1
|
Jeffery N, Mock PY, Yang K, Tham CL, Israf DA, Li H, Wang X, Lam KW. Therapeutic targeting of neuroinflammation in methamphetamine use disorder. Future Med Chem 2025; 17:237-257. [PMID: 39727147 PMCID: PMC11749361 DOI: 10.1080/17568919.2024.2447226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Methamphetamine (METH) is a highly addictive illicit psychostimulant with a significant annual fatality rate. Emerging studies highlight its role in neuroinflammation and a range of neurological disorders. This review examines the current landscape of potential drug targets for managing neuroinflammation in METH use disorders (MUDs), with a particular focus on the rationale behind targeting Toll-like receptor 4 (TLR4), the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and other promising targets. Given the multifactorial neurological effects of METH, including cognitive impairment and neurodegeneration, addressing METH-induced neuroinflammation has shown considerable promise in partially mitigating the damaging effects on the central nervous system and improving behavioral outcomes. This article provides an overview of the existing understanding while charting a promising path forward for developing innovative MUD treatments, focusing on neuroinflammation as a therapeutic target. Targeting neuroinflammation in METH-induced neurological disorders shows significant promise in mitigating cognitive impairment and neurodegeneration, offering a potential therapeutic strategy for improving outcomes in MUD. While challenges remain in optimizing treatments, ongoing research into combination therapies, novel drug delivery systems, and neuroprotective agents suggests a positive outlook for more effective interventions.
Collapse
Affiliation(s)
- Natasha Jeffery
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Phooi Yan Mock
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kun Yang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Structural Biology and Protein Engineering Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Hui R, Xu J, Zhou M, Xie B, Zhou M, Zhang L, Cong B, Ma C, Wen D. Betaine improves METH-induced depressive-like behavior and cognitive impairment by alleviating neuroinflammation via NLRP3 inflammasome inhibition. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111093. [PMID: 39029648 DOI: 10.1016/j.pnpbp.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Methamphetamine abuse has been associated with central nervous system damage, contributing to the development of neuropsychiatric disorders such as depressive-like behavior and cognitive impairment. With the escalating prevalence of METH abuse, there is a pressing need to explore effective therapeutic interventions. Thus, the objective of this research was to investigate whether betaine can protect against depressive-like behavior and cognitive impairment induced by METH. Following intraperitoneal injections of METH in mice, varying doses of betaine were administered. Subsequently, the behavioral responses of mice and the impact of betaine intervention on METH-induced neural damage, synaptic plasticity, microglial activation, and NLRP3 inflammatory pathway activation were assessed. Administration 30 mg/kg and 100 mg/kg of betaine ameliorated METH-induced depressive-like behaviors in the open field test, tail suspension test, forced swimming test, and sucrose preference test and cognitive impairment in the novel object recognition test and Barnes maze test. Moreover, betaine exerted protective effects against METH-induced neural damage and reversed the reduced synaptic plasticity, including the decline in dendritic spine density, as well as alterations in the expression of hippocampal PSD95 and Synapsin-1. Additionally, betaine treatment suppressed hippocampal microglial activation induced by METH. Likewise, it also inhibited the activation of the hippocampal NLRP3 inflammasome pathway and reduced IL-1β and TNF-α release. These results collectively suggest that betaine's significant role in mitigating depressive-like behavior and cognitive impairment resulting from METH abuse, presenting potential applications in the prevention and treatment of substance addiction.
Collapse
Affiliation(s)
- Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Jiabao Xu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Maijie Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Meiqi Zhou
- College of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
3
|
Wu L, Liu X, Jiang Q, Li M, Liang M, Wang S, Wang R, Su L, Ni T, Dong N, Zhu L, Guan F, Zhu J, Zhang W, Wu M, Chen Y, Chen T, Wang B. Methamphetamine-induced impairment of memory and fleeting neuroinflammation: Profiling mRNA changes in mouse hippocampus following short-term and long-term exposure. Neuropharmacology 2024; 261:110175. [PMID: 39357738 DOI: 10.1016/j.neuropharm.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Methamphetamine (METH) has been implicated in inducing memory impairment, but the precise mechanisms underlying this effect remain unclear. Current research often limits itself to singular models or focuses on individual gene or protein functions, which hampers a comprehensive understanding of the underlying mechanisms. In this study, we established three METH mouse exposure models, extracted hippocampal nuclei, and utilized RNA sequencing to analyze changes in mRNA expression profiles. Our results indicate that METH significantly impairs the learning and memory capabilities of mice. Additionally, we observed that METH-induced inflammatory responses occur in the early phase and do not further exacerbate with repeated injections. However, RNA sequencing revealed the persistent enrichment of inflammatory pathway molecules, which correlated with worsened behaviors. This suggests that although METH-induced neuroinflammation plays a critical role in learning and memory impairment, the continued enrichment of inflammatory pathway molecules is associated with behavioral outcomes. These findings provide crucial evidence for the potential application of immune intervention in METH-related disorders.
Collapse
Affiliation(s)
- Laiqiang Wu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaorui Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Qingchen Jiang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Li
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Min Liang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Linlan Su
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Tong Ni
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Nan Dong
- School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Fanglin Guan
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- Department of Pathology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Teng Chen
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China.
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
4
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
5
|
Gong XS, Wang HX, Yang XD, Yu ZY, Lin SJ, Zou ZT, Lv JN, Qian LY, Ruan YE, Si ZZ, Zhou Y, Liu Y. The effect of paeoniflorin on the rewarding effect of methamphetamine and the associated cognitive impairment in mice. Metab Brain Dis 2024; 40:27. [PMID: 39565442 DOI: 10.1007/s11011-024-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
Chronic exposure to methamphetamine (METH) has been suggested to cause METH use disorder and severe cognitive impairment. Paeoniflorin (PF) is a monoterpenoid glycoside with various beneficial effects, including anti-inflammatory, antioxidant and antidepressant. The current study was designed to investigate the effect of PF (30 mg/kg, i.p.) on the rewarding effect of METH (2.5 mg/kg, i.p.) and the associated cognitive impairment, using the animal model of conditioned place preference, new location reorganization test, new object reorganization test and Y-maze test. METH induced conditioned place preference, accompanied by increased expression of synapse-associated proteins in the ventral target areas (VTA) and nucleus accumbens (NAc). In addition, METH induced significant cognitive impairment and decreased the expression of synapse-associated proteins in the hippocampus (Hip). Administration of PF decreased the rewarding effect of METH and the expression of synapse-associated proteins in the VTA or NAc. PF was also effective to improve METH-induced cognitive impairment by upregulating the expression of synapse-associated proteins in the Hip. Therefore, PF could be a potential agent for the treatment of METH use disorder and the associated cognitive impairment.
Collapse
Affiliation(s)
- Xin-Shuang Gong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Hai-Xing Wang
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, China
| | - Xiang-Dong Yang
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhao-Ying Yu
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Shu-Jun Lin
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhi-Ting Zou
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Jia-Nan Lv
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Li-Yin Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yu-Er Ruan
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zi-Zhen Si
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yi Zhou
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, China
| | - Yu Liu
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2024:10.1038/s41401-024-01398-2. [PMID: 39448859 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
7
|
Gao X, Sun H, Wei Y, Niu J, Hao S, Sun H, Tang G, Qi C, Ge J. Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155805. [PMID: 38851097 DOI: 10.1016/j.phymed.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear. PURPOSE The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved. METHODS A T2DM mouse model was established by a combination of a high-fat diet (HFD) and streptozotocin (STZ, 100 mg/kg, i.p.), and Mlt (5, 10 or 20 mg/kg) was intragastrically administered for six consecutive weeks. The serum levels of glycolipid metabolism indicators were measured, behavioral performance was tested, and the protein expression of key molecules involved in the regulation of synaptic plasticity, circadian rhythms, and neuroinflammation in the hippocampus was detected. Moreover, the fluorescence intensities of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA-1), amyloid β-protein (Aβ) and phosphorylated Tau (p-Tau) in the hippocampus were also observed. RESULTS Treatment with Mlt not only improved T2DM-related metabolic disorders, as indicated by increased serum concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), insulin (INS), total cholesterol (TC) and triglyceride (TG), improved glucose tolerance and liver and pancreas function but also alleviated AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, as indicated by decreased immobility time in the tail suspension test (TST) and forced swimming test (FST), increased preference indices of novel objects or novel arms in the novel object recognition test (NOR) and Y-maze test (Y-maze), and improved platform positioning capability in the Morris water maze (MWM) test. Moreover, treatment with Mlt also improved the hyperactivation of astrocytes and microglia in the hippocampus of mice, accompanied by reduced expression of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), Aβ, and p-Tau and increased expression of brain-derived neurotrophic factor (BDNF), Synapsin I, Synaptotagmin I, melatonin receptor 1B (MT1B), brain muscle arnt-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), period 2 (Per2), and cryptochrome 2 (Cry2). CONCLUSION Mlt alleviated T2DM-related metabolic disorders and AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, possibly through a mechanism involving the regulation of glial activation and associated neuroinflammation and the balancing of synaptic plasticity and circadian rhythms in the hippocampus.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Guozhang Tang
- School of 1st Clinic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, PR China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China.
| |
Collapse
|
8
|
Mai Y, Cheng Z, Wang Z, Hu T, Zhang Y, Yuan X, Xu X, Fan Y, Ge F, Shi P, Wang J, Yang X, Guan X. Pathological polarizations from microglia to astrocyte contributes to spatial memory deficit in methamphetamine abstinence mice. Cereb Cortex 2024; 34:bhae281. [PMID: 38981852 DOI: 10.1093/cercor/bhae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.
Collapse
Affiliation(s)
- Yuning Mai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhen Cheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Ze Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xiya Yuan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Pengbo Shi
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Xin Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| |
Collapse
|
9
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
10
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
11
|
Rashidi SK, Dezfouli MA, Khodagholi F, Dadashpour M, Shabani AA. Protective effect of melatonin against methamphetamine-induced attention deficits through miR-181/SIRT1 axis in the prefrontal cortex. Mol Biol Rep 2024; 51:690. [PMID: 38796575 DOI: 10.1007/s11033-024-09631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Methamphetamine (METH) is an addictive psychostimulant with deleterious effects on the central nervous system. Chronic use of METH in high doses impairs cognition, attention and executive functions, but the underlying mechanisms are still unclear. Sirtuin 1 (SIRT1) is a post-translational regulator that is downregulated following METH neurotoxicity. Melatonin is a neuroprotective hormone that enhances mitochondrial metabolism. Here, we evaluated the effect of melatonin on METH-induced attention deficits disorder and the involvement of the miR-181/SIRT1 axis in melatonin neuroprotection. METHODS AND RESULTS METH at a dose of 5 mg/kg was injected for 21 consecutive days. The animals were assigned to receive either melatonin or the vehicle after METH injections. Attention levels were evaluated with abject-based attention test. In the prefrontal cortex, the expression levels of miR-181a-5p, SIRT1, p53 and CCAR2, as well as the mtDNA copy numbers were evaluated using qRT-PCR and western blotting. The outcomes revealed that melatonin treatment following METH injections improved METH-induced attention deficits. METH toxicity can be associated with changes in the miR-181/SIRT1 axis, elevated levels of p53 and COXII, and decreased levels of mtDNA in the prefrontal cortex of adult rats. Interestingly, administration of melatonin can improve the expression of these molecules and reduces the toxic effects of METH. CONCLUSION Melatonin ameliorated the neurotoxicity of METH in the prefrontal cortex and the miR-181/SIRT1 axis is involve in the protective effects of melatonin. However, melatonin can be potentially administrated to improve attention impairment in METH use disorders.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
12
|
Shi Y, Fang Q, Hu Y, Mi Z, Luo S, Gan Y, Yuan S. Melatonin Ameliorates Post-Stroke Cognitive Impairment in Mice by Inhibiting Excessive Mitophagy. Cells 2024; 13:872. [PMID: 38786094 PMCID: PMC11119717 DOI: 10.3390/cells13100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) remains the most common consequence of ischemic stroke. In this study, we aimed to investigate the role and mechanisms of melatonin (MT) in improving cognitive dysfunction in stroke mice. We used CoCl2-induced hypoxia-injured SH-SY5Y cells as a cellular model of stroke and photothrombotic-induced ischemic stroke mice as an animal model. We found that the stroke-induced upregulation of mitophagy, apoptosis, and neuronal synaptic plasticity was impaired both in vivo and in vitro. The results of the novel object recognition test and Y-maze showed significant cognitive deficits in the stroke mice, and Nissl staining showed a loss of neurons in the stroke mice. In contrast, MT inhibited excessive mitophagy both in vivo and in vitro and decreased the levels of mitophagy proteins PINK1 and Parkin, and immunofluorescence staining showed reduced co-localization of Tom20 and LC3. A significant inhibition of mitophagy levels could be directly observed under transmission electron microscopy. Furthermore, behavioral experiments and Nissl staining showed that MT ameliorated cognitive deficits and reduced neuronal loss in mice following a stroke. Our results demonstrated that MT inhibits excessive mitophagy and improves PSCI. These findings highlight the potential of MT as a preventive drug for PSCI, offering promising therapeutic implications.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410006, China; (Y.S.); (S.L.)
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410006, China; (Q.F.); (Y.H.); (Z.M.); (Y.G.)
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Qian Fang
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410006, China; (Q.F.); (Y.H.); (Z.M.); (Y.G.)
| | - Yue Hu
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410006, China; (Q.F.); (Y.H.); (Z.M.); (Y.G.)
| | - Zhaoyu Mi
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410006, China; (Q.F.); (Y.H.); (Z.M.); (Y.G.)
| | - Shuting Luo
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410006, China; (Y.S.); (S.L.)
| | - Yaoxue Gan
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410006, China; (Q.F.); (Y.H.); (Z.M.); (Y.G.)
| | - Shishan Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410006, China; (Y.S.); (S.L.)
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410006, China; (Q.F.); (Y.H.); (Z.M.); (Y.G.)
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
13
|
Zhang Y, Wei R, Li Z, Li X, Zhang K, Ge Y, Kong X, Liu X, Chen G. Melatonin improves maternal sleep deprivation-induced learning and memory impairment, inflammation, and synaptic dysfunction in murine male adult offspring. Brain Behav 2024; 14:e3515. [PMID: 38702895 PMCID: PMC11069022 DOI: 10.1002/brb3.3515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Zong‐Yin Li
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Kai‐Xuan Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yi‐Jun Ge
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xiao‐Yi Kong
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xue‐Chun Liu
- Department of NeurologyThe Second People's Hospital of HefeiHefei Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
14
|
Wei X, Zhang F, Cheng D, Wang Z, Xing N, Yuan J, Zhang W, Xing F. Free heme induces neuroinflammation and cognitive impairment by microglial activation via the TLR4/MyD88/NF-κB signaling pathway. Cell Commun Signal 2024; 22:16. [PMID: 38183122 PMCID: PMC10768134 DOI: 10.1186/s12964-023-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Red blood cells (RBCs) transfusion is related to perioperative neurocognitive disorders. The toxic effect of free heme has been identified in many pathologies. However, the underlying mechanisms of RBCs transfusion or free heme in cognitive impairment have not been clearly explored. Therefore, this research was conducted to determine the mechanism of free heme-induced neuroinflammation and cognitive impairment. METHODS Rats were received intraperitoneal injection of hemin alone or combined with intracerebroventricular injection of Hemopexin (HPX), and MWM test was conducted to measure cognitive function. The amount of heme-HPX complexes was evaluated by flow cytometry for CD91 + cells. The microglial inflammatory response in rat brain was observed by immunofluorescence staining of Iba-1, and the inflammatory factors of TNF-α, IL-1β and IL-6 in rat brain and BV2 cells were detected by ELISA analysis. Furthermore, neuronal apoptosis in HT22 cells alone and in HT22 + BV2 coculture system was detected by flow cytometry and immunofluorescence staining. Finally, western blot was conducted to detect TLR4/MyD88/NF-κB proteins in rat brain and BV2 cells treated with hemin or combined with pathway inhibitors. Additionally, the M1 surface marker CD86 was observed in BV2 cells to further confirm neuroinflammation. RESULTS Intraperitoneal injection of hemin induced cognitive impairment, increase of CD91 + cells, up-regulation of TNF-α and IL-1β, down-regulation of IL-6, activation of microglia, and activation of the TLR4/MyD88/NF-κB signaling pathway in rat brain. Significantly, intracerebroventricular injection of HPX reduced the above effects. Hemin induced boost of TNF-α, IL-1β and IL-6 in BV2 cells, as well as apoptosis in HT22 cells. Notably, when HT22 cells were cocultured with BV2 cells, apoptosis was significantly increased. Hemin also induced activation of the TLR4/MyD88/NF-κB signaling pathway and increased the M1 surface marker CD86 in BV2 cells, and inhibiting this pathway reduced the inflammatory responses. CONCLUSIONS Free heme induces cognitive impairment, and the underlying mechanism may involve neuronal apoptosis and microglial inflammation via the TLR4/MyD88/NF-κB signaling pathway. HPX may have potential therapeutic effects. Video Abstract.
Collapse
Affiliation(s)
- Xin Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Fan Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Dan Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Loftis JM, Ramani S, Firsick EJ, Hudson R, Le-Cook A, Murnane KS, Vandenbark A, Shirley RL. Immunotherapeutic treatment of inflammation in mice exposed to methamphetamine. Front Psychiatry 2023; 14:1259041. [PMID: 38025429 PMCID: PMC10666795 DOI: 10.3389/fpsyt.2023.1259041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Currently, there are no FDA-approved medications to treat methamphetamine addiction, including the inflammatory, neurotoxic, and adverse neuropsychiatric effects. We have shown that partial (p)MHC class II constructs (i.e., Recombinant T-cell receptor Ligand - RTL1000), comprised of the extracellular α1 and β1 domains of MHC class II molecules linked covalently to myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide, can address the neuroimmune effects of methamphetamine addiction through its ability to bind to and down-regulate CD74 expression, block macrophage migration inhibitory factor (MIF) signaling, and reduce levels of pro-inflammatory chemokine ligand 2 (CCL2). The present study evaluated the effects of our third-generation pMHC II construct, DRmQ, on cognitive function and concentration of inflammatory cytokines in the frontal cortex, a region critical for cognitive functions such as memory, impulse control, and problem solving. Methods Female and male C57BL/6J mice were exposed to methamphetamine (or saline) via subcutaneous (s.c.) injections administered four times per day every other day for 14 days. Following methamphetamine exposure, mice received immunotherapy (DRmQ or ibudilast) or vehicle s.c. injections daily for five days. Cognitive function was assessed using the novel object recognition test (NORT). To evaluate the effects of immunotherapy on inflammation in the frontal cortex, multiplex immunoassays were conducted. ANOVA was used to compare exploration times on the NORT and immune factor concentrations. Results Post hoc analysis revealed increased novel object exploration time in MA-DRmQ treated mice, as compared to MA-VEH treated mice (non-significant trend). One-way ANOVA detected a significant difference across the groups in the concentration of macrophage inflammatory protein-2 (MIP-2) (p = 0.03). Post hoc tests indicated that mice treated with methamphetamine and DRmQ or ibudilast had significantly lower levels of MIP-2 in frontal cortex, as compared to mice treated with methamphetamine and vehicle (p > 0.05). Discussion By specifically targeting CD74, our DRQ constructs can block the signaling of MIF, inhibiting the downstream signaling and pro-inflammatory effects that contribute to and perpetuate methamphetamine addiction.
Collapse
Affiliation(s)
- Jennifer M. Loftis
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Methamphetamine Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Sankrith Ramani
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Evan J. Firsick
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Rebekah Hudson
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Anh Le-Cook
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Arthur Vandenbark
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
17
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
18
|
Polvat T, Prasertporn T, Na Nakorn P, Pannengpetch S, Suwanjang W, Panmanee J, Ngampramuan S, Cornish JL, Chetsawang B. Proteomic Analysis Reveals the Neurotoxic Effects of Chronic Methamphetamine Self-Administration-Induced Cognitive Impairments and the Role of Melatonin-Enhanced Restorative Process during Methamphetamine Withdrawal. J Proteome Res 2023; 22:3348-3359. [PMID: 37676068 PMCID: PMC10563163 DOI: 10.1021/acs.jproteome.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Cognitive flexibility is a crucial ability in humans that can be affected by chronic methamphetamine (METH) addiction. The present study aimed to elucidate the mechanisms underlying cognitive impairment in mice chronically administered METH via an oral self-administration method. Further, the effect of melatonin treatment on recovery of METH-induced cognitive impairment was also investigated. Cognitive performance of the mice was assessed using an attentional set shift task (ASST), and possible underlying neurotoxic mechanisms were investigated by proteomic and western blot analysis of the prefrontal cortex (PFC). The results showed that mice-administered METH for 21 consecutive days exhibited poor cognitive performance compared to controls. Cognitive deficit in mice partly recovered after METH withdrawal. In addition, mice treated with melatonin during METH withdrawal showed a higher cognitive recovery than vehicle-treated METH withdrawal mice. Proteomic and western blot analysis revealed that METH self-administration increased neurotoxic markers, including disruption to the regulation of mitochondrial function, mitophagy, and decreased synaptic plasticity. Treatment with melatonin during withdrawal restored METH-induced mitochondria and synaptic impairments. These findings suggest that METH-induced neurotoxicity partly depends on mitochondrial dysfunction leading to autophagy-dependent cell death and that the recovery of neurological impairments may be enhanced by melatonin treatment during the withdrawal period.
Collapse
Affiliation(s)
- Tanthai Polvat
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Center
of Emotional Health, Department of Psychology, Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia
| | - Tanya Prasertporn
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Piyada Na Nakorn
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Supitcha Pannengpetch
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Wilasinee Suwanjang
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jiraporn Panmanee
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Sukhonthar Ngampramuan
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jennifer L. Cornish
- Center
of Emotional Health, Department of Psychology, Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia
| | - Banthit Chetsawang
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
19
|
Guerri L, Dobbs LK, da Silva e Silva DA, Meyers A, Ge A, Lecaj L, Djakuduel C, Islek D, Hipolito D, Martinez AB, Shen PH, Marietta CA, Garamszegi SP, Capobianco E, Jiang Z, Schwandt M, Mash DC, Alvarez VA, Goldman D. Low Dopamine D2 Receptor Expression Drives Gene Networks Related to GABA, cAMP, Growth and Neuroinflammation in Striatal Indirect Pathway Neurons. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1104-1115. [PMID: 37881572 PMCID: PMC10593893 DOI: 10.1016/j.bpsgos.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type 2 receptor availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, translating ribosome affinity purification (TRAP) was used to purify and analyze the translatome (ribosome-bound messenger RNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA (gamma-aminobutyric acid) and cAMP (cyclic adenosine monophosphate) signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 messenger RNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusions This study provides strong molecular evidence that, in addiction, inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Collapse
Affiliation(s)
- Lucia Guerri
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Lauren K. Dobbs
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Neurology, University of Texas at Austin, Austin, Texas
| | - Daniel A. da Silva e Silva
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Allen Meyers
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Aaron Ge
- University of Maryland, College Park, Maryland
| | - Lea Lecaj
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Caroline Djakuduel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Damien Islek
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Dionisio Hipolito
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Abdiel Badillo Martinez
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Cheryl A. Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Susanna P. Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Enrico Capobianco
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Zhijie Jiang
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Melanie Schwandt
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
- Institute for Data Science and Computing, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Veronica A. Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Wu Y, Dong Z, Jiang X, Qu L, Zhou W, Sun X, Hou J, Xu H, Cheng M. Gut Microbiota Taxon-Dependent Transformation of Microglial M1/M2 Phenotypes Underlying Mechanisms of Spatial Learning and Memory Impairment after Chronic Methamphetamine Exposure. Microbiol Spectr 2023; 11:e0030223. [PMID: 37212669 PMCID: PMC10269813 DOI: 10.1128/spectrum.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023] Open
Abstract
Methamphetamine (METH) exposure may lead to cognitive impairment. Currently, evidence suggests that METH exposure alters the configuration of the gut microbiota. However, the role and mechanism of the gut microbiota in cognitive impairment after METH exposure are still largely unknown. Here, we investigated the impact of the gut microbiota on the phenotype status of microglia (microglial phenotypes M1 and microglial M2) and their secreting factors, the subsequent hippocampal neural processes, and the resulting influence on spatial learning and memory of chronically METH-exposed mice. We determined that gut microbiota perturbation triggered the transformation of microglial M2 to M1 and a subsequent change of pro-brain-derived neurotrophic factor (proBDNF)-p75NTR-mature BDNF (mBDNF)-TrkB signaling, which caused reduction of hippocampal neurogenesis and synaptic plasticity-related proteins (SYN, PSD95, and MAP2) and, consequently, deteriorated spatial learning and memory. More specifically, we found that Clostridia, Bacteroides, Lactobacillus, and Muribaculaceae might dramatically affect the homeostasis of microglial M1/M2 phenotypes and eventually contribute to spatial learning and memory decline after chronic METH exposure. Finally, we found that fecal microbial transplantation could protect against spatial learning and memory decline by restoring the microglial M1/M2 phenotype status and the subsequent proBDNF-p75NTR/mBDNF-TrkB signaling in the hippocampi of chronically METH-exposed mice. IMPORTANCE Our study indicated that the gut microbiota contributes to spatial learning and memory dysfunction after chronic METH exposure, in which microglial phenotype status plays an intermediary role. The elucidated "specific microbiota taxa-microglial M1/M2 phenotypes-spatial learning and memory impairment" pathway would provide a novel mechanism and elucidate potential gut microbiota taxon targets for the no-drug treatment of cognitive deterioration after chronic METH exposure.
Collapse
Affiliation(s)
- Yulong Wu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Zhouyan Dong
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Xinze Jiang
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Lei Qu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Wei Zhou
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Xu Sun
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Jiangshan Hou
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Hongmei Xu
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| |
Collapse
|
21
|
Yang JZ, Zhang KK, He JT, Chen LJ, Ding JF, Liu JL, Li JH, Liu Y, Li XW, Zhao D, Xie XL, Wang Q. Obeticholic acid protects against methamphetamine-induced anxiety-like behavior by ameliorating microbiota-mediated intestinal barrier impairment. Toxicology 2023; 486:153447. [PMID: 36720452 DOI: 10.1016/j.tox.2023.153447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Methamphetamine (Meth) abuse can cause severe anxiety disorder and interfere with gut homeostasis. Obeticholic acid (OCA) has emerged as a protective agent against diet-related anxiety that improves gut homeostasis. The potential for OCA to ameliorate Meth-induced anxiety, and the microbial mechanisms involved, remain obscure. Here, C57/BL6 mice were intraperitoneally injected with Meth (15 mg/kg) to induce anxiety-like behavior. 16 S rRNA sequence analysis and fecal microbiome transplantation (FMT) were used to profile the gut microbiome and evaluate its effects, respectively. Orally administered OCA was investigated for protection against Meth-induced anxiety. Results indicated that Meth mediated anxiety-like behavior, aroused hippocampal neuroinflammation through activation of the TLR4/MyD88/NF-κB pathway, weakened intestinal barrier and disturbed the gut microbiome. Specifically, abundance of anxiety-related Rikenella was increased. FMT from Meth-administrated mice also weakened intestinal barrier and elevated serum LPS, inducing hippocampal neuroinflammation and anxiety-like behavior in recipient mice. Finally, OCA pretreatment ameliorated Meth-induced impairment of gut homeostasis by reshaping the microbial composition and improving the intestinal barrier. Meth-induced anxiety-like behavior and hippocampal neuroinflammation were also ameliorated by OCA pretreatment. These preliminary findings reveal the crucial role of gut microbiota in Meth-induced anxiety-like behavior and neuroinflammation, highlighting OCA as a potential candidate for the prevention of Meth-induced anxiety.
Collapse
Affiliation(s)
- Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jie-Tao He
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jin-Feng Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
22
|
Kim HJ, Lee MY, Kim GR, Lee HJ, Sayson LV, Ortiz DMD, Cheong JH, Kim M. Korean red ginseng extract attenuates alcohol-induced addictive responses and cognitive impairments by alleviating neuroinflammation. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
23
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
24
|
Anderson G. Depression Pathophysiology: Astrocyte Mitochondrial Melatonergic Pathway as Crucial Hub. Int J Mol Sci 2022; 24:ijms24010350. [PMID: 36613794 PMCID: PMC9820523 DOI: 10.3390/ijms24010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is widely accepted as having a heterogenous pathophysiology involving a complex mixture of systemic and CNS processes. A developmental etiology coupled to genetic and epigenetic risk factors as well as lifestyle and social process influences add further to the complexity. Consequently, antidepressant treatment is generally regarded as open to improvement, undoubtedly as a consequence of inappropriately targeted pathophysiological processes. This article reviews the diverse array of pathophysiological processes linked to MDD, and integrates these within a perspective that emphasizes alterations in mitochondrial function, both centrally and systemically. It is proposed that the long-standing association of MDD with suppressed serotonin availability is reflective of the role of serotonin as a precursor for the mitochondrial melatonergic pathway. Astrocytes, and the astrocyte mitochondrial melatonergic pathway, are highlighted as crucial hubs in the integration of the wide array of biological underpinnings of MDD, including gut dysbiosis and permeability, as well as developmental and social stressors, which can act to suppress the capacity of mitochondria to upregulate the melatonergic pathway, with consequences for oxidant-induced changes in patterned microRNAs and subsequent patterned gene responses. This is placed within a development context, including how social processes, such as discrimination, can physiologically regulate a susceptibility to MDD. Future research directions and treatment implications are derived from this.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| |
Collapse
|
25
|
Hafez HM, Waz S, El-Tahawy NFG, Mohamed MZ. Agomelatine ameliorates cadmium-induced toxicity through the modification of HMGB-1/TLR-4/NFκB pathway. Toxicol Appl Pharmacol 2022; 457:116313. [PMID: 36356678 DOI: 10.1016/j.taap.2022.116313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Cadmium (Cd) has potential hazards on human beings. Consequently, this study was performed to explore the protective effects of agomelatine (AGO), a melatonin receptor agonist, against Cd-induced toxicity in rats. AGO (40 mg/kg/day) was administered orally concomitant with intra peritoneal injection of Cd (0.4 mg/kg/day) for 14 days. Then, blood, biochemical parameters and histological examination of affected organs including, heart and testis, were evaluated. Interestingly, AGO significantly counteracted Cd-induced elevation of serum cardiac enzymes. Similarly, AGO significantly improved the deterioration of serum testosterone level with Cd administration. The oxidative balance was corrected by AGO, as evidenced by decrease malondialdehyde (MDA), and superoxide dismutase activity in cardiac and testicular tissues. Additionally, AGO increased silent information regulator 1 protein (SIRT-1) and decreased High mobility group box 1 (HMGB1), Toll like receptor-4 (TLR-4), and Myd88 levels that subsequently reduced expression of nuclear factor-κB (NF-κB). Moreover, level of apoptotic marker; caspase-3 was inhibited by AGO. In accordance with the biochemical and molecular results, AGO restored structure of cardiac myofibers and seminiferous tubules. Collectively, AGO mitigated cardiac and testicular toxicity of Cd via modulation of SIRT-1/HMGB1 and its downstream pathway.
Collapse
Affiliation(s)
- Heba M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| | | | - Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|
26
|
Si MD, Wu M, Cheng XZ, Ma ZH, Zheng YG, Li J, Li S, Song YX, Ma D. Swertia mussotii prevents high-fat diet-induced non-alcoholic fatty liver disease in rats by inhibiting expression the TLR4/MyD88 and the phosphorylation of NF-κB. PHARMACEUTICAL BIOLOGY 2022; 60:1960-1968. [PMID: 36205548 PMCID: PMC9559049 DOI: 10.1080/13880209.2022.2127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Swertia mussotii Franch. (Gentianaceae) is a source of the traditional Tibetan medicine, ZangYinChen, and is used to treat chronic hepatitis and many types of jaundice. OBJECTIVE This study explored the therapeutic effects and mechanism of S. mussotii on non-alcoholic fatty liver disease in diet-induced hypercholesterolaemia. MATERIALS AND METHODS After a week of adaptive feeding, 32 Sprague-Dawley rats were divided into four groups: (1) Control, (2) Control-S, (3) Model, and (4) Model-S. During the 12 experimental weeks, we established the Model using a high-fat diet. Control-S and Model-S were given 1.0 g/kg S. mussotii water extract via gavage starting in the fifth week until the end of experiment. RESULTS When compared with Model rats, the S. mussotii water extract led to a reduction in high-density lipoproteins (43.9%) and albumin (13.9%) and a decrease in total cholesterol (54.0%), triglyceride (45.6%), low-density lipoproteins (8.6%), aspartate aminotransferase (11.0%), alanine aminotransferase (15.5%), alkaline phosphatase (19.1%), total protein (6.4%), and glucose (20.8%) in serum. A reduction in three cytokines (IL-1β, IL-6, and TNFα) was detected. Histopathological examination showed that liver steatosis was significantly relieved in S. mussotii-treated high-fat diet rats. S. mussotii also caused a downregulation in the expression of TLR4 (43.2%), MyD88 (33.3%), and a decrease in phosphorylation of NF-κB. DISCUSSION AND CONCLUSIONS Our findings indicate that S. mussotii may act as a potential anti-inflammation drug via inhibition of the TLR4/MyD88/NF-κB pathway. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Ming Dong Si
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Wu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Zhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi Hong Ma
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Guang Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Si Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yong Xing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| |
Collapse
|
27
|
Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. Physiol Behav 2022; 254:113919. [PMID: 35858673 DOI: 10.1016/j.physbeh.2022.113919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
Overweight and obesity are associated with an increased risk of developing dementia and cognitive deficits. Neuroinflammation is one of the most important mechanisms behind cognitive impairment in obese patients. In recent years, the neuroendocrine hormone melatonin has been suggested to have therapeutic effects for memory decline in several neuropsychiatric and neurological conditions. However, the effects of melatonin on cognitive function under obesity conditions still need to be clarified. The purpose of this study was to determine whether melatonin treatment can improve cognitive impairment in obese mice. To this end, male C57BL6 mice were treated with a high-fat diet (HFD) for 20 weeks to induce obesity. The animal received melatonin for 8 weeks. Cognitive functions were evaluated using the Y maze, object recognition test, and the Morris water maze. We measured inflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-17A, and brain-derived neurotrophic factor (BDNF) in the hippocampus of obese mice. Our results show that HFD-induced obesity significantly impaired working, spatial and recognition memory by increasing IFN-γ and IL-17A and decreasing BDNF levels in the hippocampus of mice. On the other hand, melatonin treatment effectively improved all cognitive impairments and reduced TNF-α, IFN-γ, and IL-17A and elevated BDNF levels in the hippocampus of obese mice. Taken together, this study suggests that melatonin treatment could have a beneficial role in the treatment of cognitive impairment in obesity.
Collapse
|
28
|
Re GF, Li H, Yang JQ, Li Y, Zhang Z, Wu X, Zhou R, Kong D, Luo H, Kuang YQ, Wang KH. Exercise modulates central and peripheral inflammatory responses and ameliorates methamphetamine-induced anxiety-like symptoms in mice. Front Mol Neurosci 2022; 15:955799. [PMID: 36106141 PMCID: PMC9465459 DOI: 10.3389/fnmol.2022.955799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Anxiety-like symptoms are common symptoms of methamphetamine (METH) users, especially in the acute withdrawal period, which is an important factor for the high relapse rate during METH acute withdrawal. Exercise has been demonstrated to relieve anxiety-like symptoms during METH withdrawal, but the underlying mechanisms of this anti-anxiety effect are still unclear. Activated microglia and abnormal neuroinflammation play an important role in the pathogenesis of anxiety-like symptoms after METH withdrawal. Moreover, peripheral immune factors were also significantly associated with anxiety symptoms. However, the effects of treadmill exercise on microglial function and neuroinflammation in the striatum and hippocampus during acute METH withdrawal have not been reported. In the current study, we found severe peripheral immune dysfunction in METH users during acute withdrawal, which may in part contribute to anxiety symptoms during METH acute withdrawal. We also showed that 2 weeks of METH exposure induced anxiety-like symptoms in the acute withdrawal period. Additionally, METH exposure resulted in increased microglial activation and proinflammatory cytokines released in the mouse striatum and hippocampus during acute withdrawal. We next evaluated the effects of treadmill exercise in countering anxiety-like symptoms induced by METH acute withdrawal. The results showed that anxiety-like symptoms induced by acute METH withdrawal were attenuated by coadministration of treadmill exercise. In addition, treadmill exercise counteracted METH-induced microglial activation in the mouse striatum and various subregions of the hippocampus. Furthermore, treadmill exercise also reversed the increase in proinflammatory cytokines induced by acute METH withdrawal in the mouse striatum, hippocampus and serum. Our findings suggest that the anti-anxiety effect of treadmill exercise may be mediated by reducing microglial activation and regulating central and peripheral inflammatory responses.
Collapse
Affiliation(s)
- Guo-Fen Re
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Li
- Yunnan Narcotics Control Bureau, Kunming, China
| | - Ji-Qun Yang
- The Third People’s Hospital of Kunming, Kunming, China
| | - Yue Li
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- School of Medicine, Yunnan University, Kunming, China
| | - Xiaocong Wu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiyi Zhou
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Deshenyue Kong
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huayou Luo
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yi-Qun Kuang,
| | - Kun-Hua Wang
- School of Medicine, Yunnan University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- *Correspondence: Yi-Qun Kuang,
| |
Collapse
|
29
|
Jia S, Guo X, Chen Z, Li S, Liu XA. The roles of the circadian hormone melatonin in drug addiction. Pharmacol Res 2022; 183:106371. [PMID: 35907435 DOI: 10.1016/j.phrs.2022.106371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Given the devastating social and health consequences of drug addiction and the limitations of current treatments, a new strategy is needed. Circadian system disruptions are frequently associated with drug addiction. Correcting abnormal circadian rhythms and improving sleep quality may thus be beneficial in the treatment of patients with drug addiction. Melatonin, an essential circadian hormone that modulates the biological clock, has anti-inflammatory, analgesic, anti-depressive, and neuroprotective effects via gut microbiota regulation and epigenetic modifications. It has attracted scientists' attention as a potential solution to drug abuse. This review summarized scientific evidence on the roles of melatonin in substance use disorders at the cellular, circuitry, and system levels, and discussed its potential applications as an intervention strategy for drug addiction.
Collapse
Affiliation(s)
- Shuhui Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuantong Guo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Heroin Addiction Induces Axonal Transport Dysfunction in the Brain Detected by In Vivo MRI. Neurotox Res 2022; 40:1070-1085. [PMID: 35759084 DOI: 10.1007/s12640-022-00533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Heroin is a highly addictive drug that causes axonal damage. Here, manganese-enhanced magnetic resonance imaging (MEMRI) was used to dynamically monitor axonal transport at different stages of heroin addiction. Rat models of heroin addiction (HA) and prolonged heroin addiction (PHA) were established by injecting rats with heroin at different stages. Heroin-induced learning and memory deficits were evaluated in the Morris water maze (MWM), and MEMRI was used to dynamically evaluate axonal transport in the olfactory pathway. The expression of proteins related to axonal structure and function was also assessed by Western blotting. Transmission electron microscopy (TEM) was used to observe ultrastructural changes, and protein levels of neurofilament heavy chain (NF-H) were analyzed by immunofluorescence staining. HA rats, especially PHA rats, exhibited worse spatial learning and memory than control rats. Compared with HA rats and control rats, PHA rats exhibited significantly longer escape latencies, significantly fewer platform-location crossings, and significantly more time in the target quadrant during the MWM test. Mn2+ transport was accelerated in HA rats. PHA rats exhibited severely reduced Mn2+ transport, and the axonal transport rate (ATR) was significantly lower in these rats than in control rats (P < 0.001). The levels of cytoplasmic dynein and kinesin-1 were significantly decreased in the PHA group than in the control group (P < 0.001); additionally, the levels of energy-related proteins, including cytochrome c oxidase (COX) IV and ATP synthase subunit beta (ATPB), were lower in the PHA group (P < 0.001). The brains of heroin-exposed rats displayed an abnormal ultrastructure, with neuronal apoptosis and mitochondrial dysfunction. Heroin exposure decreased the expression of NF-H, as indicated by significantly reduced staining intensities in tissues from HA and PHA rats (P < 0.05). MEMRI detected axonal transport dysfunction caused by long-term repeated exposure to heroin. The main causes of axonal transport impairment may be decreases in the levels of motor proteins and mitochondrial dysfunction. This study shows that MEMRI is a potential tool for visualizing axonal transport in individuals with drug addictions, providing a new way to evaluate addictive encephalopathy.
Collapse
|
31
|
Xie LL, Rui C, Li ZZ, Li SS, Fan YJ, Qi MM. Melatonin mitigates traumatic brain injury-induced depression-like behaviors through HO-1/CREB signal in rats. Neurosci Lett 2022; 784:136754. [PMID: 35753614 DOI: 10.1016/j.neulet.2022.136754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
In addition to significant antioxidant properties, melatonin exhibits neuroprotective effects against various neurological diseases including traumatic brain injury (TBI) and ischemic stroke. Several potential mechanisms have been reported in the neuroprotection of melatonin among patients with TBI. Notably, the heme oxygenase-1 (HO-1)/cAMP response element-binding protein (CREB) signaling pathway is implicated in the development of a depressive state. Moreover, the activity of CREB in the nucleus accumbens (NAc) participates in reward and motivation, further contributing to depression induced by TBI. This study aims to explore whether melatonin could mitigate TBI-induced depression by activating of HO-1/CREB signal in a rodent model of weight-drop. As a consequence, melatonin (10 mg/kg) attenuated TBI-induced elevated immobility time in the force swim test, decreased time spent sniffing the novel rat in 3-chambered social test, and downregulated phosphorylated CERB in the NAc. However, a special inhibitor of HO-1 (SnPP) via intracerebroventricular injection partially reversed the neuroprotective effects of melatonin. Furthermore, melatonin decreased the number of summarized intersects in the astrocyte, A1-type astrocytes, IL-6-positive astrocytes in the NAc after TBI exposure, nevertheless, these changes could partially be restored by SnPP. Therefore, our findings demonstrate a novel neuroprotective mechanism for melatonin against TBI which can be a potential neuroprotective agent for the treatment of TBI-induced depression.
Collapse
Affiliation(s)
- Ling-Ling Xie
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Chen Rui
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Zhuang-Zhuang Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Shan-Shan Li
- Clinical Lab, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Yong-Jian Fan
- Department of Ultrasonography, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| | - Man-Man Qi
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China.
| |
Collapse
|
32
|
Zhang KK, Liu JL, Chen LJ, Li JH, Yang JZ, Xu LL, Chen YK, Zhang QY, Li XW, Liu Y, Zhao D, Xie XL, Wang Q. Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food Chem Toxicol 2022; 166:113208. [PMID: 35688268 DOI: 10.1016/j.fct.2022.113208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022]
Abstract
Methamphetamine (Meth), an addictive psychostimulant of abuse worldwide, has been a common cause of acute toxic hepatitis in adults. Gut microbiota has emerged as a modulator of host immunity via metabolic pathways. However, the microbial mechanism of Meth-induced hepatic inflammation and effective therapeutic strategies remain unknown. Here, mice were intraperitoneally (i.p.) injected with Meth to induce hepatotoxicity. Cecal microbiome and bile acids (BAs) composition were analyzed after Meth administration. Fecal microbiota transplantation (FMT) technology was utilized to investigate the role of microbiota. Additionally, the protective effects of obeticholic acid (OCA), an agonist of farnesoid X receptor (FXR), were evaluated. Results indicated that Meth administration induced hepatic cholestasis, dysfunction and aroused hepatic inflammation by stimulating the TLR4/MyD88/NF-κB pathway in mice. Meanwhile, Meth disturbed the cecal microbiome and impaired the homeostasis of BAs. Interestingly, FMT from Meth administered mice resulted in serum and hepatic BA accumulation and transferred similar phenotypic changes into the healthy recipient mice. Finally, OCA normalized Meth-induced BA accumulation in both serum and the liver, and effectively protected against Meth-induced hepatic dysfunction and inflammation by suppressing the TLR4/MyD88/NF-κB pathway. This study established the importance of microbial mechanism and its inhibition as a potential therapeutic target to treat Meth-related hepatotoxicity.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Li Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li-Jian Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Hao Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian-Zheng Yang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, 510515, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, 510515, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, 510515, China
| | - Xiu-Wen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yi Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, 510515, China.
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University (Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification), Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
33
|
Nopparat C, Boontor A, Panmanee J, Govitrapong P. Melatonin Attenuates Methamphetamine-Induced Alteration of Amyloid β Precursor Protein Cleaving Enzyme Expressions via Melatonin Receptor in Human Neuroblastoma Cells. Neurotox Res 2022; 40:1086-1095. [PMID: 35648367 DOI: 10.1007/s12640-022-00522-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disease represented by the loss of memory and cognitive impairment symptoms and is one of the major health imperilments among the elderly. Amyloid (Aβ) deposit inside the neuron is one of the characteristic pathological hallmarks of this disease, leading to neuronal cell death. In the amyloidogenic processing, the amyloid precursor protein (APP) is cleaved by beta-secretase and γ-secretase to generate Aβ. Methamphetamine (METH) is a psychostimulant drug that causes neurodegeneration and detrimental cognitive deficits. The analogy between the neurotoxic and neurodegenerative profile of METH and AD pathology necessitates an exploration of the underlying molecular mechanisms. In the present study, we found that METH ineluctably affects APP processing, which might contribute to the marked production of Aβ in human neuroblastoma cells. Melatonin, an indolamine produced and released by the pineal gland as well as other extrapineal, has been protective against METH-induced neurodegenerative processes, thus rescuing neuronal cell death. However, the precise action of melatonin on METH has yet to be determined. We further propose to investigate the protective properties of melatonin on METH-induced APP-cleaving secretases. Pretreatment with melatonin significantly reversed METH-induced APP-cleaving secretases and Aβ production. In addition, pretreatment with luzindole, a melatonin receptor antagonist, significantly prevented the protective effect of melatonin, suggesting that the attenuation of the toxic effect on METH-induced APP processing by melatonin was mediated via melatonin receptor. The present results suggested that melatonin has a beneficial role in preventing Aβ generation in a cellular model of METH-induced AD.
Collapse
Affiliation(s)
- Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok, 10110, Thailand
| | - Anuttree Boontor
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
34
|
Sim HI, Kim DH, Kim M. Cellular messenger molecules mediating addictive drug-induced cognitive impairment: cannabinoids, ketamine, methamphetamine, and cocaine. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cognitive impairment is a commonly reported symptom with increasing life spans. Numerous studies have focused on identifying precise targets to relieve or reduce cognitive impairment; however, its underlying mechanism remains elusive. Most patients or animals exposed to addictive drugs exhibit cognitive impairment. Accordingly, the present review discusses the molecular changes induced by addictive drugs to clarify potential mechanisms that mediate cognitive impairments.
Main body
We investigated changes in cognitive function using four drugs: cannabinoids, ketamine, methamphetamine, and cocaine. Chronic administration of most addictive drugs reduces overall cognitive functions, such as working, spatial, and long-term recognition memories. Levels of several transcription factors involved in neuronal differentiation, as well as functional components of neurotransmitter receptors in neuronal cells, are reportedly altered. In addition, inflammatory factors showed a generally increasing trend. These impairments could be mediated by neuroinflammation, synaptic activity, and neuronal plasticity.
Conclusion
This review outlines the effects of acute or chronic drug use and potential molecular alterations in the central nervous system. In the central nervous system, addictive drug-induced changes in molecular pathways associated with cognitive function might play a pivotal role in elucidating the pathogenesis of cognitive impairment.
Collapse
|
35
|
Ru Q, Tian X, Xiong Q, Xu C, Chen L, Wu Y. Krill Oil Alleviated Methamphetamine-Induced Memory Impairment via the MAPK Signaling Pathway and Dopaminergic Synapse Pathway. Front Pharmacol 2021; 12:756822. [PMID: 34776973 PMCID: PMC8586701 DOI: 10.3389/fphar.2021.756822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) abuse exerts severe harmful effects in multiple organs, especially the brain, and can induce cognitive dysfunction and memory deficits in humans. Krill oil is rich in polyunsaturated fatty acids, while its effect on METH-induced cognitive impairment and mental disorders, and the underlying mechanism remain unknown. The aim of the present study was to investigate the protective effect of krill oil on METH-induced memory deficits and to explore the molecular mechanisms by using an integrated strategy of bioinformatics analysis and experimental verification. METH-exposed mice were treated with or without krill oil. Learning and memory functions were evaluated by the Morris water maze. The drug–component–target network was constructed in combination with network pharmacology. The predicted hub genes and pathways were validated by the Western blot technique. With krill oil treatment, memory impairment induced by METH was significantly improved. 210 predicted targets constituted the drug–compound–target network by network pharmacology analysis. 20 hub genes such as DRD2, MAPK3, CREB, BDNF, and caspase-3 were filtered out as the underlying mechanisms of krill oil on improving memory deficits induced by METH. The KEGG pathway and GO enrichment analyses showed that the MAPK signaling pathway, cAMP signaling pathway, and dopaminergic synapse pathway were involved in the neuroprotective effects of krill oil. In the hippocampus, DRD2, cleaved caspase-3, and γ-H2AX expression levels were significantly increased in the METH group but decreased in the krill oil–treated group. Meanwhile, krill oil enhanced the expressions of p-PKA, p-ERK1/2, and p-CREB. Our findings suggested that krill oil improved METH-induced memory deficits, and this effect may occur via the MAPK signaling pathway and dopaminergic synapse pathways. The combination of network pharmacology approaches with experimental validation may offer a useful tool to characterize the molecular mechanism of multicomponent complexes.
Collapse
Affiliation(s)
- Qin Ru
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Congyue Xu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
36
|
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci Biobehav Rev 2021; 131:541-559. [PMID: 34606820 DOI: 10.1016/j.neubiorev.2021.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Diverse intellectual functions including memory are some important aspects of cognition. Dopamine is a neurotransmitter of the catecholamine family, which contributes to the experience of pleasure and/or emotional states but also plays crucial roles in learning and memory. Methamphetamine is an illegal drug, the abuse of which leads to long lasting pathological manifestations in the brain. Chronic methamphetamine-induced neurotoxicity results in an alteration of various parts of the memory systems by affecting learning processes, an effect attributed to the structural similarities of this drug with dopamine. An evolving field of research established how cognitive deficits in abusers arise and how they could possibly trigger neurodegenerative disorders. Thus, the drugs-induced tenacious neurophysiological changes of the dopamine system trigger cognitive deficits, thereby affirming the influence of this addictive drug on learning, memory and executive function in human abusers. Here we present an overview of the effects of methamphetamine abuse on cognitive functions, dopaminergic transmission and hippocampal integrity as they have been validated in animals and in humans during the past 20 years.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 Rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
37
|
Kobeissy FH, Shakkour Z, Hayek SE, Mohamed W, Gold MS, Wang KKW. Elevation of Pro-inflammatory and Anti-inflammatory Cytokines in Rat Serum after Acute Methamphetamine Treatment and Traumatic Brain Injury. J Mol Neurosci 2021; 72:158-168. [PMID: 34542809 DOI: 10.1007/s12031-021-01886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
The use of methamphetamine (METH) is a growing worldwide epidemic that bears grave societal implications. METH is known to exert its neurotoxic effects on the dopaminergic and serotonergic systems of the brain. In addition to this classical studied mechanism of damage, findings from our laboratory and others have shown that acute METH treatment and mechanical injury, i.e. traumatic brain injury (TBI), share common cell injury mechanism(s). Since neuro-inflammation is a signature event in TBI, we hypothesize that certain cytokine levels might also be altered in rat brain exposed to an acute METH insult. In this study, using a cytokine antibody array chip, we evaluated the serum levels of 19 cytokines in rats 24 h after exposure to a 40 mg/kg acute regimen of METH. Data were compared to rats subjected to experimental TBI using the controlled cortical impact (CCI) injury model and saline controls. Sandwich ELISA method was used to further validate some of the findings obtained from the antibody cytokine array. We confirmed that three major inflammatory-linked cytokines (IL-1β, IL-6, and IL-10) were elevated in the METH and TBI groups compared to the saline group. Such finding suggests the involvement of an inflammatory process in these brain insults, indicating that METH use is, in fact, a stressor to the immune system where systemic involvement of an altered cytokine profile may play a major role in mediating chemical brain injury after METH use.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Gainesville, FL, USA.,Department of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samer El Hayek
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Al Minufya, Egypt.,Basic medical science department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mark S Gold
- Washington University School of Medicine, Department of Psychiatry, and National Council, Washington University in St. Louis, Institute for Public Health, St. Louis, MO, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Gainesville, FL, USA. .,Department of Emergency Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
38
|
Melatonin protects against methamphetamine-induced Alzheimer's disease-like pathological changes in rat hippocampus. Neurochem Int 2021; 148:105121. [PMID: 34224806 DOI: 10.1016/j.neuint.2021.105121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023]
Abstract
Methamphetamine (METH) is a psychostimulant drug of abuse. METH use is associated with cognitive impairments and neurochemical abnormalities comparable to pathological changes observed in Alzheimer's disease (AD). These observations have stimulated the idea that METH abusers might be prone to develop AD-like signs and symptoms. Melatonin, the pineal hormone, is considered as a potential therapeutic intervention against AD. We thus conducted the present study to explore potential protective roles of melatonin against METH-induced deficits in learning and memory as well as in the appearance of AD-like pathological changes in METH-treated male Wistar rats. We found that melatonin ameliorated METH-induced cognitive impairments in those rats. Melatonin prevented METH-induced decrease in dopamine transporter (DAT) expression in rat hippocampus. Melatonin reversed METH-induced activation of β-arrestin2, reduction of phosphorylation of protein kinase B (Akt) and METH-induced excessive activity of glycogen synthase kinase-3β (GSK3β). Importantly, melatonin inhibited METH-induced changes in the expression of β-site APP cleaving enzyme (BACE1), disintegrin and metalloproteinase 10 (ADAM10), and presenilin 1 (PS1), as well as the reduction of amyloid beta (Aβ)42 production. Immunofluorescence double-labeling demonstrated that melatonin not only prevented the METH-induced loss of DAT but also prevented METH-induced Aβ42 overexpression in the dentate gyrus, CA1, and CA3. Furthermore, melatonin also suppressed METH-induced increase in phosphorylated tau. Significantly, melatonin attenuated METH-induced increase in N-methyl-D-aspartate receptor subtype 2 B (NR2B) protein expression and restored METH-induced reduction of Ca2+/calmodulin-dependent protein kinase II (CaMKII). This suggested that melatonin attenuated the toxic effect of METH on the hippocampus involving the amyloidogenic pathway. Taken together, our data suggest that METH abuse may be a predisposing risk factor for AD and that melatonin could serve as a potential therapeutic agent to prevent METH-induced AD like pathology.
Collapse
|
39
|
Ma H, Kang J, Fan W, He H, Huang F. ROR: Nuclear Receptor for Melatonin or Not? Molecules 2021; 26:molecules26092693. [PMID: 34064466 PMCID: PMC8124216 DOI: 10.3390/molecules26092693] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Whether the retinoic acid-related orphan receptor (ROR) is a nuclear receptor of melatonin remains controversial. ROR is inextricably linked to melatonin in terms of its expression, function, and mechanism of action. Additionally, studies have illustrated that melatonin functions analogous to ROR ligands, thereby modulating the transcriptional activity of ROR. However, studies supporting these interactions have since been withdrawn. Furthermore, recent crystallographic evidence does not support the view that ROR is a nuclear receptor of melatonin. Some other studies have proposed that melatonin indirectly regulates ROR activity rather than directly binding to ROR. This review aims to delve into the complex relationship of the ROR receptor with melatonin in terms of its structure, expression, function, and mechanism. Thus, we provide the latest evidence and views on direct binding as well as indirect regulation of ROR by melatonin, dissecting both viewpoints in-depth to provide a more comprehensive perspective on this issue.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| |
Collapse
|
40
|
Acute MDPV Binge Paradigm on Mice Emotional Behavior and Glial Signature. Pharmaceuticals (Basel) 2021; 14:ph14030271. [PMID: 33809599 PMCID: PMC8002122 DOI: 10.3390/ph14030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
3,4-Methylenedioxypyrovalerone (MDPV), a widely available synthetic cathinone, is a popular substitute for classical controlled drugs of abuse, such as methamphetamine (METH). Although MDPV poses public health risks, its neuropharmacological profile remains poorly explored. This study aimed to provide evidence on that direction. Accordingly, C57BL/6J mice were exposed to a binge MDPV or METH regimen (four intraperitoneal injections every 2 h, 10 mg/kg). Locomotor, exploratory, and emotional behavior, in addition to striatal neurotoxicity and glial signature, were assessed within 18–24 h, a known time-window encompassing classical amphetamine dopaminergic neurotoxicity. MDPV resulted in unchanged locomotor activity (open field test) and emotional behavior (elevated plus maze, splash test, tail suspension test). Additionally, striatal TH (METH neurotoxicity hallmark), Iba-1 (microglia), GFAP (astrocyte), RAGE, and TLR2/4/7 (immune modulators) protein densities remained unchanged after MDPV-exposure. Expectedly, and in sheer contrast with MDPV, METH resulted in decrease general locomotor activity paralleled by a significant striatal TH depletion, astrogliosis, and microglia arborization alterations (Sholl analysis). This comparative study newly highlights that binge MDPV-exposure comes without evident behavioral, neurochemical, and glial changes at a time-point where METH-induced striatal neurotoxicity is clearly evident. Nevertheless, neuropharmacological MDPV signature needs further profiling at different time-points, regimens, and brain regions.
Collapse
|
41
|
Veschsanit N, Yang JL, Ngampramuan S, Viwatpinyo K, Pinyomahakul J, Lwin T, Chancharoen P, Rungruang S, Govitrapong P, Mukda S. Melatonin reverts methamphetamine-induced learning and memory impairments and hippocampal alterations in mice. Life Sci 2020; 265:118844. [PMID: 33278389 DOI: 10.1016/j.lfs.2020.118844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
AIMS Methamphetamine (METH) has become a major public health problem because of its abuse and profound neurotoxic effects, causing alterations in brain structure and function, and impairing cognitive functions, including attention, decision making, emotional memory, and working memory. This study aimed to determine whether melatonin (MEL), the circadian-control hormone, which has roles beyond circadian rhythm regulation, could restore METH-induced cognitive and neuronal impairment. MAIN METHODS Mice were treated with either METH (1 mg/kg) or saline for 7 days, followed by MEL (10 mg/kg) or saline for another 14 days. The Morris water maze (MWM) test was performed one day after the last saline or MEL injection. The hippocampal neuronal density, synaptic density, and receptors involved in learning and memory, along with downstream signaling molecules (NMDA receptor subunits GluN2A, GluN2B, and CaMKII) were investigated by immunoblotting. KEY FINDINGS METH administration significantly extended escape latency in learning phase and reduced the number of target crossings in memory test-phase as well as decreased the expression of BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin, and synaptophysin. MEL treatment significantly ameliorated METH-induced increased escape latency, decreased the number of target crossings and decreased expression of BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin and synaptophysin. SIGNIFICANCE METH administration impairs learning and memory in mice, and MEL administration restores METH-induced neuronal impairments which is probably through the changes in BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin and synaptophysin. Therefore, MEL is potentially an innovative and promising treatment for learning and memory impairment of humans.
Collapse
Affiliation(s)
- Nisarath Veschsanit
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Kittikun Viwatpinyo
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Jitrapa Pinyomahakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Thit Lwin
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Department of Anatomy, Defence Services Medical Academy, Mingalardon, Yangon 11021, Myanmar
| | - Pongrung Chancharoen
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Faculty of Allied Health Sciences, Burapha University, Seansuk, Chonburi 20131, Thailand
| | - Saowalak Rungruang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| |
Collapse
|