1
|
Núñez-Ríos DL, Nagamatsu ST, Martínez-Magaña JJ, Hurd Y, Rompala G, Krystal JH, Montalvo-Ortiz JL. Mapping the epigenomic landscape of post-traumatic stress disorder in human cortical neurons. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315258. [PMID: 39484232 PMCID: PMC11527063 DOI: 10.1101/2024.10.11.24315258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The study conducted a comprehensive genome-wide analysis of differential 5mC and 5hmC modifications at both CpG and non-CpG sites in postmortem orbitofrontal neurons from 25 PTSD cases and 13 healthy controls. It was observed that PTSD patients exhibit a greater number of differential 5hmC sites compared to 5mC sites. Specifically, individuals with PTSD tend to show hyper-5mC/5hmC at CpG sites, particularly within CpG islands and promoter regions, and hypo-5mC/5hmC at non-CpG sites, especially within intragenic regions. Functional enrichment analysis indicated distinct yet interconnected roles for 5mC and 5hmC in PTSD. The 5mC marks primarily regulate cell-cell adhesion processes, whereas 5hmC marks are involved in embryonic morphogenesis and cell fate commitment. By integrating published PTSD findings from central and peripheral tissues through multi-omics approaches, several biological mechanisms were prioritized, including developmental processes, HPA axis regulation, and immune responses. Based on the consistent enrichment in developmental processes, we hypothesize that if epigenetic changes occur during early developmental stages, they may increase the risk of developing PTSD following trauma exposure. Conversely, if these epigenetic changes occur in adulthood, they may influence neuronal apoptosis and survival mechanisms.
Collapse
Affiliation(s)
- Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Jose Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Yasmin Hurd
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | | | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
2
|
Katrinli S, Wani AH, Maihofer AX, Ratanatharathorn A, Daskalakis NP, Montalvo-Ortiz J, Núñez-Ríos DL, Zannas AS, Zhao X, Aiello AE, Ashley-Koch AE, Avetyan D, Baker DG, Beckham JC, Boks MP, Brick LA, Bromet E, Champagne FA, Chen CY, Dalvie S, Dennis MF, Fatumo S, Fortier C, Galea S, Garrett ME, Geuze E, Grant G, Michael A Hauser, Hayes JP, Hemmings SM, Huber BR, Jajoo A, Jansen S, Kessler RC, Kimbrel NA, King AP, Kleinman JE, Koen N, Koenen KC, Kuan PF, Liberzon I, Linnstaedt SD, Lori A, Luft BJ, Luykx JJ, Marx CE, McLean SA, Mehta D, Milberg W, Miller MW, Mufford MS, Musanabaganwa C, Mutabaruka J, Mutesa L, Nemeroff CB, Nugent NR, Orcutt HK, Qin XJ, Rauch SAM, Ressler KJ, Risbrough VB, Rutembesa E, Rutten BPF, Seedat S, Stein DJ, Stein MB, Toikumo S, Ursano RJ, Uwineza A, Verfaellie MH, Vermetten E, Vinkers CH, Ware EB, Wildman DE, Wolf EJ, Young RM, Zhao Y, van den Heuvel LL, Uddin M, Nievergelt CM, Smith AK, Logue MW. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: A meta-analysis of 23 military and civilian cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24310422. [PMID: 39072012 PMCID: PMC11275670 DOI: 10.1101/2024.07.15.24310422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. Methods As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using either Illumina HumanMethylation450 or MethylationEPIC (850K) BeadChips. A common QC pipeline was applied. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. Results We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e-09 < p < 5.30e-08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Methylation at most CpGs correlated with their annotated gene expression levels. Conclusions This study identifies 11 PTSD-associated CpGs, also leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
| | - Agaz H Wani
- University of South Florida, Genomics Program, College of Public Health, Tampa, FL, US
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Andrew Ratanatharathorn
- Columbia University Mailmain School of Public Health, Department of Epidemiology, New York, NY, US
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, US
| | - Janitza Montalvo-Ortiz
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Diana L Núñez-Ríos
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Anthony S Zannas
- University of North Carolina at Chapel Hill, Carolina Stress Initiative, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Genetics, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Xiang Zhao
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
| | - Allison E Aiello
- Columbia University, Robert N Butler Columbia Aging Center, Department of Epidemiology, New York, NY, US
| | | | - Diana Avetyan
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
| | - Jean C Beckham
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Marco P Boks
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht, UT, NL
| | - Leslie A Brick
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Evelyn Bromet
- State University of New York at Stony Brook, Epidemiology Research Group, Stony Brook, NY, US
| | | | - Chia-Yen Chen
- Biogen Inc., Translational Sciences, Cambridge, MA, US
| | - Shareefa Dalvie
- University of Cape Town, Department of Pathology, Cape Town, Western Province, ZA
- University of Cape Town, Division of Human Genetics, Cape Town, Western Province, ZA
| | - Michelle F Dennis
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Segun Fatumo
- MRC/UVRI and London School of Hygiene and Tropical Medicine, The African Computational Genomics (TACG) Research Group, Entebbe, Wakiso, Uganda
| | - Catherine Fortier
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, TRACTS/GRECC, Boston, MA, US
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, US
| | - Melanie E Garrett
- Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, US
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, UT, NL
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, UT, NL
| | - Gerald Grant
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, US
| | - Michael A Hauser
- Duke University School of Medicine, Department of Medicine, Durham, NC, US
| | - Jasmeet P Hayes
- The Ohio State University, Department of Psychology, Columbus, OH, US
| | - Sian Mj Hemmings
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SAMRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Bertrand Russel Huber
- Boston University School of Medicine, Department of Neurology, Boston, MA, US
- VA Boston Healthcare System, Pathology and Laboratory Medicine, Boston, MA, US
| | - Aarti Jajoo
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
| | - Stefan Jansen
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
| | - Ronald C Kessler
- Harvard Medical School, Department of Health Care Policy, Boston, MA, US
| | - Nathan A Kimbrel
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, US
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, US
- The Ohio State University, College of Medicine, Psychiatry & Behavioral Health, Columbus, OH, US
| | - Joel E Kleinman
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, US
- Lieber Institute for Brain Development, Baltimore, MD, US
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Karestan C Koenen
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, US
| | - Pei-Fen Kuan
- Stony Brook University, Department of Applied Mathematics and Statistics, Stony Brook, NY, US
| | - Israel Liberzon
- Texas A&M University College of Medicine, Department of Psychiatry and Behavioral Sciences, Bryan, TX, US
| | - Sarah D Linnstaedt
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, UNC Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Adriana Lori
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Benjamin J Luft
- Stony Brook University, Department of Medicine, Stony Brook, NY, US
| | - Jurjen J Luykx
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Amsterdam Public Health Research Institute, Mental Health Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Department of Psychiatry, Amsterdam, NH, NL
| | - Christine E Marx
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC, US
| | - Samuel A McLean
- UNC Institute for Trauma Recovery, Department of Psychiatry, Chapel Hill, NC, US
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, AU
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| | - Mary S Mufford
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, Western Province, ZA
| | - Clarisse Musanabaganwa
- Rwanda Biomedical Center, Research Innovation and Data Science Division, Kigali, RW
- University of Rwanda, Center of Human Genetics, Kigali, RW
| | - Jean Mutabaruka
- University of Rwanda, Department of Clinical Psychology, Huye, RW
| | - Leon Mutesa
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
- University of Rwanda, Center for Human Genetics, Kigali, RW
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychology, Austin, TX, US
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Austin, TX, US
| | - Nicole R Nugent
- Alpert Brown Medical School, Department of Emergency Medicine, Providence, RI, US
- Alpert Brown Medical School, Department of Pediatrics, Providence, RI, US
- Alpert Brown Medical School, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Holly K Orcutt
- Northern Illinois University, Department of Psychology, DeKalb, IL, US
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, US
| | - Sheila A M Rauch
- Emory University, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, US
- Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Atlanta, GA, US
| | - Kerry J Ressler
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | | | - Bart P F Rutten
- Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht, Limburg, NL
| | - Soraya Seedat
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
- University of California San Diego, School of Public Health, La Jolla, CA, US
| | - Sylvanus Toikumo
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Robert J Ursano
- Uniformed Services University, Center for the Study of Traumatic Stress, Department of Psychiatry, Bethesda, Maryland, US
| | - Annette Uwineza
- University of Rwanda, College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mieke H Verfaellie
- Boston University School of Medicine, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, Memory Disorders Research Center, Boston, MA, US
| | - Eric Vermetten
- Leiden University Medical Center, Department of Psychiatry, Leiden, ZH, NL
- New York University School of Medicine, Department of Psychiatry, New York, NY, US
| | - Christiaan H Vinkers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, Holland, NL
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Holland, NL
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, Holland, NL
| | - Erin B Ware
- University of Michigan, Survey Research Center, Ann Arbor, MI, US
| | - Derek E Wildman
- University of South Florida, College of Public Health, Tampa, FL, US
- University of South Florida, Genomics Program, Tampa, FL, US
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, US
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, QLD, AU
- University of the Sunshine Coast, The Chancellory, Sippy Downs, QLD, AU
| | - Ying Zhao
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
| | - Leigh L van den Heuvel
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, US
| | - Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
- Emory University, Department of Human Genetics, Atlanta, GA, US
| | - Mark W Logue
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| |
Collapse
|
3
|
Elbasheir A, Katrinli S, Kearney BE, Lanius RA, Harnett NG, Carter SE, Ely TD, Bradley B, Gillespie CF, Stevens JS, Lori A, van Rooij SJH, Powers A, Jovanovic T, Smith AK, Fani N. Racial Discrimination, Neural Connectivity, and Epigenetic Aging Among Black Women. JAMA Netw Open 2024; 7:e2416588. [PMID: 38869898 PMCID: PMC11177169 DOI: 10.1001/jamanetworkopen.2024.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 06/14/2024] Open
Abstract
Importance Racial discrimination increases the risk of adverse brain health outcomes, potentially via neuroplastic changes in emotion processing networks. The involvement of deep brain regions (brainstem and midbrain) in these responses is unknown. Potential associations of racial discrimination with alterations in deep brain functional connectivity and accelerated epigenetic aging, a process that substantially increases vulnerability to health problems, are also unknown. Objective To examine associations of racial discrimination with brainstem and midbrain resting-state functional connectivity (RSFC) and DNA methylation age acceleration (DMAA) among Black women in the US. Design, Setting, and Participants This cohort study was conducted between January 1, 2012, and February 28, 2015, and included a community-based sample of Black women (aged ≥18 years) recruited as part of the Grady Trauma Project. Self-reported racial discrimination was examined in association with seed-to-voxel brain connectivity, including the locus coeruleus (LC), periaqueductal gray (PAG), and superior colliculus (SC); an index of DMAA (Horvath clock) was also evaluated. Posttraumatic stress disorder (PTSD), trauma exposure, and age were used as covariates in statistical models to isolate racial discrimination-related variance. Data analysis was conducted between January 10 and October 30, 2023. Exposure Varying levels of racial discrimination exposure, other trauma exposure, and posttraumatic stress disorder (PTSD). Main Outcomes and Measures Racial discrimination frequency was assessed with the Experiences of Discrimination Scale, other trauma exposure was evaluated with the Traumatic Events Inventory, and current PTSD was evaluated with the PTSD Symptom Scale. Seed-to-voxel functional connectivity analyses were conducted with LC, PAG, and SC seeds. To assess DMAA, the Methylation EPIC BeadChip assay (Illumina) was conducted with whole-blood samples from a subset of 49 participants. Results This study included 90 Black women, with a mean (SD) age of 38.5 (11.3) years. Greater racial discrimination was associated with greater left LC RSFC to the bilateral precuneus (a region within the default mode network implicated in rumination and reliving of past events; cluster size k = 228; t85 = 4.78; P < .001, false discovery rate-corrected). Significant indirect effects were observed for the left LC-precuneus RSFC on the association between racial discrimination and DMAA (β [SE] = 0.45 [0.16]; 95% CI, 0.12-0.77). Conclusions and Relevance In this study, more frequent racial discrimination was associated with proportionately greater RSFC of the LC to the precuneus, and these connectivity alterations were associated with DMAA. These findings suggest that racial discrimination contributes to accelerated biological aging via altered connectivity between the LC and default mode network, increasing vulnerability for brain health problems.
Collapse
Affiliation(s)
- Aziz Elbasheir
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Seyma Katrinli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nathaniel G. Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J. H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Cosentino L, Witt SH, Dukal H, Zidda F, Siehl S, Flor H, De Filippis B. Methyl-CpG binding protein 2 expression is associated with symptom severity in patients with PTSD in a sex-dependent manner. Transl Psychiatry 2023; 13:249. [PMID: 37419878 DOI: 10.1038/s41398-023-02529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Traumatic events may lead to post-traumatic stress disorder (PTSD), with higher prevalence in women. Adverse childhood experiences (ACE) increase PTSD risk in adulthood. Epigenetic mechanisms play important roles in PTSD pathogenesis and a mutation in the methyl-CpG binding protein 2 (MECP2) in mice provide susceptibility to PTSD-like alterations, with sex-dependent biological signatures. The present study examined whether the increased risk of PTSD associated with ACE exposure is accompanied by reduced MECP2 blood levels in humans, with an influence of sex. MECP2 mRNA levels were analyzed in the blood of 132 subjects (58 women). Participants were interviewed to assess PTSD symptomatology, and asked to retrospectively report ACE. Among trauma-exposed women, MECP2 downregulation was associated with the intensification of PTSD symptoms linked to ACE exposure. MECP2 expression emerges as a potential contributor to post-trauma pathophysiology fostering novel studies on the molecular mechanisms underlying its potential sex-dependent role in PTSD onset and progression.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesca Zidda
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Siehl
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy.
| |
Collapse
|
5
|
Carvalho CM, Coimbra BM, Bugiga A, Marques DF, Kiyomi Ota V, Mello AF, Mello MF, Belangero SI. Hyperarousal Symptom Severity in Women with Posttraumatic Stress Disorder Might Be Associated with LINE-1 Hypomethylation in Childhood Sexual Abuse Victims. Complex Psychiatry 2023; 9:44-56. [PMID: 37034826 PMCID: PMC10080193 DOI: 10.1159/000529698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Sexual assault and a history of childhood sexual abuse (CSA) are related to posttraumatic stress disorder (PTSD) development. Long interspersed nuclear elements (LINE-1) are transposable elements, and their methylation is used to infer DNA global methylation. DNA methylation can be affected by trauma exposition which in turn would be associated with PTSD. Thus, we investigated if the LINE-1 methylation pattern is related to PTSD symptoms in females with a history of CSA. Methods This is a case-control study that examined, at baseline (W1), 64 women victims of sexual assault diagnosed with PTSD and 31 patients with PTSD who completed the 1-year follow-up (W2). Participants were categorized into two groups according to the presence of CSA (PTSDCSA+: NW1 = 19, NW2 = 10; PTSDCSA-: NW1 = 45, NW2 = 21). PTSD symptoms (re-experiencing, avoidance, hyperarousal, alterations in cognition/mood) were assessed using the Clinician-Administered PTSD Scale, and the history of CSA was assessed by the Childhood Trauma Questionnaire. LINE-1 methylation was measured in three sites (CpG1, CpG2, CpG3) located in the 5'UTR region using bisulfite conversion followed by pyrosequencing. Linear regression models were performed to test the relation between LINE-1 CpG sites methylation and PTSD symptoms. Results We found a negative association between CpG2 methylation and hyperarousal symptoms among those in the PTSDCSA+ group in W1 (adjusted p = 0.003) compared to the PTSDCSA- group (p > 0.05). Still, no association was observed between other PTSD symptoms and other CpG sites. Further, in the longitudinal analysis, LINE-1 hypomethylation was no longer observed in PTSD participants exposed to CSA. Conclusion Our findings suggest that LINE-1 methylation may help understand the relationship between trauma and PTSD. However, more studies are needed to investigate LINE-1 as an epigenetic marker of psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Muniz Carvalho
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruno Messina Coimbra
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amanda Bugiga
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Diogo Ferri Marques
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Vanessa Kiyomi Ota
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andrea Feijó Mello
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo Feijó Mello
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sintia Iole Belangero
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
6
|
Lewis CR, Tafur J, Spencer S, Green JM, Harrison C, Kelmendi B, Rabin DM, Yehuda R, Yazar-Klosinski B, Cahn BR. Pilot study suggests DNA methylation of the glucocorticoid receptor gene (NR3C1) is associated with MDMA-assisted therapy treatment response for severe PTSD. Front Psychiatry 2023; 14:959590. [PMID: 36815187 PMCID: PMC9939628 DOI: 10.3389/fpsyt.2023.959590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Background Previous research has demonstrated that epigenetic changes in specific hypothalamic-pituitary-adrenal (HPA) genes may predict successful psychotherapy in post-traumatic stress disorder (PTSD). A recent Phase 3 clinical trial reported high efficacy of 3,4-methylenedioxymethamphetamine (MDMA)-assisted therapy for treating patients with severe PTSD compared to a therapy with placebo group (NCT03537014). This raises important questions regarding potential mechanisms of MDMA-assisted therapy. In the present study, we examined epigenetic changes in three key HPA axis genes before and after MDMA and placebo with therapy. As a pilot sub-study to the parent clinical trial, we assessed potential HPA epigenetic predictors for treatment response with genomic DNA derived from saliva (MDMA, n = 16; placebo, n = 7). Methylation levels at all 259 CpG sites annotated to three HPA genes (CRHR1, FKBP5, and NR3C1) were assessed in relation to treatment response as measured by the Clinician-Administered PTSD Scale (CAPS-5; Total Severity Score). Second, group (MDMA vs. placebo) differences in methylation change were assessed for sites that predicted treatment response. Results Methylation change across groups significantly predicted symptom reduction on 37 of 259 CpG sites tested, with two sites surviving false discovery rate (FDR) correction. Further, the MDMA-treatment group showed more methylation change compared to placebo on one site of the NR3C1 gene. Conclusion The findings of this study suggest that therapy-related PTSD symptom improvements may be related to DNA methylation changes in HPA genes and such changes may be greater in those receiving MDMA-assisted therapy. These findings can be used to generate hypothesis driven analyses for future studies with larger cohorts.
Collapse
Affiliation(s)
- Candace R. Lewis
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
- *Correspondence: Candace R. Lewis,
| | | | - Sophie Spencer
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Joseph M. Green
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Benjamin Kelmendi
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | | | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, United States
| | | | - Baruch Rael Cahn
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
- Baruch Rael Cahn,
| |
Collapse
|
7
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Krystal JH, Martínez-González KG, Giusti-Rodríguez P, Montalvo-Ortiz JL. Cross-Species Convergence of Brain Transcriptomic and Epigenomic Findings in Posttraumatic Stress Disorder: A Systematic Review. Complex Psychiatry 2023; 9:100-118. [PMID: 37404872 PMCID: PMC10315001 DOI: 10.1159/000529536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/31/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is a complex multifactorial disorder influenced by the interaction of genetic and environmental factors. Analyses of epigenomic and transcriptomic modifications may help to dissect the biological factors underlying the gene-environment interplay in PTSD. To date, most human PTSD epigenetics studies have used peripheral tissue, and these findings have complex and poorly understood relationships to brain alterations. Studies examining brain tissue may help characterize the brain-specific transcriptomic and epigenomic profiles of PTSD. In this review, we compiled and integrated brain-specific molecular findings of PTSD from humans and animals. Methods A systematic literature search according to the PRISMA criteria was performed to identify transcriptomic and epigenomic studies of PTSD, focusing on brain tissue from human postmortem samples or animal-stress paradigms. Results Gene- and pathway-level convergence analyses revealed PTSD-dysregulated genes and biological pathways across brain regions and species. A total of 243 genes converged across species, with 17 of them significantly enriched for PTSD. Chemical synaptic transmission and signaling by G-protein-coupled receptors were consistently enriched across omics and species. Discussion Our findings point out dysregulated genes highly replicated across PTSD studies in humans and animal models and suggest a potential role for the corticotropin-releasing hormone/orexin pathway in PTSD's pathophysiology. Further, we highlight current knowledge gaps and limitations and recommend future directions to address them.
Collapse
Affiliation(s)
- Diana Leandra Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Sheila Tiemi Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | | | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
8
|
McCullough KM, Katrinli S, Hartmann J, Lori A, Klengel C, Missig G, Klengel T, Langford NA, Newman EL, Anderson KJ, Smith AK, Carroll FI, Ressler KJ, Carlezon WA. Blood levels of T-Cell Receptor Excision Circles (TRECs) provide an index of exposure to traumatic stress in mice and humans. Transl Psychiatry 2022; 12:423. [PMID: 36192377 PMCID: PMC9530209 DOI: 10.1038/s41398-022-02159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to stress triggers biological changes throughout the body. Accumulating evidence indicates that alterations in immune system function are associated with the development of stress-associated illnesses such as major depressive disorder and post-traumatic stress disorder, increasing interest in identifying immune markers that provide insight into mental health. Recombination events during T-cell receptor rearrangement and T-cell maturation in the thymus produce circular DNA fragments called T-cell receptor excision circles (TRECs) that can be utilized as indicators of thymic function and numbers of newly emigrating T-cells. Given data suggesting that stress affects thymus function, we examined whether blood levels of TRECs might serve as a quantitative peripheral index of cumulative stress exposure and its physiological correlates. We hypothesized that chronic stress exposure would compromise thymus function and produce corresponding decreases in levels of TRECs. In male mice, exposure to chronic social defeat stress (CSDS) produced thymic involution, adrenal hypertrophy, and decreased levels of TRECs in blood. Extending these studies to humans revealed robust inverse correlations between levels of circulating TRECs and childhood emotional and physical abuse. Cell-type specific analyses also revealed associations between TREC levels and blood cell composition, as well as cell-type specific methylation changes in CD4T + and CD8T + cells. Additionally, TREC levels correlated with epigenetic age acceleration, a common biomarker of stress exposure. Our findings demonstrate alignment between findings in mice and humans and suggest that blood-borne TRECs are a translationally-relevant biomarker that correlates with, and provides insight into, the cumulative physiological and immune-related impacts of stress exposure in mammals.
Collapse
Affiliation(s)
- Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Jakob Hartmann
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Adriana Lori
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Claudia Klengel
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Galen Missig
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Torsten Klengel
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Nicole A Langford
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Emily L Newman
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Kasey J Anderson
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Kerry J Ressler
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - William A Carlezon
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
9
|
Musanabaganwa C, Jansen S, Wani A, Rugamba A, Mutabaruka J, Rutembesa E, Uwineza A, Fatumo S, Hermans EJ, Souopgui J, Wildman DE, Uddin M, Roozendaal B, Njemini R, Mutesa L. Community engagement in epigenomic and neurocognitive research on post-traumatic stress disorder in Rwandans exposed to the 1994 genocide against the Tutsi: lessons learned. Epigenomics 2022; 14:887-895. [PMID: 36004496 PMCID: PMC9475497 DOI: 10.2217/epi-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epigenomic and neurocognitive studies have provided new perspectives on post-traumatic stress disorder and its intergenerational transmission. This article outlines the lessons learned from community engagement (CE) in such research on Rwandan genocide survivors. A strong trauma-related response was observed within the research project-targeted community (genocide survivors) during explanation of the project. CE also revealed privacy concerns, as community members worried that any leakage of genetic/(epi)genomic data could affect not only themselves but also their close relatives. Adopting a culture of CE in the process of research implementation enables the prioritization of targeted community needs and interests. Furthermore, CE has stimulated the development of mental healthcare interventions, which married couples can apply to protect their offspring and thus truly break the cycle of inherited vulnerability.
Collapse
Affiliation(s)
- Clarisse Musanabaganwa
- Center for Human Genetics, College of Medicine & Health Sciences, University of Rwanda, Kigali, PO BOX 4285, Rwanda.,Department of Clinical Psychology, College of Medicine & Health Sciences, University of Rwanda, PO BOX 4285, Rwanda.,Genomics Program, College of Public Health, University of South Florida, FL 33612, USA.,Department of Cognitive Neuroscience, Radboud University Medical Center, 6500HB, Nijmegen, and Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, 6525EN, The Netherlands.,Frailty in Ageing Research Department, Vrije Universiteit Brussel, Jette Campus, 1090, Belgium
| | - Stefan Jansen
- Department of Clinical Psychology, College of Medicine & Health Sciences, University of Rwanda, PO BOX 4285, Rwanda.,Directorate of Research & Innovation, College of Medicine & Health Sciences, University of Rwanda, Kigali, PO-BOX 4285, Rwanda
| | - Agaz Wani
- Genomics Program, College of Public Health, University of South Florida, FL 33612, USA
| | - Alex Rugamba
- Center for Human Genetics, College of Medicine & Health Sciences, University of Rwanda, Kigali, PO BOX 4285, Rwanda
| | - Jean Mutabaruka
- Department of Clinical Psychology, College of Medicine & Health Sciences, University of Rwanda, PO BOX 4285, Rwanda
| | - Eugene Rutembesa
- Department of Clinical Psychology, College of Medicine & Health Sciences, University of Rwanda, PO BOX 4285, Rwanda
| | - Annette Uwineza
- Center for Human Genetics, College of Medicine & Health Sciences, University of Rwanda, Kigali, PO BOX 4285, Rwanda
| | - Segun Fatumo
- London School of Hygiene & Tropical Medicine, Bloomsbury, London, WC1E 7HT, UK.,The African Computational Genomics (TACG) Research Group, MRC/UVRI & LSHTM, Entebbe, 31302, Uganda
| | - Erno J Hermans
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500HB, Nijmegen, and Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, 6525EN, The Netherlands
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology & Molecular Medicine (IBMM), Université Libre de Bruxelles, Gosselies Campus, Gosselies, 126040, Belgium
| | - Derek E Wildman
- Genomics Program, College of Public Health, University of South Florida, FL 33612, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, FL 33612, USA
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500HB, Nijmegen, and Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, 6525EN, The Netherlands
| | - Rose Njemini
- Frailty in Ageing Research Department, Vrije Universiteit Brussel, Jette Campus, 1090, Belgium
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine & Health Sciences, University of Rwanda, Kigali, PO BOX 4285, Rwanda
| |
Collapse
|
10
|
Repovecki S, Nedic Erjavec G, Uzun S, Tudor L, Nikolac Perkovic M, Konjevod M, Kozumplik O, Svob Strac D, Kovacic Petrovic Z, Mimica N, Pivac N. Reduced Platelet MAO-B Activity Is Associated with Psychotic, Positive, and Depressive Symptoms in PTSD. Biomolecules 2022; 12:biom12050736. [PMID: 35625663 PMCID: PMC9138660 DOI: 10.3390/biom12050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related disorder. Platelet monoamine oxidase (MAO-B) is a peripheral biomarker associated with various symptoms in different psychopathologies, but its role in PTSD or different symptoms in PTSD is not clear. This study elucidated the association between platelet MAO-B activity and clinical symptoms occurring in PTSD. Platelet MAO-B activity was determined in 1053 male Caucasian subjects: 559 war veterans with PTSD (DSM-5 criteria), 62 combat exposed veterans who did not develop PTSD, and 432 non-combat exposed healthy controls. Clinical symptoms in PTSD were determined using CAPS and PANSS. Platelet MAO-B activity, controlled for the effect of smoking, was significantly increased in PTSD with severe versus mild and moderate traumatic symptoms, and was significantly decreased in PTSD subjects with severe versus mild positive, psychotic, and depressive symptoms. This finding was further confirmed with reduced platelet MAO-B activity in PTSD veterans with severe versus mild individual items of the PANSS-depressed, PANSS-psychotic, and PANSS-positive subscales. Altered platelet MAO-B activity, controlled for the possible confounders, was associated with the development and severity of different symptoms occurring in PTSD. These findings confirmed the role of platelet MAO-B activity as a peripheral marker of various psychopathological symptoms.
Collapse
Affiliation(s)
- Senka Repovecki
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Suzana Uzun
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Oliver Kozumplik
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Zrnka Kovacic Petrovic
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
| | - Ninoslav Mimica
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
- Correspondence:
| |
Collapse
|
11
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Andrade-Brito DE, Forero DA, Orozco-Castaño CA, Montalvo-Ortiz JL. Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines 2022; 10:biomedicines10051107. [PMID: 35625844 PMCID: PMC9138536 DOI: 10.3390/biomedicines10051107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and multifactorial disorder with a prevalence ranging between 6–10% in the general population and ~35% in individuals with high lifetime trauma exposure. Growing evidence indicates that the immune system may contribute to the etiology of PTSD, suggesting the inflammatory dysregulation as a hallmark feature of PTSD. However, the potential interplay between the central and peripheral immune system, as well as the biological mechanisms underlying this dysregulation remain poorly understood. The activation of the HPA axis after trauma exposure and the subsequent activation of the inflammatory system mediated by glucocorticoids is the most common mechanism that orchestrates an exacerbated immunological response in PTSD. Recent high-throughput analyses in peripheral and brain tissue from both humans with and animal models of PTSD have found that changes in gene regulation via epigenetic alterations may participate in the impaired inflammatory signaling in PTSD. The goal of this review is to assess the role of the inflammatory system in PTSD across tissue and species, with a particular focus on the genomics, transcriptomics, epigenomics, and proteomics domains. We conducted an integrative multi-omics approach identifying TNF (Tumor Necrosis Factor) signaling, interleukins, chemokines, Toll-like receptors and glucocorticoids among the common dysregulated pathways in both central and peripheral immune systems in PTSD and propose potential novel drug targets for PTSD treatment.
Collapse
Affiliation(s)
- Diana L. Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - José J. Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Carlos A. Orozco-Castaño
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
- Correspondence: ; Tel.: +1-(203)-9325711 (ext. 7491)
| |
Collapse
|
12
|
Katrinli S, Maihofer AX, Wani AH, Pfeiffer JR, Ketema E, Ratanatharathorn A, Baker DG, Boks MP, Geuze E, Kessler RC, Risbrough VB, Rutten BPF, Stein MB, Ursano RJ, Vermetten E, Logue MW, Nievergelt CM, Smith AK, Uddin M. Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Mol Psychiatry 2022; 27:1720-1728. [PMID: 34992238 PMCID: PMC9106882 DOI: 10.1038/s41380-021-01398-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Epigenetic factors modify the effects of environmental factors on biological outcomes. Identification of epigenetic changes that associate with PTSD is therefore a crucial step in deciphering mechanisms of risk and resilience. In this study, our goal is to identify epigenetic signatures associated with PTSD symptom severity (PTSS) and changes in PTSS over time, using whole blood DNA methylation (DNAm) data (MethylationEPIC BeadChip) of military personnel prior to and following combat deployment. A total of 429 subjects (858 samples across 2 time points) from three male military cohorts were included in the analyses. We conducted two different meta-analyses to answer two different scientific questions: one to identify a DNAm profile of PTSS using a random effects model including both time points for each subject, and the other to identify a DNAm profile of change in PTSS conditioned on pre-deployment DNAm. Four CpGs near four genes (F2R, CNPY2, BAIAP2L1, and TBXAS1) and 88 differentially methylated regions (DMRs) were associated with PTSS. Change in PTSS after deployment was associated with 15 DMRs, of those 2 DMRs near OTUD5 and ELF4 were also associated with PTSS. Notably, three PTSS-associated CpGs near F2R, BAIAP2L1 and TBXAS1 also showed nominal evidence of association with change in PTSS. This study, which identifies PTSD-associated changes in genes involved in oxidative stress and immune system, provides novel evidence that epigenetic differences are associated with PTSS.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John R Pfeiffer
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Elizabeth Ketema
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Marco P Boks
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elbert Geuze
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, The Netherlands
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Eric Vermetten
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, ZA, Leiden, The Netherlands
- Research Center, Netherlands Defense Department, UT, AA Utrecht, The Netherlands
- Arq Psychotrauma Expert Group, XE, Diemen, The Netherlands
| | - Mark W Logue
- National Center for PTSD, Behavioral Science Division at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
13
|
Vermetten E, Snijders C, Daskalakis NP, Rutten BPF. Revisiting the Need for a PTSD Brain Bank; Commentary on Friedman. Psychiatry 2022; 85:203-211. [PMID: 35588487 DOI: 10.1080/00332747.2022.2068938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Xue F, Tang X, Kim G, Koenen KC, Martin CL, Galea S, Wildman D, Uddin M, Qu A. Heterogeneous Mediation Analysis on Epigenomic PTSD and Traumatic Stress in a Predominantly African American Cohort. J Am Stat Assoc 2022; 117:1669-1683. [PMID: 36875798 PMCID: PMC9980467 DOI: 10.1080/01621459.2022.2089572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA methylation (DNAm) has been suggested to play a critical role in post-traumatic stress disorder (PTSD), through mediating the relationship between trauma and PTSD. However, this underlying mechanism of PTSD for African Americans still remains unknown. To fill this gap, in this article, we investigate how DNAm mediates the effects of traumatic experiences on PTSD symptoms in the Detroit Neighborhood Health Study (DNHS) (2008-2013) which involves primarily African Americans adults. To achieve this, we develop a new mediation analysis approach for high-dimensional potential DNAm mediators. A key novelty of our method is that we consider heterogeneity in mediation effects across subpopulations. Specifically, mediators in different subpopulations could have opposite effects on the outcome, and thus could be difficult to identify under a traditional homogeneous model framework. In contrast, the proposed method can estimate heterogeneous mediation effects and identifies subpopulations in which individuals share similar effects. Simulation studies demonstrate that the proposed method outperforms existing methods for both homogeneous and heterogeneous data. We also present our mediation analysis results of a dataset with 125 participants and more than 450,000 CpG sites from the DNHS study. The proposed method finds three subgroups of subjects and identifies DNAm mediators corresponding to genes such as HSP90AA1 and NFATC1 which have been linked to PTSD symptoms in literature. Our finding could be useful in future finer-grained investigation of PTSD mechanism and in the development of new treatments for PTSD.
Collapse
Affiliation(s)
- Fei Xue
- Purdue University, West Lafayette, IN
| | - Xiwei Tang
- University of Virginia, Charlottesville, VA
| | - Grace Kim
- University of Illinois College of Medicine, Chicago, IL
| | | | - Chantel L Martin
- The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | - Annie Qu
- University of California Irvine, Irvine, CA
| |
Collapse
|
15
|
Nöthling J, Abrahams N, Toikumo S, Suderman M, Mhlongo S, Lombard C, Seedat S, Hemmings SMJ. Genome-wide differentially methylated genes associated with posttraumatic stress disorder and longitudinal change in methylation in rape survivors. Transl Psychiatry 2021; 11:594. [PMID: 34799556 PMCID: PMC8604994 DOI: 10.1038/s41398-021-01608-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/01/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Rape is associated with a high risk for posttraumatic stress disorder (PTSD). DNA methylation changes may confer risk or protection for PTSD following rape by regulating the expression of genes implicated in pathways affected by PTSD. We aimed to: (1) identify epigenome-wide differences in methylation profiles between rape-exposed women with and without PTSD at 3-months post-rape, in a demographically and ethnically similar group, drawn from a low-income setting; (2) validate and replicate the findings of the epigenome-wide analysis in selected genes (BRSK2 and ADCYAP1); and (3) investigate baseline and longitudinal changes in BRSK2 and ADCYAP1 methylation over six months in relation to change in PTSD symptom scores over 6 months, in the combined discovery/validation and replication samples (n = 96). Rape-exposed women (n = 852) were recruited from rape clinics in the Rape Impact Cohort Evaluation (RICE) umbrella study. Epigenome-wide differentially methylated CpG sites between rape-exposed women with (n = 24) and without (n = 24) PTSD at 3-months post-rape were investigated using the Illumina EPIC BeadChip in a discovery cohort (n = 48). Validation (n = 47) and replication (n = 49) of BRSK2 and ADCYAP1 methylation findings were investigated using EpiTYPER technology. Longitudinal change in BRSK2 and ADCYAP1 was also investigated using EpiTYPER technology in the combined sample (n = 96). In the discovery sample, after adjustment for multiple comparisons, one differentially methylated CpG site (chr10: 61385771/ cg01700569, p = 0.049) and thirty-four differentially methylated regions were associated with PTSD status at 3-months post-rape. Decreased BRSK2 and ADCYAP1 methylation at 3-months and 6-months post-rape were associated with increased PTSD scores at the same time points, but these findings did not remain significant in adjusted models. In conclusion, decreased methylation of BRSK2 may result in abnormal neuronal polarization, synaptic development, vesicle formation, and disrupted neurotransmission in individuals with PTSD. PTSD symptoms may also be mediated by differential methylation of the ADCYAP1 gene which is involved in stress regulation. Replication of these findings is required to determine whether ADCYAP1 and BRSK2 are biomarkers of PTSD and potential therapeutic targets.
Collapse
Affiliation(s)
- Jani Nöthling
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa.
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa.
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa.
| | - Naeemah Abrahams
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Social and Behavioural Sciences, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Shibe Mhlongo
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Carl Lombard
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
16
|
Martin CA, Vorn R, Schrieber M, Lai C, Yun S, Kim HS, Gill J. Identification of DNA Methylation Changes That Predict Onset of Post-traumatic Stress Disorder and Depression Following Physical Trauma. Front Neurosci 2021; 15:738347. [PMID: 34630024 PMCID: PMC8498101 DOI: 10.3389/fnins.2021.738347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) are commonly experienced after exposure to highly stressful events, including physical trauma, yet, biological predictors remain elusive. Methylation of DNA may provide key insights, as it likely is reflective of factors that may increase the risk in trauma patients, as DNA methylation is altered by previous stressors. Here, we compared DNA methylation patterns using bisulfite sequencing in patients with a physical trauma that required more than a 24-h hospitalization (n = 33). We then compared DNA methylation in patients who developed and compared the following groups (1) PTSD and MDD; n = 12), (2) MDD (patients with MDD only; n = 12), and (3) control (patients who did not have PTSD or MDD; n = 9), determined by the PTSD Checklist (PCL-5) and Quick Inventory of Depressive Symptomatology (QIDS) at 6-months follow-up. We identified 17 genes with hypermethylated cytosine sites and 2 genes with hypomethylated sites in comparison between PTSD and control group. In comparison between MDD and control group, we identified 12 genes with hypermethylated cytosine sites and 6 genes with hypomethylated sites. Demethylation of these genes altered the CREB signaling pathway in neurons and may represent a promising therapeutic development target for PTSD and MDD. Our findings suggest that epigenetic changes in these gene regions potentially relate to the onset and symptomology of PTSD and MDD and could be used as potential biomarkers in predicting the onset of PTSD or MDD following traumatic events.
Collapse
Affiliation(s)
- Carina A. Martin
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Rany Vorn
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Martin Schrieber
- Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health and Sciences University, Portland, OR, United States
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sijung Yun
- Yotta Biomed, Bethesda, MD, United States
| | - Hyung-Suk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Katrinli S, Smith AK. Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiol Stress 2021; 15:100366. [PMID: 34355049 PMCID: PMC8322450 DOI: 10.1016/j.ynstr.2021.100366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 11/01/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition that adversely affect mental and physical health. Recent studies have increasingly explored the role of the immune system in risk for PTSD and its related symptoms. Dysregulation of the immune system may lead to central nervous system tissue damage and impair learning and memory processes. Individuals with PTSD often have comorbid inflammatory or auto-immune disorders. Evidence shows associations between PTSD and multiple genes that are involved in immune-related or inflammatory pathways. In this review, we will summarize the evidence of immune dysregulation in PTSD, outlining the contributions of distinct cell types, genes, and biological pathways. We use the Human Leukocyte Antigen (HLA) locus to illustrate the contribution of genetic variation to function in different tissues that contribute to PTSD etiology, severity, and comorbidities.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA.,Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
18
|
Womersley JS, Nothling J, Toikumo S, Malan-Müller S, van den Heuvel LL, McGregor NW, Seedat S, Hemmings SMJ. Childhood trauma, the stress response and metabolic syndrome: A focus on DNA methylation. Eur J Neurosci 2021; 55:2253-2296. [PMID: 34169602 DOI: 10.1111/ejn.15370] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
Childhood trauma (CT) is well established as a potent risk factor for the development of mental disorders. However, the potential of adverse early experiences to exert chronic and profound effects on physical health, including aberrant metabolic phenotypes, has only been more recently explored. Among these consequences is metabolic syndrome (MetS), which is characterised by at least three of five related cardiometabolic traits: hypertension, insulin resistance/hyperglycaemia, raised triglycerides, low high-density lipoprotein and central obesity. The deleterious effects of CT on health outcomes may be partially attributable to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which coordinates the response to stress, and the consequent fostering of a pro-inflammatory environment. Epigenetic tags, such as DNA methylation, which are sensitive to environmental influences provide a means whereby the effects of CT can be biologically embedded and persist into adulthood to affect health and well-being. The methylome regulates the transcription of genes involved in the stress response, metabolism and inflammation. This narrative review examines the evidence for DNA methylation in CT and MetS in order to identify shared neuroendocrine and immune correlates that may mediate the increased risk of MetS following CT exposure. Our review specifically highlights differential methylation of FKBP5, the gene that encodes FK506-binding protein 51 and has pleiotropic effects on stress responding, inflammation and energy metabolism, as a central candidate to understand the molecular aetiology underlying CT-associated MetS risk.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jani Nothling
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Faculty of Agriculture, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Clausing ES, Binder AM, Non AL. Epigenetic age associates with psychosocial stress and resilience in children of Latinx immigrants. Epigenomics 2021; 13:1677-1699. [PMID: 33749330 DOI: 10.2217/epi-2019-0343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To investigate associations of psychosocial stressors and resilience factors with DNA methylation age in saliva of Latinx children of immigrants before and after the 2016 presidential election (2015-2018). Materials & methods: We compared psychosocial exposures with four distinct measures of epigenetic age assessed in saliva of children (6-13 years, n = 71 pre-election; n = 35 post-election). Exploratory genome-wide analyses were also conducted. Results: We found distinct associations across epigenetic clocks and time points: for example, greater maternal social status pre-election and fear of parent deportation post-election both associated with decreased Hannum Age (p ≤ 0.01). Conclusion: Though limited in size, our unique study design provides novel hypotheses regarding how the social environment may influence epigenetic aging and genome-wide methylation, potentially contributing to racial/ethnic health inequalities.
Collapse
Affiliation(s)
- Elizabeth S Clausing
- Department of Anthropology at The University of California, San Diego, 92093 CA, USA
| | - Alexandra M Binder
- Department of Epidemiology at The University of California, Los Angeles, 90095 CA, USA
| | - Amy L Non
- Department of Anthropology at The University of California, San Diego, 92093 CA, USA
| |
Collapse
|
20
|
Parade SH, Huffhines L, Daniels TE, Stroud LR, Nugent NR, Tyrka AR. A systematic review of childhood maltreatment and DNA methylation: candidate gene and epigenome-wide approaches. Transl Psychiatry 2021; 11:134. [PMID: 33608499 PMCID: PMC7896059 DOI: 10.1038/s41398-021-01207-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Childhood maltreatment is a major risk factor for chronic and severe mental and physical health problems across the lifespan. Increasing evidence supports the hypothesis that maltreatment is associated with epigenetic changes that may subsequently serve as mechanisms of disease. The current review uses a systematic approach to identify and summarize the literature related to childhood maltreatment and alterations in DNA methylation in humans. A total of 100 empirical articles were identified in our systematic review of research published prior to or during March 2020, including studies that focused on candidate genes and studies that leveraged epigenome-wide data in both children and adults. Themes arising from the literature, including consistent and inconsistent patterns of results, are presented. Several directions for future research, including important methodological considerations for future study design, are discussed. Taken together, the literature on childhood maltreatment and DNA methylation underscores the complexity of transactions between the environment and biology across development.
Collapse
Affiliation(s)
- Stephanie H Parade
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Bradley/Hasbro Children's Research Center, E. P. Bradley Hospital, East Providence, RI, USA.
| | - Lindsay Huffhines
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Bradley/Hasbro Children's Research Center, E. P. Bradley Hospital, East Providence, RI, USA
| | - Teresa E Daniels
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Laura R Stroud
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, RI, USA
| | - Nicole R Nugent
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Audrey R Tyrka
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
21
|
Katrinli S, Zheng Y, Gautam A, Hammamieh R, Yang R, Venkateswaran S, Kilaru V, Lori A, Hinrichs R, Powers A, Gillespie CF, Wingo AP, Michopoulos V, Jovanovic T, Wolf EJ, McGlinchey RE, Milberg WP, Miller MW, Kugathasan S, Jett M, Logue MW, Ressler KJ, Smith AK. PTSD is associated with increased DNA methylation across regions of HLA-DPB1 and SPATC1L. Brain Behav Immun 2021; 91:429-436. [PMID: 33152445 PMCID: PMC7749859 DOI: 10.1016/j.bbi.2020.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is characterized by intrusive thoughts, avoidance, negative alterations in cognitions and mood, and arousal symptoms that adversely affect mental and physical health. Recent evidence links changes in DNA methylation of CpG cites to PTSD. Since clusters of proximal CpGs share similar methylation signatures, identification of PTSD-associated differentially methylated regions (DMRs) may elucidate the pathways defining differential risk and resilience of PTSD. Here we aimed to identify epigenetic differences associated with PTSD. DNA methylation data profiled from blood samples using the MethylationEPIC BeadChip were used to perform a DMR analysis in 187 PTSD cases and 367 trauma-exposed controls from the Grady Trauma Project (GTP). DMRs were assessed with R package bumphunter. We identified two regions that associate with PTSD after multiple test correction. These regions were in the gene body of HLA-DPB1 and in the promoter of SPATC1L. The DMR in HLA-DPB1 was associated with PTSD in an independent cohort. Both DMRs included CpGs whose methylation associated with nearby sequence variation (meQTL) and that associated with expression of their respective genes (eQTM). This study supports an emerging literature linking PTSD risk to genetic and epigenetic variation in the HLA region.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Yuanchao Zheng
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Suresh Venkateswaran
- Emory University School of Medicine Department of Pediatrics, Division of Pediatric Gastroenterology & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Varun Kilaru
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Adriana Lori
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Rebecca Hinrichs
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Abigail Powers
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Charles F Gillespie
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Aliza P Wingo
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA; Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
| | - Vasiliki Michopoulos
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Tanja Jovanovic
- Wayne State University, Department of Psychiatry & Behavioral Neurosciences, Detroit, MI, USA
| | - Erika J Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Regina E McGlinchey
- Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, Boston, USA; VA Boston Health Care System, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - William P Milberg
- Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, Boston, USA; VA Boston Health Care System, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mark W Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Subra Kugathasan
- Emory University School of Medicine Department of Pediatrics, Division of Pediatric Gastroenterology & Children's Healthcare of Atlanta, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Marti Jett
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mark W Logue
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA; National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Kerry J Ressler
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA; Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA; Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA.
| |
Collapse
|
22
|
van der Wal SJ, Maihofer AX, Vinkers CH, Smith AK, Nievergelt CM, Cobb DO, Uddin M, Baker DG, Zuithoff NP, Rutten BP, Vermetten E, Geuze E, Boks MP. Associations between the development of PTSD symptoms and longitudinal changes in the DNA methylome of deployed military servicemen: A comparison with polygenic risk scores. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2020; 4:100018. [PMID: 35755626 PMCID: PMC9216319 DOI: 10.1016/j.cpnec.2020.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 11/02/2022] Open
Abstract
Objective Method Results Conclusion First study of methylation changes over a deployment period using three time-points. Post-deployment methylation decreases in EP300 were associated with delayed onset PTSD. Genetic risk was exclusively related to a non-delayed PTSD onset.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Clinical, epidemiological, and biological evidence raises the possibility that serious mental disorders (SMDs) are associated with accelerated biological aging. To the extent this is true; SMDs should not simply be considered in terms of mental illness or brain dysfunction, but also as 'whole body' and multisystem illnesses, or else as conditions with significant somatic concomitants. RECENT FINDINGS The concept of accelerated biological aging in SMDs is supported by reports of accelerated changes in certain biomarkers normally associated with the aging process. SUMMARY We define and discuss several proposed biological aging markers that have been examined in SMDs, we review the most recent findings, and we conclude with opinions regarding the merits and meanings of these markers, their usefulness in understanding and treating SMDs, and remaining questions and future directions in this area of research.
Collapse
Affiliation(s)
- F. Saverio Bersani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, USA
| | - Synthia H. Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, USA
| | - Victor I. Reus
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, USA
| | - Owen M. Wolkowitz
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, USA
| |
Collapse
|
24
|
Pivac N. Theranostic approach to PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:260-262. [PMID: 30707987 DOI: 10.1016/j.pnpbp.2019.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|