1
|
Yathavan B, Chhibber T, Steinhauff D, Pulsipher A, Alt JA, Ghandehari H, Jafari P. Matrix-Mediated Delivery of Silver Nanoparticles for Prevention of Staphylococcus aureus and Pseudomonas aeruginosa Biofilm Formation in Chronic Rhinosinusitis. Pharmaceutics 2023; 15:2426. [PMID: 37896186 PMCID: PMC10610389 DOI: 10.3390/pharmaceutics15102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic health condition affecting the sinonasal cavity. CRS-associated mucosal inflammation leads to sinonasal epithelial cell death and epithelial cell barrier disruption, which may result in recurrent bacterial infections and biofilm formation. For patients who fail medical management and elect endoscopic sinus surgery for disease control, bacterial biofilm formation is particularly detrimental, as it reduces the efficacy of surgical intervention. Effective treatments that prevent biofilm formation in post-operative patients in CRS are currently limited. To address this unmet need, we report the controlled release of silver nanoparticles (AgNps) with silk-elastinlike protein-based polymers (SELPs) to prevent bacterial biofilm formation in CRS. This polymeric network is liquid at room temperature and forms a hydrogel at body temperature, and is hence, capable of conforming to the sinonasal cavity upon administration. SELP hydrogels demonstrated sustained AgNp and silver ion release for the studied period of three days, potent in vitro antibacterial activity against Pseudomonas aeruginosa (**** p < 0.0001) and Staphylococcus aureus (**** p < 0.0001), two of the most commonly virulent bacterial strains observed in patients with post-operative CRS, and high cytocompatibility with human nasal epithelial cells. Antibacterial controlled release platform shows promise for treating patients suffering from prolonged sinonasal cavity infections due to biofilms.
Collapse
Affiliation(s)
- Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Tanya Chhibber
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Douglas Steinhauff
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Abigail Pulsipher
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jeremiah A. Alt
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paris Jafari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Ravanetti F, Borghetti P, Zoboli M, Veloso PM, De Angelis E, Ciccimarra R, Saleri R, Cacchioli A, Gazza F, Machado R, Ragionieri L, Attanasio C. Biomimetic approach for an articular cartilage patch: Combination of decellularized cartilage matrix and silk-elastin-like-protein (SELP) hydrogel. Ann Anat 2023; 250:152144. [PMID: 37574174 DOI: 10.1016/j.aanat.2023.152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Articular cartilage degradation due to injury, disease and aging is a common clinical issue as current regenerative therapies are unable to fully replicate the complex microenvironment of the native tissue which, being avascular, is featured by very low ability to self-regenerate. The extracellular matrix (ECM), constituting almost 90% of the entire tissue, plays a critical role in its function and resistance to compressive forces. In this context, the current tissue engineering strategies are only partially effective in restoring the biology and function of the native tissue. A main issue in tissue regeneration is treatment failure due to scarce integration of the engineered construct, often following a gradual detachment of the graft. In this scenario, we aimed to create an adhesive patch able to adequately support cartilage regeneration as a promising tool for the treatment of cartilage injuries and diseases. For this, we produced an engineered construct composed of decellularized ECM (dECM) obtained from horse joint cartilage, to support tissue regeneration, coupled with a Silk-Elastin-Like Proteins (SELP) hydrogel, which acts as a biological glue, to guarantee an adequate adherence to the host tissue. Following the production of the two biomaterials we characterized them by assessing: 1) dECM morphological, chemical, and ultrastructural features along with its capability to support chondrocyte proliferation, specific marker expression and ECM synthesis; 2) SELP microarchitecture, cytocompatibility and mechanical properties. Our results demonstrated that both materials hold unique properties suitable to be exploited to produce a tailored microenvironment to support cell growth and differentiation providing a proof of concept concerning the in vitro biological and mechanical efficacy of the construct. The SELP hydrogel displayed a very interesting physical behavior due to its high degree of resistance to mechanical stress, which is generally associated with physiological mechanical load during locomotion. Intriguingly, the shear-thinning behavior of the hydrogel may also make it suitable to be applied and spread over non-homogeneous surfaces, therefore, we hypothesize that the hybrid biomaterial proposed may be a real asset in the treatment of cartilage defects and injuries.
Collapse
Affiliation(s)
- F Ravanetti
- Department of Veterinary Science, University of Parma, Italy
| | - P Borghetti
- Department of Veterinary Science, University of Parma, Italy
| | - M Zoboli
- Department of Veterinary Science, University of Parma, Italy
| | - P M Veloso
- Department of Veterinary Science, University of Parma, Italy
| | - E De Angelis
- Department of Veterinary Science, University of Parma, Italy
| | - R Ciccimarra
- Department of Veterinary Science, University of Parma, Italy
| | - R Saleri
- Department of Veterinary Science, University of Parma, Italy
| | - A Cacchioli
- Department of Veterinary Science, University of Parma, Italy
| | - F Gazza
- Department of Veterinary Science, University of Parma, Italy
| | - R Machado
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - L Ragionieri
- Department of Veterinary Science, University of Parma, Italy
| | - C Attanasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| |
Collapse
|
3
|
Li Y, Wu X, Pei Y, Wang Z, Wang C, Hua D. Recent advances on macromolecular medicinal materials for radioprotection. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Griswold E, Cappello J, Ghandehari H. Silk-elastinlike protein-based hydrogels for drug delivery and embolization. Adv Drug Deliv Rev 2022; 191:114579. [PMID: 36306893 DOI: 10.1016/j.addr.2022.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
Silk-Elastinlike Protein-Based Polymers (SELPs) can form thermoresponsive hydrogels that allow for the generation of in-situ drug delivery matrices. They are produced by recombinant techniques, enabling exact control of monomer sequence and polymer length. In aqueous solutions SELP strands form physical crosslinks as a function of temperature increase without the addition of crosslinking agents. Gelation kinetics, modulus of elasticity, pore size, drug release, biorecognition, and biodegradation of SELP hydrogels can be controlled by placement of amino acid residues at strategic locations in the polymer backbone. SELP hydrogels have been investigated for delivery of a variety of bioactive agents including small molecular weight drugs and fluorescent probes, oligomers of glycosaminoglycans, polymeric macromolecules, proteins, plasmid DNA, and viral gene delivery systems. In this review we provide a background for use of SELPs in matrix-mediated delivery and summarize recent investigations of SELP hydrogels for controlled delivery of bioactive agents as well as their use as liquid embolics.
Collapse
Affiliation(s)
- Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Cappello
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Jensen MM, Hatlevik Ø, Steinhauff DD, Griswold ED, Wei X, Isaacson KJ, Barber ZB, Huo E, Taussky P, Jedrzkiewicz J, Cappello J, Cheney D, Ghandehari H. Protein-Based Polymer Liquid Embolics for Cerebral Aneurysms. Acta Biomater 2022; 151:174-182. [PMID: 35948175 DOI: 10.1016/j.actbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022]
Abstract
Cerebral aneurysms (CA), an abnormal bulge in the arteries that supply blood to the brain, are prone to rupture and can cause hemorrhagic stroke. Physicians can treat CA by blocking blood flow to the aneurysmal sac via clipping of the aneurysm neck via open procedure, or endovascular occlusion of the aneurysm with embolic materials to promote thrombus formation to prevent further inflow of blood into the aneurysm. Endovascular treatment options for CA still have significant limitations in terms of safety, usability in coagulopathic patients, and risks of device migration. Bioactive embolic therapies, consisting of non-toxic bioresorbable materials that encourage the growth of neointima across the aneurysm neck, are needed to improve the healing of CA. In this work, the bioinspired silk-elastinlike protein-based polymer (SELP 815K), was used to embolize aneurysms in a rabbit elastase model. SELP 815K effectively embolized the model aneurysms in vivo, achieving >90% occlusion, using commercial microcatheters. No device-associated adverse effects were observed in any of the animals, and SELP 815K showed no cytotoxicity. SELP embolization did not show any deleterious effects to local tissues, and features consistent with reendothelialization of the aneurysm neck were noted in histological examination one-month post-embolization. SELP 815K shows promise as an embolic treatment for unruptured CA. STATEMENT OF SIGNIFICANCE: : Unruptured cerebral aneurysms are present in approximately 3% of the population, with a fatality rate of up to 65% upon rupture. In this work a silk-elastinlike protein polymer (SELP) is explored as a liquid embolic for occlusion of cerebral aneurysms. This embolic exists as a liquid at room temperature before rapidly forming a gel at physiological temperature. This shape filling property was used to successfully occlude cerebral aneurysms in rabbits, with stable occlusion persisting for over thirty days. SELP occlusions show evidence for reendothelialization of the aneurysm sac and provide an opportunity for delivery of bioactive agents to further improve treatments.
Collapse
Affiliation(s)
- Mark M Jensen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah, USA
| | | | - D Douglas Steinhauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah, USA
| | - Ethan D Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah, USA
| | - Xiaomei Wei
- TheraTarget, Inc., Salt Lake City, Utah, USA
| | - Kyle J Isaacson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah, USA
| | - Zachary B Barber
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah, USA
| | - Eugene Huo
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA; Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Philipp Taussky
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jolanta Jedrzkiewicz
- Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah, USA; TheraTarget, Inc., Salt Lake City, Utah, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
6
|
Ko G, Choi JW, Lee N, Kim D, Hyeon T, Kim HC. Recent progress in liquid embolic agents. Biomaterials 2022; 287:121634. [PMID: 35716628 DOI: 10.1016/j.biomaterials.2022.121634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]
Abstract
Vascular embolization is a non-surgical procedure used to treat diseases or morbid conditions related to blood vessels, such as bleeding, arteriovenous malformation, aneurysm, and hypervascular tumors, through the intentional occlusion of blood vessels. Among various types of embolic agents that have been applied, liquid embolic agents are gaining an increasing amount of attention owing to their advantages in distal infiltration into regions where solid embolic agents cannot reach, enabling more extensive embolization. Meanwhile, recent advances in biomaterials and technologies have also contributed to the development of novel liquid embolic agents that can resolve the challenges faced while using the existing embolic materials. In this review, we briefly summarize the clinically used embolic agents and their applications, and then present selected research results that overcome the limitations of the embolic agents in use. Through this review, we suggest the required properties of liquid embolic agents that ensure efficacy, which can replace the existing agents, providing directions for the future development in this field.
Collapse
Affiliation(s)
- Giho Ko
- Center for Nanoparticle Research, Institute for Basic Spegcience (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea.
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Spegcience (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyo-Cheol Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
7
|
Gonzalez-Obeso C, Rodriguez-Cabello JC, Kaplan DL. Fast and reversible crosslinking of a silk elastin-like polymer. Acta Biomater 2022; 141:14-23. [PMID: 34971785 PMCID: PMC8898266 DOI: 10.1016/j.actbio.2021.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Elastin-like polymers (ELPs) and their chimeric subfamily the silk elastin-like polymers (SELPs) exhibit a lower critical solvation temperature (LCST) behavior in water which has been extensively studied from theoretical, computational and experimental perspectives. The inclusion of silk domains in the backbone of the ELPs effects the molecular dynamics of the elastin-like domains in response to increased temperature above its transition temperature and confers gelation ability. This response has been studied in terms of initial and long-term changes in structures, however, intermediate transition states have been less investigated. Moreover, little is known about the effects of reversible hydration on the elastin versus silk domains in the physical crosslinks. We used spectroscopic techniques to analyze initial, intermediate and long-term states of the crosslinks in SELPs. A combination of thermoanalytical and rheological measurements demonstrated that the fast reversible rehydration of the elastin motifs adjacent to the relatively small silk domains was capable of breaking the silk physical crosslinks. This feature can be exploited to tailor the dynamics of these types of crosslinks in SELPs. STATEMENT OF SIGNIFICANCE: The combination of silk and elastin in a single molecule results in synergy via their interactions to impact the protein polymer properties. The ability of the silk domains to crosslink affects the thermoresponsive properties of the elastin domains. These interactions have been studied at early and late states of the physical crosslinking, while the intermediate states were the focus of the present study to understand the reversible phase-transitions of the elastin domains over the silk physical crosslinking. The thermoresponsive properties of the elastin domains at the initial, intermediate and late states of silk crosslinking were characterized to demonstrate that reversible hydration of the elastin domains influenced the reversibility of the silk crosslinks.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering Tufts University, 4, Colby St., Medford, MA, 02155, USA; BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain.
| | - J C Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain.
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, 4, Colby St., Medford, MA, 02155, USA.
| |
Collapse
|
8
|
Isaacson KJ, Van Devener BR, Steinhauff DB, Jensen MM, Cappello J, Ghandehari H. Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymers. J Control Release 2022; 344:39-49. [PMID: 35182613 PMCID: PMC9121634 DOI: 10.1016/j.jconrel.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/19/2022]
Abstract
Various polymers used in controlled release applications exhibit solution-based thermal responses. Unfortunately, very few characterization and imaging techniques permit resolution of individual polymers during their thermally-triggered phase transitions. Here, we demonstrate the use of temperature-ramp liquid-cell transmission electron microscopy (LCTEM) for real-time evaluation of the solution and interfacial behavior of elastinlike polypeptides (ELPs) and their self-assembled nanostructures over a temperature range incorporating their intrinsic lower critical solution temperatures (LCSTs). Individual polymers and supramolecular assemblies were discriminated dependent upon solubility states. The recombinant polymers were shown to adsorb to the silicon-nitride chip window from the buffered saline solution and desorb in a temperature-dependent manner. Silk-elastinlike protein block copolymers (SELPs) (composed of repeat peptide motifs of silk and elastin) differed from ELPs in thermal behavior. While both polymers were shown to cluster, only SELPs formed robust amyloid-like fibers upon heating.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Brian R Van Devener
- Utah Nanofab - Nano Scale Imaging and Surface Analysis Lab, University of Utah, Salt Lake City, UT, USA
| | - Douglas B Steinhauff
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - M Martin Jensen
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Hatlevik Ø, Jensen M, Steinhauff D, Wei X, Huo E, Jedrzkiewicz J, Cappello J, Cheney D, Ghandehari H. Translational Development of a Silk-Elastinlike Protein Polymer Embolic for Transcatheter Arterial Embolization. Macromol Biosci 2022; 22:e2100401. [PMID: 34978152 PMCID: PMC9007042 DOI: 10.1002/mabi.202100401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Indexed: 02/03/2023]
Abstract
Locally blocking blood flow to tumors with embolic materials is the key to transcatheter arterial embolization for treating hepatocellular carcinoma. Current microparticle agents do not deeply penetrate target tissues and are compatible with a very limited selection of therapeutic agents. Silk-elastinlike protein polymers (SELPs) combine the solubility of elastin and the strength of silk to create an easily injected liquid embolic that transition into a solid depot amenable to loading with drugs, gene therapy agents, or biologics. SELP, injected as liquid solution, penetrates the vasculature before transitioning to a solid hydrogel. The objective of this manuscript is to evaluate SELP embolization, stability, and biocompatibility at 7-, 30-, and 90-day survival intervals in a porcine model. SELP embolics selectively block blood flow in the kidneys and livers, with no off-target infarctions. As assessed with angiography, SELP renal embolization exhibits decreasing persistence for the duration of the 90-day study period. There is an increased presence of microscopic SELP emboli in the renal setting, compared to Embosphere. Histologically scored inflammatory reactions to SELP are decreased in both the renal and hepatic implantations compared to Embosphere. In conclusion, a bioresorbable SELP liquid embolic system deeply penetrates target tissue and selectively embolizes blood vessels in vivo.
Collapse
Affiliation(s)
| | | | | | - Xiaomei Wei
- TheraTarget Inc. 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Eugene Huo
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 884112, USA, Department of Radiology & Biomedical Imaging, University of California San Francisco, 505 Parnassus, San Francisco, CA 94143, USA
| | - Jolanta Jedrzkiewicz
- Department of Pathology and ARUP Laboratories, University of Utah, School of Medicine, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 884112, USA
| | - Darwin Cheney
- TheraTarget Inc. 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA, Utah Center for Nanomedicine, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | | |
Collapse
|
10
|
Steinhauff D, Jensen MM, Griswold E, Jedrzkiewicz J, Cappello J, Oottamasathien S, Ghandehari H. An Oligomeric Sulfated Hyaluronan and Silk-Elastinlike Polymer Combination Protects against Murine Radiation Induced Proctitis. Pharmaceutics 2022; 14:pharmaceutics14010175. [PMID: 35057068 PMCID: PMC8777937 DOI: 10.3390/pharmaceutics14010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Semisynthetic glycosaminoglycan ethers (SAGEs) are short, sulfated hyaluronans which combine the natural properties of hyaluronan with chemical sulfation. In a murine model, SAGEs provide protection against radiation induced proctitis (RIP), a side effect of lower abdominal radiotherapy for cancer. The anti-inflammatory effects of SAGE have been studied in inflammatory diseases at mucosal barrier sites; however, few mechanisms have been uncovered necessitating high throughput methods. SAGEs were combined with silk-elastinlike polymers (SELPs) to enhance rectal accumulation in mice. After high radiation exposure to the lower abdominal area, mice were followed for 3 days or until they met humane endpoints, before evaluation of behavioral pain responses and histological assessment of rectal inflammation. RNA sequencing was conducted on tissues from the 3-day cohort to determine molecular mechanisms of SAGE–SELP. After 3 days, mice receiving the SAGE–SELP combination yielded significantly lowered pain responses and amelioration of radiation-induced rectal inflammation. Mice receiving the drug–polymer combination survived 60% longer than other irradiated mice, with a fraction exhibiting long term survival. Sequencing reveals varied regulation of toll like receptors, antioxidant activities, T-cell signaling, and pathways associated with pain. This investigation elucidates several molecular mechanisms of SAGEs and exhibits promising measures for prevention of RIP.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Martin Jensen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.M.J.); (S.O.)
| | - Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
| | - Siam Oottamasathien
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.M.J.); (S.O.)
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
- Correspondence:
| |
Collapse
|
11
|
Hu J, Wang J, Zhu X, Tu RS, Nanda V, Xu F. Design Strategies to Tune the Structural and Mechanical Properties of Synthetic Collagen Hydrogels. Biomacromolecules 2021; 22:3440-3450. [PMID: 34212715 DOI: 10.1021/acs.biomac.1c00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As an important component of biomaterials, collagen provides three-dimensional scaffolds and biological cues for cell adhesion and proliferation in tissue engineering. Recombinant collagen-like proteins, which were initially discovered in Streptococcus pyogenes and produced in heterologous hosts, have been chemically and genetically engineered for biomaterial applications. However, existing collagen-like proteins do not form gels, limiting their utility as biomaterials. Here, we present a series of rationally designed collagen-like proteins composed of a trimerization domain, triple-helical domains with various lengths, and a pair of heterotrimeric coiled-coil sequences attached to the N- and C-termini as adhesive ends. These designed proteins fold into triple helices and form self-supporting gels. As the triple-helical domains are lengthened, the gels become less stiff, pore sizes increase, and structural anisotropy decreases. Moreover, cell-culture assay confirms that the designed proteins are noncytotoxic. This study provides a design strategy for collagen-based biomaterials. The sequence variations reveal a relationship between the protein primary structure and material properties, where variations in the cross-linking density and association energies define the gelation of the protein network.
Collapse
Affiliation(s)
- Jinyuan Hu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Jie Wang
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Xiaonan Zhu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Raymond S Tu
- Department of Chemical Engineering, The City College of City University of New York, 160 Convent Avenue, Steinman Hall T313, New York, New York 10031, United States
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Fei Xu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
12
|
Jenkins IC, Milligan JJ, Chilkoti A. Genetically Encoded Elastin-Like Polypeptides for Drug Delivery. Adv Healthc Mater 2021; 10:e2100209. [PMID: 34080796 DOI: 10.1002/adhm.202100209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers that consist of a repeated amino acid motif derived from human tropoelastin. These peptides exhibit temperature-dependent phase behavior that can be harnessed to produce stimuli-responsive biomaterials, such as nanoparticles or injectable drug delivery depots. As ELPs are genetically encoded, the properties of ELP-based biomaterials can be controlled with a precision that is unattainable with synthetic polymers. Unique ELP architectures, such as spherical or rod-like micelles or injectable coacervates, can be designed by manipulating the ELP amino acid sequence and length. ELPs can be loaded with drugs to create controlled, intelligent drug delivery systems. ELPs are biodegradable, nonimmunogenic, and tolerant of therapeutic additives. These qualities make ELPs exquisitely well-suited to address current challenges in drug delivery and have spurred the development of ELP-based therapeutics to treat diseases-such as cancer and diabetes-and to promote wound healing. This review focuses on the use of ELPs in drug delivery systems.
Collapse
Affiliation(s)
- Irene C. Jenkins
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Joshua J. Milligan
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| |
Collapse
|
13
|
Sugioka Y, Nakamura J, Ohtsuki C, Sugawara-Narutaki A. Thixotropic Hydrogels Composed of Self-Assembled Nanofibers of Double-Hydrophobic Elastin-Like Block Polypeptides. Int J Mol Sci 2021; 22:4104. [PMID: 33921095 PMCID: PMC8071462 DOI: 10.3390/ijms22084104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Physically crosslinked hydrogels with thixotropic properties attract considerable attention in the biomedical research field because their self-healing nature is useful in cell encapsulation, as injectable gels, and as bioinks for three-dimensional (3D) bioprinting. Here, we report the formation of thixotropic hydrogels containing nanofibers of double-hydrophobic elastin-like polypeptides (ELPs). The hydrogels are obtained with the double-hydrophobic ELPs at 0.5 wt%, the concentration of which is an order of magnitude lower than those for previously reported ELP hydrogels. Although the kinetics of hydrogel formation is slower for the double-hydrophobic ELP with a cell-binding sequence, the storage moduli G' of mature hydrogels are similar regardless of the presence of a cell-binding sequence. Reversible gel-sol transitions are demonstrated in step-strain rheological measurements. The degree of recovery of the storage modulus G' after the removal of high shear stress is improved by chemical crosslinking of nanofibers when intermolecular crosslinking is successful. This work would provide deeper insight into the structure-property relationships of the self-assembling polypeptides and a better design strategy for hydrogels with desired viscoelastic properties.
Collapse
Affiliation(s)
- Yusuke Sugioka
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (J.N.); (C.O.)
| | - Jin Nakamura
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (J.N.); (C.O.)
| | - Chikara Ohtsuki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (J.N.); (C.O.)
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
14
|
Steinhauff D, Jensen M, Talbot M, Jia W, Isaacson K, Jedrzkiewicz J, Cappello J, Oottamasathien S, Ghandehari H. Silk-elastinlike copolymers enhance bioaccumulation of semisynthetic glycosaminoglycan ethers for prevention of radiation induced proctitis. J Control Release 2021; 332:503-515. [PMID: 33691185 DOI: 10.1016/j.jconrel.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Radiation-induced proctitis (RIP) is a debilitating adverse event that occurs commonly during lower abdominal radiotherapy. The lack of prophylactic treatment strategies leads to diminished patient quality of life, disruption of radiotherapy schedules, and limitation of radiotherapy efficacy due to dose-limiting toxicities. Semisynthetic glycosaminoglycan ethers (SAGE) demonstrate protective effects from RIP. However, low residence time in the rectal tissue limits their utility. We investigated controlled delivery of GM-0111, a SAGE analogue with demonstrated efficacy against RIP, using a series of temperature-responsive polymers to compare how distinct phase change behaviors, mechanical properties and release kinetics influence rectal bioaccumulation. Poly(lactic acid)-co-(glycolic acid)-block-poly(ethylene glycol)-block-poly(lactic acid)-co-(glycolic acid) copolymers underwent macroscopic phase separation, expelling >50% of drug during gelation. Poloxamer compositions released GM-0111 cargo within 1 h, while silk-elastinlike copolymers (SELPs) enabled controlled release over a period of 12 h. Bioaccumulation was evaluated using fluorescence imaging and confocal microscopy. SELP-415K, a SELP analogue with 4 silk units, 15 elastin units, and one elastin unit with lysine residues in the monomer repeats, resulted in the highest rectal bioaccumulation. SELP-415K GM-0111 compositions were then used to provide localized protection from radiation induced tissue damage in a murine model of RIP. Rectal delivery of SAGE using SELP-415K significantly reduced behavioral pain responses, and reduced animal mass loss compared to irradiated controls or treatment with traditional delivery approaches. Histological scoring showed RIP injury was ameliorated for animals treated with GM-0111 delivered by SELP-415K. The enhanced bioaccumulation provided by thermoresponsive SELPs via a liquid to semisolid transition improved rectal delivery of GM-0111 to mice and radioprotection in a RIP model.
Collapse
Affiliation(s)
- D Steinhauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - M Jensen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - M Talbot
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - W Jia
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - K Isaacson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - J Jedrzkiewicz
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - J Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - S Oottamasathien
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - H Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
15
|
Isaacson KJ, Jensen MM, Steinhauff DB, Kirklow JE, Mohammadpour R, Grunberger JW, Cappello J, Ghandehari H. Location of stimuli-responsive peptide sequences within silk-elastinlike protein-based polymers affects nanostructure assembly and drug-polymer interactions. J Drug Target 2020; 28:766-779. [PMID: 32306773 DOI: 10.1080/1061186x.2020.1757099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Silk-elastinlike protein polymers (SELPs) self-assemble into nanostructures when designed with appropriate silk-to-elastin ratios. Here, we investigate the effect of insertion of a matrix metalloproteinase-responsive peptide sequence, GPQGIFGQ, into various locations within the SELP backbone on supramolecular self-assembly. Insertion of the hydrophilic, enzyme-degradable sequence into the elastin repeats allows the formation of dilution-stable nanostructures, while insertion into the hydrophobic silk motifs inhibited self-assembly. The SELP assemblies retained their lower critical solution temperature (LCST) thermal response, allowing up to eightfold volumetric changes due to temperature-induced size change. A model hydrophobic drug was incorporated into SELP nanoassemblies utilising a combination of precipitation, incubation and tangential flow filtration. While the nanoconstructs degraded in response to MMP activity, drug release kinetics was independent of MMP concentration. Drug release modelling suggests that release is driven by rates of water penetration into the SELP nanostructures and drug dissolution. In vitro testing revealed that SELP nanoassemblies reduced the immunotoxic and haemolytic side effects of doxorubicin in human blood while maintaining its cytotoxic activity.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - M Martin Jensen
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Douglas B Steinhauff
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - James E Kirklow
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Jason W Grunberger
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
17
|
Sugawara-Narutaki A, Yasunaga S, Sugioka Y, Le DHT, Kitamura I, Nakamura J, Ohtsuki C. Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides. Int J Mol Sci 2019; 20:E6262. [PMID: 31842263 PMCID: PMC6940774 DOI: 10.3390/ijms20246262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are promising candidates for fabricating tissue-engineering scaffolds that mimic the extracellular environment of elastic tissues. We have developed a "double-hydrophobic" block ELP, GPG, inspired by non-uniform distribution of two different hydrophobic domains in natural elastin. GPG has a block sequence of (VGGVG)5-(VPGXG)25-(VGGVG)5 that self-assembles to form nanofibers in water. Functional derivatives of GPG with appended amino acid motifs can also form nanofibers, a display of the block sequence's robust self-assembling properties. However, how the block length affects fiber formation has never been clarified. This study focuses on the synthesis and characterization of a novel ELP, GPPG, in which the central sequence (VPGVG)25 is repeated twice by a short linker sequence. The self-assembly behavior and the resultant nanostructures of GPG and GPPG were when compared through circular dichroism spectroscopy, atomic force microscopy, and transmission electron microscopy. Dynamic rheology measurements revealed that the nanofiber dispersions of both GPG and GPPG at an extremely low concentration (0.034 wt%) exhibited solid-like behavior with storage modulus G' > loss modulus G" over wide range of angular frequencies, which was most probably due to the high aspect ratio of the nanofibers that leads to the flocculation of nanofibers in the dispersion.
Collapse
Affiliation(s)
- Ayae Sugawara-Narutaki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (D.H.T.L.); (J.N.); (C.O.)
| | - Sawako Yasunaga
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Yusuke Sugioka
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (D.H.T.L.); (J.N.); (C.O.)
| | - Duc H. T. Le
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (D.H.T.L.); (J.N.); (C.O.)
| | - Issei Kitamura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Jin Nakamura
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (D.H.T.L.); (J.N.); (C.O.)
| | - Chikara Ohtsuki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (D.H.T.L.); (J.N.); (C.O.)
| |
Collapse
|
18
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
19
|
Jensen MM, Jia W, Schults AJ, Isaacson KJ, Steinhauff D, Green B, Zachary B, Cappello J, Ghandehari H, Oottamasathien S. Temperature-responsive silk-elastinlike protein polymer enhancement of intravesical drug delivery of a therapeutic glycosaminoglycan for treatment of interstitial cystitis/painful bladder syndrome. Biomaterials 2019; 217:119293. [PMID: 31276948 DOI: 10.1016/j.biomaterials.2019.119293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/28/2022]
Abstract
Interstitial cystitis (IC), also known as painful bladder syndrome, is a debilitating chronic condition with many patients failing to respond to current treatment options. Rapid clearance, mucosal coating, and tight epithelium create strong natural barriers that reduce the effectiveness of many pharmacological interventions in the bladder. Intravesical drug delivery (IDD) is the administration of therapeutic compounds or devices to the urinary bladder via a urethral catheter. Previous work in improving IDD for IC has focused on the sustained delivery of analgesics within the bladder and other small molecule drugs which do not address underlying inflammation and bladder damage. Therapeutic glycosaminoglycans (GAG) function by restoring the mucosal barrier within the bladder, promoting healing responses, and preventing irritating solutes from reaching the bladder wall. There is an unmet medical need for a therapy that provides both acute relief of symptoms while alleviating underlying physiological sources of inflammation and promoting healing within the urothelium. Semi-synthetic glycosaminoglycan ethers (SAGE) are an emerging class of therapeutic GAG with intrinsic anti-inflammatory and analgesic properties. To reduce SAGE clearance and enhance its accumulation in the bladder, we developed a silk-elastinlike protein polymer (SELP) based system to enhance SAGE IDD. We evaluated in vitro release kinetics, rheological properties, impact on bladder function, pain response, and bladder inflammation and compared their effectiveness to other temperature-responsive polymers including Poloxamer 407 and poly(lactic-co-glycolic acid)-poly(ethylene glycol). SAGE delivered via SELP-enhanced intravesical delivery substantially improved SAGE accumulation in the urothelium, provided a sustained analgesic effect 24 h after administration, and reduced inflammation.
Collapse
Affiliation(s)
- M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Wanjian Jia
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Austin J Schults
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Kyle J Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Douglas Steinhauff
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bryant Green
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - B Zachary
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Siam Oottamasathien
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Department of Surgery and Division of Pediatric Urology, Primary Children's Hospital, Salt Lake City, UT, 84113, USA; Department of Pediatric Surgery, Division of Pediatric Urology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
20
|
Yang YJ, Choi YS, Cha HJ. Bioinspired Load-Bearing Hydrogel Based on Engineered Sea Anemone Skin-Derived Collagen-Like Protein. Biotechnol J 2018; 13:e1800086. [PMID: 30102020 DOI: 10.1002/biot.201800086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/02/2018] [Indexed: 11/12/2022]
Abstract
With the help of recombinant DNA technology, many protein candidates have been investigated and engineered for biomaterial applications. Particularly, several repeat sequences with unique secondary structures have been selected as minimal building blocks for biosynthesis to improve the mechanical properties of biomaterials. However, most of these structural proteins have been limited to silk, elastin, collagen, and resilin for decades. In the present work, new repeat sequence found in sea anemone are characterized and biosynthesized into a recombinant protein (named anegen) for potential use as a load-bearing biomaterial. Because its repeat sequence unit has a unique polyproline II structure, which is prevalently found in the triple-helix of collagen, it is assumed to be a promising structural protein candidate that can provide conformational flexibility and elasticity. Because anegen has ≈10% tyrosine residues, inspiration is taken from di-tyrosine crosslinking in the hinge structures of insects, which can be initiated by light activation. It is found that the anegen hydrogel shows higher mechanical properties than a gelatin hydrogel and endures a compression series without deformation. Moreover, the mechanical properties of the anegen hydrogel are controllable through different crosslinking conditions in a wide range of material applications. Importantly, the anegen hydrogel exhibited suitable cell retainability and cell morphology as an implantable biomaterial. Thus, based on its mechanical properties and biocompatibility, the anegen hydrogel can be used as a potential load-bearing and cell-loading scaffolding biomaterial in the tissue and biomedical engineering fields.
Collapse
Affiliation(s)
- Yun Jung Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejon 34134, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
21
|
Aigner TB, DeSimone E, Scheibel T. Biomedical Applications of Recombinant Silk-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704636. [PMID: 29436028 DOI: 10.1002/adma.201704636] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/26/2017] [Indexed: 05/18/2023]
Abstract
Silk is mostly known as a luxurious textile, which originates from silkworms first cultivated in China. A deeper look into the variety of silk reveals that it can be used for much more, in nature and by humanity. For medical purposes, natural silks were recognized early as a potential biomaterial for surgical threads or wound dressings; however, as biomedical engineering advances, the demand for high-performance, naturally derived biomaterials becomes more pressing and stringent. A common problem of natural materials is their large batch-to-batch variation, the quantity available, their potentially high immunogenicity, and their fast biodegradation. Some of these common problems also apply to silk; therefore, recombinant approaches for producing silk proteins have been developed. There are several research groups which study and utilize various recombinantly produced silk proteins, and many of these have also investigated their products for biomedical applications. This review gives a critical overview over of the results for applications of recombinant silk proteins in biomedical engineering.
Collapse
Affiliation(s)
| | - Elise DeSimone
- University Bayreuth, Lehrstuhl Biomaterialien, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Thomas Scheibel
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Bio-Makromoleküle (bio-mac), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI), University Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| |
Collapse
|
22
|
Humenik M, Lang G, Scheibel T. Silk nanofibril self-assembly versus electrospinning. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1509. [PMID: 29393590 DOI: 10.1002/wnan.1509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/18/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Abstract
Natural silk fibers represent one of the most advanced blueprints for (bio)polymer scientists, displaying highly optimized mechanical properties due to their hierarchical structures. Biotechnological production of silk proteins and implementation of advanced processing methods enabled harnessing the potential of these biopolymer not just based on the mechanical properties. In addition to fibers, diverse morphologies can be produced, such as nonwoven meshes, films, hydrogels, foams, capsules and particles. Among them, nanoscale fibrils and fibers are particularly interesting concerning medical and technical applications due to their biocompatibility, environmental and mechanical robustness as well as high surface-to-volume ratio. Therefore, we introduce here self-assembly of silk proteins into hierarchically organized structures such as supramolecular nanofibrils and fabricated materials based thereon. As an alternative to self-assembly, we also present electrospinning a technique to produce nanofibers and nanofibrous mats. Accordingly, we introduce a broad range of silk-based dopes, used in self-assembly and electrospinning: natural silk proteins originating from natural spinning glands, natural silk protein solutions reconstituted from fibers, engineered recombinant silk proteins designed from natural blueprints, genetic fusions of recombinant silk proteins with other structural or functional peptides and moieties, as well as hybrids of recombinant silk proteins chemically conjugated with nonproteinaceous biotic or abiotic molecules. We highlight the advantages but also point out drawbacks of each particular production route. The scope includes studies of the natural self-assembly mechanism during natural silk spinning, production of silk fibrils as new nanostructured non-native scaffolds allowing dynamic morphological switches, as well as studying potential applications. This article is categorized under: Biology-Inspired Nanomaterials > Peptide-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Martin Humenik
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Gregor Lang
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Research Center Bio-Macromolecules (BIOmac), Bayreuth Center for Molecular Biosciences (BZMB), Bayreuth Center for Material Science (BayMAT), Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
23
|
Isaacson KJ, Jensen MM, Watanabe AH, Green BE, Correa MA, Cappello J, Ghandehari H. Self-Assembly of Thermoresponsive Recombinant Silk-Elastinlike Nanogels. Macromol Biosci 2018; 18:10.1002/mabi.201700192. [PMID: 28869362 PMCID: PMC5806626 DOI: 10.1002/mabi.201700192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Indexed: 12/28/2022]
Abstract
Recombinant silk-elastinlike protein polymers (SELPs) combine the biocompatibility and thermoresponsiveness of human tropoelastin with the strength of silk. Direct control over structure of these monodisperse polymers allows for precise correlation of structure with function. This work describes the fabrication of the first SELP nanogels and evaluation of their physicochemical properties and thermoresponsiveness. Self-assembly of dilute concentrations of SELPs results in nanogels with enhanced stability over micelles due to physically crosslinked beta-sheet silk segments. The nanogels respond to thermal stimuli via size changes and aggregation. Modifying the ratio and sequence of silk to elastin in the polymer backbone results in alterations in critical gel formation concentration, stability, aggregation, size contraction temperature, and thermal reversibility. The nanogels sequester hydrophobic compounds and show promise in delivery of bioactive agents.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Mark Martin Jensen
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Alexandre H Watanabe
- College of Pharmacy, University of Utah, 30 2000 E., Salt Lake City, UT, 84112, USA
| | - Bryant E Green
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Marcelo A Correa
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S. 2000 E., Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S. 2000 E., Salt Lake City, UT, 84112, USA
| |
Collapse
|
24
|
Poursaid A, Jensen MM, Nourbakhsh I, Weisenberger M, Hellgeth JW, Sampath S, Cappello J, Ghandehari H. Silk-Elastinlike Protein Polymer Liquid Chemoembolic for Localized Release of Doxorubicin and Sorafenib. Mol Pharm 2016; 13:2736-48. [DOI: 10.1021/acs.molpharmaceut.6b00325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Azadeh Poursaid
- Department
of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
- Utah
Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Mark Martin Jensen
- Department
of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
- Utah
Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Ida Nourbakhsh
- Department
of Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mitchell Weisenberger
- Department
of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - John W. Hellgeth
- Merit Medical Systems, Inc., South Jordan, Utah 84095, United States
| | - Sujatha Sampath
- Department
of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
- Utah
Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Joseph Cappello
- Department
of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Department
of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
- Utah
Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake
City, Utah 84112, United States
- Department
of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
25
|
Ricapito NG, Ghobril C, Zhang H, Grinstaff MW, Putnam D. Synthetic Biomaterials from Metabolically Derived Synthons. Chem Rev 2016; 116:2664-704. [PMID: 26821863 PMCID: PMC5810137 DOI: 10.1021/acs.chemrev.5b00465] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The utility of metabolic synthons as the building blocks for new biomaterials is based on the early application and success of hydroxy acid based polyesters as degradable sutures and controlled drug delivery matrices. The sheer number of potential monomers derived from the metabolome (e.g., lactic acid, dihydroxyacetone, glycerol, fumarate) gives rise to almost limitless biomaterial structural possibilities, functionality, and performance characteristics, as well as opportunities for the synthesis of new polymers. This review describes recent advances in new chemistries, as well as the inventive use of traditional chemistries, toward the design and synthesis of new polymers. Specific polymeric biomaterials can be prepared for use in varied medical applications (e.g., drug delivery, tissue engineering, wound repair, etc.) through judicious selection of the monomer and backbone linkage.
Collapse
Affiliation(s)
- Nicole G. Ricapito
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Cynthia Ghobril
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Heng Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - David Putnam
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Kapoor S, Kundu SC. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater 2016; 31:17-32. [PMID: 26602821 DOI: 10.1016/j.actbio.2015.11.034] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/08/2015] [Accepted: 11/17/2015] [Indexed: 01/20/2023]
Abstract
Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. STATEMENT OF SIGNIFICANCE This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our work is an effort to highlight the research that has been done in the area of silk-based hydrogels. It aims to provide an overview of the advances that have been made and the future course available. It will provide an overview of the silk-based hydrogels as well as may direct the readers to the specific areas of application.
Collapse
|
27
|
Design of Self-Assembling Protein-Polymer Conjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:179-214. [PMID: 27677514 DOI: 10.1007/978-3-319-39196-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.
Collapse
|
28
|
Differentiation potential of SHEDs using biomimetic periosteum containing dexamethasone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:1036-45. [DOI: 10.1016/j.msec.2015.09.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/10/2015] [Accepted: 09/20/2015] [Indexed: 11/20/2022]
|
29
|
Poursaid A, Price R, Tiede A, Olson E, Huo E, McGill L, Ghandehari H, Cappello J. In situ gelling silk-elastinlike protein polymer for transarterial chemoembolization. Biomaterials 2015; 57:142-52. [PMID: 25916502 PMCID: PMC4429515 DOI: 10.1016/j.biomaterials.2015.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma annually affects over 700,000 people worldwide and trends indicate increasing prevalence. Patients ineligible for surgery undergo loco-regional treatments such as transarterial chemoembolization (TACE) to selectively target tumoral blood supply. Using a microcatheter, chemotherapeutics are infused followed by an embolic agent, or the drug is encapsulated by the embolic moiety; simultaneously inducing stasis while delivering localized chemotherapy. Presently, several products are used, but no universally accepted system is promoted because very disparate limitations exist. The goal of this investigation was to design and develop in situ gelling recombinant silk-elastinlike protein polymers (SELPs) for TACE. Two SELP compositions, SELP-47K and SELP-815K, with varying lengths of silk and elastin blocks, were investigated to formulate a new embolic that was injectable through commercially available microcatheters. The goal was to develop a composition providing maximal permeation of tumor vasculature while exhibiting effective embolic activity. The SELPs evaluated remain soluble until reaching 37 °C, when irreversible transition ensues forming a solid hydrogel network. SELP-815K formulated at 12% w/w with shear processing demonstrated acceptable rheological properties and clear embolic capability under flow conditions in vitro. A rabbit model showed feasibility of embolization in vivo allowing selective occlusion of lobar hepatic arterial branches.
Collapse
Affiliation(s)
- Azadeh Poursaid
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert Price
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrea Tiede
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Erik Olson
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Eugene Huo
- Veterans Affairs Hospital, Salt Lake City, UT 84108, USA
| | - Lawrence McGill
- Associated Regional and University Pathologists, Salt Lake City, UT 84107, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA.
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
30
|
In vivo evaluation of matrix metalloproteinase responsive silk-elastinlike protein polymers for cancer gene therapy. J Control Release 2015; 213:96-102. [PMID: 26095079 DOI: 10.1016/j.jconrel.2015.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/05/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022]
Abstract
Silk-elastinlike protein polymers (SELPs) have been effectively used as controlled release matrices for the delivery of viruses for cancer gene therapy in preclinical models. However, the degradability of these polymers needs to be tuned for improved localized intratumoral gene delivery. Using recombinant techniques, systematic modifications in distinct regions of the polymer backbone, namely, within the elastin blocks, silk blocks, and adjacent to silk and elastin blocks, have been made to impart sensitivity to specific matrix metalloproteinases (MMPs) known to be overexpressed in the tumor environment. In this report we investigated the structure-function relationship of MMP-responsive SELPs for viral mediated gene therapy of head and neck cancer. These polymers showed significant degradation in vitro in the presence of MMPs. Their degradation rate was a function of the location of the MMP-responsive sequence in the polymer backbone when in hydrogel form. Treatment efficacy of the adenoviral vectors released from the MMP responsive SELP analogs in a xenograft mouse model of head and neck squamous cell carcinoma (HNSCC) was shown to be polymer structure dependent. These results demonstrate the tunable nature of MMP-responsive SELPs for localized matrix-mediated gene delivery.
Collapse
|
31
|
Jung SH, Choi JW, Yun CO, Kim SH, Kwon IC, Ghandehari H. Direct Observation of Interactions of Silk-Elastinlike Protein Polymer with Adenoviruses and Elastase. Mol Pharm 2015; 12:1673-9. [DOI: 10.1021/acs.molpharmaceut.5b00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Se-Hui Jung
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea
| | - Joung-Woo Choi
- Department
of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Chae-Ok Yun
- Department
of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Sun Hwa Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea
| | - Ick Chan Kwon
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea
| | - Hamidreza Ghandehari
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea
| |
Collapse
|
32
|
Huang W, Rollett A, Kaplan DL. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin Drug Deliv 2014; 12:779-91. [PMID: 25476201 DOI: 10.1517/17425247.2015.989830] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. AREAS COVERED An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli-responsive features and current and potential drug delivery applications. EXPERT OPINION The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.
Collapse
Affiliation(s)
- Wenwen Huang
- Tufts University, Department of Biomedical Engineering , 4 Colby Street, Medford, MA 02155 , USA
| | | | | |
Collapse
|
33
|
Price R, Poursaid A, Ghandehari H. Controlled release from recombinant polymers. J Control Release 2014; 190:304-13. [PMID: 24956486 PMCID: PMC4142100 DOI: 10.1016/j.jconrel.2014.06.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.
Collapse
Affiliation(s)
- Robert Price
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Azadeh Poursaid
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
34
|
Price R, Poursaid A, Cappello J, Ghandehari H. Effect of shear on physicochemical properties of matrix metalloproteinase responsive silk-elastinlike hydrogels. J Control Release 2014; 195:92-8. [PMID: 25094031 DOI: 10.1016/j.jconrel.2014.07.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/15/2014] [Accepted: 07/20/2014] [Indexed: 01/22/2023]
Abstract
Silk-elastinlike protein polymers (SELPs) have been fabricated as matrices for controlled delivery of bioactive agents. In this application the need for an environmentally responsive, degradable polymer has risen to improve treatment outcomes. To satisfy this need, we have designed, synthesized, and expressed SELPs with matrix metalloproteinase (MMP) degradable sequences inserted in distinct regions of the polymer backbone. Upon characterization of the physicochemical properties of newly synthesized analogs, it was determined that conditioning of the polymers was necessary for normalization of batch properties, and to generate a more robust polymer network suitable for delivery. In this report we have examined the use of shear stress to condition synthesized material prior to application as a controlled release matrix. The application of high shear to SELPs results in significant changes in physiochemical properties as assayed by swelling ratio, soluble fraction release, rate of gel formation, stiffness of hydrogels, and nanoparticle release from matrices. These observed changes in material characteristics may be caused by the removal of semi-stable secondary and tertiary structures from single polymer strands leading to a more robust hydrogel with greater intermolecular interaction.
Collapse
Affiliation(s)
- Robert Price
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Azadeh Poursaid
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
35
|
Jung SH, Choi JW, Yun CO, Yhee JY, Price R, Kim SH, Kwon IC, Ghandehari H. Sustained local delivery of oncolytic short hairpin RNA adenoviruses for treatment of head and neck cancer. J Gene Med 2014; 16:143-52. [DOI: 10.1002/jgm.2770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/09/2014] [Accepted: 06/18/2014] [Indexed: 01/22/2023] Open
Affiliation(s)
- Se-Hui Jung
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Joung-Woo Choi
- Department of Bioengineering, College of Engineering; Hanyang University; Seoul Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering; Hanyang University; Seoul Korea
| | - Ji Young Yhee
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Robert Price
- Departments of Phamaceutics and Pharmaceutical Chemistry; University of Utah; Salt Lake City UT USA
- Department of Bioengineering; University of Utah; Salt Lake City UT USA
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Hamidreza Ghandehari
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
- Departments of Phamaceutics and Pharmaceutical Chemistry; University of Utah; Salt Lake City UT USA
- Department of Bioengineering; University of Utah; Salt Lake City UT USA
- Center for Nanomedicine, Nano Institute of Utah; University of Utah; Salt Lake City UT USA
| |
Collapse
|
36
|
Zeng L, Teng W, Jiang L, Cappello J, Wu X. Ordering recombinant silk-elastin-like nanofibers on the microscale. APPLIED PHYSICS LETTERS 2014; 104:033702. [PMID: 24753621 PMCID: PMC3977850 DOI: 10.1063/1.4863077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/29/2013] [Indexed: 05/05/2023]
Abstract
Self-assembled peptide/polypeptide nanofibers are appealing building blocks for creating complex three-dimensional structures. However, ordering assembled peptide/polypeptide nanofibers into three-dimensional structures on the microscale remains challenging and often requires the employment of top-down approaches. We report that silk-elastin-like protein polymers self-assemble into nanofibers in physiologically relevant conditions, the assembled nanofibers further form fiber clusters on the microscale, and the nanofiber clusters eventually coalesce into three-dimensional structures with distinct nanoscale and microscale features. It is believed that the interplay between fiber growth and molecular diffusion leads to the ordering of the assembled silk-elastin-like nanofibers at the microscale.
Collapse
Affiliation(s)
- Like Zeng
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Weibing Teng
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Joseph Cappello
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Xiaoyi Wu
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA ; Biomedical Engineering IDP and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
37
|
Machado R, da Costa A, Sencadas V, Garcia-Arévalo C, Costa CM, Padrão J, Gomes A, Lanceros-Méndez S, Rodríguez-Cabello JC, Casal M. Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomed Mater 2013; 8:065009. [DOI: 10.1088/1748-6041/8/6/065009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Varongchayakul N, Johnson S, Quabili T, Cappello J, Ghandehari H, Solares SDJ, Hwang W, Seog J. Direct observation of amyloid nucleation under nanomechanical stretching. ACS NANO 2013; 7:7734-7743. [PMID: 23987654 DOI: 10.1021/nn402322k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Self-assembly of amyloid nanofiber is associated with both functional biological and pathological processes such as those in neurodegenerative diseases. Despite intensive studies, the stochastic nature of the process has made it difficult to elucidate a molecular mechanism for the key amyloid nucleation event. Here we investigated nucleation of the silk-elastin-like peptide (SELP) amyloid using time-lapse lateral force microscopy (LFM). By repeated scanning of a single line on a SELP-coated mica surface, we observed a sudden stepwise height increase. This corresponds to nucleation of an amyloid fiber, which subsequently grew perpendicular to the scanning direction. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction. The probability of nucleation correlated with the maximum stretching force and extension, implying that stretching of SELP molecules is a key molecular event for amyloid nucleation. The mechanically induced nucleation allows for positional and directional control of amyloid assembly in vitro, which we demonstrate by generating single nanofibers at predetermined nucleation sites.
Collapse
Affiliation(s)
- Nitinun Varongchayakul
- Department of Materials Science and Engineering, ‡Fischell Department of Bioengineering, ¶Department of Mechanical Engineering, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gustafson JA, Price RA, Frandsen J, Henak CR, Cappello J, Ghandehari H. Synthesis and characterization of a matrix-metalloproteinase responsive silk-elastinlike protein polymer. Biomacromolecules 2013; 14:618-25. [PMID: 23369048 DOI: 10.1021/bm3013692] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silk-elastinlike protein polymers (SELPs) are recombinant polymers consisting of tandem repeats of silk (GAGAGS) and elastin (GVGVP) units. By modification of the length and composition of these repeats, the properties of SELP hydrogels can be controlled for specific applications including nucleic acid and virus delivery and tissue engineering. Here, the structure of SELPs is further modified to include a sequence that is sensitive to matrix-metalloproteinases (MMPs). MMPs are a ubiquitous family of extracellular matrix-modifying enzymes that are commonly associated with numerous vital processes. Increased levels of MMPs are found at high levels locally in many types of solid tumors. By modifying the SELP backbone with MMP-sensitive peptide sequences, a hydrogel that is degradable by MMPs was produced. The MMP-sensitivity of the polymer was examined by incubation with MMP-2 and MMP-9, which yielded complete cleavage of all full-length polymers by 36 hours and 48 hours, respectively, with no observable effect on unmodified SELP. Hydrogel sensitivity was tested by exposure to MMP-2 or MMP-9 for 2 weeks, during which samples were taken to analyze protein loss from the hydrogel and release of 100 nm fluorescent beads. Following the incubation period, hydrogels were tested in mechanical compression to examine the loss of hydrogel stiffness due to degradation. It was found that MMP-2 and MMP-9 caused 63% and 44% increased protein loss and 65% and 95% increased release from MMP-sensitive hydrogels, while the compressive modulus decreased by 41% and 29%. These results suggest the potential of MMP-responsive SELPs for localized delivery of bioactive agents where MMPs are overexpressed.
Collapse
Affiliation(s)
- Joshua A Gustafson
- Departments of Bioengineering, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
40
|
Johnson S, Ko YK, Varongchayakul N, Lee S, Cappello J, Ghandehari H, Lee SB, Solares SD, Seog J. Directed patterning of the self-assembled silk-elastin-like nanofibers using a nanomechanical stimulus. Chem Commun (Camb) 2013; 48:10654-6. [PMID: 23000884 DOI: 10.1039/c2cc35384a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effects of the frequency and density of a nanomechanical stimulus on nucleation and growth of silk-elastin-like protein polymer (SELP) nanofibers. Repetitive tappings are crucial to create nucleation areas and a potential molecular level mechanism was proposed. Using this technique mechanically guided nanofiber patterns were successfully created.
Collapse
Affiliation(s)
- Sara Johnson
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Machado R, Azevedo-Silva J, Correia C, Collins T, Arias FJ, Rodríguez-Cabello JC, Casal M. High level expression and facile purification of recombinant silk-elastin-like polymers in auto induction shake flask cultures. AMB Express 2013; 3:11. [PMID: 23384239 PMCID: PMC3599559 DOI: 10.1186/2191-0855-3-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/16/2012] [Indexed: 01/28/2023] Open
Abstract
Silk-elastin-like polymers (SELPs) are protein-based polymers composed of repetitive amino acid sequence motifs found in silk fibroin (GAGAGS) and mammalian elastin (VPGVG). These polymers are of much interest, both from a fundamental and applied point of view, finding potential application in biomedicine, nanotechnology and as materials. The successful employment of such polymers in such diverse fields, however, requires the ready availability of a variety of different forms with novel enhanced properties and which can be simply prepared in large quantities on an industrial scale. In an attempt to create new polymer designs with improved properties and applicability, we have developed four novel SELPs wherein the elastomer forming sequence poly(VPGVG) is replaced with a plastic-like forming sequence, poly(VPAVG), and combined in varying proportions with the silk motif. Furthermore, we optimised a simplified production procedure for these, making use of an autoinduction medium to reduce process intervention and with the production level obtained being 6-fold higher than previously reported for other SELPs, with volumetric productivities above 150 mg/L. Finally, we took advantage of the known enhanced stability of these polymers in developing an abridged, non-chromatographic downstream processing and purification protocol. A simple acid treatment allowed for cell disruption and the obtention of relative pure SELP in one-step, with ammonium sulphate precipitation being subsequently used to enable improved purity. These simplified production and purification procedures improve process efficiency and reduce costs in the preparation of these novel polymers and enhances their potential for application.
Collapse
|
42
|
Li Y, Thouas GA, Chen QZ. Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds. RSC Adv 2012. [DOI: 10.1039/c2ra20736b] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Frandsen JL, Ghandehari H. Recombinant protein-based polymers for advanced drug delivery. Chem Soc Rev 2012; 41:2696-706. [DOI: 10.1039/c2cs15303c] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Dai M, Haghpanah J, Singh N, Roth EW, Liang A, Tu RS, Montclare JK. Artificial Protein Block Polymer Libraries Bearing Two SADs: Effects of Elastin Domain Repeats. Biomacromolecules 2011; 12:4240-6. [DOI: 10.1021/bm201083d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Dai
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Jennifer Haghpanah
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Navjot Singh
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Eric W. Roth
- Skirball Institute Image Core
Facility, New York University Medical Center, New York, New York 10016, United States
| | - Alice Liang
- Skirball Institute Image Core
Facility, New York University Medical Center, New York, New York 10016, United States
| | - Raymond S. Tu
- Department of Chemical Engineering, City College of New York, New York, New York 10031,
United States
| | - Jin Kim Montclare
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
- Department
of Biochemistry, SUNY Downstate Medical Center, Brooklyn, New York 11203,
United States
| |
Collapse
|
45
|
Price R, Gustafson J, Greish K, Cappello J, McGill L, Ghandehari H. Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery. Int J Pharm 2011; 427:97-104. [PMID: 21982738 DOI: 10.1016/j.ijpharm.2011.09.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/24/2011] [Indexed: 11/26/2022]
Abstract
The silk-elastinlike protein polymer, SELP 815K, and poloxomer 407, a commercially available synthetic copolymer, were evaluated to compare their relative performance in matrix-mediated viral gene delivery. Using a xenogenic mouse tumor model of human head and neck squamous cell carcinoma, the efficacy of viral gene-directed enzyme prodrug therapy with these polymers was characterized by viral gene expression in the tumor tissue, tumor size reduction, and survivability with treatment. Viral injection in SELP 815K produced a greater level and more prolonged extent of gene expression in the tumor, a statistically greater tumor size reduction, a longer time until tumor rebound, and a significantly increased survivability, as compared to injection of virus alone or in Poloxamer 407. Safety of treatment with these polymers was evaluated in a non-tumor bearing immunocompetent mouse model. Compared to virus injected alone or in Poloxamer 407, virus injected in SELP 815K had fewer and less severe indications of toxicity related to treatment as assessed by blood analysis, body weight, and histopathology of distant organs and the injection sites. Similar to virus alone or in Poloxamer 407, virus injected in SELP 815K elicited a mild injection site inflammatory response characterized primarily by a mononuclear leukocyte infiltrate and the formation of granulation tissue. Virus injected in SELP 815K resulted in fewer animals with elevated white blood cell counts and a less pronounced local toxicity reaction than was observed with virus in Poloxamer 407. In contrast to virus injected alone or in Poloxamer 407, which were not retained in the injection site tissues beyond week 1, SELP 815K was retained at the injection sites and by the end of the study (week 12), displayed limited absorption, and mild encapsulation. These results demonstrate the benefits of SELP 815K for matrix-mediated gene delivery over the injection of free virus and the injection of virus in Poloxamer 407. Virus in SELP 815K had greater efficacy of tumor suppression, promoted greater levels and greater duration of viral gene expression, and displayed reduced levels of injection site toxicity. Combining these performance and safety benefits with the degree of control with which they can be designed, synthesized and formulated, SELPs continue to show promise for their application in viral gene delivery.
Collapse
Affiliation(s)
- Robert Price
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
46
|
Anumolu R, Gustafson JA, Magda JJ, Cappello J, Ghandehari H, Pease LF. Fabrication of highly uniform nanoparticles from recombinant silk-elastin-like protein polymers for therapeutic agent delivery. ACS NANO 2011; 5:5374-82. [PMID: 21696150 PMCID: PMC3860367 DOI: 10.1021/nn103585f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here we generate silk-elastin-like protein (SELP) polymeric nanoparticles and demonstrate precise control over their dimensions using an electrospray differential mobility analyzer (ES-DMA). Electrospray produces droplets encompassing several polymer strands. Evaporation ensues, leading polymer strands to accumulate at the droplet interface, forming a hollow nanoparticle. The resulting nanoparticle size distributions, which govern particle yield, depend on buffer concentration to the -1/3 power, polymer concentration to the 1/3 power, and ratio of silk-to-elastin blocks. Three recombinantly tuned ratios of 8:16, 4:8, and 4:16, respectively named SELP-815K, SELP-47K, and SELP-415K, are employed, with the latter ratio resulting in a thinner shell and larger diameter for the nanoparticles than the former. The DMA narrows the size distribution by electrostatically classifying the aerosolized nanoparticles. These highly uniform nanoparticles have variations of 1.2 and 1.4 nm for 24.0 and 36.0 nm particles, respectively. Transmission electron microscopy reveals the nanoparticles to be faceted, as a buckling instability releases compression energy arising from evaporation after the shell has formed by bending it. A thermodynamic equilibrium exists between compression and bending energies, where the facet length is half the particle diameter, in agreement with experiments. Rod-like particles also formed from polymer-stabilized filaments when the viscous length exceeds the jet radius at higher solution viscosities. The unusual uniformity in composition and dimension indicates the potential of these nanoparticles to deliver bioactive and imaging agents.
Collapse
Affiliation(s)
- Rajasekhar Anumolu
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Joshua A. Gustafson
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84108
| | - Jules J. Magda
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112
- Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112
| | - Joseph Cappello
- Department of Pharmaceutics & Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84108
- Department of Pharmaceutics & Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112
| | - Leonard F. Pease
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84108
- Department of Pharmaceutics & Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132
- , (o) 801-585-9748, (f) 801-585-9291
| |
Collapse
|
47
|
Bhardwaj N, Kundu SC. Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.02.027] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Chang J, Peng XF, Hijji K, Cappello J, Ghandehari H, Solares SD, Seog J. Nanomechanical stimulus accelerates and directs the self-assembly of silk-elastin-like nanofibers. J Am Chem Soc 2011; 133:1745-7. [PMID: 21247161 PMCID: PMC3379890 DOI: 10.1021/ja110191f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One-dimensional nanostructures are ideal building blocks for functional nanoscale assembly. Peptide-based nanofibers have great potential in building smart hierarchical structures due to their tunable structures at the single residue level and their ability to reconfigure themselves in response to environmental stimuli. We observed that pre-adsorbed silk-elastin-based protein polymers self-assemble into nanofibers through conformational changes on a mica substrate. Furthermore, we demonstrate that the rate of self-assembly was significantly enhanced by applying a nanomechanical stimulus using atomic force microscopy. The orientation of the newly grown nanofibers was mostly perpendicular to the scanning direction, implying that the new fiber assembly was locally activated with directional control. Our method provides a novel way to prepare nanofiber patterned substrates using a bottom-up approach.
Collapse
Affiliation(s)
- Jonathan Chang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Xiu-Feng Peng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Karam Hijji
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | | | - Hamidreza Ghandehari
- Departments of Pharmaceutics and Pharmaceutical Chemistry and Bioengineering, Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, UT, USA
| | - Santiago D. Solares
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Joonil Seog
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
49
|
Gustafson JA, Ghandehari H. Silk-elastinlike protein polymers for matrix-mediated cancer gene therapy. Adv Drug Deliv Rev 2010; 62:1509-23. [PMID: 20430059 DOI: 10.1016/j.addr.2010.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/14/2010] [Accepted: 04/17/2010] [Indexed: 10/24/2022]
Abstract
Silk-elastinlike protein polymers (SELPs) are recombinant polymers designed from silk fibroin and mammalian elastin amino acid repeats. These are versatile materials that have been examined as controlled release systems for intratumoral gene delivery. SELP hydrogels comprise monodisperse and tunable polymers that have the capability to control and localize the release and expression of plasmid DNA and viruses. This article reviews recent developments in the synthesis and characterization of SELP hydrogels and their use for matrix-mediated gene delivery.
Collapse
|
50
|
Top A, Kiick KL. Multivalent protein polymers with controlled chemical and physical properties. Adv Drug Deliv Rev 2010; 62:1530-40. [PMID: 20562016 PMCID: PMC3025749 DOI: 10.1016/j.addr.2010.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
In this review, we describe our work on the design, characterization, and modification of a series of alanine-rich helical polypeptides with novel functions. Glycosylation of the polypeptides has permitted investigation of polymer architecture effects on multivalent interactions. One of the members of this polypeptide family exhibits polymorphological behavior that is easily manipulated via simple changes in solution pH and temperature. Polypeptide-based fibrils formed at acidic pH and high temperature were shown to direct the one-dimensional organization of gold nanoparticles via electrostatic interactions. As a precursor to fibrils, aggregates likely comprising alanine-rich cores form at low temperatures and acidic pH and reversibly dissociate into monomers upon deprotonation. PEGylation of these polypeptides does not alter the self-association or conformational behavior of the polypeptide, suggesting potential applications in the development of assembled delivery vehicles, as modification of the polypeptides should be a useful strategy for controlling assembly.
Collapse
Affiliation(s)
- Ayben Top
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, Delaware 19716
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, Delaware 19716
| |
Collapse
|