during psychiatric processes. In addition, the influence on biomarkers due to short- or long-term medication is a noticeable finding. Further studies should combine representative animal models and human studies on cerebral fluid to improve insight into mental disorders and advance the development of novel treatment strategies.
Collapse
Affiliation(s)
- Elke Humer
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria; (T.P.); (C.P.)
| | | | | |
Collapse
|
41
|
Watt G, Przybyla M, Zak V, van Eersel J, Ittner A, Ittner LM, Karl T. Novel Behavioural Characteristics of Male Human P301S Mutant Tau Transgenic Mice - A Model for Tauopathy. Neuroscience 2020; 431:166-175. [PMID: 32058066 DOI: 10.1016/j.neuroscience.2020.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterised by progressive cognitive decline and the accumulation of two hallmark proteins, amyloid-beta (Aβ) and tau. Traditionally, transgenic mouse models for AD have generally focused on Aβ pathology, however, in recent years a number of tauopathy transgenic mouse models have been developed, including the TAU58/2 mouse model. These mice develop tau pathology and neurofibrillary tangles from 2 months of age and show motor impairments and alterations in the behavioural response to elevated plus maze (EPM) testing. The cognitive and social phenotype of this model has not yet been assessed comprehensively. Furthermore, the behavioural changes seen in the EPM have previously been linked to both anxiety and disinhibitory phenotypes. Thus, this study assessed 4-month-old TAU58/2 males comprehensively for disinhibitory and social behaviours, social recognition memory, and sensorimotor gating. TAU58/2 males demonstrated reduced exploration and anxiety-like behaviours but no changes to disinhibitory behaviours, reduced sociability in the social preference test and impaired acoustic startle and prepulse inhibition. Aggressive and socio-positive behaviours were not affected except a reduction in the occurrence of nosing and anogenital sniffing. Our study identified new phenotypic characteristics of young adult male TAU58/2 transgenic mice and clarified the nature of changes detected in the behavioural response of these mice to EPM testing. Social withdrawal and inappropriate social behaviours are common symptoms in both AD and FTD patients and impaired sensorimotor gating is seen in moderate-late stage AD, emphasising the relevance of the TAU58/2 model to these diseases.
Collapse
Affiliation(s)
- Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Valeria Zak
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Janet van Eersel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Arne Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, Australia; Neuroscience Research Australia (NeuRA), Randwick, Australia.
| |
Collapse
|
42
|
Mabunga DFN, Park D, Ryu O, Valencia ST, Adil KJL, Kim S, Kwon KJ, Shin CY, Jeon SJ. Recapitulation of Neuropsychiatric Behavioral Features in Mice Using Acute Low-dose MK-801 Administration. Exp Neurobiol 2019; 28:697-708. [PMID: 31902157 PMCID: PMC6946115 DOI: 10.5607/en.2019.28.6.697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Despite some innate limitations, animal models are a potent investigative tool when used to model specific symptoms of a disorder. For example, MK-801, an N-methyl-D-aspartate receptor antagonist, is used as a pharmacological tool to induce symptoms found in some neuropsychiatric disorders. However, a close examination of literature suggests that the application window of MK-801 doses is relatively narrow between individual behavioral paradigms, necessitating careful characterization of the evoked behavioral aberrations and the doses used to induce them. Moreover, variation in behaviors depending on the animal strain, gender of the subject, and the timing of administration is observed, making it difficult to compare the behavioral characteristics reported in different studies. We aim to characterize the behavioral aberrations induced by different doses of MK-801 in CD-1 mice and create a ready reference for future studies. We used CD-1 mice to recapitulate behavioral impairments resulting from acute administration of MK-801. In 0.1 mg kg−1, we observed diminished spontaneous alteration during the Y-maze test, while 0.12 mg kg−1 resulted in hyperlocomotion and social deficit. Mice treated with 0.2 and 0.3 mg kg−1 of MK-801 demonstrated a decreased self-grooming. Finally, all doses significantly impaired cliff avoidance behaviors suggesting increased impulsivity. These results affirm that MK-801 can effectively model various symptoms of different neuropsychiatric disorders in a dose-dependent manner. The observed sensitivity against spatial-memory impairment and impulsive behaviors at low concentration of MK-801 suggest that MK801 may modulate cognitive function and impulsivity in even lower concentration before it can modulate other behavioral domains.
Collapse
Affiliation(s)
- Darine Froy N Mabunga
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Donghyun Park
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Onjeon Ryu
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Schley T Valencia
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea
| | | | - Seonmin Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Se Jin Jeon
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
43
|
The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents. Int J Mol Sci 2019; 20:ijms20225599. [PMID: 31717513 PMCID: PMC6887971 DOI: 10.3390/ijms20225599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/09/2023] Open
Abstract
The appropriate display of social behaviors is essential for the well-being, reproductive success and survival of an individual. Deficits in social behavior are associated with impaired N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission. In this review, we describe recent studies using genetically modified mice and pharmacological approaches which link the impaired functioning of the NMDA receptors, especially of the receptor subunits GluN1, GluN2A and GluN2B, to abnormal social behavior. This abnormal social behavior is expressed as impaired social interaction and communication, deficits in social memory, deficits in sexual and maternal behavior, as well as abnormal or heightened aggression. We also describe the positive effects of pharmacological stimulation of the NMDA receptors on these social deficits. Indeed, pharmacological stimulation of the glycine-binding site either by direct stimulation or by elevating the synaptic glycine levels represents a promising strategy for the normalization of genetically-induced, pharmacologically-induced or innate deficits in social behavior. We emphasize on the importance of future studies investigating the role of subunit-selective NMDA receptor ligands on different types of social behavior to provide a better understanding of the underlying mechanisms, which might support the development of selective tools for the optimized treatment of disorders associated with social deficits.
Collapse
|
44
|
Unal G, Dokumaci AH, Ozkartal CS, Yerer MB, Aricioglu F. Famotidine has a neuroprotective effect on MK-801 induced toxicity via the Akt/GSK-3β/β-catenin signaling pathway in the SH-SY5Y cell line. Chem Biol Interact 2019; 314:108823. [PMID: 31563592 DOI: 10.1016/j.cbi.2019.108823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/29/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Schizophrenia cannot be treated sufficiently with existing antipsychotic drugs. Taken into account that increased Glycogen Synthase Kinase 3 Beta (GSK-3β) activity is associated with schizophrenia pathophysiology and certain antipsychotics can be able to decrease GSK3β activity, inhibition of GSK-3β activity could be a novel approach for the treatment of schizophrenia. In the present study MK-801, a widely used chemical for the in vivo/in vitro modeling of schizophrenia was selected to evoke a detrimental effect on cellular survival via GSK3β and related proteins. A limited number of studies have reported the curative effects of famotidine, an antiulcer drug, in schizophrenic patients. To the best of our knowledge, no study investigated the molecular mechanism of the beneficial effect of famotidine in the patients. A recent study based on computerized drug modeling software (docking) indicated that famotidine might inhibit the GSK3β activity due to its chemical structure independent from histaminergic receptors. In this study, we aimed to investigate the effects of famotidine on the Akt/GSK-3β/β-catenin signaling pathway on SH-SY5Y neuroblastoma cells in the presence of MK-801. We investigated the effects of famotidine, olanzapine (an antipsychotic drug), and SB 415286 (specific GSK-3β inhibitor), on the basal cellular survival and MK-801 induced neuronal death beside of Akt/GSK-3β/β-catenin protein and gene expressions in SH-SY5Y cells. Cell viability, protein and gene expressions were determined by the real-time cell analysis (xCELLigence) system, western blotting and real-time polymerase chain reactions (Rt-PCR), respectively. Our findings suggested that MK-801 administration decreased cell survival probably via the increasing GSK-3β gene expression and activity in the SH-SY5Y cells. Pre-treatments with famotidine, olanzapine, and SB 415286 prevented MK-801 induced cell death via inhibitory effects on the MK-801 induced GSK-3β activity. Overall, the present results suggest that famotidine has a neuroprotective effect against MK-801 via modulation of the Akt/GSK-3β/β-catenin signaling pathway, an important mechanism in schizophrenia neurobiology.
Collapse
Affiliation(s)
- Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Alim Hüseyin Dokumaci
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ceren Sahin Ozkartal
- Department of Pharmacology and Psychopharmacology Research Unit, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
45
|
Discovery of a pyrazolo[1,5-a]pyrimidine derivative (MT-3014) as a highly selective PDE10A inhibitor via core structure transformation from the stilbene moiety. Bioorg Med Chem 2019; 27:3440-3450. [DOI: 10.1016/j.bmc.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022]
|
46
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
47
|
Ghotbi Ravandi S, Shabani M, Bashiri H, Saeedi Goraghani M, Khodamoradi M, Nozari M. Ameliorating effects of berberine on MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Neurosci Lett 2019; 706:151-157. [DOI: 10.1016/j.neulet.2019.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022]
|
48
|
Kim DG, Gonzales EL, Kim S, Kim Y, Adil KJ, Jeon SJ, Cho KS, Kwon KJ, Shin CY. Social Interaction Test in Home Cage as a Novel and Ethological Measure of Social Behavior in Mice. Exp Neurobiol 2019; 28:247-260. [PMID: 31138992 PMCID: PMC6526108 DOI: 10.5607/en.2019.28.2.247] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023] Open
Abstract
Sociability is the disposition to interact with one another. Rodents have a rich repertoire of social behaviors and demonstrate strong sociability. Various methods have been established to measure the sociability of rodents in simple and direct ways, which includes reciprocal social interaction, juvenile social play, and three-chamber social tests. There are possible confounding factors while performing some of these tasks, such as aggression, avoidance of interaction by the stimulus mouse, exposure to a new environment, and lengthy procedures. The present study devised a method to complement these shortcomings and measure sociability as a group in the home cage setting, which prevents group-housed mice from isolation or exposure to a new environment. The home cage social test can allow high-throughput screening of social behaviors in a short amount of time. We developed two types of home cage setup: a home cage social target interaction test that measures sociability by putting the wire cage in the center area of the cage and a home cage two-choice sociability and social preference test that measures both sociability or social preference by putting cage racks at opposite sides of the cage. Interestingly, our results showed that the two types of home cage setup that we used in this study can extract abnormal social behaviors in various animal models, similar to the three-chamber assay. Thus, this study establishes a new and effective method to measure sociability or social preference that could be a complementary assay to evaluate the social behavior of mice in various setup conditions.
Collapse
Affiliation(s)
- Do Gyeong Kim
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Edson Luck Gonzales
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Seonmin Kim
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Yujeong Kim
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Keremkleroo Jym Adil
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Se Jin Jeon
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Kyu Suk Cho
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
49
|
Su T, Lu Y, Geng Y, Lu W, Chen Y. How could N-Methyl-D-Aspartate Receptor Antagonists Lead to Excitation Instead of Inhibition? BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a family of ionotropic glutamate receptors mainly known to mediate excitatory synaptic transmission and plasticity. Interestingly, low-dose NMDAR antagonists lead to increased, instead of decreased, functional connectivity; and they could cause schizophrenia- and/or antidepressant-like behavior in both humans and rodents. In addition, human genetic evidences indicate that NMDAR loss of function mutations underlie certain forms of epilepsy, a disease featured with abnormal brain hyperactivity. Together, they all suggest that under certain conditions, NMDAR activation actually lead to inhibition, but not excitation, of the global neuronal network. Apparently, these phenomena are rather counterintuitive to the receptor's basic role in mediating excitatory synaptic transmission. How could it happen? Recently, this has become a crucial question in order to fully understand the complexity of NMDAR function, particularly in disease. Over the past decades, different theories have been proposed to address this question. These include theories of “NMDARs on inhibitory neurons are more sensitive to antagonism”, or “basal NMDAR activity actually inhibits excitatory synapse”, etc. Our review summarizes these efforts, and also provides an introduction of NMDARs, inhibitory neurons, and their relationships with the related diseases. Advances in the development of novel NMDAR pharmacological tools, particularly positive allosteric modulators, are also included to provide insights into potential intervention strategies.
Collapse
Affiliation(s)
- Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Kim S, Kim DG, Gonzales EL, Mabunga DFN, Shin D, Jeon SJ, Shin CY, Ahn T, Kwon KJ. Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice. Biomol Ther (Seoul) 2019; 27:168-177. [PMID: 30580503 PMCID: PMC6430226 DOI: 10.4062/biomolther.2018.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.
Collapse
Affiliation(s)
- Seonmin Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Gyeong Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Darine Froy N Mabunga
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dongpil Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - TaeJin Ahn
- Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|