1
|
Liu IT, Meemai P, Lin YH, Fang CJ, Huang CC, Li CY, Phisalaphong M, You JL, Tung SH, Balaji R, Liao YC. Bacterial cellulose materials in sustainable energy devices: A review. Int J Biol Macromol 2024; 281:135804. [PMID: 39414529 DOI: 10.1016/j.ijbiomac.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the processing and applications of bacterial cellulose (BC) for energy conversion and storage devices. These emerging technologies enable the transformation of sustainable energy sources into electricity. Once converted, energy storage devices are vital for stable energy supply. To promote green manufacturing practices in this field, bio-based materials are explored as alternative materials for energy devices, addressing the growing demand for sustainable solutions. From a research and development perspective, the materials chosen for energy devices must exhibit exceptional mechanical, electrical, and thermal properties, along with the necessary chemical reactivity to unlock new applications. Furthermore, for successful commercialization and industrialization, these materials must be suitable for large-scale production within practical timeframes. BC fulfills all of these requirements. The review begins with an overview of BC growth, detailing the composition and operating parameters of the culture medium and the design of bioreactors for large-scale production. It then defines and summarizes both in-situ and ex-situ modifications and processing strategies, offering a comprehensive perspective on these techniques. Unique and interesting properties linking BC's structure to its properties are reviewed to demonstrate its potential as a substitute for benchmark materials. The exceptional performance and synergistic effects of BC-derived hybrid materials highlight their potential for state-of-the-art applications in energy devices, and are suitable for the next-generation energy devices. The papers reviewed in this work have gained significant attention and been widely cited over the past 10 years for their relevance to various practical applications, allowing readers to have a better understanding in development of BC based materials for energy conversion and conversion devices.
Collapse
Affiliation(s)
- I-Tseng Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Puttakhun Meemai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yun-Hsuan Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Jan Fang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ching Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Ying Li
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jhu-Lin You
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical & Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ramachandran Balaji
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh 522302, India.
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Saad HE, El-Sayed YS, El-Reash GMA, Gaber M, Hashem MA. Synthesis, application and molecular docking of modified cellulose with diaminoguanidine as complexing agent for selective separation of Cu (II), Cd (II) and Hg (II) ions from alum sample. Sci Rep 2024; 14:16808. [PMID: 39039161 PMCID: PMC11263551 DOI: 10.1038/s41598-024-67218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
A new modified cellulose with diaminoguanidine (Cel-Gua) synthesized for specific recovery of Cu (II), Cd (II), and Hg (II) from the alum sample. Cellulose was silanized by 3-chloropropyltrimethoxysilane and then was modified with diaminoguanidine to obtain N-donor chelating fibers. Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray diffraction, zeta potential, electrons disperse X-ray analysis, elemental analyses (C, H and N), and thermogravimetric analysis were used for characterization. Factors influencing the adsorption were thoroughly examined. Under the optimal conditions, the Cel-Gua sorbent displayed maximum adsorption capacities of 94.33, 112.10 and 95.78 mg/g for Cu (II), Cd (II), and Hg (II), respectively. The sorption process of metal ions is equipped by kinetic model PSO and Langmuir adsorption isotherm. The calculated thermodynamic variables confirmed that the adsorption of Cu (II), Cd (II) and Hg (II) by Cel-Gua sorbent is a spontaneous and exothermic process. In our study, we used the molecular operating environment software to conduct molecular docking simulations on the Cel-Gua compound. The results of the docking simulations showed that the Cel-Gua compound displayed greater potency and a stronger affinity for the Avr2 effector protein derived from Fusarium oxysporum, a fungal plant pathogen (code 5OD4). The adsorbent was stable for 7 cycles, thus allowing its safe reutilization.
Collapse
Affiliation(s)
- Heba E Saad
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Yusif S El-Sayed
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Gaber M Abu El-Reash
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Gaber
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed A Hashem
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Bai Y, Tan R, Yan Y, Chen T, Feng Y, Sun Q, Li J, Wang Y, Liu F, Wang J, Zhang Y, Cheng X, Wu G. Effect of addition of γ-poly glutamic acid on bacterial nanocellulose production under agitated culture conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:68. [PMID: 38802837 PMCID: PMC11129402 DOI: 10.1186/s13068-024-02515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Bacterial nanocellulose (BNC), a natural polymer material, gained significant popularity among researchers and industry. It has great potential in areas, such as textile manufacturing, fiber-based paper, and packaging products, food industry, biomedical materials, and advanced functional bionanocomposites. The main current fermentation methods for BNC involved static culture, as the agitated culture methods had lower raw material conversion rates and resulted in non-uniform product formation. Currently, studies have shown that the production of BNC can be enhanced by incorporating specific additives into the culture medium. These additives included organic acids or polysaccharides. γ-Polyglutamic acid (γ-PGA), known for its high polymerization, excellent biodegradability, and environmental friendliness, has found extensive application in various industries including daily chemicals, medicine, food, and agriculture. RESULTS In this particular study, 0.15 g/L of γ-PGA was incorporated as a medium additive to cultivate BNC under agitated culture conditions of 120 rpm and 30 ℃. The BNC production increased remarkably by 209% in the medium with 0.15 g/L γ-PGA and initial pH of 5.0 compared to that in the standard medium, and BNC production increased by 7.3% in the medium with 0.06 g/L γ-PGA. The addition of γ-PGA as a medium additive resulted in significant improvements in BNC production. Similarly, at initial pH levels of 4.0 and 6.0, the BNC production also increased by 39.3% and 102.3%, respectively. To assess the characteristics of the BNC products, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis were used. The average diameter of BNC fibers, which was prepared from the medium adding 0.15 g/L γ-PGA, was twice thicker than that of BNC fibers prepared from the control culture medium. That might be because that polyglutamic acid relieved the BNC synthesis from the shear stress from the agitation. CONCLUSIONS This experiment held great significance as it explored the use of a novel medium additive, γ-PGA, to improve the production and the glucose conversion rate in BNC fermentation. And the BNC fibers became thicker, with better thermal stability, higher crystallinity, and higher degree of polymerization (DPv). These findings lay a solid foundation for future large-scale fermentation production of BNC using bioreactors.
Collapse
Affiliation(s)
- Yang Bai
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Ran Tan
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yiran Yan
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Tao Chen
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yetong Feng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Qiwei Sun
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiakun Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yifei Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Futao Liu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingwen Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xianhao Cheng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guochao Wu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
4
|
Zhao H, Sun S, Cui Y, Ullah MW, Alabbosh KF, Elboughdiri N, Zhou J. Sustainable production of bacterial flocculants by nylon-6,6 microplastics hydrolysate utilizing Brucella intermedia ZL-06. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133435. [PMID: 38224639 DOI: 10.1016/j.jhazmat.2024.133435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Nylon-6,6 microplastics (NMPs) in aquatic systems have emerged as potential contaminants to the global environment and have garnered immense consideration over the years. Unfortunately, there is currently no efficient method available to eliminate NMPs from sewage. This study aims to address this issue by isolating Brucella intermedia ZL-06, a bacterium capable of producing a bacterial polysaccharide-based flocculant (PBF). The PBF generated from this bacterium shows promising efficacy in effectively flocculating NMPs. Subsequently, the precipitated flocs (NMPs + PBF) were utilized as sustainable feedstock for synthesizing PBF. The study yielded 6.91 g/L PBF under optimum conditions. Genome sequencing analysis was conducted to study the mechanisms of PBF synthesis and nylon-6,6 degradation. The PBF exhibited impressive flocculating capacity of 90.1 mg/g of PBF when applied to 0.01 mm NMPs, aided by the presence of Ca2+. FTIR and XPS analysis showed the presence of hydroxyl, carboxyl, and amine groups in PBF. The flocculation performance of PBF conformed to Langmuir isotherm and pseudo-first-order adsorption kinetics model. These findings present a promising approach for reducing the production costs of PBF by utilizing NMPs as sustainable nutrient sources.
Collapse
Affiliation(s)
- Haijuan Zhao
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China; School of Mathematics and Statistics, Hubei University of Education, Wuhan 430205, China
| | - Su Sun
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongming Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China.
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Jiangang Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
5
|
Guimarães DT, de Oliveira Barros M, de Araújo E Silva R, Silva SMF, de Almeida JS, de Freitas Rosa M, Gonçalves LRB, Brígida AIS. Superabsorbent bacterial cellulose film produced from industrial residue of cashew apple juice processing. Int J Biol Macromol 2023; 242:124405. [PMID: 37100327 DOI: 10.1016/j.ijbiomac.2023.124405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The industrial residue of cashew apple juice processing (MRC) was evaluated as an alternative medium for bacterial cellulose (BC) production by Komagataeibacter xylinus ATCC 53582 and Komagataeibacter xylinus ARS B42. The synthetic Hestrin-Schramm medium (MHS) was used as a control for growing and BC production. First, BC production was assessed after 4, 6, 8, 10, and 12 days under static culture. After 12 days of cultivation, K. xylinus ATCC 53582 produced the highest BC titer in MHS (3.1 g·L-1) and MRC (3 g·L-1), while significant productivity was attained at 6 days of fermentation. To understand the effect of culture medium and fermentation time on the properties of the obtained films, BC produced at 4, 6, or 8 days were submitted to infrared spectroscopy with Fourier transform, thermogravimetry, mechanical tests, water absorption capacity, scanning electron microscopy, degree of polymerization and X-ray diffraction. The properties of BC synthesized in MRC were identical to those of BC from MHS, according to structural, physical, and thermal studies. MRC, on the other hand, allows the production of BC with a high water absorption capacity when compared to MHS. Despite the lower titer (0.88 g·L-1) achieved in MRC, the BC from K. xylinus ARS B42 presented a high thermal resistance and a remarkable absorption capacity (14664 %), suggesting that it might be used as a superabsorbent biomaterial.
Collapse
Affiliation(s)
- Darlyson Tavares Guimarães
- Rede Nordeste de Biotecnologia, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Matheus de Oliveira Barros
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Renata de Araújo E Silva
- Universidade Estadual do Ceará, Departamento de Ciência e Tecnologia, Av. Dr. Silas Munguba, 1700, Bairro Itaperi, Fortaleza, CE CEP 60714-903, Brazil
| | - Sarah Maria Frota Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Jessica Silva de Almeida
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Morsyleide de Freitas Rosa
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CE CEP 60511-110, Brazil
| | - Luciana Rocha Barros Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Ana Iraidy Santa Brígida
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CE CEP 60511-110, Brazil.
| |
Collapse
|
6
|
Zhou J, Sun J, Ullah M, Wang Q, Zhang Y, Cao G, Chen L, Ullah MW, Sun S. Polyethylene terephthalate hydrolysate increased bacterial cellulose production. Carbohydr Polym 2022; 300:120301. [DOI: 10.1016/j.carbpol.2022.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
7
|
Kamal T, Ul-Islam M, Fatima A, Ullah MW, Manan S. Cost-Effective Synthesis of Bacterial Cellulose and Its Applications in the Food and Environmental Sectors. Gels 2022; 8:552. [PMID: 36135264 PMCID: PMC9498321 DOI: 10.3390/gels8090552] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial cellulose (BC), also termed bio-cellulose, has been recognized as a biomaterial of vital importance, thanks to its impressive structural features, diverse synthesis routes, high thermomechanical properties, and its ability to combine with multiple additives to form composites for a wide range of applications in diversified areas. Its purity, nontoxicity, and better physico-mechanical features than plant cellulose (PC) make it a better choice for biological applications. However, a major issue with the use of BC instead of PC for various applications is its high production costs, mainly caused by the use of expensive components in the chemically defined media, such as Hestrin-Schramm (HS) medium. Furthermore, the low yield of BC-producing bacteria indirectly accounts for the high cost of BC-based products. Over the last couple of decades, extensive efforts have been devoted to the exploration of low-cost carbon sources for BC production, besides identifying efficient bacterial strains as well as developing engineered strains, developing advanced reactors, and optimizing the culturing conditions for the high yield and productivity of BC, with the aim to minimize its production cost. Considering the applications, BC has attracted attention in highly diversified areas, such as medical, pharmaceutics, textile, cosmetics, food, environmental, and industrial sectors. This review is focused on overviewing the cost-effective synthesis routes for BC production, along with its noteworthy applications in the food and environmental sectors. We have made a comprehensive review of recent papers regarding the cost-effective production and applications of BC in the food and environmental sectors. This review provides the basic knowledge and understanding for cost-effective and scaleup of BC production by discussing the techno-economic analysis of BC production, BC market, and commercialization of BC products. It explores BC applications as food additives as its functionalization to minimize different environmental hazards, such as air contaminants and water pollutants.
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials and Research, King Abdulaziz University, Jeddah 22230, Saudi Arabia
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Akintunde MO, Adebayo-Tayo BC, Ishola MM, Zamani A, Horváth IS. Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains. Bioengineered 2022; 13:10010-10025. [PMID: 35416127 PMCID: PMC9161868 DOI: 10.1080/21655979.2022.2062970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Agricultural residues are constantly increasing with increased farming processes, and improper disposal is detrimental to the environment. Majority of these waste residues are rich in lignocellulose, which makes them suitable substrate for bacterial fermentation in the production of value-added products. In this study, bacterial cellulose (BC), a purer and better form of cellulose, was produced by two Komagataeibacter sp. isolated from rotten banana and kombucha drink using corncob (CC) and sugarcane bagasse (SCB) enzymatic hydrolyzate, under different fermentation conditions, that is, static, continuous, and intermittent agitation. The physicochemical and mechanical properties of the BC films were then investigated by Fourier Transformed Infrared Spectroscopy (FTIR), Thermogravimetry analysis, Field Emission Scanning Electron Microscopy (FE-SEM), and Dynamic mechanical analysis. Agitation gave a higher BC yield, with Komagataeibacter sp. CCUG73629 producing BC from CC with a dry weight of 1.6 g/L and 1.4 g/L under continuous and intermittent agitation, respectively, compared with that of 0.9 g/L in HS medium. While BC yield of dry weight up to 1.2 g/L was obtained from SCB by Komagataeibacter sp. CCUG73630 under continuous agitation compared to that of 0.3 g/L in HS medium. FTIR analysis showed BC bands associated with cellulose I, with high thermal stability. The FE-SEM analysis showed that BC fibers were highly ordered and densely packed. Although the BC produced by both strains showed similar physicochemical and morphological properties, the BC produced by the Komagataeibacter sp. CCUG73630 in CC under intermittent agitation had the best modulus of elasticity, 10.8 GPa and tensile strength, 70.9 MPa.
Collapse
Affiliation(s)
- Moyinoluwa O Akintunde
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria.,Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | | | | - Akram Zamani
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
9
|
Żywicka A, Ciecholewska-Juśko D, Drozd R, Rakoczy R, Konopacki M, Kordas M, Junka A, Migdał P, Fijałkowski K. Preparation of Komagataeibacter xylinus Inoculum for Bacterial Cellulose Biosynthesis Using Magnetically Assisted External-Loop Airlift Bioreactor. Polymers (Basel) 2021; 13:polym13223950. [PMID: 34833249 PMCID: PMC8623894 DOI: 10.3390/polym13223950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to demonstrate the applicability of a novel magnetically assisted external-loop airlift bioreactor (EL-ALB), equipped with rotating magnetic field (RMF) generators for the preparation of Komagataeibacterxylinus inoculum during three-cycle repeated fed-batch cultures, further used for bacterial cellulose (BC) production. The fermentation carried out in the RMF-assisted EL-ALB allowed to obtain an inoculum of more than 200× higher cellular density compared to classical methods of inoculum preparation. The inoculum obtained in the RMF-assisted EL-ALB was characterized by a high and stable metabolic activity during repeated batch fermentation process. The application of the RMF-assisted EL-ALB for K. xylinus inoculum production did not induce the formation of cellulose-deficient mutants. It was also confirmed that the ability of K. xylinus to produce BC was at the same level (7.26 g/L of dry mass), regardless of inoculum age. Additionally, the BC obtained from the inoculum produced in the RMF-assisted EL-ALB was characterized by reproducible water-related properties, mechanical strength, nano-fibrillar structure and total crystallinity index. The lack of any negative impact of inoculum preparation method using RMF-assisted EL-ALB on BC properties is of paramount value for its future applications, including use as a biomaterial in tissue engineering, wound healing, and drug delivery, where especially BC liquid capacity, nanostructure, crystallinity, and mechanical properties play essential roles.
Collapse
Affiliation(s)
- Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
- Correspondence: (A.Ż.); (K.F.); Tel.: +48-91-449-6709 (A.Ż.); +48-91-449-6714 (K.F.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
- Correspondence: (A.Ż.); (K.F.); Tel.: +48-91-449-6709 (A.Ż.); +48-91-449-6714 (K.F.)
| |
Collapse
|
10
|
Mehdaoui R, Agren S, Dhahri A, El Haskouri J, Beyou E, Lahcini M, Baouab MHV. New sonochemical magnetite nanoparticles functionalization approach of dithiooxamide–formaldehyde developed cellulose: From easy synthesis to recyclable 4‐nitrophenol reduction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rahma Mehdaoui
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| | - Soumaya Agren
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
- Department of Inorganic Chemistry Instituto de Ciencias de Los Materiales de la Universitad de Valencia Paterna Spain
| | - Abdelwahab Dhahri
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| | - Jamal El Haskouri
- Department of Inorganic Chemistry Instituto de Ciencias de Los Materiales de la Universitad de Valencia Paterna Spain
| | - Emmanuel Beyou
- Department of Material's Engineering Université Lyon 1, UMR CNRS5223, Ingénierie des Matériaux Polymères Villeurbanne France
| | - Mohammed Lahcini
- Laboratory of organometallic and macromolecular chemistry‐composites Materials, Faculty of Sciences and Technologies Cadi Ayyad University Marrakech Morocco
- Department of Inorganic Chemistry Mohamed VI Polytechnic University Ben Guerir Morocco
| | - Mohamed Hassen V. Baouab
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| |
Collapse
|
11
|
Ma X, Yuan H, Wang H, Yu H. Coproduction of bacterial cellulose and pear vinegar by fermentation of pear peel and pomace. Bioprocess Biosyst Eng 2021; 44:2231-2244. [PMID: 34165619 DOI: 10.1007/s00449-021-02599-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Bacterial cellulose (BC)-derived materials are given significant attention due to their porous fibrous texture, high crystallinity and extraordinary physico-mechanical properties. The main reason for the restricted use of BC is its high production cost. To reduce the production cost, the suitability of pear residue for the production of BC and pear vinegar was investigated. Komagataeibacter rhaeticus and Komagataeibacter intermedius with high fermentation ability screened from the surface of vinegar film of millet fermentation were used to produce BC and pear vinegar simultaneously. Through response surface optimization, the maximum yield of BC from pear residue medium was 10.94 ± 0.42 g/L, which was higher than the synthesis medium generally used for Acetobacter strains. When pear residue medium was incubated at 30 °C for 7 days, the contents of total acid and soluble solids were greater than 0.3 g/100 mL and 3%, respectively, which met the standard requirements for fruit vinegar. The flavour components of pear vinegar were determined using gas chromatography-mass spectrometry. The pear vinegar showed similar flavour characteristics to conventional fruit vinegar. This research not only solved the utilization of agricultural resources but also avoided the discharge of waste liquid when producing BC. In addition, a more environmentally friendly and less expensive way to produce BC and pear vinegar was achieved.
Collapse
Affiliation(s)
- Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Hongjie Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Heng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
12
|
Production of Bacterial Cellulose from Acetobacter Species and Its Applications – A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer secreted as a protective cell covering of certain bacterial species. In contrary to plant cellulose, BC possesses some unique features like high moisture-holding capacity, high durability, high liquid absorbing capabilities, biostability, and biodegradability, makes BC an excellent raw material in wide-ranging areas like biomedical, food, agriculture, paper, textile industries and electronics. The main objective of this review is to discuss various aspects of BC production (different sources for bacterial strain isolation, culture media and, its alternatives also major culture techniques). In addition, various applications of BC are also reviewed.
Collapse
|
13
|
Hur DH, Choi WS, Kim TY, Lee SY, Park JH, Jeong KJ. Enhanced Production of Bacterial Cellulose in Komagataeibacter xylinus Via Tuning of Biosynthesis Genes with Synthetic RBS. J Microbiol Biotechnol 2020; 30:1430-1435. [PMID: 32627756 PMCID: PMC9728265 DOI: 10.4014/jmb.2006.06026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Bacterial cellulose (BC) has outstanding physical and chemical properties, including high crystallinity, moisture retention, and tensile strength. Currently, the major producer of BC is Komagataeibacter xylinus. However, due to limited tools of expression, this host is difficult to engineer metabolically to improve BC productivity. In this study, a regulated expression system for K. xylinus with synthetic ribosome binding site (RBS) was developed and used to engineer a BC biosynthesis pathway. A synthetic RBS library was constructed using green fluorescent protein (GFP) as a reporter, and three synthetic RBSs (R4, R15, and R6) with different strengths were successfully isolated by fluorescence-activated cell sorting (FACS). Using synthetic RBS, we optimized the expression of three homologous genes responsible for BC production, pgm, galU, and ndp, and thereby greatly increased it under both static and shaking culture conditions. The final titer of BC under static and shaking conditions was 5.28 and 3.67 g/l, respectively. Our findings demonstrate that reinforced metabolic flux towards BC through quantitative gene expression represents a practical strategy for the improvement of BC productivity.
Collapse
Affiliation(s)
- Dong Hoon Hur
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Woo Sung Choi
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tae Yong Kim
- Biomaterials Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Hwan Park
- Biomaterials Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea,Corresponding authors J.H.P. E-mail:
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea,KAIST Institute for the Bi°Century, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea,Corresponding authors J.H.P. E-mail:
| |
Collapse
|
14
|
Ul-Islam M, Ullah MW, Khan S, Park JK. Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0524-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Hur DH, Rhee HS, Lee JH, Shim WY, Kim TY, Lee SY, Park JH, Jeong KJ. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107527] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Ye J, Zheng S, Zhang Z, Yang F, Ma K, Feng Y, Zheng J, Mao D, Yang X. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. BIORESOURCE TECHNOLOGY 2019; 274:518-524. [PMID: 30553964 DOI: 10.1016/j.biortech.2018.12.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
In this study, bacterial cellulose (BC) was synthesized by Acetobacter xylinum ATCC 23767 using tobacco waste extract (TWE) as a carbon source. Nicotine was found to be an inhibitory factor for BC synthesis, but it can be removed at pH 9.0 by steam distillation. After removing nicotine, the BC production was 2.27 g/L in TWE prepared with solid-liquid (S-L) ratio at 1:10. To further enhance the BC production, two fermentation stages were performed over 16 days by re-adjusting the pH to 6.5 at 7 days, after the first fermentation stage was completed. Using this two-stage fermentation, the BC production could reach 5.2 g/L. Structural and thermal analysis by FE-SEM, FT-IR, XRD and TGA showed the properties of BC obtained from TWE were similar to that from Hestrin-Schramm (HS) medium. Considering the huge disposal tobacco waste in China, the present study provides an alternative methodology to synthesize BC.
Collapse
Affiliation(s)
- Jianbin Ye
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Shanshan Zheng
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Feng Yang
- Henan Cigarette Industrial Tobacco Sheet Co, Ltd, Henan, Xuchang 461000, China
| | - Ke Ma
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Yinjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Jianqiang Zheng
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Duobin Mao
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Xuepeng Yang
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China.
| |
Collapse
|
17
|
Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Sajjad W, Khan T, Ul-Islam M, Khan R, Hussain Z, Khalid A, Wahid F. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr Polym 2018; 206:548-556. [PMID: 30553356 DOI: 10.1016/j.carbpol.2018.11.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/14/2018] [Accepted: 11/08/2018] [Indexed: 11/26/2022]
Abstract
Bacterial cellulose (BC) is a promising biopolymer with wound healing and tissue regenerative properties but lack of antimicrobial property limits its biomedical applications. Therefore, current study was proposed to combine wound healing property of BC with antimicrobial activity of montmorillonite (MMT) and modified montmorillonites (Cu-MMT, Na-MMT and Ca-MMT) to design novel artificial substitute for burns. Designed nanocomposites were characterized through Fe-SEM, FTIR and XRD. The antimicrobial activities of composites were tested against Escherichia coli, Salmonella typhimurium, Citrobacter fruendii, Pseudomonas aeruginosa, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Tissue regeneration and wound healing activities of the composites were assessed in burn mice model. Physico-chemical characterization confirmed the loading of MMT onto surface and BC matrix. Modified MMTs-BC nanocomposites showed clear inhibitory zone against the tested pathogens. Animals treated with modified MMTs-BC nanocomposites exhibited enhanced wound healing activity with tissue regeneration, reepithelialization, healthy granulation and vascularization. These findings demonstrated that modified MMTs-BC nanocomposites could be used as a novel artificial skin substitute for burn patients and scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Wasim Sajjad
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Zohaib Hussain
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Ayesha Khalid
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Fazli Wahid
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
| |
Collapse
|
19
|
Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 2018; 113:526-533. [DOI: 10.1016/j.ijbiomac.2018.02.135] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
|
20
|
Xue Y, Mou Z, Xiao H. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. NANOSCALE 2017; 9:14758-14781. [PMID: 28967940 DOI: 10.1039/c7nr04994c] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocellulose, extracted from the most abundant biomass material cellulose, has proved to be an environmentally friendly material with excellent mechanical performance owing to its unique nano-scaled structure, and has been used in a variety of applications as engineering and functional materials. The great biocompatibility and biodegradability, in particular, render nanocellulose promising in biomedical applications. In this review, the structure, treatment technology and properties of three different nanocellulose categories, i.e., nanofibrillated cellulose (NFC), nanocrystalline cellulose (NCC) and bacterial nanocellulose (BNC), are introduced and compared. The cytotoxicity, biocompatibility and frontier applications in biomedicine of the three nanocellulose categories were the focus and are detailed in each section. Future prospects concerning the cytotoxicity, applications and industrial production of nanocellulose are also discussed in the last section.
Collapse
Affiliation(s)
- Yan Xue
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China.
| | | | | |
Collapse
|
21
|
Recent advancements in bioreactions of cellular and cell-free systems: A study of bacterial cellulose as a model. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0121-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Islam MU, Ullah MW, Khan S, Shah N, Park JK. Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol 2017; 102:1166-1173. [PMID: 28487196 DOI: 10.1016/j.ijbiomac.2017.04.110] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/15/2022]
Abstract
Bacterial cellulose (BC) has received substantial attention because of its high purity, mechanical strength, crystallinity, liquid-absorbing capabilities, biocompatibility, and biodegradability etc. These properties allow BC to be used in various fields, especially in industries producing medical, electronic, and food products etc. A major discrepancy associated with BC is its high production cost, usually much higher than the plant cellulose. To address this limitations, researchers have developed several strategies for enhanced production of BC including the designing of advanced reactors and utilization of various carbon sources. Another promising approach is the production of BC from waste materials such as food, industrial, agricultural, and brewery wastes etc. which not only reduces the overall BC production cost but is also environment-friendly. Besides, exploration of novel and efficient BC producing microbial strains provides impressive boost to the BC production processes. To this end, development of genetically engineered microbial strains has proven useful for enhanced BC production. In this review, we have summarized major efforts to enhance BC production in order to make it a cost-effective biopolymer. This review can be of interest to researchers investigating strategies for enhanced BC production, as well as companies exploring pilot projects to scale up BC production for industrial applications.
Collapse
Affiliation(s)
- Mazhar Ul Islam
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, 211, Oman
| | - Muhammad Wajid Ullah
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shaukat Khan
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
23
|
Uzyol HK, Saçan MT. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11154-11162. [PMID: 27312900 DOI: 10.1007/s11356-016-7049-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Bacterial cellulose (BC) is a homopolymer and it is distinguished from plant-based cellulose by its unique properties such as high purity, high crystallinity, high water-holding capacity, and good biocompatibility. Microalgae are unicellular, photosynthetic microorganisms and are known to have high protein, starch, and oil content. In this study, Chlorella vulgaris was evaluated as source of glucose for the production of BC. To increase the starch content of algae the effect of nutrient starvation (nitrogen and sulfur) and light deficiency were tested in a batch assay. The starch contents (%) were 5.27 ± 0.04, 7.14 ± 0.18, 5.00 ± 0.08, and 1.35 ± 0.04 for normal cultivation, nitrogen starvation, sulfur starvation, and dark cultivation conditions, respectively. The performance of enzymatic and acidic methods was compared for the starch hydrolysis. This study demonstrated for the first time that acid hydrolysate of algal starch can be used to substitute glucose in the fermentation medium of Komagataeibacter hansenii for BC production. Glucose was used as a control for BC production. BC production yields on dry weight basis were 1.104 ± 0.002 g/L and 1.202 ± 0.005 g/L from algae-based glucose and glucose, respectively. The characterization of both BCs produced from glucose and algae-based glucose was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. The results have shown that the structural characteristics of algae-based BC were comparable to those of glucose-based BC.
Collapse
Affiliation(s)
- Huma Kurtoglu Uzyol
- Institute of Environmental Sciences, Bogaziçi University, Hisar Campus, 34342, Istanbul, Turkey
| | - Melek Türker Saçan
- Institute of Environmental Sciences, Bogaziçi University, Hisar Campus, 34342, Istanbul, Turkey.
| |
Collapse
|
24
|
Li Y, Tian J, Tian H, Chen X, Ping W, Tian C, Lei H. Mutation-based selection and analysis of Komagataeibacter hansenii HDM1-3 for improvement in bacterial cellulose production. J Appl Microbiol 2016; 121:1323-1334. [PMID: 27455093 DOI: 10.1111/jam.13244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/28/2016] [Accepted: 04/10/2016] [Indexed: 11/29/2022]
Abstract
AIMS A low yield of bacterial cellulose (BC) always results from an excessive accumulation of organic acids. Screening and the selection of bacterial mutants with a low accumulation of organic acids is an efficient approach for improving BC production. METHODS AND RESULTS In combination with the proton suicide method (medium containing NaBr-NaBrO3 ), diethyl sulphate chemical mutagenesis coupled with 60 Co-γ irradiation treatment were performed for the screening and selection of desired mutant lines with a high yield of BC. Two high-yield strains, Br-3 and Co-5, as well as a low-yield strain, Br-12, were obtained. Amplified fragment length polymorphism (AFLP) was applied to explore the differences between the mutant lines and the wild type. For the Br-12 line, three specific fragments were verified, corresponding to TonB-dependent transport (TBDT), exopolysaccharides output protein (PePr) and an unknown gene. For Co-5, two specific fragments were matched, acsD and UDP-galactose-4-epimerase. In addition, metabolic analysis for the mutant lines indicated that BC production may be limited by excessive accumulation of organic acids in the fermentation. The limitation would be resolved by the cross-talk of genes involved in BC biosynthesis. CONCLUSIONS Reduced organic acid by-products from glucose in bypasses were found to be responsible for the high-yield BC synthesis in Komagataeibacter hansenii mutant strains. SIGNIFICANCE AND IMPACT OF THE STUDY The metabolic process was varied by mutagenesis-induced gene disruption of the metabolic products. A new idea was provided for the targeted screening and characterization of mutants in the future.
Collapse
Affiliation(s)
- Y Li
- Laboratory of Microbiology and Laboratory of Crop Physiology, Chinese Academic Institute of Geography and Agroecology in Northeast, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China
| | - J Tian
- Laboratory of Microbiology, College of Life Science, Heilongjiang University, Harbin, China
| | - H Tian
- Laboratory of Microbiology, College of Life Science, Heilongjiang University, Harbin, China
| | - X Chen
- Laboratory of Microbiology, College of Life Science, Heilongjiang University, Harbin, China
| | - W Ping
- Laboratory of Microbiology, College of Life Science, Heilongjiang University, Harbin, China.,Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin, China
| | - C Tian
- Laboratory of Microbiology and Laboratory of Crop Physiology, Chinese Academic Institute of Geography and Agroecology in Northeast, Changchun, China.
| | - H Lei
- Laboratory of Microbiology, College of Life Science, Heilongjiang University, Harbin, China. .,Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin, China.
| |
Collapse
|
25
|
Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr Polym 2016; 151:1068-1072. [PMID: 27474656 DOI: 10.1016/j.carbpol.2016.06.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 11/17/2022]
Abstract
Bacterial cellulose (BC) is a high-purity and robust cellulose that is utilised in medicine, consumer goods, and industrial practices. The present study aimed to investigate the suitability of beverage industrial waste for the production of BC by Komagataeibacter xylinus CICC No. 10529 and to study the structural properties of BC films in both citrus peel and pomace enzymolysis (CPPE) and Hestrin-Schramm (HS, Hestrin & Schramm, 1954) media. Under similar experimental conditions, the yield of BC from CPPE medium was 5.7±0.7g/L, which was higher than from HS medium (3.9±0.6g/L). To evaluate the structure of BC, fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and colour evaluation using a chroma meter were utilised. The average diameters of BC, obtained from CPPE and HS mediums, were 50nm and 60nm, respectively. The crystallinity index of BC from the CPPE medium was approximately 63%, which was lower than BC produced from the HS medium (65%). The two varieties of BC showed no significant differences in relation to their colour parameters. Therefore, BC production from CPPE medium had similar properties to BC from HS medium, but it is more environmentally friendly and cheaper to produce.
Collapse
Affiliation(s)
- Xin Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yue Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Wanying He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ming Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Kexing Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
26
|
Wang ZG, Xiang D, Wang XB, Li CF. Preparation of an inoculum of Gluconacetobacter xylinus without mutants in shaken culture. J Appl Microbiol 2016; 121:713-20. [PMID: 27249070 DOI: 10.1111/jam.13193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
AIMS A high-quality inoculum of Gluconacetobacter xylinus is important to produce bacterial cellulose (BC), a versatile biomaterial. This work aims to develop a method of preparing an inoculum of this bacterium with high cell density and without mutants. METHODS AND RESULTS Inocula of G. xylinus ACCC 10220 without and with cellulase or carboxymethyl cellulose (CMC) were prepared in shaken culture. BC pellets and BC-negative mutants were present in the inoculum without additives but absent in the inoculum with additives. Based on BC weights statically produced in fresh BC-producing media initiated by different seed culture, the 24-h-shaken inoculum with 1·50% (w/v) CMC was the best because of high biomass and absence of mutants. The BC weights in fresh media inoculated by the 96-h-static inoculum and 24-h-shaken CMC inoculum at 7% (v/v) were 0·70 and 1·05 g l(-1) , respectively, implying significant difference (P < 0·01) in BC weights. However, structure properties of the two BC samples, including the crystallinity index, mass fraction of cellulose Iα , degree of polymerization (DP) and micromorphology were slightly different. CONCLUSIONS The 24-h-shaken CMC inoculum was the most suitable for a starter culture of BC. SIGNIFICANCE AND IMPACT OF THE STUDY A novel method of preparing G. xylinus inoculum in shaken culture was developed, featuring high biomass, absence of mutants and no BC entanglements. Cellulase or CMC added into the medium completely suppressed mutation of G. xylinus, and CMC facilitated to form colloidal BC with the low DP in shaken culture, indicating less BC stress to cells. These findings suggested the mutation could be induced by BC stress, and not by shear stress commonly accepted.
Collapse
Affiliation(s)
- Z-G Wang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - D Xiang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - X-B Wang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - C-F Li
- College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
27
|
Li D, Ao K, Wang Q, Lv P, Wei Q. Preparation of Pd/Bacterial Cellulose Hybrid Nanofibers for Dopamine Detection. Molecules 2016; 21:molecules21050618. [PMID: 27187327 PMCID: PMC6273336 DOI: 10.3390/molecules21050618] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 11/27/2022] Open
Abstract
Palladium nanoparticle-bacterial cellulose (PdBC) hybrid nanofibers were synthesized by in-situ chemical reduction method. The obtained PdBC nanofibers were characterized by a series of analytical techniques. The results revealed that Pd nanoparticles were evenly dispersed on the surfaces of BC nanofibers. Then, the as-prepared PdBC nanofibers were mixed with laccase (Lac) and Nafion to obtain mixture suspension, which was further modified on electrode surface to construct novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect dopamine. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards dopamine with high sensitivity (38.4 µA·mM−1), low detection limit (1.26 µM), and wide linear range (5–167 µM). Moreover, the biosensor also showed good repeatability, reproducibility, selectivity and stability and was successfully used in the detection of dopamine in human urine, thus providing a promising method for dopamine analysis in clinical application.
Collapse
Affiliation(s)
- Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| | - Kelong Ao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiang Su, China.
| |
Collapse
|
28
|
Sulaeva I, Henniges U, Rosenau T, Potthast A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv 2015; 33:1547-71. [DOI: 10.1016/j.biotechadv.2015.07.009] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/02/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022]
|
29
|
Ullah MW, Ul-Islam M, Khan S, Kim Y, Park JK. Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr Polym 2015; 132:286-94. [DOI: 10.1016/j.carbpol.2015.06.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
30
|
Khattak WA, Khan T, Ul-Islam M, Ullah MW, Khan S, Wahid F, Park JK. Production, characterization and biological features of bacterial cellulose from scum obtained during preparation of sugarcane jaggery (gur). Journal of Food Science and Technology 2015; 52:8343-9. [PMID: 26604413 DOI: 10.1007/s13197-015-1936-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/10/2015] [Accepted: 07/02/2015] [Indexed: 11/28/2022]
Abstract
Bacterial cellulose (BC) has been given an ample attention due to its high potential for many industrial applications. However, the high cost of production medium has hindered the commercialization of BC. Several efforts have been made to explore cheep, raw and waste sources for BC production. The current study aims at investigating the BC production from a waste source; the scum obtained during preparation of sugarcane jaggery or gur (JS). JS was five-fold diluted with distilled water and used as culturing medium without any additional nutrients. The production of BC was monitored till 10th days of cultivation both at static and shaking culturing conditions. A maximum of 2.51 g/L and 2.13 g/L BC was produced in shaking and static cultures, respectively, after 10 days. The structure features of BC were confirmed through FTIR, XRD and SEM analysis. The chemical structure and physical appearance strongly resembled the BC produced form synthetic media. It was noteworthy that the BC produced from JS showed higher mechanical and thermal properties. The cell adhesion and proliferation capabilities of produced BC were observed that depicted definite animal cell adhesion without any considerable cytotoxicity. Besides providing an economically feasible way for BC production, the high level of physico-mechanical and biological properties insured the importance in medical fields.
Collapse
Affiliation(s)
| | - Taous Khan
- COMSATS Institute of Information Technology, Abbottabad, 22060 Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Kyungpook National University, Daegu, 702-701 Korea ; Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, 211 Oman
| | - Muhammad Wajid Ullah
- Department of Chemical Engineering, Kyungpook National University, Daegu, 702-701 Korea
| | - Shaukat Khan
- Department of Chemical Engineering, Kyungpook National University, Daegu, 702-701 Korea
| | - Fazli Wahid
- COMSATS Institute of Information Technology, Abbottabad, 22060 Pakistan
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu, 702-701 Korea
| |
Collapse
|
31
|
Kiziltas EE, Kiziltas A, Bollin SC, Gardner DJ. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohydr Polym 2015; 127:381-9. [PMID: 25965497 DOI: 10.1016/j.carbpol.2015.03.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
Abstract
Nanocomposites of polymethylmethacrylate (PMMA) and cellulose were made by a solution casting method using acetone as the solvent. The nanofiber networks were prepared using three different types of cellulose nanofibers: (i) nanofibrillated cellulose (NFC), (ii) cellulose nanocrystals (CNC) and (iii) bacterial cellulose from nata de coca (NDC). The loading of cellulose nanofibrils in the PMMA varied between 0.25 and 0.5 wt%. The mechanical properties of the composites were evaluated using a dynamic mechanical thermal analyzer (DMTA). The flexural modulus of the nanocomposites reinforced with NDC at the 0.5 wt% loading level increased 23% compared to that of pure PMMA. The NFC composite also exhibited a slightly increased flexural strength around 60 MPa while PMMA had a flexural strength of 57 MPa. The addition of NDC increased the storage modulus (11%) compared to neat PMMA at room temperature while the storage modulus of PPMA/CNC nanocomposite containing 0.25 and 0.5 wt% cellulose increased about 46% and 260% to that of the pure PMMA at the glass transition temperature, respectively. Thermogravimetric analysis (TGA) indicated that there was no significant change in thermal stability of the composites. The UV-vis transmittance of the CNF nanocomposites decreased by 9% and 27% with the addition of 0.25 wt% CNC and NDC, respectively. This work is intended to spur research and development activity for application of CNF reinforced PMMA nanocomposites in applications such as: packaging, flexible screens, optically transparent films and light-weight transparent materials for ballistic protection.
Collapse
Affiliation(s)
- Esra Erbas Kiziltas
- Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, USA; The Scientific and Technological Research Council of Turkey (TUBİTAK), Tunus Cad, Kavaklıdere, Ankara 06100, Turkey.
| | - Alper Kiziltas
- Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, USA; Department of Forest Industry Engineering, Faculty of Forestry, University of Bartin, Bartin 74100, Turkey
| | - Shannon C Bollin
- Research and Advanced Engineering, Ford Motor Co., Dearborn, MI 48124, USA
| | - Douglas J Gardner
- Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
32
|
Jia Y, Huo M, Huang H, Fu W, Wang Y, Zhang J, Jia S. Preparation and characterization of bacterial cellulose/hyaluronic acid composites. ACTA ACUST UNITED AC 2014. [DOI: 10.1177/1740349914529094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial cellulose/hyaluronic acid composites have been prepared by the nontoxic cross-linking agent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The effects of hyaluronic acid concentration, temperature, and the 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide addition way on the performance of the composites have been discussed. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyzer have been used to characterize the composite materials. The hyaluronic acid contents in the composites have been assayed by a colorimetric method. Hyaluronic acid concentration, the 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide addition way, and temperature have impacts on the hyaluronic acid content in composites. Fourier transform infrared spectra confirm the amide groups on the composites, which is attributed to hyaluronic acid molecules. The crystallinity indexes of composites decrease, in comparison with pristine bacterial cellulose, known from X-ray diffraction tests, possibly due to the integration of hyaluronic acid. The thermal decomposition temperatures of Composites A and B from Process 1 are lower than those of bacterial cellulose, which is ascribed to lower pyrolysis temperatures of hyaluronic acid compound in composite materials. However, Composites C and D from Process 2 do not undergo descent thermal stability. The novel nanocomposites have the potential to be used for biomedical and tissue engineering scaffold materials.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mingming Huo
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Huijian Huang
- Engineering and Technology Research Institute, Greatwall Drilling Company, Panjin, China
| | - Wei Fu
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yan Wang
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiamin Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Shiru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
33
|
|
34
|
Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 2013; 98:1585-98. [PMID: 24053844 DOI: 10.1016/j.carbpol.2013.08.018] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
Abstract
Bacterial cellulose (BC) has received substantial interest owing to its unique structural features and impressive physico-mechanical properties. BC has a variety of applications in biomedical fields, including use as biomaterial for artificial skin, artificial blood vessels, vascular grafts, scaffolds for tissue engineering, and wound dressing. However, pristine BC lacks certain properties, which limits its applications in various fields; therefore, synthesis of BC composites has been conducted to address these limitations. A variety of BC composite synthetic strategies have been developed based on the nature and relevant applications of the combined materials. BC composites are primarily synthesized through in situ addition of reinforcement materials to BC synthetic media or the ex situ penetration of such materials into BC microfibrils. Polymer blending and solution mixing are less frequently used synthetic approaches. BC composites have been synthesized using numerous materials ranging from organic polymers to inorganic nanoparticles. In medical fields, these composites are used for tissue regeneration, healing of deep wounds, enzyme immobilization, and synthesis of medical devices that could replace cardiovascular and other connective tissues. Various electrical products, including biosensors, biocatalysts, E-papers, display devices, electrical instruments, and optoelectronic devices, are prepared from BC composites with conductive materials. In this review, we compiled various synthetic approaches for BC composite synthesis, classes of BC composites, and applications of BC composites. This study will increase interest in BC composites and the development of new ideas in this field.
Collapse
|
35
|
Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 2013; 97:6189-99. [PMID: 23640364 DOI: 10.1007/s00253-013-4908-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/21/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology-Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Ul-Islam M, Ha JH, Khan T, Park JK. Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 2013; 92:360-6. [DOI: 10.1016/j.carbpol.2012.09.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
37
|
The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 2012; 33:6644-9. [DOI: 10.1016/j.biomaterials.2012.05.071] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022]
|
38
|
Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl Microbiol Biotechnol 2012; 96:1479-87. [PMID: 22782249 DOI: 10.1007/s00253-012-4242-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/09/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
Nowadays, bacterial cellulose has played more and more important role as new biological material for food industry and medical and industrial products based on its unique properties. However, it is still a difficult task to improve the production of bacterial cellulose, especially a large number of byproducts are produced in the metabolic biosynthesis processes. To improve bacterial cellulose production, ethanol and sodium citrate are added into the medium during the fermentation, and the activities of key enzymes and concentration of extracellular metabolites are measured to assess the changes of the metabolic flux of the hexose monophosphate pathway (HMP), the Embden-Meyerhof-Parnas pathway (EMP), and the tricarboxylic acid cycle (TCA). Our results indicate that ethanol functions as energy source for ATP generation at the early stage of the fermentation in the HMP pathway and the supplementation of ethanol significantly reduces glycerol generation (a major byproduct). While in the EMP pathway, sodium citrate plays a key role, and its supplementation results in the byproducts (mainly acetic acid and pyruvic acid) entering the gluconeogenesis pathway for cellulose synthesis. Furthermore, by adding ethanol and sodium citrate, the main byproduct citric acid in the TCA cycle is also reduced significantly. It is concluded that bacterial cellulose production can be improved by increasing energy metabolism and reducing the formation of metabolic byproducts through the metabolic regulations of the bypasses.
Collapse
|
39
|
Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Ha JH, Park JK. Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. KOREAN J CHEM ENG 2012. [DOI: 10.1007/s11814-011-0224-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|