1
|
Młynarska E, Kustosik N, Mejza M, Łysoń Z, Delebis D, Orliński J, Rysz J, Franczyk B. Renal Outcomes and Other Adverse Effects of Cannabinoid Supplementation. Nutrients 2024; 17:59. [PMID: 39796493 PMCID: PMC11722839 DOI: 10.3390/nu17010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
This narrative review explores the benefits and risks of cannabinoids in kidney health, particularly in individuals with pre-existing renal conditions. It discusses the roles of cannabinoid receptor ligands (phytocannabinoids, synthetic cannabinoids, and endocannabinoids) in kidney physiology. The metabolism and excretion of these substances are also highlighted, with partial elimination occurring via the kidneys. The effects of cannabinoids on kidney function are examined, emphasizing both their potential to offer nephroprotection and the risks they may pose, such as cannabinoid hyperemesis syndrome and ischemia-reperfusion injury. These complexities underscore the intricate interactions between cannabinoids and renal health. Furthermore, this review highlights the association between chronic synthetic cannabinoid use and acute kidney injury, stressing the need for further research into their mechanisms and risks. This article also highlights the growing prevalence of edible cannabis and hemp seed consumption, emphasizing their nutritional benefits, legal regulations, and challenges such as inconsistent labeling, potential health risks, and implications for kidney health. The review delves into the roles of CB1 and CB2 receptors in diabetic nephropathy, chronic kidney disease, and obesity-related kidney dysfunction, discussing the therapeutic potential of CB2 agonists and CB1 antagonists. Additionally, it examines the potential diuretic and anti-inflammatory effects of cannabinoids in preventing kidney stones, suggesting that cannabinoids could reduce crystal retention and lower the risk of stone formation. Cannabinoids' effects on kidneys depend heavily on the characteristics of individual substances, as synthetic cannabinoids pose a major threat to the health of users. Cannabinoids offer therapeutic potential but require more research to confirm their benefits. Distinguishing between therapeutic cannabinoids and harmful synthetic variants is crucial for safe clinical application.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Natalia Kustosik
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Maja Mejza
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Zuzanna Łysoń
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Dawid Delebis
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Jakub Orliński
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Internal Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
2
|
Pintori N, Serra MP, Carai A, Lobina C, Isola R, Noli R, Piras G, Spano E, Baumann MH, Quartu M, De Luca MA. Evidence for enduring cardiac and multiorgan toxicity after repeated exposure to the synthetic cannabinoid JWH-018 in male rats. Toxicology 2024; 507:153878. [PMID: 38972446 DOI: 10.1016/j.tox.2024.153878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
The use of synthetic cannabinoid receptor agonists (SCRAs) represents a public health concern. Besides abuse liability and cognitive impairments, SCRAs consumption is associated with serious medical consequences in humans, including cardiotoxicity. The precise mechanisms underlying cardiac or other toxicities induced by SCRAs are not well understood. Here, we used in silico, in vivo, and ex vivo approaches to investigate the toxicological consequences induced by exposure to the SCRA JWH-018. Along with in silico predictive toxicological screening of 36 SCRAs by MC4PC software, adult male Sprague-Dawley rats were repeatedly exposed to JWH-018 (0.25 mg/kg ip) for 14 consecutive days, with body temperature and cardiovascular parameters measured over the course of treatment. At 1 and 7 days after JWH-018 discontinuation, multiorgan tissue pathologies and heart mitochondria bioenergetics were assessed. The in silico findings predicted risk of cardiac adverse effects specifically for JWH-018 and other aminoalkylindole SCRAs (i.e., electrocardiogram abnormality and QT prolongation). The results from rats revealed that repeated, but not single, JWH-018 exposure induced hypothermia and cardiovascular stimulation (e.g., increased blood pressure and heart rate) which persisted throughout treatment. Post-mortem findings demonstrated cardiac lesions (i.e., vacuolization, waving, edema) 1 day after JWH-018 discontinuation, which may contribute to lung, kidney, and liver tissue degeneration observed 7 days later. Importantly, repeated JWH-018 exposure induced mitochondrial dysfunction in cardiomyocytes, i.e., defective lipid OXPHOS, which may represent one mechanism of JWH-018-induced toxicity. Our results demonstrate that repeated administration of even a relatively low dose of JWH-018 is sufficient to affect cardiovascular function and induce enduring toxicological consequences, pointing to risks associated with SCRA consumption.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy.
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy
| | - Antonio Carai
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy
| | - Carla Lobina
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy
| | - Raffaella Isola
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy
| | - Roberta Noli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy
| | - Enrica Spano
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy.
| |
Collapse
|
3
|
Breivogel CS, Brenseke BM, Eldeeb K, Nichols K, Jonas A, Mistry AH, Barbalato L, Luibil N, Howlett AC, Leone-Kabler S, Hilgers RPH, Pulgar VM. Effects of Δ 9-Tetrahydrocannabinol and the Aminoalkylindole K2/Spice Constituent JWH-073 on Cardiac Tissue and Mesenteric Vascular Reactivity. Cannabis Cannabinoid Res 2024; 9:e1056-e1062. [PMID: 37010379 PMCID: PMC11386992 DOI: 10.1089/can.2022.0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Background: Although use of Cannabis sativa is not associated with serious adverse effects, recreational use of aminoalkylindole (AAI) cannabinoid receptor agonists found in K2/Spice herbal blends has been reported to cause adverse cardiovascular events, including angina, arrhythmia, changes in blood pressure, ischemic stroke, and myocardial infarction. Δ9-Tetrahydrocannabinol (Δ9-THC) is the primary CB1 agonist found in cannabis and JWH-073 is one of the AAI CB1 agonists found in K2/Spice brands sold to the public. Methods: This study used in vitro, in vivo, and ex vivo approaches to investigate potential differences on cardiac tissue and vascular effects betweenJWH-073 and Δ9-THC. Male C57BL/6 mice were treated with JWH-073 or Δ9-THC and cardiac injury was assessed by histology. Effects of JWH-073 and Δ9-THC on H9C2 cell viability and ex vivo mesenteric vascular reactivity were also determined. Results: JWH-073 or Δ9-THC induced typical cannabinoid effects of antinociception and hypothermia but did not promote death of cardiac myocytes. No differences in cell viability were observed in cultured H9C2 cardiac myocytes after 24 h of treatment. In isolated mesenteric arteries from drug-naive animals, JWH-073 produced significantly greater maximal relaxation (96%±2% vs. 73%±5%, p<0.05) and significantly greater inhibition of phenylephrine-mediated maximal contraction (Control 174%±11%KMAX) compared with Δ9-THC (50%±17% vs. 119%±16%KMAX, p<0.05). Discussion: These findings suggest that neither cannabinoid at the concentrations/dose studied caused cardiac cell death, but JWH-073 has the potential for greater vascular adverse events than Δ9-THC through an increased vasodilatory effect.
Collapse
Affiliation(s)
- Chris S Breivogel
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Bonnie M Brenseke
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Khalil Eldeeb
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
- Al Azhar Damietta Faculty of Medicine, New Damietta, Egypt
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katlyn Nichols
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Amreen Jonas
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Artik H Mistry
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Laura Barbalato
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Nicholas Luibil
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rob P H Hilgers
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Victor M Pulgar
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Biomedical Research Infrastructure Center, Winston-Salem State University, Winston-Salem, North Carolina, USA
| |
Collapse
|
4
|
Corli G, Roda E, Tirri M, Bilel S, De Luca F, Strano-Rossi S, Gaudio RM, De-Giorgio F, Fattore L, Locatelli CA, Marti M. Sex-specific behavioural, metabolic, and immunohistochemical changes after repeated administration of the synthetic cannabinoid AKB48 in mice. Br J Pharmacol 2024; 181:1361-1382. [PMID: 38148741 DOI: 10.1111/bph.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND PURPOSE AKB48 is a synthetic cannabinoid illegally sold for its psychoactive cannabis-like effects that have been associated with acute intoxication and whose effects are poorly known. EXPERIMENTAL APPROACH Using a behavioural, neurochemical, and immunohistochemical approach, we investigated the pharmaco-toxicological effects, pharmacokinetics, and neuroplasticity at cannabinoid CB1 receptors in the cerebellum and cortex induced by repeated AKB48 administration in male and female mice. KEY RESULTS The effects of AKB48 varied significantly depending on sex and treatment duration. The first injection impaired sensorimotor responses and reduced body temperature, analgesia, and breath rate to a greater extent in females than in males; the second injection induced stronger effects in males while the third injection of AKB48 induced weaker responses in both sexes, suggesting emergence of tolerance. The CB1 receptor antagonist NESS-0327 prevented the effects induced by repeated AKB48, confirming a CB1 receptor-mediated action. Blood AKB48 levels were higher in females than in males and repeated administration caused a progressive rise of AKB48 levels in both sexes, suggesting an inhibitory effect on cytochrome activity. Finally, immunohistochemical analysis revealed higher expression of CB1 receptors in the cerebellum and cortex of females, and a rapid CB1 receptor down-regulation in cerebellar and cortical areas following repeated AKB48 injections, with neuroadaptation occurring generally more rapidly in females than in males. CONCLUSION AND IMPLICATIONS We have shown for the first time that AKB48 effects significantly vary with prolonged use and that sex affects the pharmacodynamic/pharmacokinetic responses to repeated administration, suggesting a sex-tailored approach in managing AKB48-induced intoxication.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabrizio De Luca
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Sabina Strano-Rossi
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Liana Fattore
- National Research Council, CNR Institute of Neuroscience-Cagliari, Cagliari, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Rome, Italy
| |
Collapse
|
5
|
Di Francesco G, Montesano C, Vincenti F, Bilel S, Corli G, Petrella G, Cicero DO, Gregori A, Marti M, Sergi M. Tackling new psychoactive substances through metabolomics: UHPLC-HRMS study on natural and synthetic opioids in male and female murine models. Sci Rep 2024; 14:9432. [PMID: 38658766 PMCID: PMC11043364 DOI: 10.1038/s41598-024-60045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Novel psychoactive substances (NPS) represent a broad class of drugs new to the illicit market that often allow passing drug-screening tests. They are characterized by a variety of structures, rapid transience on the drug scene and mostly unknown metabolic profiles, thus creating an ever-changing scenario with evolving analytical targets. The present study aims at developing an indirect screening strategy for NPS monitoring, and specifically for new synthetic opioids (NSOs), based on assessing changes in endogenous urinary metabolite levels as a consequence of the systemic response following their intake. The experimental design involved in-vivo mice models: 16 animals of both sex received a single administration of morphine or fentanyl. Urine was collected before and after administration at different time points; the samples were then analysed with an untargeted metabolomics LC-HRMS workflow. According to our results, the intake of opioids resulted in an elevated energy demand, that was more pronounced on male animals, as evidenced by the increase in medium and long chain acylcarnitines levels. It was also shown that opioid administration disrupted the pathways related to catecholamines biosynthesis. The observed alterations were common to both morphine and fentanyl: this evidence indicate that they are not related to the chemical structure of the drug, but rather on the drug class. The proposed strategy may reinforce existing NPS screening approaches, by identifying indirect markers of drug assumption.
Collapse
Affiliation(s)
| | - Camilla Montesano
- Department of Chemistry, University La Sapienza, 00185, Rome, Italy.
| | | | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Greta Petrella
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Daniel Oscar Cicero
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Adolfo Gregori
- Carabinieri, Department of Scientific Investigation (RIS), 00191, Rome, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| | - Manuel Sergi
- Department of Chemistry, University La Sapienza, 00185, Rome, Italy
| |
Collapse
|
6
|
Bilel S, Zamberletti E, Caffino L, Tirri M, Mottarlini F, Arfè R, Barbieri M, Beggiato S, Boccuto F, Bernardi T, Casati S, Brini AT, Parolaro D, Rubino T, Ferraro L, Fumagalli F, Marti M. Cognitive dysfunction and impaired neuroplasticity following repeated exposure to the synthetic cannabinoid JWH-018 in male mice. Br J Pharmacol 2023; 180:2777-2801. [PMID: 37311647 DOI: 10.1111/bph.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Psychotic disorders have been reported in long-term users of synthetic cannabinoids. This study aims at investigating the long-lasting effects of repeated JWH-018 exposure. EXPERIMENTAL APPROACH Male CD-1 mice were injected with vehicle, JWH-018 (6 mg·kg-1 ), the CB1 -antagonist NESS-0327 (1 mg·kg-1 ) or co-administration of NESS-0327 and JWH-018, every day for 7 days. After 15 or 16 days washout, we investigated the effects of JWH-018 on motor function, memory, social dominance and prepulse inhibition (PPI). We also evaluated glutamate levels in dialysates from dorsal striatum, striatal dopamine content and striatal/hippocampal neuroplasticity focusing on the NMDA receptor complex and the neurotrophin BDNF. These measurements were accompanied by in vitro electrophysiological evaluations in hippocampal preparations. Finally, we investigated the density of CB1 receptors and levels of the endocannabinoid anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and their main synthetic and degrading enzymes in the striatum and hippocampus. KEY RESULTS The repeated treatment with JWH-018 induced psychomotor agitation while reducing social dominance, recognition memory and PPI in mice. JWH-018 disrupted hippocampal LTP and decreased BDNF expression, reduced the synaptic levels of NMDA receptor subunits and decreased the expression of PSD95. Repeated exposure to JWH-018, reduced hippocampal CB1 receptor density and induced a long-term alteration in AEA and 2-AG levels and their degrading enzymes, FAAH and MAGL, in the striatum. CONCLUSION AND IMPLICATIONS Our findings suggest that repeated administration of a high dose of JWH-018 leads to the manifestation of psychotic-like symptoms accompanied by alterations in neuroplasticity and change in the endocannabinoid system.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mario Barbieri
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Sara Casati
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Anna T Brini
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
- Zardi-Gori Foundation, Milan, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
- Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Ferrara, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
7
|
Corli G, Tirri M, Bilel S, Arfè R, Coccini T, Roda E, Marchetti B, Vincenzi F, Zauli G, Borea PA, Locatelli CA, Varani K, Marti M. MAM-2201 acute administration impairs motor, sensorimotor, prepulse inhibition, and memory functions in mice: a comparison with its analogue AM-2201. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06378-8. [PMID: 37233813 DOI: 10.1007/s00213-023-06378-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
RATIONALE 1-[(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl) methanone (MAM-2201) is a potent synthetic cannabinoid receptor agonist illegally marketed in "spice" products and as "synthacaine" for its psychoactive effects. It is a naphthoyl-indole derivative which differs from its analogue 1-[(5-Fluoropentyl)-1H-indol-3-yl](1-naphthylenyl) methanone (AM-2201) by the presence of a methyl substituent on carbon 4 (C-4) of the naphthoyl moiety. Multiple cases of intoxication and impaired driving have been linked to AM-2201 and MAM-2201 consumption. OBJECTIVES This study aims to investigate the in vitro (murine and human cannabinoid receptors) and in vivo (CD-1 male mice) pharmacodynamic activity of MAM-2201 and compare its effects with those induced by its desmethylated analogue, AM-2201. RESULTS In vitro competition binding studies confirmed that MAM-2201 and AM-2201 possess nanomolar affinity for both CD-1 murine and human CB1 and CB2 receptors, with preference for the CB1 receptor. In agreement with the in vitro binding data, in vivo studies showed that MAM-2201 induces visual, acoustic, and tactile impairments that were fully prevented by pretreatment with CB1 receptor antagonist/partial agonist AM-251, indicating a CB1 receptor mediated mechanism of action. Administration of MAM-2201 also altered locomotor activity and PPI responses of mice, pointing out its detrimental effect on motor and sensory gating functions and confirming its potential use liability. MAM-2201 and AM-2201 also caused deficits in short- and long-term working memory. CONCLUSION These findings point to the potential public health burden that these synthetic cannabinoids may pose, with particular emphasis on impaired driving and workplace performance.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Elisa Roda
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | | | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy.
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
8
|
Behavioral and Pharmacokinetics Studies of N-Methyl-2-Aminoindane (NM2AI) in Mice: An Aminoindane Briefly Used in the Illicit Drug Market. Int J Mol Sci 2023; 24:ijms24031882. [PMID: 36768197 PMCID: PMC9916073 DOI: 10.3390/ijms24031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Drug forums are considered as the main platform sources that have contributed to the increase in NPS popularity, especially for those not yet known to law enforcement and therefore not yet illegal. An example is the new synthetic stimulant NM2AI, which has a very short history of human use and abuse. Little is known regarding this compound, but some information from internet forums and the scientific literature indicates NM2AI as a structural derivate of MDAI, which is known for its entactogenic activity. Indeed, the purpose of this study is to evaluate, for the first time, the in vivo acute effect induced by the intraperitoneal injection of NM2AI (1-10-30-100 mg/kg) in mice. We demonstrate the sensory (by visual placing and object tests) and physiological (core temperature measurement) function variations, nociceptor (by tail pinch test) and strength (grip test) alterations, and sensorimotor (time on rod and mobility) decrease. Moreover, we verify the mild hallucinogenic effect of NM2AI (by startle/prepulse inhibition test). Lastly, we perform a pharmacokinetic study on mice blood samples, highlighting that the main active metabolite of NM2AI is 2-aminoindane (2AI). Taken together, our data confirm the suspected entactogenic activity of NM2AI; however, these in vivo effects appear atypical and less intense with respect to those induced by the classic stimulants, in surprising analogy with what is reported by networked users.
Collapse
|
9
|
De Simone U, Pignatti P, Villani L, Russo LA, Sargenti A, Bonetti S, Buscaglia E, Coccini T. Human Astrocyte Spheroids as Suitable In Vitro Screening Model to Evaluate Synthetic Cannabinoid MAM2201-Induced Effects on CNS. Int J Mol Sci 2023; 24:ijms24021421. [PMID: 36674936 PMCID: PMC9861655 DOI: 10.3390/ijms24021421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
There is growing concern about the consumption of synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances, its consequence on human health (general population and workers), and the continuous placing of new SCs on the market. Although drug-induced alterations in neuronal function remain an essential component for theories of drug addiction, accumulating evidence indicates the important role of activated astrocytes, whose essential and pleiotropic role in brain physiology and pathology is well recognized. The study aims to clarify the mechanisms of neurotoxicity induced by one of the most potent SCs, named MAM-2201 (a naphthoyl-indole derivative), by applying a novel three-dimensional (3D) cell culture model, mimicking the physiological and biochemical properties of brain tissues better than traditional two-dimensional in vitro systems. Specifically, human astrocyte spheroids, generated from the D384 astrocyte cell line, were treated with different MAM-2201 concentrations (1-30 µM) and exposure times (24-48 h). MAM-2201 affected, in a concentration- and time-dependent manner, the cell growth and viability, size and morphological structure, E-cadherin and extracellular matrix, CB1-receptors, glial fibrillary acidic protein, and caspase-3/7 activity. The findings demonstrate MAM-2201-induced cytotoxicity to astrocyte spheroids, and support the use of this human 3D cell-based model as species-specific in vitro tool suitable for the evaluation of neurotoxicity induced by other SCs.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Laura Villani
- Pathology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | | | | | - Simone Bonetti
- CNR-ISMN, Institute for Nanostructured Materials, 40129 Bologna, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-592416
| |
Collapse
|
10
|
Crosby SV, Ahmed IY, Osborn LR, Wang Z, Schleiff MA, Fantegrossi WE, Nagar S, Prather PL, Boysen G, Miller GP. Similar 5F-APINACA Metabolism between CD-1 Mouse and Human Liver Microsomes Involves Different P450 Cytochromes. Metabolites 2022; 12:metabo12080773. [PMID: 36005645 PMCID: PMC9413144 DOI: 10.3390/metabo12080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
In 2019, synthetic cannabinoids accounted for more than one-third of new drugs of abuse worldwide; however, assessment of associated health risks is not ethical for controlled and often illegal substances, making CD-1 mouse exposure studies the gold standard. Interpretation of those findings then depends on the similarity of mouse and human metabolic pathways. Herein, we report the first comparative analysis of steady-state metabolism of N-(1-adamantyl)-1-(5-pentyl)-1H-indazole-3-carboxamide (5F-APINACA/5F-AKB48) in CD-1 mice and humans using hepatic microsomes. Regardless of species, 5F-APINACA metabolism involved highly efficient sequential adamantyl hydroxylation and oxidative defluorination pathways that competed equally. Secondary adamantyl hydroxylation was less efficient for mice. At low 5F-APINACA concentrations, initial rates were comparable between pathways, but at higher concentrations, adamantyl hydroxylations became less significant due to substrate inhibition likely involving an effector site. For humans, CYP3A4 dominated both metabolic pathways with minor contributions from CYP2C8, 2C19, and 2D6. For CD-1 mice, Cyp3a11 and Cyp2c37, Cyp2c50, and Cyp2c54 contributed equally to adamantyl hydroxylation, but Cyp3a11 was more efficient at oxidative defluorination than Cyp2c members. Taken together, the results of our in vitro steady-state study indicate a high conservation of 5F-APINACA metabolism between CD-1 mice and humans, but deviations can occur due to differences in P450s responsible for the associated reactions.
Collapse
Affiliation(s)
- Samantha V. Crosby
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Izzeldin Y. Ahmed
- Department of Chemistry and Physics, Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Laura R. Osborn
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zeyuan Wang
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19122, USA
| | - Mary A. Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William E. Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19122, USA
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Grover P. Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| |
Collapse
|
11
|
Tirri M, Arfè R, Bilel S, Corli G, Marchetti B, Fantinati A, Vincenzi F, De-Giorgio F, Camuto C, Mazzarino M, Barbieri M, Gaudio RM, Varani K, Borea PA, Botrè F, Marti M. In Vivo Bio-Activation of JWH-175 to JWH-018: Pharmacodynamic and Pharmacokinetic Studies in Mice. Int J Mol Sci 2022; 23:ijms23148030. [PMID: 35887377 PMCID: PMC9318133 DOI: 10.3390/ijms23148030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Sabrine Bilel
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Beatrice Marchetti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- A. Gemelli University Polyclinic Foundation IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Rosa Maria Gaudio
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Pier Andrea Borea
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, CH-1015 Lausanne, Switzerland
| | - Matteo Marti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Bilel S, Azevedo Neto J, Arfè R, Tirri M, Gaudio RM, Fantinati A, Bernardi T, Boccuto F, Marchetti B, Corli G, Serpelloni G, De-Giorgio F, Malfacini D, Trapella C, Calo' G, Marti M. In vitro and in vivo pharmaco-dynamic study of the novel fentanyl derivatives: Acrylfentanyl, Ocfentanyl and Furanylfentanyl. Neuropharmacology 2022; 209:109020. [PMID: 35247453 DOI: 10.1016/j.neuropharm.2022.109020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023]
Abstract
Fentanyl derivatives (FENS) belongs to the class of Novel Synthetic Opioids that emerged in the illegal drug market of New Psychoactive Substances (NPS). These substances have been implicated in many cases of intoxication and death with overdose worldwide. Therefore, the aim of this study is to investigate the pharmaco-dynamic profiles of three fentanyl (FENT) analogues: Acrylfentanyl (ACRYLF), Ocfentanyl (OCF) and Furanylfentanyl (FUF). In vitro, we measured FENS opioid receptor efficacy, potency, and selectivity in calcium mobilization studies performed in cells coexpressing opioid receptors and chimeric G proteins and their capability to promote the interaction of the mu receptor with G protein and β-arrestin 2 in bioluminescence resonance energy transfer (BRET) studies. In vivo, we investigated the acute effects of the systemic administration of ACRYLF, OCF and FUF (0.01-15 mg/kg i.p.) on mechanical and thermal analgesia, motor impairment, grip strength and cardiorespiratory changes in CD-1 male mice. Opioid receptor specificity was investigated in vivo using naloxone (NLX; 6 mg/kg i.p) pre-treatment. In vitro, the three FENS were able to activate the mu opioid receptor in a concentration dependent manner with following rank order potency: FUF > FENT=OCF > ACRYLF. All compounds were able to elicit maximal effects similar to that of dermorphin, with the exception of FUF which displayed lower maximal effects thus behaving as a partial agonist. In the BRET G-protein assay, all compounds behaved as partial agonists for the β-arrestin 2 pathway in comparison with dermorphin, whereas FUF did not promote β-arrestin 2 recruitment, behaving as an antagonist. In vivo, all the compounds increased mechanical and thermal analgesia with following rank order potency ACRYLF = FENT > FUF > OCF and impaired motor and cardiorespiratory parameters. Among the substances tested, FUF showed lower potency for cardiorespiratory and motor effects. These findings reveal the risks associated with the use of FENS and the importance of studying the pharmaco-dynamic properties of these drugs to better understand possible therapeutic interventions in the case of toxicity.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Joaquim Azevedo Neto
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Center of Gender Medicine, University of Ferrara, Italy
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Federica Boccuto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit Verona, Italy and Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Fabio De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Girolamo Calo'
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Center of Gender Medicine, University of Ferrara, Italy; Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
13
|
Glatfelter GC, Partilla JS, Baumann MH. Structure-activity relationships for 5F-MDMB-PICA and its 5F-pentylindole analogs to induce cannabinoid-like effects in mice. Neuropsychopharmacology 2022; 47:924-932. [PMID: 34802041 PMCID: PMC8882184 DOI: 10.1038/s41386-021-01227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are an evolving class of new psychoactive substances found on recreational drug markets worldwide. The indole-containing compound, 5F-MDMB-PICA, is a popular SCRA associated with serious medical consequences, including overdose and hospitalizations. In vitro studies reveal that 5F-MDMB-PICA is a potent agonist at cannabinoid type 1 receptors (CB1), but little information exists regarding in vivo pharmacology of the drug. To this end, we examined the in vitro and in vivo cannabinoid-like effects produced by 5F-MDMB-PICA and related 5F-pentylindole analogs with differing composition of the head group moiety (i.e., 5F-NNEI, 5F-SDB-006, 5F-CUMYL-PICA, 5F-MMB-PICA). In mouse brain membranes, 5F-MDMB-PICA and its analogs inhibited binding to [3H]rimonabant-labeled CB1 and displayed agonist actions in [35S]GTPγS functional assays. 5F-MDMB-PICA exhibited the highest CB1 affinity (Ki = 1.24 nM) and functional potency (EC50 = 1.46 nM), but head group composition markedly influenced activity in both assays. For example, the 3,3-dimethylbutanoate (5F-MDMB-PICA) and cumyl (5F-CUMYL-PICA) head groups engendered high CB1 affinity and potency, whereas a benzyl (5F-SDB-006) head group did not. In C57BL/6J mice, all 5F-pentylindole SCRAs produced dose- and time-dependent hypothermia, catalepsy, and analgesia that were reversed by rimonabant, indicating CB1 involvement. In vitro Ki and EC50 values were positively correlated with in vivo ED50 potency estimates. Our findings demonstrate that 5F-MDMB-PICA is a potent SCRA, and subtle alterations to head group composition can have profound influence on pharmacological effects at CB1. Importantly, measures of CB1 binding and efficacy in mouse brain tissue seem to accurately predict in vivo drug potency in this species.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| | - John S. Partilla
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| | - Michael H. Baumann
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| |
Collapse
|
14
|
Barbieri M, Tirri M, Bilel S, Arfè R, Corli G, Marchetti B, Caruso L, Soukupova M, Cristofori V, Serpelloni G, Marti M. Synthetic cannabinoid JWH-073 alters both acute behavior and in vivo/vitro electrophysiological responses in mice. Front Psychiatry 2022; 13:953909. [PMID: 36339851 PMCID: PMC9634257 DOI: 10.3389/fpsyt.2022.953909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
JWH-073 is a synthetic cannabinoid (SCB) that is illegally marketed within an "herbal blend", causing psychoactive effects more intense than those produced by Cannabis. Users report that JWH-073 causes less harmful effects than other SCBs, misrepresenting it as a "safe JWH-018 alternative", which in turn prompts its recreational use. The present study is aimed to investigate the in vivo pharmacological activity on physiological and neurobehavioral parameters in male CD-1 mice after acute 1 mg/kg JWH-073 administration. To this aim we investigate its effect on sensorimotor (visual, acoustic, and tactile), motor (spontaneous motor activity and catalepsy), and memory functions (novel object recognition; NOR) in mice coupling behavioral and EEG data. Moreover, to clarify how memory function is affected by JWH-073, we performed in vitro electrophysiological studies in hippocampal preparations using a Long-Term Potentiation (LTP) stimulation paradigm. We demonstrated that acute administration of JWH-073 transiently decreased motor activity for up to 25 min and visual sensorimotor responses for up to 105 min, with the highest effects at 25 min (~48 and ~38%, respectively), while the memory function was altered up to 24 h (~33%) in treated-mice as compared to the vehicle. EEG in the somatosensory cortex showed a maximal decrease of α (~23%) and γ (~26%) bands at 15 min, β (~26%) band at 25 min, a maximal increase of θ (~14%) band at 25 min and δ (~35%) band at 2 h, and a significant decrease of θ (~18%), α (~26%), and β (~10%) bands during 24 h. On the other hand, EEG in the hippocampus showed a significant decrease of all bands from 10 min to 2 h, with the maximal effect at 30 min for θ (~34%) and γ (~26%) bands and 2 h for α (~36%), β (~29%), and δ (~15%) bands. Notably, the δ band significant increase both at 5 min (~12%) and 24 h (~19%). Moreover, in vitro results support cognitive function impairment (~60% of decrease) by interfering with hippocampal synaptic transmission and LTP generation. Our results suggest that JWH-073 deeply alters brain electrical responsiveness with minor behavioral symptoms. Thus, it poses a subtle threat to consumers who mistakenly consider it safer than other SCBs.
Collapse
Affiliation(s)
- Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Virginia Cristofori
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center and Transcranial Magnetic Stimulation (TMS) Unit, Verona, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department for Anti-Drug Policies, Collaborative Center of the National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
15
|
Orazietti V, Basile G, Giorgetti R, Giorgetti A. Effects of synthetic cannabinoids on psychomotor, sensory and cognitive functions relevant for safe driving. Front Psychiatry 2022; 13:998828. [PMID: 36226105 PMCID: PMC9548613 DOI: 10.3389/fpsyt.2022.998828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Recreational use of Synthetic Cannabinoids (SCs), one of the largest groups of New Psychoactive Substances (NPS), has increased globally over the past few years. Driving is a structured process requiring the cooperation of several cognitive and psychomotor functions, organized in different levels of complexity. Each of these functions can be affected when Driving Under the Influence (DUI) of SCs. In order to reduce the likelihood of SC-related road accidents, it is essential to understand which areas of psychomotor performance are most affected by these substances, as well as the severity of impairment. For this purpose, a multiple database- literature review of recent experimental studies in humans and animals regarding the psychomotor effects of SCs has been performed. Despite the many limitations connected to experimental studies on humans, results showed a consistency between animal and human data. SCs appear to impair psychomotor performance in humans, affecting different domains related to safe driving even at low doses. Cases of DUI of SC have been repeatedly reported, although the exact prevalence is likely to be underestimated due to current analytical and interpretative issues. For this reason, an accurate physical examination performed by trained and experienced personnel has a primary role in recognizing signs of impairment in case of strong suspicion of SC consumption. The identification of a suspected case should be followed by reliable laboratory examination.
Collapse
Affiliation(s)
- Vasco Orazietti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy
| | - Giuseppe Basile
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Galeazzi Orthopedics Institute, Milan, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy
| | - Arianna Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy.,Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Scuteri D, Rombolà L, Hamamura K, Sakurada T, Watanabe C, Sakurada S, Guida F, Boccella S, Maione S, Gallo Afflitto G, Nucci C, Tonin P, Bagetta G, Corasaniti MT. Is there a rational basis for cannabinoids research and development in ocular pain therapy? A systematic review of preclinical evidence. Biomed Pharmacother 2021; 146:112505. [PMID: 34891121 DOI: 10.1016/j.biopha.2021.112505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Purpose of the present systematic review is to investigate preclinical evidence in favor of the working hypothesis of efficacy of cannabinoids in ocular pain treatment. METHODS Literature search includes the most relevant repositories for medical scientific literature from inception until November, 24 2021. Data collection and selection of retrieved records adhere to PRISMA criteria. RESULTS In agreement with a priori established protocol the search retrieved 2471 records leaving 479 results after duplicates removal. Eleven records result from title and abstract screening to meet the inclusion criteria; only 4 results are eligible for inclusion in the qualitative synthesis impeding meta-analysis. The qualitative analysis highlights the antinociceptive and anti-inflammatory efficacy of Δ8-tetrahydrocannabinol, cannabidiol and its derivative HU-308 and of new racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229. Moreover, CB2R agonists RO6871304 and RO6871085 and CB2R ligand HU910 provide evidence of anti-inflammatory efficacy. CB2 agonist HU308 reduces of 241% uveitis-induced leukocyte adhesion and changes lipidome profile. Methodological and design issues raise concern of risk of bias and the amount of studies is too small for generalization. Furthermore, the ocular pain model used can resemble only inflammatory but not neuropathic pain. CONCLUSIONS The role of the endocannabinoid system in ocular pain is underinvestigated, since only two studies assessing the effects of cannabinoid receptors modulators on pain behavior and other two on pain-related inflammatory processes are found. Preclinical studies investigating the efficacy of cannabinoids in ocular inflammatory and neuropathic pain models are needed to pave the way for clinical translation.
Collapse
Affiliation(s)
- D Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy.
| | - L Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - K Hamamura
- Department of Pharmacology, Daiichi University of Pharmacy, 815-8511 Fukuoka, Japan.
| | - T Sakurada
- Department of Pharmacology, Daiichi University of Pharmacy, 815-8511 Fukuoka, Japan.
| | - C Watanabe
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan.
| | - S Sakurada
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan.
| | - F Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - S Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - S Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy; IRCSS, Neuromed, Pozzilli, Italy.
| | - G Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - C Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - P Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy.
| | - G Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - M T Corasaniti
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
17
|
Ethanol enhanced MDPV- and cocaine-induced aggressive behavior in mice: Forensic implications. Drug Alcohol Depend 2021; 229:109125. [PMID: 34763230 DOI: 10.1016/j.drugalcdep.2021.109125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Reports concerning the causal link between aggressive behavior and use and abuse of different substances (i.e., alcohol, MDPV) can be found in the literature. Nonetheless, the topic concerning the effects of acute ethanol administration on MDPV and cocaine induced aggressive behavior has yet to be thoroughly investigated. The aim of this study was to investigate such synergistic effects. MATERIALS AND METHODS A total of 360 male mice were employed in the study. Ethanol was diluted with saline solution and administered 10 min before MDPV or cocaine injection via oral gavage needles. Similarly, MDPV and cocaine were dissolved in saline solution and administered by intraperitoneal injection. Different associations of specific drug doses were then tested. To investigate the acute effects of MDPV and cocaine and their interaction with ethanol on aggression in mice, a resident-intruder test was used. RESULTS Ethanol alone was ineffective at dosages of 0.05 g/kg and 0.25 g/kg but increased the aggressiveness of the mice at 0.125 g/kg. Similarly, the injection of both cocaine alone and MDPV alone did not significantly increase the aggressiveness of the mice; conversely, the combination of ethanol and cocaine and ethanol and MDPV enhanced aggression at specific ethanol dosages (0.05 g/kg and 0.125 g/kg). CONCLUSION This study demonstrated that acute ethanol administration enhances MDPV- and cocaine-induced aggressive behavior in mice. This aggressive response is particularly enhanced when MDVP and cocaine are coupled with specific ethanol dosages, proving that psychostimulant drugs may act synergistically under certain conditions.
Collapse
|
18
|
Endocannabinoid System Attenuates Oxaliplatin-Induced Peripheral Sensory Neuropathy Through the Activation of CB1 Receptors. Neurotox Res 2021; 39:1782-1799. [PMID: 34792764 DOI: 10.1007/s12640-021-00442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Oxaliplatin-induced neurotoxicity is expressed as a dose-limiting peripheral sensory neuropathy (PSN). Cannabinoid substances have been investigated for the analgesic effect. This study aimed to investigate the role of cannabinoid receptors in oxaliplatin-associated PSN. Swiss male mice received nine oxaliplatin injections (2 mg/kg, i.v.). Mechanical and thermal nociceptive tests were performed for 56 days. CB1, CB2, and c-Fos expression were assessed in dorsal root ganglia (DRG), spinal cord (SC), trigeminal ganglia (TG), spinal trigeminal nucleus caudalis (Sp5C), and periaqueductal gray (PAG). Iba-1 expression was assessed in DRG and ATF3 in TG. Cannabidiol (10 mg/kg, p.o.) or a CB1/CB2 non-selective agonist (WIN 55,212-2; 0.5 mg/kg, s.c.) or AM251 (CB1 antagonist) or AM630 (CB2 antagonist) (3 mg/kg, i.p.) were injected before oxaliplatin. Oxaliplatin increased CB1 in DRG, SC, TG, Sp5C, and ventrolateral PAG, with no interference in CB2 expression. Cannabidiol increased CB1 in DRG, reduced mechanical hyperalgesia and c-Fos expression in DRG and SC. Additionally, WIN 55,212-2 increased CB1 in DRG, reduced mechanical hyperalgesia, cold allodynia and c-Fos expression in DRG and SC. CB1 blockage hastened the cold allodynia response, but the CB2 antagonist failed to modulate the oxaliplatin-induced nociceptive behavior. Oxaliplatin also increased Iba-1 in DRG, suggesting immune response modulation which was reduced by cannabidiol and enhanced by AM630. The modulation of the endocannabinoid system, through the CB1 receptor, attenuates the oxaliplatin-associated PNS. The activation of the endocannabinoid system could be considered as a therapeutic target for controlling oxaliplatin-associated neuropathy.
Collapse
|
19
|
Tirri M, Frisoni P, Bilel S, Arfè R, Trapella C, Fantinati A, Corli G, Marchetti B, De-Giorgio F, Camuto C, Mazzarino M, Gaudio RM, Serpelloni G, Schifano F, Botrè F, Marti M. Worsening of the Toxic Effects of (±) Cis-4,4'-DMAR Following Its Co-Administration with (±) Trans-4,4'-DMAR: Neuro-Behavioural, Physiological, Immunohistochemical and Metabolic Studies in Mice. Int J Mol Sci 2021; 22:ijms22168771. [PMID: 34445476 PMCID: PMC8395767 DOI: 10.3390/ijms22168771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
4,4’-Dimethylaminorex (4,4’-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1–60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4′-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers’ co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.
Collapse
Affiliation(s)
- Micaela Tirri
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Paolo Frisoni
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Sabrine Bilel
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Raffaella Arfè
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.T.); (A.F.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.T.); (A.F.)
| | - Giorgia Corli
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Beatrice Marchetti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioetics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Rosa Maria Gaudio
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit, 37138 Verona, Italy;
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL 32611, USA
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, 1015 Lausanne, Switzerland
| | - Matteo Marti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
20
|
Marti M, Talani G, Miliano C, Bilel S, Biggio F, Bratzu J, Diana M, De Luca MA, Fattore L. New insights into methoxetamine mechanisms of action: Focus on serotonergic 5-HT 2 receptors in pharmacological and behavioral effects in the rat. Exp Neurol 2021; 345:113836. [PMID: 34384790 DOI: 10.1016/j.expneurol.2021.113836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023]
Abstract
Methoxetamine (MXE) is a dissociative substance of the arylcyclohexylamine class that has been present on the designer drug market as a ketamine-substitute since 2010. We have previously shown that MXE (i) possesses ketamine-like discriminative and positive rewarding effects in rats, (ii) affects brain processing involved in cognition and emotional responses, (iii) causes long-lasting behavioral abnormalities and neurotoxicity in rats and (iv) induces neurological, sensorimotor and cardiorespiratory alterations in mice. To shed light on the mechanisms through which MXE exerts its effects, we conducted a multidisciplinary study to evaluate the various neurotransmitter systems presumably involved in its actions on the brain. In vivo microdialysis study first showed that a single administration of MXE (0.25 and 0.5 mg/kg, i.v.) is able to significantly alter serotonin levels in the rat medial prefrontal cortex (mPFC) and nucleus accumbens. Then, we observed that blockade of the serotonin 5-HT2 receptors through two selective antagonists, ketanserin (0.1 mg/kg, i.p.) and MDL 100907 (0.03 mg/kg, i.p.), at doses not affecting animals behavior per se, attenuated the facilitatory motor effect and the inhibition on visual sensory responses induced by MXE (3 mg/kg, i.p.) and ketamine (3 mg/kg, i.p.), and prevented MXE-induced reduction of the prepulse inhibition in rats, pointing to the 5-HT2 receptors as a key target for the recently described MXE-induced sensorimotor effects. Finally, in-vitro electrophysiological studies revealed that the GABAergic and glutamatergic systems are also likely involved in the mechanisms through which MXE exerts its central effects since MXE inhibits, in a concentration-dependent manner, NMDA-mediated field postsynaptic potentials and GABA-mediated spontaneous currents. Conversely, MXE failed to alter both the AMPA component of field potentials and presynaptic glutamate release, and seems not to interfere with the endocannabinoid-mediated effects on mPFC GABAergic synapses. Altogether, our results support the notion of MXE as a NMDA receptor antagonist and shed further lights into the central mechanisms of action of this ketamine-substitute by pointing to serotonin 5-HT2 receptors as crucial players in the expression of its sensorimotor altering effects and to the NMDA and GABA receptors as potential further important targets of action.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| | - Giuseppe Talani
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Bratzu
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Marco Diana
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy.
| |
Collapse
|
21
|
In Vitro and In Vivo Pharmaco-Toxicological Characterization of 1-Cyclohexyl-x-methoxybenzene Derivatives in Mice: Comparison with Tramadol and PCP. Int J Mol Sci 2021; 22:ijms22147659. [PMID: 34299276 PMCID: PMC8306156 DOI: 10.3390/ijms22147659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.
Collapse
|
22
|
Coccini T, De Simone U, Lonati D, Scaravaggi G, Marti M, Locatelli CA. MAM-2201, One of the Most Potent-Naphthoyl Indole Derivative-Synthetic Cannabinoids, Exerts Toxic Effects on Human Cell-Based Models of Neurons and Astrocytes. Neurotox Res 2021; 39:1251-1273. [PMID: 33945101 DOI: 10.1007/s12640-021-00369-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Considering the consequences on human health, in general population and workplace, associated with the use of new psychoactive substances and their continuous placing on the market, novel in vitro models for neurotoxicology research, applying human-derived CNS cells, may provide a means to understand the mechanistic basis of molecular and cellular alterations in brain. Cytotoxic effects of MAM-2201, a potent-naphthoyl indole derivative-synthetic cannabinoid, have been evaluated applying a panel of human cell-based models of neurons and astrocytes, testing different concentrations (1-30 µM) and exposure times (3-24-48 h). MAM-2201 induced toxicity in primary neuron-like cells (hNLCs), obtained from transdifferentiation of mesenchymal stem cells derived from human umbilical cord. Effects occurred in a concentration- and time-dependent manner. The lowest concentration affecting cell viability, metabolic function, apoptosis, morphology, and neuronal markers (MAP-2, NSE) was 5 μM, and even 1 μM induced apoptosis. Effects appeared early (3 h) and persisted after 24 and 48 h. Similar behavior was evidenced for human D384-astrocytes treated with MAM-2201. Differently, human SH-SY5Y-neurons, both differentiated and undifferentiated, were not sensitive to MAM-2201. On D384, the different altered endpoints were reversed, attenuated, or not antagonized by AM251 indicating that CB1 receptors may partially mediate MAM-2201-induced cytotoxicity. While in hNLCs, all toxic effects caused by MAM-2201 were apparently unrelated to CB-receptors since they were not evidenced by immunofluorescence. The present in vitro findings demonstrate the cytotoxicity of MAM-2201 on human primary neurons (hNLCs) and astrocytes cell line (D384), and support the use of these cellular models as species-specific in vitro tools suitable to clarify the neurotoxicity mechanisms of synthetic cannabinoids.
Collapse
Affiliation(s)
- T Coccini
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy.
| | - U De Simone
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - D Lonati
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - G Scaravaggi
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - M Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy.,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - C A Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
23
|
Fattore L, Marti M, Mostallino R, Castelli MP. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sci 2020; 10:brainsci10090606. [PMID: 32899299 PMCID: PMC7564810 DOI: 10.3390/brainsci10090606] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Sex and gender deeply affect the subjective effects and pharmaco-toxicological responses to drugs. Men are more likely than women to use almost all types of illicit drugs and to present to emergency departments for serious or fatal intoxications. However, women are just as likely as men to develop substance use disorders, and may be more susceptible to craving and relapse. Clinical and preclinical studies have shown important differences between males and females after administration of “classic” drugs of abuse (e.g., Δ9-tetrahydrocannabinol (THC), morphine, cocaine). This scenario has become enormously complicated in the last decade with the overbearing appearance of the new psychoactive substances (NPS) that have emerged as alternatives to regulated drugs. To date, more than 900 NPS have been identified, and can be catalogued in different pharmacological categories including synthetic cannabinoids, synthetic stimulants (cathinones and amphetamine-like), hallucinogenic phenethylamines, synthetic opioids (fentanyls and non-fentanyls), new benzodiazepines and dissociative anesthetics (i.e., methoxetamine and phencyclidine-derivatives). This work collects the little knowledge reached so far on the effects of NPS in male and female animal and human subjects, highlighting how much sex and gender differences in the effects of NPS has yet to be studied and understood.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
- Correspondence:
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy;
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, 00187 Rome, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
- National Institute of Neuroscience (INN), University of Cagliari, 09124 Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
24
|
Ferreira C, Almeida C, Tenreiro S, Quintas A. Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson's Disease. Life (Basel) 2020; 10:life10060086. [PMID: 32545328 PMCID: PMC7344445 DOI: 10.3390/life10060086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's Disease (PD) is currently the most rapid growing neurodegenerative disease and over the past generation, its global burden has more than doubled. The onset of PD can arise due to environmental, sporadic or genetic factors. Nevertheless, most PD cases have an unknown etiology. Chemicals, such as the anthropogenic pollutant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amphetamine-type stimulants, have been associated with the onset of PD. Conversely, cannabinoids have been associated with the treatment of the symptoms'. PD and medical cannabis is currently under the spotlight, and research to find its benefits on PD is on-going worldwide. However, the described clinical applications and safety of pharmacotherapy with cannabis products are yet to be fully supported by scientific evidence. Furthermore, the novel psychoactive substances are currently a popular alternative to classical drugs of abuse, representing an unknown health hazard for young adults who may develop PD later in their lifetime. This review addresses the neurotoxic and neuroprotective impact of illicit substance consumption in PD, presenting clinical evidence and molecular and cellular mechanisms of this association. This research area is utterly important for contemporary society since illicit drugs' legalization is under discussion which may have consequences both for the onset of PD and for the treatment of its symptoms.
Collapse
Affiliation(s)
- Carla Ferreira
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Al. Prof. Hernâni Monteiro, P-4200–319 Porto, Portugal
| | - Catarina Almeida
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
| | - Sandra Tenreiro
- CEDOC–Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, P-1150-082 Lisboa, Portugal;
| | - Alexandre Quintas
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
25
|
Metabolism, CB1 cannabinoid receptor binding and in vivo activity of synthetic cannabinoid 5F-AKB48: Implications for toxicity. Pharmacol Biochem Behav 2020; 195:172949. [PMID: 32413436 DOI: 10.1016/j.pbb.2020.172949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
AKB48 and its fluorinated derivative 5F-AKB48 are synthetic cannabinoids (SCs) which have caused hospitalizations and deaths in human users. Abuse of SCs is dangerous because users may mistake them for natural cannabis, which is generally considered to be unlikely to elicit adverse effects. The present studies were designed to investigate the in vitro oxidative metabolism of 5F-AKB48 by human microsomal fractions from different organs and sexes as well as recombinant human cytochrome P450s (P450s). Mass spectrometry data tentatively provides evidence for the existence of mono-, di-, and trihydroxylated metabolites in a successive metabolism. Experiments utilizing P450s revealed that the most active enzymes (CYP2D6, CYP2J2, CYP3A4, and CYP3A5) effectively produced mono- and dihydroxylated metabolites, while CYP3A4/5 also produced significant amounts of the trihydroxylated metabolite. Moreover, although the affinity and potency of Phase I metabolite 4OH-5F-AKB48 is reduced when compared to that of the parent drug, this metabolite nevertheless retains similar high affinity for CB1 receptors, and greater efficacy for G protein activation, when compared to THC. Finally, 5F-AKB48 produced time- and dose-dependent cannabimimetic effects in mice which were more potent, but shorter acting, than those of Δ9-THC, and were attenuated by prior treatment with the CB1 antagonist rimonabant. Based on our data, we hypothesize that while many cases of toxicity result from genetic mutations, which can lead to a decrease or even absence of activity for Phase I drug-metabolizing enzymes, other P450s could potentially increase their role in the metabolism of these SCs. Because many metabolites of SCs remain biologically active, they could contribute to the deleterious effects of these substances.
Collapse
|
26
|
De-Giorgio F, Bilel S, Tirri M, Arfè R, Trapella C, Camuto C, Foti F, Frisoni P, Neri M, Botrè F, Marti M. Methiopropamine and its acute behavioral effects in mice: is there a gray zone in new psychoactive substances users? Int J Legal Med 2020; 134:1695-1711. [DOI: 10.1007/s00414-020-02302-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
|
27
|
Bilel S, Azevedo NJ, Arfè R, Tirri M, Gregori A, Serpelloni G, De-Giorgio F, Frisoni P, Neri M, Calò G, Marti M. In vitro and in vivo pharmacological characterization of the synthetic opioid MT-45. Neuropharmacology 2020; 171:108110. [PMID: 32344007 DOI: 10.1016/j.neuropharm.2020.108110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
MT-45 is a synthetic opioid that was developed in the 1970s as an analgesic compound. However, in recent years MT-45 has been associated with multiple deaths in Europe and has been included in the class of novel psychoactive substances known as novel synthetic opioids (NSOs). Little is known about the pharmaco-toxicological effects of MT-45. Therefore, we used a dynamic mass redistribution (DMR) assay to investigate the pharmacodynamic profile of this NSO in vitro compared with morphine. We then used in vivo studies to investigate the effect of the acute systemic administration of MT-45 (0.01-15 mg/kg i.p.) on motor and sensorimotor (visual, acoustic and tactile) responses, mechanical and thermal analgesia, muscle strength and body temperature in CD-1 male mice. Higher doses of MT-45 (6-30 mg/kg i.p.) were used to investigate cardiorespiratory changes (heart rate, respiratory rate, SpO2 saturation and pulse distention). All effects of MT-45 were compared with those of morphine. In vitro DMR assay results demonstrated that at human recombinant opioid receptors MT-45 behaves as a potent selective mu agonist with a slightly higher efficacy than morphine. In vivo results showed that MT-45 progressively induces tail elevation at the lowest dose tested (0.01 mg/kg), increased mechanical and thermal antinociception (starting from 1 to 6 mg/kg), decreased visual sensorimotor responses (starting from 3 to 6 mg/kg) and reduced tactile responses, modulated motor performance and induced muscle rigidity at higher doses (15 mg/kg). In addition, at higher doses (15-30 mg/kg) MT-45 impaired the cardiorespiratory functions. All effects were prevented by the administration of the opioid receptor antagonist naloxone. These findings reveal the risks associated with the ingestion of opioids and the importance of studying these drugs and undertaking more clinical studies of the current molecules to better understand possible therapeutic interventions in the case of toxicity.
Collapse
Affiliation(s)
- S Bilel
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - N J Azevedo
- Department of Medical Sciences, Section of Pharmacology, National Institute of Neuroscience, University of Ferrara, Italy
| | - R Arfè
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Tirri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - A Gregori
- Carabinieri, Department of Scientific Investigation (RIS), 00191, Rome, Italy
| | - G Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - F De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - P Frisoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - M Neri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - G Calò
- Department of Medical Sciences, Section of Pharmacology, National Institute of Neuroscience, University of Ferrara, Italy
| | - M Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
28
|
The Endocannabinoid System and Synthetic Cannabinoids in Preclinical Models of Seizure and Epilepsy. J Clin Neurophysiol 2020; 37:15-27. [PMID: 31895186 DOI: 10.1097/wnp.0000000000000633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cannabinoids are compounds that are structurally and/or functionally related to the primary psychoactive constituent of Cannabis sativa, [INCREMENT]-tetrahydrocannabinol (THC). Cannabinoids can be divided into three broad categories: endogenous cannabinoids, plant-derived cannabinoids, and synthetic cannabinoids (SCs). Recently, there has been an unprecedented surge of interest into the pharmacological and medicinal properties of cannabinoids for the treatment of epilepsies. This surge has been stimulated by an ongoing shift in societal opinions about cannabinoid-based medicines and evidence that cannabidiol, a nonintoxicating plant cannabinoid, has demonstrable anticonvulsant activity in children with treatment-refractory epilepsy. The major receptors of the endogenous cannabinoid system (ECS)-the type 1 and 2 cannabinoid receptors (CB1R, CB2R)-have critical roles in the modulation of neurotransmitter release and inflammation, respectively; so, it is not surprising therefore that the ECS is being considered as a target for the treatment of epilepsy. SCs were developed as potential new drug candidates and tool compounds for studying the ECS. Beyond the plant cannabinoids, an extensive research effort is underway to determine whether SCs that directly target CB1R, CB2R, or the enzymes that breakdown endogenous cannabinoids have anticonvulsant effects in preclinical rodent models of epilepsy and seizure. This research demonstrates that many SCs do reduce seizure severity in rodent models and may have both positive and negative pharmacodynamic and pharmacokinetic interactions with clinically used antiepilepsy drugs. Here, we provide a comprehensive review of the preclinical evidence for and against SC modulation of seizure and discuss the important questions that need to be addressed in future studies.
Collapse
|
29
|
Morbiato E, Bilel S, Tirri M, Arfè R, Fantinati A, Savchuk S, Appolonova S, Frisoni P, Tagliaro F, Neri M, Grignolio S, Bertolucci C, Marti M. Potential of the zebrafish model for the forensic toxicology screening of NPS: A comparative study of the effects of APINAC and methiopropamine on the behavior of zebrafish larvae and mice. Neurotoxicology 2020; 78:36-46. [PMID: 32050087 DOI: 10.1016/j.neuro.2020.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
The increased diffusion of the so-called novel psychoactive substances (NPS) and their continuous change in structure andconceivably activity has led to the need of a rapid screening method to detect their biological effects as early as possible after their appearance in the market. This problem is very felt in forensic pathology and toxicology, so the preclinical study is fundamental in the approach to clinical and autopsy cases of difficult interpretation intoxication. Zebrafish is a high-throughput suitable model to rapidly hypothesize potential aversive or beneficial effects of novel molecules. In the present study, we measured and compared the behavioral responses to two novel neuroactive drugs, namely APINAC, a new cannabimimetic drug, and methiopropamine (MPA), a methamphetamine-like compound, on zebrafish larvae (ZL) and adult mice. By using an innovative statistical approach (general additive models), it was found that the spontaneous locomotor activity was impaired by the two drugs in both species: the disruption extent varied in a dose-dependent and time-dependent manner. Sensorimotor function was also altered: i) the visual object response was reduced in mice treated with APINAC, whereas it was not after exposure to MPA; ii) the visual placing responses were reduced after treatment with both NPS in mice. Furthermore, the visual motor response detected in ZL showed a reduction after treatment with APINAC during light-dark and dark-light transition. The same pattern was found in the MPA exposed groups only at the dark-light transition, while at the transition from light to dark, the individuals showed an increased response. In conclusion, the present study highlighted the impairment of spontaneous motor and sensorimotor behavior induced by MPA and APINAC administration in both species, thus confirming the usefulness of ZL as a model for a rapid behavioural-based drug screening.
Collapse
Affiliation(s)
- Elisa Morbiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Sabrine Bilel
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Institute of Public Health, Section of Legal Medicine, Catholic University, Rome, Italy
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Sergey Savchuk
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Svetlana Appolonova
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Paolo Frisoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Policlinico "G.B. Rossi", Verona, Italy; Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Margherita Neri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | | | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
30
|
Genotoxic Properties of Synthetic Cannabinoids on TK6 Human Cells by Flow Cytometry. Int J Mol Sci 2020; 21:ijms21031150. [PMID: 32050487 PMCID: PMC7037131 DOI: 10.3390/ijms21031150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Novel Psychoactive Substances (NPS) include several classes of substances such as synthetic cannabinoids (SCBs), an emerging alternative to marijuana, easily purchasable on internet. SCBs are more dangerous than Δ9-Tetrahydrocannabinol as a consequence of their stronger affinities for the CB1 and CB2 receptors, which may result in longer duration of distinct effects, greater potency, and toxicity. The information on SCBs cytotoxicity, genotoxicity, mutagenicity, and long-term effects is scarce. This fact suggests the urgent need to increase available data and to investigate if some SCBs have an impact on the stability of genetic material. Therefore, the aim of the present study was the evaluation of the mutagenic effect of different SCBs belonging to indole- and indazole-structures. The analyzes were conducted in vitro on human TK6 cells and mutagenicity were measured as micronucleus fold increase by flow cytometry. Our results have highlighted, for the first time, the mutagenic capacity of four SCBs, in particular in terms of chromosomal damage induction. We underline the serious potential toxicity of SCBs that suggests the need to proceed with the studies of other different synthetic compounds. Moreover, we identified a method that allows a rapid but effective screening of NPS placed on the market increasingly faster.
Collapse
|
31
|
Costa G, De Luca MA, Piras G, Marongiu J, Fattore L, Simola N. Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regen Res 2020; 15:802-816. [PMID: 31719240 PMCID: PMC6990793 DOI: 10.4103/1673-5374.268895] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical and clinical studies indicate that synthetic psychoactive substances, in addition to having abuse potential, may elicit toxic effects of varying severity at the peripheral and central levels. Nowadays, toxicity induced by synthetic psychoactive substances poses a serious harm for health, since recreational use of these substances is on the rise among young and adult people. The present review summarizes recent findings on the peripheral and central toxicity elicited by “old” and “new” synthetic psychoactive substances in humans and experimental animals, focusing on amphetamine derivatives, hallucinogen and dissociative drugs and synthetic cannabinoids.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
32
|
Miliano C, Marti M, Pintori N, Castelli MP, Tirri M, Arfè R, De Luca MA. Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Front Pharmacol 2019; 10:1406. [PMID: 31915427 PMCID: PMC6921684 DOI: 10.3389/fphar.2019.01406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe), commonly called “N-Bomb,” is a synthetic phenethylamine with psychedelic and entactogenic effects; it was available on the Internet both as a legal alternative to lysergic acid diethylamide (LSD) and as a surrogate of 3,4-methylenedioxy-methamphetamine (MDMA), but now it has been scheduled among controlled substances. 25I-NBOMe acts as full agonist on serotonergic 5-HT2A receptors. Users are often unaware of ingesting fake LSD, and several cases of intoxication and fatalities have been reported. In humans, overdoses of “N-Bomb” can cause tachycardia, hypertension, seizures, and agitation. Preclinical studies have not yet widely investigated the rewarding properties and behavioral effects of this compound in both sexes. Therefore, by in vivo microdialysis, we evaluated the effects of 25I-NBOMe on dopaminergic (DA) and serotonergic (5-HT) transmissions in the nucleus accumbens (NAc) shell and core, and the medial prefrontal cortex (mPFC) of male and female rats. Moreover, we investigated the effect of 25I-NBOMe on sensorimotor modifications as well as body temperature, nociception, and startle/prepulse inhibition (PPI). We showed that administration of 25I-NBOMe affects DA transmission in the NAc shell in both sexes, although showing different patterns; moreover, this compound causes impaired visual responses in both sexes, whereas core temperature is heavily affected in females, and the highest dose tested exerts an analgesic effect prominent in male rats. Indeed, this drug is able to impair the startle amplitude with the same extent in both sexes and inhibits the PPI in male and female rats. Our study fills the gap of knowledge on the behavioral effects of 25I-NBOMe and the risks associated with its ingestion; it focuses the attention on sex differences that might be useful to understand the trend of consumption as well as to recognize and treat intoxication and overdose symptoms.
Collapse
Affiliation(s)
- Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Matteo Marti
- National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy.,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy
| |
Collapse
|
33
|
Bilel S, Tirri M, Arfè R, Stopponi S, Soverchia L, Ciccocioppo R, Frisoni P, Strano-Rossi S, Miliano C, De-Giorgio F, Serpelloni G, Fantinati A, De Luca MA, Neri M, Marti M. Pharmacological and Behavioral Effects of the Synthetic Cannabinoid AKB48 in Rats. Front Neurosci 2019; 13:1163. [PMID: 31736697 PMCID: PMC6831561 DOI: 10.3389/fnins.2019.01163] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
AKB48 is a designer drug belonging to the indazole synthetic cannabinoids class, illegally sold as herbal blend, incense, or research chemicals for their psychoactive cannabis-like effects. In the present study, we investigated the in vivo pharmacological and behavioral effects of AKB48 in male rats and measured the pharmacodynamic effects of AKB48 and simultaneously determined its plasma pharmacokinetic. AKB48 at low doses preferentially stimulated dopamine release in the nucleus accumbens shell (0.25 mg/kg) and impaired visual sensorimotor responses (0.3 mg/kg) without affecting acoustic and tactile reflexes, which are reduced only to the highest dose tested (3 mg/kg). Increasing doses (0.5 mg/kg) of AKB48 impaired place preference and induced hypolocomotion in rats. At the highest dose (3 mg/kg), AKB48 induced hypothermia, analgesia, and catalepsy; inhibited the startle/pre-pulse inhibition test; and caused cardiorespiratory changes characterized by bradycardia and mild bradipnea and SpO2 reduction. All behavioral and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM251. AKB48 plasma concentrations rose linearly with increasing dose and were correlated with changes in the somatosensory, hypothermic, analgesic, and cataleptic responses in rats. For the first time, this study shows the pharmacological and behavioral effects of AKB48 in rats, correlating them to the plasma levels of the synthetic cannabinoid. Chemical Compound Studied in This Article: AKB48 (PubChem CID: 57404063); AM251 (PubChem CID: 2125).
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Stopponi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Soverchia
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Paolo Frisoni
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabina Strano-Rossi
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio De-Giorgio
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Ferrara, Italy
| |
Collapse
|
34
|
Modeling drug exposure in rodents using e-cigarettes and other electronic nicotine delivery systems. J Neurosci Methods 2019; 330:108458. [PMID: 31614162 DOI: 10.1016/j.jneumeth.2019.108458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 12/25/2022]
Abstract
Smoking tobacco products is the leading cause of preventable death worldwide. Coordinated efforts have successfully reduced tobacco cigarette smoking in the United States; however, electronic cigarettes (e-cigarette) and other electronic nicotine delivery systems (ENDS) recently have replaced traditional cigarettes for many users. While the clinical risks associated with long-term ENDS use remain unclear, advancements in preclinical rodent models will enhance our understanding of their overall health effects. This review examines the peripheral and central effects of ENDS-mediated exposure to nicotine and other drugs of abuse in rodents and evaluates current techniques for implementing ENDS in preclinical research.
Collapse
|
35
|
Bilel S, Tirri M, Arfè R, Ossato A, Trapella C, Serpelloni G, Neri M, Fattore L, Marti M. Novel halogenated synthetic cannabinoids impair sensorimotor functions in mice. Neurotoxicology 2019; 76:17-32. [PMID: 31610187 DOI: 10.1016/j.neuro.2019.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
JWH-018-Cl, JWH-018-Br and AM-2201 (JWH-018 halogenated-derivatives; JWH-018-R compounds) are synthetic cannabinoid agonists illegally marketed as "Spice", "K2", "herbal blend" and research chemicals for their cannabis-like psychoactive effects. In rodents, JWH-018 and its halogenated derivatives reproduce the typical effects of Δ9-tetrahydrocannabinol (Δ9-THC), i.e. hypothermia, analgesia, hypolocomotion and akinesia. Yet, the effects of JWH-018-R compounds on sensorimotor functions are still unknown. This study was designed to investigate the effect of an acute intraperitoneal (i.p.) administration of JWH-018-R compounds (0.01-6 mg/kg) on sensorimotor functions in mice and to compare them to those caused by the reference compound JWH-018 and Δ9-THC. A well validated battery of behavioral tests was used to investigate the effects of these synthetic cannabinoids on the visual, auditory and tactile responses in mice, while the pre-pulse inhibition (PPI) test was used to investigate their effect on sensorimotor gating. The effect of the synthetic cannabinoids on spontaneous locomotion was also measured by a video tracking analysis to assess potential cannabinoid-induced motor impairment. Results showed that, similarly to JWH-018, systemic administration of JWH-018-R compounds inhibits sensorimotor and PPI responses at lower doses (0.01-0.1 mg/kg) and reduced spontaneous locomotion at intermediate/high doses (1-6 mg/kg). All effects were prevented by the administration of the selective cannabinoid CB1 receptor antagonist/inverse agonist AM-251 thus confirming a CB1 receptor-mediated action. Finding that lower doses of JWH-018-R compounds selectively impair sensorimotor and PPI responses without affecting locomotion should be carefully considered to better understand the potential danger that halogenated-derivatives of JWH-018 may pose to public health, with particular reference to decreased performance in driving and hazardous works.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Andrea Ossato
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Giovanni Serpelloni
- Drug Policy Institute, Department of Psychiatry in the College of Medicine, University of Florida, USA
| | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine, University of Ferrara, Ferrara, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council, Italy.
| | - Matteo Marti
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine, University of Ferrara, Ferrara, Italy; Center for Neuroscience and National Institute of Neuroscience, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| |
Collapse
|
36
|
De-Giorgio F, Bilel S, Ossato A, Tirri M, Arfè R, Foti F, Serpelloni G, Frisoni P, Neri M, Marti M. Acute and repeated administration of MDPV increases aggressive behavior in mice: forensic implications. Int J Legal Med 2019; 133:1797-1808. [PMID: 31154497 DOI: 10.1007/s00414-019-02092-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/22/2019] [Indexed: 01/18/2023]
Abstract
MDPV is a synthetic cathinone illegally marketed and consumed for its psychostimulant effects, which are similar to those produced by cocaine, amphetamines, and MDMA. Clinical reports indicate that MDPV produces euphoria, increases alertness, and at high doses causes agitation, psychosis, tachycardia and hypertension, hallucinations, delirium, hyperthermia, rhabdomyolysis, and even death. In rodents, MDPV reproduces the typical physiological effects of psychostimulant drugs, demonstrating greater potency than cocaine. Nevertheless, its role in aggressive behavior has been reported but not yet experimentally confirmed. Therefore, the aim of this study was to evaluate the effects of acute and repeated MDPV (0.01-10 mg/kg i.p.) administration on aggressive behavior in mice and to compare them with those of cocaine (0.01-10 mg/kg i.p.) administration. To this purpose, the resident-intruder test in isolated mice and the spontaneous and stimulated aggressiveness tests for group-housed mice were employed. The present study shows for the first time that MDPV enhances aggressive behavior and locomotion in mice with greater potency and efficacy than cocaine treatment. Moreover, the aggressive and locomotor responses are enhanced after repeated administration, indicating that a sensitization mechanism comes into play. These results, although from preclinical investigation, are suggestive that human MDPV intake could be a problem for public health and the criminal justice system. Thus, investigation by police officers and medical staff is needed to prevent interpersonal violence induced by the consumption of synthetic cathinones.
Collapse
Affiliation(s)
- Fabio De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Andrea Ossato
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Micaela Tirri
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Ferrara, Italy.,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Raffaella Arfè
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy.,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Federica Foti
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, USA
| | - Paolo Frisoni
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Matteo Marti
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Ferrara, Italy. .,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy.
| |
Collapse
|
37
|
Patel RS, Mekala HM, Tankersley WE. Cannabis Use Disorder and Epilepsy: A Cross-National Analysis of 657 072 Hospitalized Patients. Am J Addict 2019; 28:353-360. [PMID: 31124592 DOI: 10.1111/ajad.12898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Recent evidence has suggested that cannabis use precipitates cerebrovascular events. We investigated the relationship between cannabis use disorder (CUD) and hospitalization for epilepsy. METHODS Nationwide inpatient sample (NIS) was analyzed from 2010 to 2014 for patients (age 15-54) with a primary diagnosis of epilepsy (N = 657 072) and comparison was made between patients with ICD-9 classification of CUD and without CUD. We utilized logistic regression to study the association (odds ratio [OR]) between CUD and epilepsy. RESULTS The incidence of CUD in epilepsy patients was 5.77%, and patients with CUD had a threefold higher likelihood of emergency admissions. Patients with CUD were younger (25-34 years), male and African American. In regression analysis, adjusted for confounders, cannabis (OR, 1.56), tobacco (OR, 1.20), and alcohol (OR, 1.63) use disorders were found to be associated with higher odds of epilepsy hospitalization, but lower odds with cocaine (OR, 0.953), amphetamine (OR, 0.893), and opioid (OR, 0.828) use disorders. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE With the increasing prevalence of medical marijuana legalization, there is increased use of medicinal marijuana. Studies of cannabidiol and marijuana for epilepsy have been highly publicized, leading to its off-label use for treatment. There is limited evidence to suggest that the cannabinoids may also induce a seizure. This study found that CUD is independently associated with a 56% increased likelihood of epilepsy hospitalization and this association persists even after adjusting for other substance use disorders and confounders. (Am J Addict 2019;28:353-360).
Collapse
Affiliation(s)
- Rikinkumar S Patel
- Department of Psychiatry, Griffin Memorial Hospital, Norman, Oklahoma.,Oklahoma Department of Mental Health and Substance Abuse (ODMHAS), Norman, Oklahoma
| | - Hema M Mekala
- Department of Psychiatry, Griffin Memorial Hospital, Norman, Oklahoma.,Oklahoma Department of Mental Health and Substance Abuse (ODMHAS), Norman, Oklahoma
| | - William E Tankersley
- Department of Psychiatry, Griffin Memorial Hospital, Norman, Oklahoma.,Oklahoma Department of Mental Health and Substance Abuse (ODMHAS), Norman, Oklahoma
| |
Collapse
|
38
|
|
39
|
Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sci 2019; 9:brainsci9010014. [PMID: 30654473 PMCID: PMC6357179 DOI: 10.3390/brainsci9010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
The chief psychoactive constituent of many bioactive phytocannabinoids (Δ9-tetrahydrocannabinol, Δ9-THC) found in hemp, cannabis or marijuana plants are scientifically denoted by the Latin term, Cannabis sativa, acts on cell surface receptors. These receptors are ubiquitously expressed. To date, two cannabinoid receptors have been cloned and characterized. Cannabinoid receptor type 1 (CB1R) is found to serve as the archetype for cannabinoid action in the brain. They have attracted wide interest as the mediator of all psychoactive properties of exogenous and endogenous cannabinoids and they are abundantly expressed on most inhibitory and excitatory neurons. Recent evidence established that cannabinoid receptor type 2 (CB2R) is also expressed in the neurons at both presynaptic and postsynaptic terminals and are involved in neuropsychiatric effects. Distinct types of cells in many regions in the brain express CB2Rs and the cellular origin of CB2Rs that induce specific behavioral effects are emerging. To mimic the bliss effects of marijuana, synthetic cannabinoids (SCBs) have been sprayed onto plant material, and this plant material has been consequently packaged and sold under brand name “Spice” or “K2”. These SCBs have been shown to maintain their affinity and functional activity for CB1R and CB2R and have been shown to cause severe harmful effects when compared to the effects of Δ9-THC. The present review discusses the potential brain mechanisms that are involved in the deleterious effects of SCBs.
Collapse
|
40
|
You Y, Proctor RM, Vasilko ED, Robinson MA. Doping control analysis of four JWH-250 metabolites in equine urine by liquid chromatography-tandem mass spectrometry. Drug Test Anal 2018; 11:649-658. [PMID: 30423218 DOI: 10.1002/dta.2542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 11/06/2022]
Abstract
JWH-250 is a synthetic cannabinoid. Its use is prohibited in equine sport according to the Association of Racing Commissioners International (ARCI) and the Fédération Équestre Internationale (FEI). A doping control method to confirm the presence of four JWH-250 metabolites (JWH-250 4-OH-pentyl, JWH-250 5-OH-pentyl, JWH-250 5-OH-indole, and JWH-250 N-pentanoic acid) in equine urine was developed and validated. Urine samples were treated with acetonitrile and evaporated to concentrate the analytes prior to the analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The chromatographic separation was carried out using a Phenomenex Lux® 3 μm AMP column (150 x 3.0 mm). A triple quadrupole mass spectrometer was used for detection of the analytes in positive mode electrospray ionization using multiple reaction monitoring (MRM). The limits of detection, quantification, and confirmation for these metabolites were 25, 50, and 50 pg/mL, respectively. The linear dynamic range of quantification was 50-10000 pg/mL. Enzymatic hydrolysis indicated that JWH-250 4-OH-pentyl, JWH-250 5-OH-pentyl, and JWH-250 5-OH indole are highly conjugated whereas JWH-250 N-pentanoic acid is not conjugated. Relative retention time and product ion intensity ratios were employed as the criteria to confirm the presence of these metabolites in equine urine. The method was successfully applied to post-race urine samples collected from horses suspected of being exposed to JWH-250. All four JWH-250 metabolites were confirmed in these samples, demonstrating the method applicability for equine doping control analysis.
Collapse
Affiliation(s)
- Youwen You
- School of Veterinary Medicine, Department of Clinical Studies, University of Pennsylvania, New Bolton Center Campus, Kennett Square, Pennsylvania, 19348, USA.,PA Equine Toxicology & Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania, 19382, USA
| | - Rachel M Proctor
- School of Veterinary Medicine, Department of Clinical Studies, University of Pennsylvania, New Bolton Center Campus, Kennett Square, Pennsylvania, 19348, USA.,PA Equine Toxicology & Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania, 19382, USA
| | - Eric D Vasilko
- School of Veterinary Medicine, Department of Clinical Studies, University of Pennsylvania, New Bolton Center Campus, Kennett Square, Pennsylvania, 19348, USA.,PA Equine Toxicology & Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania, 19382, USA
| | - Mary A Robinson
- School of Veterinary Medicine, Department of Clinical Studies, University of Pennsylvania, New Bolton Center Campus, Kennett Square, Pennsylvania, 19348, USA.,PA Equine Toxicology & Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania, 19382, USA
| |
Collapse
|
41
|
Uttl L, Szczurowska E, Hájková K, Horsley RR, Štefková K, Hložek T, Šíchová K, Balíková M, Kuchař M, Micale V, Páleníček T. Behavioral and Pharmacokinetic Profile of Indole-Derived Synthetic Cannabinoids JWH-073 and JWH-210 as Compared to the Phytocannabinoid Δ 9-THC in Rats. Front Neurosci 2018; 12:703. [PMID: 30405327 PMCID: PMC6206206 DOI: 10.3389/fnins.2018.00703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
Synthetic cannabinoid compounds are marketed as “legal” marijuana substitutes, even though little is known about their behavioral effects in relation to their pharmacokinetic profiles. Therefore, in the present study we assessed the behavioral effects of systemic treatment with the two synthetic cannabinoids JWH-073 and JWH-210 and the phytocannabinoid Δ9-THC on locomotor activity, anxiety-like phenotype (in the open field) and sensorimotor gating (measured as prepulse inhibition of the acoustic startle response, PPI), in relation to cannabinoid serum levels. Wistar rats were injected subcutaneously (sc.) with JWH-073 (0.1, 0.5, or 5 mg/kg), JWH-210 (0.1, 0.5, or 5 mg/kg), Δ9-THC (1 or 3 mg/kg) or vehicle (oleum helanti) in a volume of 0.5 ml/kg and tested in the open field and PPI. Although JWH-073, JWH-210, Δ9-THC (and its metabolites) were confirmed in serum, effects on sensorimotor gating were absent, and locomotor activity was only partially affected. Δ9-THC (3 mg/kg) elicited an anxiolytic-like effect as suggested by the increased time spent in the center of the open field (p < 0.05). Our results further support the potential anxiolytic-like effect of pharmacological modulation of the endocannabinoid system.
Collapse
Affiliation(s)
- Libor Uttl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Ewa Szczurowska
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Kateřina Hájková
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czechia
| | - Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Kristýna Štefková
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Tomáš Hložek
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Klára Šíchová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Marie Balíková
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Martin Kuchař
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czechia
| | - Vincenzo Micale
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tomáš Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Psychiatric Clinic, Charles University, Prague, Czechia
| |
Collapse
|
42
|
Abstract
Synthetic cannabinoid (SC) products have gained popularity as abused drugs over the past decade in many countries. The SCs broadly impact psychological state (e.g., mood, suicidal thoughts and psychosis) and physiological functions (e.g., cardiovascular, gastrointestinal and urinary). This review is about the effects of SCs on psychotic symptoms in clinical settings and the potentially relevant chemistry and mechanisms of action for SCs. Induction of psychotic symptoms after consuming SC products were reported, including new-onset psychosis and psychotic relapses. The role of SCs in psychosis is more complex than any single chemical component might explain, and these effects may not be a simple extension of the typical effects of cannabis or natural cannabinoids.
Collapse
|
43
|
Cordeiro SK, Daro RC, Seung H, Klein-Schwartz W, Kim HK. Evolution of clinical characteristics and outcomes of synthetic cannabinoid receptor agonist exposure in the United States: analysis of National Poison Data System data from 2010 to 2015. Addiction 2018; 113:1850-1861. [PMID: 29806885 DOI: 10.1111/add.14281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS New synthetic cannabinoid receptor agonists (SCRAs) are synthesized each year to evade US governmental regulation and sold for recreational use. Our aim was to estimate the changes in the clinical effects and patient disposition associated with SCRA exposure from 2010 to 2015. DESIGN A retrospective observational cohort study. SETTING National Poison Data System that collects data on reports of poisonings from US poison centers. PARTICIPANTS A total of 19 388 isolated SCRA cases between 1 January 2010 and 31 December 2015 were identified. The mean age was 24.6 years and 77.8% were male. MEASUREMENTS Primary outcome was the change in the trend of patient disposition, i.e. treated and released versus hospitalization (e.g. non-critical care, critical care unit or psychiatry) between 2010 and 2015. Secondary outcomes included the trends in the clinical effects and their duration, and therapeutic interventions nationally and regionally. FINDINGS Reports of SCRA exposure peaked in 2011 (n = 5305) and 2015 (n = 5475). The majority of patients required supportive care and were treated and released from an emergency department. Hospitalization increased by annual percentage change in the log odds (APCO) of 21.0% (P < 0.0001) during the 6 years, with significant increases in admissions to critical care units and non-critical care units. Overall, tachycardia (32.1%), agitation/irritation (25.6%) and drowsiness/lethargy (20.4%) were the most frequently reported clinical effects from SCRA exposure. Clinical effects resolved within 2-8 hours in 52.8% of cases, but their duration increased markedly by 2015. Regionally, the largest number of SCRA cases was reported in the South (n = 9374, 48.6%). SCRA cases in the Northeast were hospitalized more frequently (27.4%), with cases in the Midwest being admitted more frequently to critical care units (15.3%). However, there were no significant differences in clinical toxicity or disposition among the regions. CONCLUSION Hospitalization resulting from toxicity from synthetic cannabinoid receptor agonists exposure in the United States increased significantly between 2010 and 2015.
Collapse
Affiliation(s)
- Samuel K Cordeiro
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ryan C Daro
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hyunuk Seung
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Wendy Klein-Schwartz
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA.,Maryland Poison Center, Baltimore, MD, USA
| | - Hong K Kim
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland Poison Center, Baltimore, MD, USA
| |
Collapse
|
44
|
Hutchison RD, Ford BM, Franks LN, Wilson CD, Yarbrough AL, Fujiwara R, Su MK, Fernandez D, James LP, Moran JH, Patton AL, Fantegrossi WE, Radominska-Pandya A, Prather PL. Atypical Pharmacodynamic Properties and Metabolic Profile of the Abused Synthetic Cannabinoid AB-PINACA: Potential Contribution to Pronounced Adverse Effects Relative to Δ 9-THC. Front Pharmacol 2018; 9:1084. [PMID: 30319418 PMCID: PMC6168621 DOI: 10.3389/fphar.2018.01084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/06/2018] [Indexed: 01/12/2023] Open
Abstract
Recreational use of marijuana is associated with few adverse effects, but abuse of synthetic cannabinoids (SCBs) can result in anxiety, psychosis, chest pain, seizures and death. To potentially explain higher toxicity associated with SCB use, we hypothesized that AB-PINACA, a common second generation SCB, exhibits atypical pharmacodynamic properties at CB1 cannabinoid receptors (CB1Rs) and/or a distinct metabolic profile when compared to Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive cannabinoid present in marijuana. Liquid chromatography tandem mass spectrometry (LC/MS) identified AB-PINACA and monohydroxy metabolite(s) as primary phase I metabolites (4OH-AB-PINACA and/or 5OH-AB-PINACA) in human urine and serum obtained from forensic samples. In vitro experiments demonstrated that when compared to Δ9-THC, AB-PINACA exhibits similar affinity for CB1Rs, but greater efficacy for G-protein activation and higher potency for adenylyl cyclase inhibition. Chronic treatment with AB-PINACA also results in greater desensitization of CB1Rs (e.g., tolerance) than Δ9-THC. Importantly, monohydroxy metabolites of AB-PINACA retain affinity and full agonist activity at CB1Rs. Incubation of 4OH-AB-PINACA and 5OH-AB-PINACA with human liver microsomes (HLMs) results in limited glucuronide formation when compared to that of JWH-018-M2, a major monohydroxylated metabolite of the first generation SCB JWH-018. Finally, AB-PINACA and 4OH-AB-PINACA are active in vivo, producing CB1R-mediated hypothermia in mice. Taken collectively, the atypical pharmacodynamic properties of AB-PINACA at CB1Rs relative to Δ9-THC (e.g., higher potency/efficacy and greater production of desensitization), coupled with an unusual metabolic profile (e.g., production of metabolically stable active phase I metabolites) may contribute to the pronounced adverse effects observed with abuse of this SCB compared to marijuana.
Collapse
Affiliation(s)
- Rachel D Hutchison
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mark K Su
- New York City Poison Control Center, New York, NY, United States
| | | | - Laura P James
- Translational Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Amy L Patton
- PinPoint Testing, LLC, Little Rock, AR, United States
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
45
|
MDMA alone affects sensorimotor and prepulse inhibition responses in mice and rats: tips in the debate on potential MDMA unsafety in human activity. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0444-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Therapeutic Use of Synthetic Cannabinoids: Still an Open Issue? Clin Ther 2018; 40:1457-1466. [DOI: 10.1016/j.clinthera.2018.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
|
47
|
Ossato A, Bilel S, Gregori A, Talarico A, Trapella C, Gaudio RM, De-Giorgio F, Tagliaro F, Neri M, Fattore L, Marti M. Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology 2018; 141:167-180. [PMID: 30165078 DOI: 10.1016/j.neuropharm.2018.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 01/01/2023]
Abstract
Novel psychoactive substances are intoxicating compounds developed to mimic the effects of well-established drugs of abuse. They are not controlled by the United Nations drug convention and pose serious health concerns worldwide. Among them, the dissociative drug methoxetamine (MXE) is structurally similar to ketamine (KET) and phencyclidine (PCP) and was created to purposely mimic the psychotropic effects of its "parent" compounds. Recent animal studies show that MXE is able to stimulate the mesolimbic dopaminergic transmission and to induce KET-like discriminative and rewarding effects. In light of the renewed interest in KET and PCP analogs, we decided to deepen the investigation of MXE-induced effects by a battery of behavioral tests widely used in studies of "safety-pharmacology" for the preclinical characterization of new molecules. To this purpose, the acute effects of MXE on neurological and sensorimotor functions in mice, including visual, acoustic and tactile responses, thermal and mechanical pain, motor activity and acoustic startle reactivity were evaluated in comparisons with KET and PCP to better appreciate its specificity of action. Cardiorespiratory parameters and blood pressure were also monitored in awake and freely moving animals. Acute systemic administrations of MXE, KET and PCP (0.01-30 mg/kg i.p.) differentially alter neurological and sensorimotor functions in mice depending in a dose-dependent manner specific for each parameter examined. MXE and KET (1 and 30 mg/kg i.p.) and PCP (1 and 10 mg/kg i.p.) also affect significantly cardiorespiratory parameters, systolic and diastolic blood pressure in mice.
Collapse
Affiliation(s)
- Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy; Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Adolfo Gregori
- Carabinieri, Department of Scientific Investigation (RIS), 00191, Rome, Italy
| | - Anna Talarico
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Medical Sciences, Section of Forensic Pathology, University of Ferrara, Italy
| | - Fabio De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Policlinico ''G.B. Rossi'', Verona, Italy; Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, Russian Federation
| | - Margherita Neri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine, University of Ferrara, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council (CNR), Italy
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine, University of Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
48
|
Affiliation(s)
- Mary Tresa Zanda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, Monserrato, Italy
| |
Collapse
|
49
|
|
50
|
Giannotti G, Canazza I, Caffino L, Bilel S, Ossato A, Fumagalli F, Marti M. The Cathinones MDPV and α-PVP Elicit Different Behavioral and Molecular Effects Following Acute Exposure. Neurotox Res 2017. [PMID: 28646469 DOI: 10.1007/s12640-017-9769-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the mid-to-late 2000s, synthetic cathinones have gained popularity among drug users due to their psychostimulant effects greater than those produced by cocaine and amphetamine. Among them, 3,4-methylenedioxypyrovalerone (MDPV) and 1-phenyl-2-(pyrrolidin-1-yl)pentan-1-one (α-PVP) are ones of the most popular cathinones available in the clandestine market as "bath salts" or "fertilizers." Pre-clinical studies indicate that MDPV and α-PVP induced psychomotor stimulation, affected thermoregulation, and promoted reinforcing properties in rodents. However, a direct comparative analysis on the effects caused by MDPV and α-PVP on the behavior and neuronal activation in rodents is still lacking. Behavioral analyses revealed that both MDPV and α-PVP affect spontaneous and stimulated motor responses. In particular, MDPV showed a greater psychomotor effect than α-PVP in line with its higher potency in blocking the dopamine transporter (DAT). Notably, MDPV was found to be more effective than α-PVP in facilitating spontaneous locomotion and it displayed a biphasic effect in contrast to the monophasically stimulated locomotion induced by α-PVP. In addition to the behavioral results, we also found a different modulation of immediate early genes (IEGs) such as Arc/Arg3.1 and c-Fos in the frontal lobe, striatum, and hippocampus, indicating that these drugs do impact brain homeostasis with changes in neuronal activity that depend on the drug, the brain area analyzed, and the timing after the injection. These results provide the first discrimination between MDPV and α-PVP based on behavioral and molecular data that may contribute to explain, at least in part, their toxicity.
Collapse
Affiliation(s)
- Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Lucia Caffino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy. .,Center for Neuroscience and Istituto Nazionale di Neuroscienze, Ferrara, Italy.
| |
Collapse
|