1
|
Yuan GY, Zhang JM, Xu YQ, Zou Y. Biosynthesis and Assembly Logic of Fungal Hybrid Terpenoid Natural Products. Chembiochem 2024; 25:e202400387. [PMID: 38923144 DOI: 10.1002/cbic.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
In recent decades, fungi have emerged as significant sources of diverse hybrid terpenoid natural products, and their biosynthetic pathways are increasingly unveiled. This review mainly focuses on elucidating the various strategies underlying the biosynthesis and assembly logic of these compounds. These pathways combine terpenoid moieties with diverse building blocks including polyketides, nonribosomal peptides, amino acids, p-hydroxybenzoic acid, saccharides, and adenine, resulting in the formation of plenty of hybrid terpenoid natural products via C-O, C-C, or C-N bond linkages. Subsequent tailoring steps, such as oxidation, cyclization, and rearrangement, further enhance the biological diversity and structural complexity of these hybrid terpenoid natural products. Understanding these biosynthetic mechanisms holds promise for the discovery of novel hybrid terpenoid natural products from fungi, which will promote the development of potential drug candidates in the future.
Collapse
Affiliation(s)
- Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yan-Qiu Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
2
|
Li S, Liu X, Gu Q, Yu X. Isolation and Identification of Indole Alkaloids from Aspergillus amstelodami BSX001 and Optimization of Ultrasound-Assisted Extraction of Neoechinulin A. Microorganisms 2024; 12:864. [PMID: 38792694 PMCID: PMC11123293 DOI: 10.3390/microorganisms12050864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate the alkaloid secondary metabolites of Aspergillus amstelodami BSX001, a fungus isolated from Anhua dark tea, and to improve the extraction yield of the active ingredients by optimizing the extraction process. The structural characterization of the compounds was investigated using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. The antioxidant activity of echinulin-related alkaloids was evaluated by determining the total reducing power and DPPH radical scavenging capacity. The extraction process of the compound with optimum activity was optimized by a single-factor test and response surface methodology (RSM) combined with Box-Behnken design (BBD). The optimized result was validated. Finally, a new alkaloid 8-hydroxyechinulin (1), and four known alkaloids, variecolorin G (2), echinulin (3), neoechinulin A (4), and eurocristatine (5), were isolated. Echinulin-related compounds 1, 3, and 4 possessed certain antioxidant activities, with IC50 values of 0.587 mg/mL, 1.628 mg/mL, and 0.219 mg/mL, respectively, against DPPH radicals. Their total reducing power at a concentration of 0.5 mg/mL was 0.29 mmol/L, 0.17 mmol/L, and 4.25 mmol/L. The extraction process of neoechinulin A was optimized with the optimum extraction parameters of 72.76% methanol volume fraction, 25 mL/g solid-liquid ratio, and 50.8 °C soaking temperature. Under these conditions, the extraction yield of neoechinulin A was up to 1.500 mg/g.
Collapse
Affiliation(s)
- Shuyao Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China;
| | - Qiuya Gu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
3
|
Goher SS, Abdrabo WS, Veerakanellore GB, Elgendy B. 2,5-Diketopiperazines (DKPs): Promising Scaffolds for Anticancer Agents. Curr Pharm Des 2024; 30:597-623. [PMID: 38343054 DOI: 10.2174/0113816128291798240201112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 05/25/2024]
Abstract
2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.
Collapse
Affiliation(s)
- Shaimaa S Goher
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo 1183, Egypt
| | - Wessam S Abdrabo
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Giri Babu Veerakanellore
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
4
|
El-Kashef DH, Obidake DD, Schiedlauske K, Deipenbrock A, Scharf S, Wang H, Naumann D, Friedrich D, Miljanovic S, Haj Hassani Sohi T, Janiak C, Pfeffer K, Teusch N. Indole Diketopiperazine Alkaloids from the Marine Sediment-Derived Fungus Aspergillus chevalieri against Pancreatic Ductal Adenocarcinoma. Mar Drugs 2023; 22:5. [PMID: 38276643 PMCID: PMC10820104 DOI: 10.3390/md22010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
A new prenylated indole diketopiperazine alkaloid, rubrumline P (1), was isolated along with six more analogues and characterized from the fermentation culture of a marine sediment-derived fungus, Aspergillus chevalieri, collected at a depth of 15 m near the lighthouse in Dahab, Red Sea, Egypt. In the current study, a bioassay-guided fractionation allowed for the identification of an active fraction displaying significant cytotoxic activity against the human pancreatic adenocarcinoma cell line PANC-1 from the EtOAc extract of the investigated fungus compared to the standard paclitaxel. The structures of the isolated compounds from the active fraction were established using 1D/2D NMR spectroscopy and mass spectrometry, together with comparisons with the literature. The absolute configuration of the obtained indole diketopiperazines was established based on single-crystal X-ray diffraction analyses of rubrumline I (2) and comparisons of optical rotations and NMR data, as well as on biogenetic considerations. Genome sequencing indicated the formation of prenyltransferases, which was subsequently confirmed by the isolation of mono-, di-, tri-, and tetraprenylated compounds. Compounds rubrumline P (1) and neoechinulin D (4) confirmed preferential cytotoxic activity against PANC-1 cancer cells with IC50 values of 25.8 and 23.4 µM, respectively. Although the underlying mechanism-of-action remains elusive in this study, cell cycle analysis indicated a slight increase in the sub-G1 peak after treatment with compounds 1 and 4.
Collapse
Affiliation(s)
- Dina H. El-Kashef
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Deborah D. Obidake
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Sebastian Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Hao Wang
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Daniela Naumann
- Department of Chemistry and Biochemistry, University of Cologne, 50939 Cologne, Germany
| | - Daniel Friedrich
- Department of Chemistry and Biochemistry, University of Cologne, 50939 Cologne, Germany
| | - Simone Miljanovic
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Takin Haj Hassani Sohi
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| |
Collapse
|
5
|
Ma S, Zheng Y, Ma J, Zhang X, Qu D, Song N, Sang C, Hui L. Lappaconitine sulfate inhibits proliferation and induces mitochondrial-mediated apoptosis via regulating PI3K/AKT/GSK3β signaling pathway in HeLa cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3695-3705. [PMID: 37306713 DOI: 10.1007/s00210-023-02564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Lappaconitine (LA), a diterpenoid alkaloid extracted from the root of Aconitum sinomontanum Nakai, exhibits broad pharmacological effects, including anti-tumor activity. The inhibitory effect of lappaconitine hydrochloride (LH) on HepG2 and HCT-116 cells and the toxicity of lappaconitine sulfate (LS) on HT-29, A549, and HepG2 cells have been described. But the mechanisms of LA against human cervical cancer HeLa cells still need to be clarified. This study was designed to investigate the effects and molecular mechanisms of lappaconitine sulfate (LS) on the growth inhibition and apoptosis in HeLa cells. The cell viability and proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2´-deoxyuridine (EdU) assay, respectively. The cell cycle distribution and apoptosis were detected by flow cytometry analysis and 4', 6-diamidino-2-phenylindole (DAPI) staining. The mitochondrial membrane potential (MMP) was determined through the 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimi-dazolyl carbocyanine iodide (JC-1) staining. The cell cycle arrest-, apoptosis-, and the phosphatidylinositol-3-kinase/protein kinase B/glycogen synthase kinase 3β (PI3K/AKT/GSK3β) pathway-related proteins were estimated by western blot analysis. LS markedly reduced the viability and suppressed the proliferation of HeLa cells. LS induced G0/G1 cell cycle arrest through the inhibition of Cyclin D1, p-Rb, and induction of p21 and p53. Furthermore, LS triggered apoptosis through the activation of mitochondrial-mediated pathway based on decrease of Bcl-2/Bax ratio and MMP and activation of caspase-9/7/3. Additionally, LS led to constitutive downregulation of the PI3K/AKT/GSK3β signaling pathway. Collectively, LS inhibited cell proliferation and induced apoptosis through mitochondrial-mediated pathway by suppression of the PI3K/AKT/GSK3β signaling pathway in HeLa cells.
Collapse
Affiliation(s)
- Shaocheng Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yidan Zheng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Junyi Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Xuemei Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Danni Qu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Na Song
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Chunyan Sang
- Key Laboratory of Stem Cells and Gene Drug of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Ling Hui
- Key Laboratory of Stem Cells and Gene Drug of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China.
| |
Collapse
|
6
|
Hafez Ghoran S, Taktaz F, Sousa E, Fernandes C, Kijjoa A. Peptides from Marine-Derived Fungi: Chemistry and Biological Activities. Mar Drugs 2023; 21:510. [PMID: 37888445 PMCID: PMC10608792 DOI: 10.3390/md21100510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Khamjan NA, Beigh S, Algaissi A, Megha K, Lohani M, Darraj M, Kamli N, Madkhali F, Dar SA. Natural and synthetic drugs and formulations for intravaginal HPV clearance. J Infect Public Health 2023; 16:1471-1480. [PMID: 37535995 DOI: 10.1016/j.jiph.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Except for a few preventative Human Papillomavirus (HPV) vaccines, there is currently no cure for HPV infection. There are a number of cutting-edge strategies and potent medications or herbal formulations that can be applied topically for early clearance of HPV infection before HPV DNA gets integrated into host cell genome. This is facilitated due to cervical cancer having distinct and well-recognized long precancerous stages. OBJECTIVES This review aims to outline every possible medication and formulation, both natural and synthetic, that can be applied topically as intravaginal application to help remove HPV infection at an early precancerous stage. RESULTS Several anti-HPV/HPV clearance compounds and formulations for high-grade lesions are undergoing clinical trials. However, the majority of compounds are still in the early stages of development and require additional research to become viable HPV clearance candidates. Synthetic drugs may be more promising because they may have a more targeted effect; however, they may also have significant adverse effects. On the other hand, natural medications are safer to use. They are less specific, but have minimal to no adverse effects. CONCLUSIONS This article may serve as a valuable resource of information for managing and preventing precancerous carcinogenic HPV infections. Research could be directed toward developing candidate drugs to make evidence-based decisions about advancing them to clinical trials and, eventually, to the market for potential use in the prevention and control of cervical cancer, which is almost always preventable or even curable if detected early.
Collapse
Affiliation(s)
- Nizar A Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia.
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65431, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; Emerging and Epidemic Infectious Disease Research Unit, Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Kanu Megha
- School of Life Sciences, Manipal Academy of Higher Education, Dubai International Academic City, Dubai 355050, United Arab Emirates
| | - Mohtashim Lohani
- Department of Emergency Medical Sciences, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Majid Darraj
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Nader Kamli
- Department of Medical Microbiology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Faisal Madkhali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia.
| |
Collapse
|
8
|
Chen Y, Pang X, He Y, Lin X, Zhou X, Liu Y, Yang B. Secondary Metabolites from Coral-Associated Fungi: Source, Chemistry and Bioactivities. J Fungi (Basel) 2022; 8:1043. [PMID: 36294608 PMCID: PMC9604832 DOI: 10.3390/jof8101043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take the ultra-new skeletons and/or remarkable bioactivities, this review presents an overview of new compounds and bioactive compounds isolated from coral-associated fungi, covering the literature from 2010 to 2021. Its scope included 423 metabolites, focusing on the bioactivity and structure diversity of these compounds. According to structure, these compounds can be roughly classified as terpenes, alkaloids, peptides, aromatics, lactones, steroids, and other compounds. Some of them described in this review possess a wide range of bioactivities, such as anticancer, antimicrobial, antifouling, and other activities. This review aims to provide some significant chemical and/or biological enlightenment for the study of marine natural products and marine drug development in the future.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanchun He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
9
|
Pattnaik S, Imchen M, Kumavath R, Prasad R, Busi S. Bioactive Microbial Metabolites in Cancer Therapeutics: Mining, Repurposing, and Their Molecular Targets. Curr Microbiol 2022; 79:300. [PMID: 36002695 DOI: 10.1007/s00284-022-02990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The persistence and resurgence of cancer, characterized by abnormal cell growth and differentiation, continues to be a serious public health concern critically affecting public health, social life, and the global economy. Hundreds of putative drug molecules of synthetic and natural origin were approved for anticancer therapy in the last few decades. Although conventional anticancer treatment strategies have promising aspects, several factors such as their limitations, drug resistance, and side effects associated with them demand more effort in repositioning or developing novel therapeutic regimens. The rich heritage of microbial bioactive components remains instrumental in providing novel avenues for cancer therapeutics. Actinobacteria, Firmicutes, and fungi have a plethora of bioactive compounds, which received attention for their efficacy in cancer treatment targeting different pathways responsible for abnormal cell growth and differentiation. Yet the full potential remains underexplored to date, and novel compounds from such microbes are reported regularly. In addition, the advent of computational tools has further augmented the mining of microbial secondary metabolites and identifying their molecular targets in cancer cells. Furthermore, the drug-repurposing strategy has facilitated the use of approved drugs of microbial origin in regulating cancer cell growth and progression. The wide diversity of microbial compounds, different mining approaches, and multiple modes of action warrant further investigations on the current status of microbial metabolites in cancer therapeutics. Hence, in this review, we have critically discussed the untapped potential of microbial products in mitigating cancer progression. The review also summarizes the impact of drug repurposing in cancer therapy and discusses the novel avenues for future therapeutic drug development against cancer.
Collapse
Affiliation(s)
- Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, 768019, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Department of Genomic Science, School of Biological Sciences, Central University of Kerela, Kasaragod, Kerela, 671316, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerela, Kasaragod, Kerela, 671316, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
10
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
11
|
Li J, Zhuang CL. Natural Indole Alkaloids from Marine Fungi: Chemical Diversity and Biological Activities. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1740050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The indole scaffold is one of the most important heterocyclic ring systems for pharmaceutical development, and serves as an active moiety in several clinical drugs. Fungi derived from marine origin are more liable to produce novel indole-containing natural products due to their extreme living environments. The indole alkaloids from marine fungi have drawn considerable attention for their unique chemical structures and significant biological activities. This review attempts to provide a summary of the structural diversity of marine fungal indole alkaloids including prenylated indoles, diketopiperazine indoles, bisindoles or trisindoles, quinazoline-containing indoles, indole-diterpenoids, and other indoles, as well as their known biological activities, mainly focusing on cytotoxic, kinase inhibitory, antiinflammatory, antimicrobial, anti-insecticidal, and brine shrimp lethal effects. A total of 306 indole alkaloids from marine fungi have been summarized, covering the references published from 1995 to early 2021, expecting to be beneficial for drug discovery in the future.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chun-Lin Zhuang
- Department of Natural Product Chemistry, School of Pharmacy, The Second Military Medical University, Shanghai, People's Republic of China
- Department of Medicinal Chemistry, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
12
|
Ma A, Jiang K, Chen B, Chen S, Qi X, Lu H, Liu J, Zhou X, Gao T, Li J, Zhao C. Evaluation of the anticarcinogenic potential of the endophyte, Streptomyces sp. LRE541 isolated from Lilium davidii var. unicolor (Hoog) Cotton. Microb Cell Fact 2021; 20:217. [PMID: 34863154 PMCID: PMC8643024 DOI: 10.1186/s12934-021-01706-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endophytic actinomycetes, as emerging sources of bioactive metabolites, have been paid great attention over the years. Recent reports demonstrated that endophytic streptomycetes could yield compounds with potent anticancer properties that may be developed as chemotherapeutic drugs. RESULTS Here, a total of 15 actinomycete-like isolates were obtained from the root tissues of Lilium davidii var. unicolor (Hoog) Cotton based on their morphological appearance, mycelia coloration and diffusible pigments. The preliminary screening of antagonistic capabilities of the 15 isolates showed that isolate LRE541 displayed antimicrobial activities against all of the seven tested pathogenic microorganisms. Further in vitro cytotoxicity test of the LRE541 extract revealed that this isolate possesses potent anticancer activities with IC50 values of 0.021, 0.2904, 1.484, 4.861, 6.986, 8.106, 10.87, 12.98, and 16.94 μg/mL against cancer cell lines RKO, 7901, HepG2, CAL-27, MCF-7, K562, Hela, SW1990, and A549, respectively. LRE541 was characterized and identified as belonging to the genus Streptomyces based on the 16S rRNA gene sequence analysis. It produced extensively branched red substrate and vivid pink aerial hyphae that changed into amaranth, with elliptic spores sessile to the aerial mycelia. To further explore the mechanism underlying the decrease of cancer cell viability following the LRE541 extract treatment, cell apoptosis and cell cycle arrest assays were conducted in two cancer cell lines, RKO and 7901. The result demonstrated that LRE541 extract inhibited cell proliferation of RKO and 7901 by causing cell cycle arrest both at the S phase and inducing apoptosis in a dose-dependent manner. The chemical profile of LRE541 extract performed by the UHPLC-MS/MS analysis revealed the presence of thirty-nine antitumor compounds in the extract. Further chemical investigation of the LRE541 extract led to the discovery of one prenylated indole diketopiperazine (DKP) alkaloid, elucidated as neoechinulin A, a known antitumor agent firstly detected in Streptomyces; two anthraquinones 4-deoxy-ε-pyrromycinone (1) and epsilon-pyrromycinone (2) both displaying anticancer activities against RKO, SW1990, A549, and HepG2 with IC50 values of 14.96 ± 2.6 - 20.42 ± 4.24 μg/mL for (1); 12.9 ± 2.13, 19.3 ± 4.32, 16.8 ± 0.75, and 18.6 ± 3.03 μg/mL for (2), respectively. CONCLUSION Our work evaluated the anticarcinogenic potential of the endophyte, Streptomyces sp. LRE541 and obtained one prenylated indole diketopiperazine alkaloid and two anthraquinones. Neoechinulin A, as a known antitumor agent, was identified for the first time in Streptomyces. Though previously found in Streptomyces, epsilon-pyrromycinone and 4-deoxy-ε-pyrromycinone were firstly shown to possess anticancer activities.
Collapse
Affiliation(s)
- Aiai Ma
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Kan Jiang
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shasha Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xinge Qi
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Huining Lu
- Life Science and Engineering College of Northwest University for Nationalities, Lanzhou, 730000, China
| | - Junlin Liu
- Life Science and Engineering College of Northwest University for Nationalities, Lanzhou, 730000, China
| | - Xuan Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinhui Li
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
13
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
14
|
Mitra S, Anand U, Sanyal R, Jha NK, Behl T, Mundhra A, Ghosh A, Radha, Kumar M, Proćków J, Dey A. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases. Biomed Pharmacother 2021; 145:112378. [PMID: 34741824 DOI: 10.1016/j.biopha.2021.112378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Neoechinulins are fungal and plant-derived chemicals extracted from Microsporum sp., Eurotium rubrum, Aspergillus sp., etc. Two analogues of neoechinulin, i.e., A and B, exerted extensive pharmacological properties described in this review. Neoechinulin is an indole alkaloid and has a double bond between C8/C9, which tends to contribute to its cytoprotective nature. Neoechinulin A exhibits protection to PC12 cells against nitrosative stress via increasing NAD(P)H reserve capacity and decreasing cellular GSH levels. It also confers protection via rescuing PC12 cells from rotenone-induced stress by lowering LDH leakage. This compound has great positive potential against neurodegenerative diseases by inhibiting SIN-1 induced cell death in neuronal cells. Together with these, neoechinulin A tends to inhibit Aβ42-induced microglial activation and confers protection against neuroinflammation. Alongside, it also inhibits cervical cancer cells by caspase-dependent apoptosis and via upregulation of apoptosis inducing genes like Bax, it suppresses LPS-induced inflammation in RAW264.7 macrophages and acts as an antidepressant. Whereas, another analogue, Neoechinulin B tends to interfere with the cellular mechanism thereby, inhibiting the entry of influenza A virus and it targets Liver X receptor (LXR) and decreases the infection rate of Hepatitis C. The present review describes the pharmaceutical properties of neoechinulins with notes on their molecular, cellular, and functional basis and their therapeutic properties.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Feeder Road, Belghoria, Kolkata 700056, West Bengal, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Avinash Mundhra
- Department of Botany, Rishi Bankim Chandra College (Affiliated to the West Bengal State University), East Kantalpara, North 24 Parganas, Naihati 743165, West Bengal, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, Assam 781014, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, Maharashtra, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
15
|
Sharifi-Rad J, Bahukhandi A, Dhyani P, Sati P, Capanoglu E, Docea AO, Al-Harrasi A, Dey A, Calina D. Therapeutic Potential of Neoechinulins and Their Derivatives: An Overview of the Molecular Mechanisms Behind Pharmacological Activities. Front Nutr 2021; 8:664197. [PMID: 34336908 PMCID: PMC8322439 DOI: 10.3389/fnut.2021.664197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Neoechinulins are diketopiperazine type indole alkaloids that demonstrate radical scavenging, anti-inflammatory, antiviral, anti-neurodegenerative, neurotrophic factor-like, anticancer, pro-apoptotic, and anti-apoptotic properties. An array of neoechinulins such as neoechinulins A-E, isoechinulins A-C, cryptoechunilin have been isolated from various fungal sources like Aspergillus sp., Xylaria euglossa, Eurotium cristatum, Microsporum sp., etc. Besides, neoechinulin derivatives or stereoisomers were also obtained from diverse non-fungal sources viz. Tinospora sagittata, Opuntia dillenii, Cyrtomium fortunei, Cannabis sativa, and so on. The main purpose of this review is to provide update information on neoechinulins and their analogues about the molecular mechanisms of the pharmacological action and possible future research. The recent data from this review can be used to create a basis for the discovery of new neoechinulin-based drugs and their analogues in the near future. The online databases PubMed, Science and Google scholar were researched for the selection and collection of data from the available literature on neoechinulins, their natural sources and their pharmacological properties. The published books on this topic were also analysed. In vitro and in vivo assays have established the potential of neoechinulin A as a promising anticancer and anti-neuroinflammatory lead molecule. Neoechinulin B was also identified as a potential antiviral drug against hepatitis C virus. Toxicological and clinical trials are needed in the future to improve the phyto-pharmacological profile of neoquinolines. From the analysis of the literature, we found that neoechinulins and their derivatives have special biological potential. Although some modern pharmacological analyzes have highlighted the molecular mechanisms of action and some signalling pathways, the correlation between these phytoconstituents and pharmacological activities must be validated in the future by preclinical toxicological and clinical studies.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amit Bahukhandi
- G.B Pant National Institute of Himalayan Environment, Almora, India
| | - Praveen Dhyani
- Institute of Himalayan Bioresource Technology, Palampur, India
| | - Priyanka Sati
- Department of Biotechnology Graphic Era University, Dehradun, India
| | - Esra Capanoglu
- Food Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
16
|
Zuo W, Kwok HF. Development of Marine-Derived Compounds for Cancer Therapy. Mar Drugs 2021; 19:md19060342. [PMID: 34203870 PMCID: PMC8232666 DOI: 10.3390/md19060342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer has always been a threat to human health with its high morbidity and mortality rates. Traditional therapy, including surgery, chemotherapy and radiotherapy, plays a key role in cancer treatment. However, it is not able to prevent tumor recurrence, drug resistance and treatment side effects, which makes it a very attractive challenge to search for new effective and specific anticancer drugs. Nature is a valuable source of multiple pharmaceuticals, and most of the anticancer drugs are natural products or derived from them. Marine-derived compounds, such as nucleotides, proteins, peptides and amides, have also shed light on cancer therapy, and they are receiving a fast-growing interest due to their bioactive properties. Their mechanisms contain anti-angiogenic, anti-proliferative and anti-metastasis activities; cell cycle arrest; and induction of apoptosis. This review provides an overview on the development of marine-derived compounds with anticancer properties, both their applications and mechanisms, and discovered technologies.
Collapse
Affiliation(s)
- Weimin Zuo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao
- Correspondence:
| |
Collapse
|
17
|
Youssef FS, Simal-Gandara J. Comprehensive Overview on the Chemistry and Biological Activities of Selected Alkaloid Producing Marine-Derived Fungi as a Valuable Reservoir of Drug Entities. Biomedicines 2021; 9:485. [PMID: 33925060 PMCID: PMC8145996 DOI: 10.3390/biomedicines9050485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Marine-associated fungal strains act as a valuable reservoir of bioactive diverse secondary metabolites including alkaloids which are highly popular by their biological activities. This review highlighted the chemistry and biology of alkaloids isolated from twenty-six fungal genera associated with marine organisms and marine sea sediments. The selected fungi are from different marine sources without focusing on mangroves. The studied fungal genera comprises Acrostalagmus, Arthrinium, Chaetomium, Cladosporium, Coniothyrium, Curvularia, Dichotomomyces, Eurotium, Eutypella, Exophiala, Fusarium, Hypocrea, Microsphaeropsis, Microsporum, Neosartorya, Nigrospora, Paecilomyces, Penicillium, Pleosporales, Pseudallescheria, Scedosporium, Scopulariopsis, Stagonosporopsis, Thielavia, Westerdykella, and Xylariaceae. Around 347 alkaloid metabolites were isolated and identified via chromatographic and spectroscopic techniques comprising 1D and 2D NMR (one and two dimensional nuclear magnetic resonance) which were further confirmed using HR-MS (high resolution mass spectrometry) and Mosher reactions for additional ascertaining of the stereochemistry. About 150 alkaloids showed considerable effect with respect to the tested activities. Most of the reported bioactive alkaloids showed considerable biological activities mainly cytotoxic followed by antibacterial, antifungal, antiviral, antioxidant; however, a few showed anti-inflammatory and antifouling activities. However, the rest of the compounds showed weak or no activity toward the tested biological activities and required further investigations for additional biological activities. Thus, alkaloids isolated from marine-associated fungi can afford an endless source of new drug entities that could serve as leads for drug discovery combating many human ailments.
Collapse
Affiliation(s)
- Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain
| |
Collapse
|
18
|
Youssef FS, Alshammari E, Ashour ML. Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling. Int J Mol Sci 2021; 22:1866. [PMID: 33668523 PMCID: PMC7918500 DOI: 10.3390/ijms22041866] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Genus Aspergillus represents a widely spread genus of fungi that is highly popular for possessing potent medicinal potential comprising mainly antimicrobial, cytotoxic and antioxidant properties. They are highly attributed to its richness by alkaloids, terpenes, steroids and polyketons. This review aimed to comprehensively explore the diverse alkaloids isolated and identified from different species of genus Aspergillus that were found to be associated with different marine organisms regarding their chemistry and biology. Around 174 alkaloid metabolites were reported, 66 of which showed important biological activities with respect to the tested biological activities mainly comprising antiviral, antibacterial, antifungal, cytotoxic, antioxidant and antifouling activities. Besides, in silico studies on different microbial proteins comprising DNA-gyrase, topoisomerase IV, dihydrofolate reductase, transcriptional regulator TcaR (protein), and aminoglycoside nucleotidyl transferase were done for sixteen alkaloids that showed anti-infective potential for better mechanistic interpretation of their probable mode of action. The inhibitory potential of compounds vs. Angiotensin-Converting Enzyme 2 (ACE2) as an important therapeutic target combating COVID-19 infection and its complication was also examined using molecular docking. Fumigatoside E showed the best fitting within the active sites of all the examined proteins. Thus, Aspergillus species isolated from marine organisms could afford bioactive entities combating infectious diseases.
Collapse
Affiliation(s)
- Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Elham Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
19
|
Ma J, Hui L, Song N, Zhang X, Qu D, Sang C, Li H. Lappaconitine hydrochloride induces apoptosis and S phase cell cycle arrest through MAPK signaling pathway in human liver cancer HepG2 cells. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_251_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Zain ul Arifeen M, Ma YN, Xue YR, Liu CH. Deep-Sea Fungi Could Be the New Arsenal for Bioactive Molecules. Mar Drugs 2019; 18:E9. [PMID: 31861953 PMCID: PMC7024341 DOI: 10.3390/md18010009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Growing microbial resistance to existing drugs and the search for new natural products of pharmaceutical importance have forced researchers to investigate unexplored environments, such as extreme ecosystems. The deep-sea (>1000 m below water surface) has a variety of extreme environments, such as deep-sea sediments, hydrothermal vents, and deep-sea cold region, which are considered to be new arsenals of natural products. Organisms living in the extreme environments of the deep-sea encounter harsh conditions, such as high salinity, extreme pH, absence of sun light, low temperature and oxygen, high hydrostatic pressure, and low availability of growth nutrients. The production of secondary metabolites is one of the strategies these organisms use to survive in such harsh conditions. Fungi growing in such extreme environments produce unique secondary metabolites for defense and communication, some of which also have clinical significance. Despite being the producer of many important bioactive molecules, deep-sea fungi have not been explored thoroughly. Here, we made a brief review of the structure, biological activity, and distribution of secondary metabolites produced by deep-sea fungi in the last five years.
Collapse
Affiliation(s)
| | | | | | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (M.Z.u.A.); (Y.-N.M.); (Y.-R.X.)
| |
Collapse
|
21
|
Deshmukh SK, Prakash V, Ranjan N. Marine Fungi: A Source of Potential Anticancer Compounds. Front Microbiol 2018; 8:2536. [PMID: 29354097 PMCID: PMC5760561 DOI: 10.3389/fmicb.2017.02536] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Nihar Ranjan
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
22
|
Wohlgemuth V, Kindinger F, Xie X, Wang BG, Li SM. Two Prenyltransferases Govern a Consecutive Prenylation Cascade in the Biosynthesis of Echinulin and Neoechinulin. Org Lett 2017; 19:5928-5931. [DOI: 10.1021/acs.orglett.7b02926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Viola Wohlgemuth
- Institut
für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Florian Kindinger
- Institut
für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Xiulan Xie
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans Meerwein-Straße, 35032 Marburg, Germany
| | - Bin-Gui Wang
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology of the CAS, 266071 Qingdao, China
| | - Shu-Ming Li
- Institut
für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
23
|
Gomes NGM, Lefranc F, Kijjoa A, Kiss R. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents? Mar Drugs 2015; 13:3950-91. [PMID: 26090846 PMCID: PMC4483665 DOI: 10.3390/md13063950] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.
Collapse
Affiliation(s)
- Nelson G M Gomes
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
24
|
Gao F, Zhang JM, Wang ZG, Peng W, Hu HL, Fu CM. Biotransformation, a promising technology for anti-cancer drug development. Asian Pac J Cancer Prev 2015; 14:5599-608. [PMID: 24289549 DOI: 10.7314/apjcp.2013.14.10.5599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
With the high morbidity and mortality caused by cancer, finding new and more effective anti-cancer drugs is very urgent. In current research, biotransformation plays a vital role in the research and development of cancer drugs and has obtained some achievements. In this review, we have summarized four applications as follows: to exploit novel anti-cancer drugs, to improve existing anti-cancer drugs, to broaden limited anti-cancer drug resources and to investigate correlative mechanisms. Three different groups of important anti-cancer compounds were assessed to clarify the current practical applications of biotransformation in the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China E-mail : ,
| | | | | | | | | | | |
Collapse
|
25
|
Wang XN, Huang WY, Du JC, Li CY, Liu JK. Chemical constituents from the fruiting bodies of Xylaria euglossa Fr. and its chemotaxonomic study. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2013.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Wang SX, Zhang XS, Guan HS, Wang W. Potential anti-HPV and related cancer agents from marine resources: an overview. Mar Drugs 2014; 12:2019-35. [PMID: 24705500 PMCID: PMC4012449 DOI: 10.3390/md12042019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/14/2022] Open
Abstract
Recently, the studies on the prevention and treatment of human papillomavirus (HPV) which is closely related to the cervical cancer and other genital diseases are attracting more and more attention all over the world. Marine-derived polysaccharides and other bioactive compounds have been shown to possess a variety of anti-HPV and related cancer activities. This paper will review the recent progress in research on the potential anti-HPV and related cancer agents from marine resources. In particular, it will provide an update on the anti-HPV actions of heparinoid polysaccharides and bioactive compounds present in marine organisms, as well as the therapeutic vaccines relating to marine organisms. In addition, the possible mechanisms of anti-HPV actions of marine bioactive compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Shi-Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xiao-Shuang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|