1
|
Akram F, Fatima T, Shabbir I, Haq IU, Ibrar R, Mukhtar H. Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors. Mol Biotechnol 2025; 67:817-833. [PMID: 38461181 DOI: 10.1007/s12033-024-01108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Yates MD, Mickol RL, Tolsma JS, Beasley M, Shepard J, Glaven SM. Lipid production from biofilms of Marinobacter atlanticus in a fixed bed bioreactor. Microb Cell Fact 2024; 23:336. [PMID: 39696323 DOI: 10.1186/s12934-024-02617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Biotechnologies that utilize microorganisms as production hosts for lipid synthesis will enable an efficient and sustainable solution to produce lipids, decreasing reliance on traditional routes for production (either petrochemical or plant-derived) and supporting a circular bioeconomy. To realize this goal, continuous biomanufacturing processes must be developed to maximize productivity and minimize costs compared to traditional batch fermentation processes. RESULTS Here, we utilized biofilms of the marine bacterium, Marinobacter atlanticus, to produce wax esters from succinate (i.e., a non-sugar feedstock) to determine its potential to serve as a production chassis in a continuous flow, biofilm-based biomanufacturing process. To accomplish this, we evaluated growth as a function of protein concentration and wax ester production from M. atlanticus biofilms in a continuously operated 3-D printed fixed bed bioreactor. We determined that exposing M. atlanticus biofilms to alternating nitrogen-rich (1.8 mM NH4+) and nitrogen-poor (0 mM NH4+) conditions in the bioreactor resulted in wax ester production (26 ± 5 mg/L, normalized to reactor volume) at a similar concentration to what is observed from planktonic M. atlanticus cells grown in shake flasks previously in our lab (ca. 25 mg/L cell culture). The wax ester profile was predominated by multiple compounds with 32 carbon chain length (C32; 50-60% of the total). Biomass production in the reactor was positively correlated with dilution rate, as indicated by protein concentration (maximum of 1380 ± 110 mg/L at 0.4 min-1 dilution rate) and oxygen uptake rate (maximum of 4 mmol O2/L/h at 0.4 min-1 dilution rate) measurements at different flow rates. Further, we determined the baseline succinate consumption rate for M. atlanticus biofilms to be 0.16 ± 0.03 mmol/L/h, which indicated that oxygen is the limiting reactant in the process. CONCLUSION The results presented here are the first step toward demonstrating that M. atlanticus biofilms can be used as the basis for development of a continuous flow wax ester biomanufacturing process from non-sugar feedstocks, which will further enable sustainable lipid production in a future circular bioeconomy.
Collapse
Affiliation(s)
- Matthew D Yates
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Rebecca L Mickol
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joseph S Tolsma
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
- Catalent Pharma Solutions, Kansas City, MO, 64137, USA
| | - Maryssa Beasley
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Jamia Shepard
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Sarah M Glaven
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
3
|
Kuroiwa T, Katayama M, Uemoto K, Kanazawa A. Substrate specificity of commercial lipases activated by a hydration-aggregation pretreatment in anhydrous esterification reactions. Enzyme Microb Technol 2024; 180:110497. [PMID: 39154569 DOI: 10.1016/j.enzmictec.2024.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Substrate specificity in non-aqueous esterification catalyzed by commercial lipases activated by hydration-aggregation pretreatment was investigated. Four microbial lipases from Rhizopus japonicus, Burkholderia cepacia, Rhizomucor miehei, and Candida antarctica (fraction B) were used to study the effect of the carbon chain length of saturated fatty acid substrates on the esterification activity with methanol in n-hexane. Hydration-aggregation pretreatment had an activation effect on all lipases used, and different chain length dependencies of esterification activity for lipases from different origins were demonstrated. The effects of various acidic substrates with different degrees of unsaturation, aromatic rings, and alcohol substrates with different carbon chain lengths on esterification activity were examined using R. japonicus lipase, which demonstrated the most remarkable activity enhancement after hydration-aggregation pretreatment. Furthermore, in the esterification of myristic acid with methanol catalyzed by the hydrated-aggregated R. japonicus lipase, maximum reaction rate (5.43 × 10-5 mmol/(mg-biocat min)) and Michaelis constants for each substrate (48.5 mM for myristic acid, 24.7 mM for methanol) were determined by kinetic analysis based on the two-substrate Michaelis-Menten model.
Collapse
Affiliation(s)
- Takashi Kuroiwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan.
| | - Maho Katayama
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Kazuki Uemoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Akihiko Kanazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| |
Collapse
|
4
|
Chiappini V, Casbarra D, Astolfi ML, Girelli AM. Investigation on solvent-free esterification of oleic acid by hemp tea waste-immobilized Candida rugosa lipase. J Biotechnol 2024; 392:118-127. [PMID: 38969178 DOI: 10.1016/j.jbiotec.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
This study aimed at Candida rugosa lipase immobilization on a low-cost and readily available support. Among agro-industrial crops, hemp tea waste was chosen as the carrier because it provides higher immobilization performance than hemp flower and leaf wastes. Support characterization by ATR-FTIR, SEM and elemental analysis and the optimization of the adsorption immobilization process were performed. The lipase adsorption immobilization was obtained by soaking the support with hexane under mild agitation for 2 h and a successively incubating the enzyme for 1 h at room temperature without removing the solvent. The esterification of oleic acid with n-decanol was tested in a solvent-free system by studying some parameters that influence the reaction, such as the substrates molar ratio, the lipase activity/oleic acid ratio, reaction temperature and the presence/absence of molecular sieves. The biocatalyst showed the ability to bring the esterification reaction to equilibrium under 60 min and good reusability (maintaining 60 % of its original activity after three successive esterification reactions) but low conversion (21 %) at the optimized conditions (40 °C, 1:2 substrates molar ratio, 0.56 lipase/oleic acid ratio, without sieves). Comparing the results with those obtained by free lipase form at the same activity (1 U) and experimental conditions, slightly higher conversion (%) appeared for the free lipase. All this highlighted that probably the source of lipase for its carbohydrate-binding pocket and lid structure affected the esterification of oleic acid but certainly, the immobilization didn't induce any lipase conformational change also allowing the reuse of the catalytic material.
Collapse
Affiliation(s)
- Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Debora Casbarra
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.
| |
Collapse
|
5
|
Papanikolaou A, Chatzikonstantinou AV, Fotiadou R, Tsakni A, Houhoula D, Polydera AC, Pavlidis IV, Stamatis H. A Study on the Regioselective Acetylation of Flavonoid Aglycons Catalyzed by Immobilized Lipases. Biomolecules 2024; 14:897. [PMID: 39199285 PMCID: PMC11352720 DOI: 10.3390/biom14080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to explore the capacity of immobilized lipases on the acetylation of six aglycon flavonoids, namely myricetin, quercetin, luteolin, naringenin, fisetin and morin. For this purpose, lipase B from Candida antarctica (CaLB) and lipase from Thermomyces lanuginosus (TLL) were immobilized onto the surface of ZnOFe nanoparticles derived from an aqueous olive leaf extract. Various factors affecting the conversion of substrates and the formation of monoesterified and diesterified products, such as the amount of biocatalyst and the molar ratio of the substrates and reaction solvents were investigated. Both CaLB and TLL-ZnOFe achieved 100% conversion yield of naringenin to naringenin acetate after 72 h of reaction time, while TLL-ZnOFe achieved higher conversion yields of quercetin, morin and fisetin (73, 85 and 72% respectively). Notably, CaLB-ZnOFe displayed significantly lower conversion yields for morin compared with TLL-ZnOFe. Molecular docking analysis was used to elucidate this discrepancy, and it was revealed that the position of the hydroxyl groups of the B ring on morin introduced hindrances on the active site of CaLB. Finally, selected flavonoid esters showed significantly higher antimicrobial activity compared with the original compound. This work indicated that these lipase-based nanobiocatalysts can be successfully applied to produce lipophilic derivatives of aglycon flavonoids with improved antimicrobial activity.
Collapse
Affiliation(s)
- Angelos Papanikolaou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Alexandra V. Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Aliki Tsakni
- Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (A.T.); (D.H.)
| | - Dimitra Houhoula
- Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (A.T.); (D.H.)
| | - Angeliki C. Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Ioannis V. Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| |
Collapse
|
6
|
Jeon YW, Song HM, Lee KY, Kim YA, Kim HK. Synthesis of Isoamyl Fatty Acid Ester, a Flavor Compound, by Immobilized Rhodococcus Cutinase. J Microbiol Biotechnol 2024; 34:1356-1364. [PMID: 38754998 PMCID: PMC11239401 DOI: 10.4014/jmb.2402.02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Isoamyl fatty acid esters (IAFEs) are widely used as fruity flavor compounds in the food industry. In this study, various IAFEs were synthesized from isoamyl alcohol and various fatty acids using a cutinase enzyme (Rcut) derived from Rhodococcus bacteria. Rcut was immobilized on methacrylate divinylbenzene beads and used to synthesize isoamyl acetate, butyrate, hexanoate, octanoate, and decanoate. Among them, Rcut synthesized isoamyl butyrate (IAB) most efficiently. Docking model studies showed that butyric acid was the most suitable substrate in terms of binding energy and distance from the active site serine (Ser114) γ-oxygen. Up to 250 mM of IAB was synthesized by adjusting reaction conditions such as substrate concentration, reaction temperature, and reaction time. When the enzyme reaction was performed by reusing the immobilized enzyme, the enzyme activity was maintained at least six times. These results demonstrate that the immobilized Rcut enzyme can be used in the food industry to synthesize a variety of fruity flavor compounds, including IAB.
Collapse
Affiliation(s)
- Ye Won Jeon
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Ha Min Song
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Ka Yeong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yeong A Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyung Kwoun Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
7
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
8
|
Venturi V, Presini F, Trapella C, Bortolini O, Giovannini PP, Lerin LA. Microwave-assisted enzymatic synthesis of geraniol esters in solvent-free systems: optimization of the reaction parameters, purification and characterization of the products, and biocatalyst reuse. Mol Divers 2024; 28:1665-1679. [PMID: 37368203 PMCID: PMC11269508 DOI: 10.1007/s11030-023-10682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Various geraniol esters act as insect pheromones and display pharmacological activities, especially as neuroprotective agents. Therefore, the search for synthetic strategies alternative to traditional chemical synthesis could help designing ecofriendly routes for the preparation of such bioactive compounds. Hence, this work aims at the microwave-assisted enzymatic synthesis of geranyl esters in solvent-free systems. The process variables were optimized for the synthesis of geranyl acetoacetate, achieving 85% conversion after 60 min using a 1:5 substrates molar ratio (ester to geraniol), 80 °C and 8.4% of Lipozyme 435 lipase without removal of the co-produced methanol. On the other hand, a 95% conversion was reached after 30 min using 1:6 substrates molar ratio, 70 °C and 7% lipase in the presence of 5Å molecular sieves for the methanol capture. In addition, the lipase showed good reusability, maintaining the same activity for five reaction cycles. Finally, under the above optimized conditions, other geraniol esters were successfully synthetized such as the geranyl butyrate (98%), geranyl hexanoate (99%), geranyl octanoate (98%), and geranyl (R)-3-hydroxybutyrate (56%). These results demonstrate the microwave-assisted lipase-catalyzed transesterification in a solvent-free system as an excellent and sustainable catalytic methodology to produce geraniol esters.
Collapse
Affiliation(s)
- Valentina Venturi
- Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Francesco Presini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Olga Bortolini
- Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Pier Paolo Giovannini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Lindomar Alberto Lerin
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy.
| |
Collapse
|
9
|
Li W, Wu XF, Zhao Y. Mechanistic Insights into the Palladium-Catalyzed Perfluoroalkylative Carbonylation of Unactivated Alkenes to β-Perfluoroalkyl Esters: A DFT Study. J Phys Chem A 2024. [PMID: 38691449 DOI: 10.1021/acs.jpca.3c08287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Transition metal-catalyzed multicomponent carbonylation is an efficient synthetic strategy to access multifunctional esters in high yields with broad functional group tolerance and good chemoselectivity. Considering the development of highly efficient synthetic methods for esters, it remains significant to grasp the mechanism of constructing multifunctional esters. Herein, density functional theoretical calculations were carried out to acquire mechanistic insight into the synthesis of β-perfluoroalkyl esters from a specific palladium-catalyzed perfluoroalkylative carbonylation of unactivated alkenes using carbon monoxide. A detailed mechanistic understanding of this reaction route includes (1) multistep radical reaction process, (2) C-C coupling and CO insertion, (3) ligand exchange, and (4) Pd-based intermediate oxidation and reductive elimination. The multistep radical process was fundamentally rationalized, including Rf· formation and radicals A and E from unactivated alkene and CO oxidation, respectively. The potential energy calculation indicated that the CO insertion into the perfluorinated alkyl radicals preceded Pd-catalyzed oxidation in the competitively multistep free radical reaction process. In addition, the I-/PhO- exchange step was predicted to be spontaneous to products. The IGMH analysis further attested to the reductive elimination process involved in the rate-determining step. Thus, a simple and valid density functional theory (DFT) approach was developed to reveal the multistep radical mechanism for the Pd-catalyzed perfluoroalkylative carbonylation of unactivated alkenes to access functional β-perfluoroalkyl esters.
Collapse
Affiliation(s)
- Wenbo Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yanying Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
10
|
Serb AF, Georgescu M, Onulov R, Novaconi CR, Sisu E, Bolocan A, Sandu RE. Mass-Spectrometry-Based Research of Cosmetic Ingredients. Molecules 2024; 29:1336. [PMID: 38542972 PMCID: PMC10974329 DOI: 10.3390/molecules29061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Cosmetic products are chemical substances or mixtures used on the skin, hair, nails, teeth, and the mucous membranes of the oral cavity, whose use is intended to clean, protect, correct body odor, perfume, keep in good condition, or change appearance. The analysis of cosmetic ingredients is often challenging because of their huge complexity and their adulteration. Among various analytical tools, mass spectrometry (MS) has been largely used for compound detection, ingredient screening, quality control, detection of product authenticity, and health risk evaluation. This work is focused on the MS applications in detecting and quantification of some common cosmetic ingredients, i.e., preservatives, dyes, heavy metals, allergens, and bioconjugates in various matrices (leave-on or rinse-off cosmetic products). As a global view, MS-based analysis of bioconjugates is a narrow field, and LC- and GC/GC×GC-MS are widely used for the investigation of preservatives, dyes, and fragrances, while inductively coupled plasma (ICP)-MS is ideal for comprehensive analysis of heavy metals. Ambient ionization approaches and advanced separation methods (i.e., convergence chromatography (UPC2)) coupled to MS have been proven to be an excellent choice for the analysis of scented allergens. At the same time, the current paper explores the challenges of MS-based analysis for cosmetic safety studies.
Collapse
Affiliation(s)
- Alina Florina Serb
- Biochemistry Discipline, Biochemistry and Pharmacology Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Marius Georgescu
- Physiology Discipline, Functional Sciences Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Robert Onulov
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Cristina Ramona Novaconi
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Eugen Sisu
- Biochemistry Discipline, Biochemistry and Pharmacology Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Alexandru Bolocan
- Physiology Discipline, Functional Sciences Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Raluca Elena Sandu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
| |
Collapse
|
11
|
Zhang Y, Zhang W, Ma G, Nian B, Hu Y. Octadecyl and sulfonyl modification of diatomite synergistically improved the immobilization efficiency of lipase and its application in the synthesis of pine sterol esters. Biotechnol J 2024; 19:e2300615. [PMID: 38472086 DOI: 10.1002/biot.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Phytosterols usually have to be esterified to various phytosterol esters to avoid their disadvantages of unsatisfactory solubility and low bioavailability. The enzymatic synthesis of phytosterol esters in a solvent-free system has advantages in terms of environmental friendliness, sustainability, and selectivity. However, the limitation of the low stability and recyclability of the lipase in the solvent-free system, which often requires a relatively high temperature to induce the viscosity, also increased the industrial production cost. In this context, a low-cost material, namely diatomite, was employed as the support in the immobilization of Candida rugosa lipase (CRL) due to its multiple modification sites. The Fe3 O4 was also then introduced to this system for quick and simple separation via the magnetic field. Moreover, to further enhance the immobilization efficiency of diatomite, a modification strategy which involved the octadecyl and sulfonyl group for regulating the hydrophobicity and interaction between the support and lipase was successfully developed. The optimization of the ratio of the modifiers suggested that the -SO3 H/C18 (1:1.5) performed best with an enzyme loading and enzyme activity of 84.8 mg·g-1 and 54 U·g-1 , respectively. Compared with free CRL, the thermal and storage stability of CRL@OSMD was significantly improved, which lays the foundation for the catalytic synthesis of phytosterol esters in solvent-free systems. Fortunately, a yield of 95.0% was achieved after optimizing the reaction conditions, and a yield of 70.0% can still be maintained after six cycles.
Collapse
Affiliation(s)
- Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Guangzheng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
12
|
Cavallaro PA, De Santo M, Greco M, Marinaro R, Belsito EL, Liguori A, Leggio A. Titanium Tetrachloride-Assisted Direct Esterification of Carboxylic Acids. Molecules 2024; 29:777. [PMID: 38398529 PMCID: PMC10892408 DOI: 10.3390/molecules29040777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Ester compounds, widely found in pharmaceutical and natural products, play a crucial role in organic synthesis, prompting the development of numerous methods for their synthesis. An important chemical approach in synthesizing esters from carboxylic acids involves the activation of the carboxyl function, requiring the conversion of the hydroxyl group into a suitable leaving group. This paper presents the findings of our investigations into an efficient method for producing esters from carboxylic acids and alcohols, using the Lewis acid titanium tetrachloride. Titanium tetrachloride has proven highly effective as a coupling reagent for the one-pot formation of esters from carboxylic acids and alcohols operating under mild and neutral conditions. Notably, the reaction eliminates the need for bases, yielding carboxylic esters in high purity and yields. The method is efficient, even with long-chain carboxylic acids, and operates well with primary alcohols in dichloromethane. Steric hindrance, potentially present in carboxylic acids, has a moderate effect on the reaction. Alcohol substrates that easily form stable carbocations require, instead, the use of non-polar solvents like hexane for the reaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (P.A.C.); (M.D.S.); (M.G.); (R.M.); (E.L.B.); (A.L.)
| |
Collapse
|
13
|
Ortega-Requena S, Montiel C, Máximo F, Gómez M, Murcia MD, Bastida J. Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:268. [PMID: 38204120 PMCID: PMC10779758 DOI: 10.3390/ma17010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Esters are versatile compounds with a wide range of applications in various industries due to their unique properties and pleasant aromas. Conventionally, the manufacture of these compounds has relied on the chemical route. Nevertheless, this technique employs high temperatures and inorganic catalysts, resulting in undesired additional steps to purify the final product by removing solvent residues, which decreases environmental sustainability and energy efficiency. In accordance with the principles of "Green Chemistry" and the search for more environmentally friendly methods, a new alternative, the enzymatic route, has been introduced. This technique uses low temperatures and does not require the use of solvents, resulting in more environmentally friendly final products. Despite the large number of studies published on the biocatalytic synthesis of esters, little attention has been paid to the reactors used for it. Therefore, it is convenient to gather the scattered information regarding the type of reactor employed in these synthesis reactions, considering the industrial field in which the process is carried out. A comparison between the performance of the different reactor configurations will allow us to draw the appropriate conclusions regarding their suitability for each specific industrial application. This review addresses, for the first time, the above aspects, which will undoubtedly help with the correct industrial implementation of these processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Josefa Bastida
- Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (S.O.-R.); (C.M.); (F.M.); (M.G.); (M.D.M.)
| |
Collapse
|
14
|
Hu J, Zhou M, Zhang Y, Zhang X, Ji X, Zhao M, Lai M. Enzymatic synthesis of novel pyrrole esters and their thermal stability. BMC Chem 2023; 17:123. [PMID: 37742035 PMCID: PMC10518093 DOI: 10.1186/s13065-023-01039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
In the present work a simple enzymatic approach (Novozym 435) for transesterification to synthesize pyrrole esters was reported. To generate the best reaction conditions, which resulted in the optimum yield of 92%, the effects of lipase type, solvent, lipase load, molecular sieves, substrate molar ratio of esters to alcohol, reaction temperature, reaction duration, and speed of agitation were evaluated. The range of alcohols was assessed under optimal circumstances. The spectrum observations conclusively demonstrated that the compounds could be generated with high yield under the circumstances utilized for synthesis. The odor characteristics of the pyrrolyl esters obtained were examined by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Among them, compounds of benzhydryl 1H-pyrrole-2-carboxylate (3j), butyl 1H-pyrrole-2-carboxylate (3k) and pentyl 1H-pyrrole-2-carboxylate (3l) present sweet and acid aroma. In addition, the thermal degradation process was further studied using the Py-GC/MS (pyrolysis-gas chromatography/mass spectrometry), TG (thermogravimetry), and DSC (differential scanning calorimeter) techniques. The outcomes of the Py-GC/MS, TG, and DSC techniques show that they have excellent thermal stability.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Meng Zhou
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Yujie Zhang
- Technology Center, China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, 050051, People's Republic of China
| | - Xi Zhang
- Technology Center, China Tobacco Shanxi Industrial Co., Ltd., Xian, 710065, People's Republic of China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
15
|
Liu G, Huang L, Lian J. Alcohol acyltransferases for the biosynthesis of esters. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:93. [PMID: 37264424 DOI: 10.1186/s13068-023-02343-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Esters are widely used in food, energy, spices, chemical industry, etc., becoming an indispensable part of life. However, their production heavily relies on the fossil energy industry, which presents significant challenges associated with energy shortages and environmental pollution. Consequently, there is an urgent need to identify alternative green methods for ester production. One promising solution is biosynthesis, which offers sustainable and environmentally friendly processes. In ester biosynthesis, alcohol acyltransferases (AATs) catalyze the condensation of acyl-CoAs and alcohols to form esters, enabling the biosynthesis of nearly 100 different kinds of esters, such as ethyl acetate, hexyl acetate, ethyl crotonate, isoamyl acetate, and butyl butyrate. However, low catalytic efficiency and low selectivity of AATs represent the major bottlenecks for the biosynthesis of certain specific esters, which should be addressed with protein molecular engineering approaches before practical biotechnological applications. This review provides an overview of AAT enzymes, including their sequences, structures, active sites, catalytic mechanisms, and metabolic engineering applications. Furthermore, considering the critical role of AATs in determining the final ester products, the current research progresses of AAT modification using protein molecular engineering are also discussed. This review summarized the major challenges and prospects of AAT enzymes in ester biosynthesis.
Collapse
Affiliation(s)
- Gaofei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
16
|
Zhao Q, Wang L, Chen H, Wu Z, Zhao M, Lai M. Enzyme‐Catalyzed Synthesis, Odor Characteristics and Thermal Analysis of New Pyridine Esters. ChemistrySelect 2023. [DOI: 10.1002/slct.202204356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Longxin Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Haoran Chen
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| |
Collapse
|
17
|
Jawale PV, Bhanage BM. Synthesis of decanoate compounds in deep eutectic solvent using lipase: Optimization using response surface methodology, kinetic and docking study. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Bird LJ, Mickol RL, Eddie BJ, Thakur M, Yates MD, Glaven SM. Marinobacter: A case study in bioelectrochemical chassis evaluation. Microb Biotechnol 2023; 16:494-506. [PMID: 36464922 PMCID: PMC9948230 DOI: 10.1111/1751-7915.14170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2022] Open
Abstract
The junction of bioelectrochemical systems and synthetic biology opens the door to many potentially groundbreaking technologies. When developing these possibilities, choosing the correct chassis organism can save a great deal of engineering effort and, indeed, can mean the difference between success and failure. Choosing the correct chassis for a specific application requires a knowledge of the metabolic potential of the candidate organisms, as well as a clear delineation of the traits, required in the application. In this review, we will explore the metabolic and electrochemical potential of a single genus, Marinobacter. We will cover its strengths, (salt tolerance, biofilm formation and electrochemical potential) and weaknesses (insufficient characterization of many strains and a less developed toolbox for genetic manipulation) in potential synthetic electromicrobiology applications. In doing so, we will provide a roadmap for choosing a chassis organism for bioelectrochemical systems.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Rebecca L. Mickol
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Brian J. Eddie
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
- College of Science, George Mason UniversityFairfaxVirginiaUSA
| | - Matthew D. Yates
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
19
|
Won SJ, Yim JH, Kim HK. Synthesis of Short-Chain Alkyl Butyrate through Esterification Reaction Using Immobilized Rhodococcus Cutinase and Analysis of Substrate Specificity through Molecular Docking. J Microbiol Biotechnol 2023; 33:268-276. [PMID: 36524336 PMCID: PMC9998203 DOI: 10.4014/jmb.2211.11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Alkyl butyrate with fruity flavor is known as an important additive in the food industry. We synthesized various alkyl butyrates from various fatty alcohol and butyric acid using immobilized Rhodococcus cutinase (Rcut). Esterification reaction was performed in a non-aqueous system including heptane, isooctane, hexane, and cyclohexane. As a result of performing the alkyl butyrate synthesis reaction using alcohols of various chain lengths, it was found that the preference for the alcohol substrate had the following order: C6 > C4 > C8 > C10 > C2. Through molecular docking analysis, it was found that the greater the hydrophobicity of alcohol, the higher the accessibility to the active site of the enzyme. However, since the number of torsions increased as the chain length increased, it became difficult for the hydroxyl oxygen of the alcohol to access the γO of serine at the enzyme active site. These molecular docking results were consistent with substrate preference results of the Rcut enzyme. The Rcut maintained the synthesis efficiency at least for 5 days in isooctane solvent. We synthesized as much as 452 mM butyl butyrate by adding 100 mM substrate daily for 5 days and performing the reaction. These results show that Rcut is an efficient enzyme for producing alkyl butyrate used in the food industry.
Collapse
Affiliation(s)
- Seok-Jae Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Hyung Kwoun Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
20
|
Snoch W, Jarek E, Milivojevic D, Nikodinovic-Runic J, Guzik M. Physicochemical studies of novel sugar fatty acid esters based on ( R)-3-hydroxylated acids derived from bacterial polyhydroxyalkanoates and their potential environmental impact. Front Bioeng Biotechnol 2023; 11:1112053. [PMID: 36845180 PMCID: PMC9947713 DOI: 10.3389/fbioe.2023.1112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Sugar fatty acids esters are popular compounds widely used in both the nutritional, cosmetic and pharmaceutical industries due to their amphiphilic structure and consequent ability to reduce the surface tension of solutions. Furthermore, an important aspect in the implementation of any additives and formulations is their environmental impact. The properties of the esters depend on the type of sugar used and the hydrophobic component. In this work, selected physicochemical properties of new sugar esters based on lactose, glucose and galactose and hydroxy acids derived from bacterial polyhydroxyalkanoates are shown for the first time. Values for critical aggregation concentration, surface activity and pH make it possible that these esters could compete with other commercially used esters of similar chemical structure. The investigated compounds showed moderate emulsion stabilization abilities presented on the example of water-oil systems containing squalene and body oil. Their potential environmental impact appears to be low, as the esters are not toxic to Caenorhabditis elegans even at concentrations much higher than the critical aggregation concentration.
Collapse
Affiliation(s)
- Wojciech Snoch
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Jarek
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Maciej Guzik
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland,*Correspondence: Maciej Guzik,
| |
Collapse
|
21
|
Ramires Araujo T, Bresolin D, de Oliveira D, Sayer C, Henrique Hermes de Araújo P, Vladimir de Oliveira J. Conventional lignin functionalization for polyurethane applications and a future vision in the use of enzymes as an alternative method. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
22
|
Butyl-esters synthesis from palm fatty acid distillate catalyzed by immobilized lipases in solvent-free system – optimization using a simplified method (SER). Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
23
|
Al Angari YM, Almulaiky YQ, Alotaibi MM, Hussein MA, El-Shishtawy RM. Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability. Int J Mol Sci 2023; 24:ijms24031970. [PMID: 36768290 PMCID: PMC9915712 DOI: 10.3390/ijms24031970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Lipases are extensively utilized industrial biocatalysts that play an important role in various industrial and biotechnological applications. Herein, polyacrylonitrile (PAN) was treated with hexamethylene diamine (HMDA) and activated by glutaraldehyde, then utilized as a carrier support for Candida rugosa lipase. In this regard, the morphological structure of modified PAN before and after the immobilization process was evaluated using FTIR and SEM analyses. The immobilized lipase exhibited the highest activity at pH 8.0, with an immobilization yield of 81% and an activity of 91%. The optimal pH and temperature for free lipase were 7.5 and 40 °C, while the immobilized lipase exhibited its optimal activity at a pH of 8.0 and a temperature of 50 °C. After recycling 10 times, the immobilized lipase maintained 76% of its activity and, after 15 reuses, it preserved 61% of its activity. The lipase stability was significantly improved after immobilization, as it maintained 76% of its initial activity after 60 days of storage. The calculated Km values were 4.07 and 6.16 mM for free and immobilized lipase, and the Vmax values were 74 and 77 μmol/mL/min, respectively. These results demonstrated that synthetically modified PAN is appropriate for immobilizing enzymes and has the potential for commercial applications.
Collapse
Affiliation(s)
- Yasser M. Al Angari
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
| | - Maha M. Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or
| |
Collapse
|
24
|
Technical–Economic Assessment—The Missing Piece for Increasing the Attractiveness of Applied Biocatalysis in Ester Syntheses? Catalysts 2023. [DOI: 10.3390/catal13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although the current literature describes significant advances in biocatalytic ester syntheses, few industrial plants worldwide are currently producing esters using biocatalysts. Green and sustainable esters can be obtained via a biocatalytic route, including some operational advantages over conventional syntheses. An analysis of the literature revealed that most articles neglect or describe the economic issues generically, without quantitative information. Scaling-up studies are also scarce in this field. The main disadvantage of biocatalysis using immobilized lipases—their cost—has not been studied at the same level of depth as other technical aspects. This gap in the literature is less intense in enzymatic biodiesel production studies and, despite the lack of a strict correlation, enzymatic biodiesel commercial plants are relatively more common. Preliminary techno-economic assessments are crucial to identify and circumvent the economic drawbacks of biocatalytic ester syntheses, opening the way to broader application of this technology in a large-scale context.
Collapse
|
25
|
Semproli R, Simona Robescu M, Sangiorgio S, Pargoletti E, Bavaro T, Rabuffetti M, Cappelletti G, Speranza G, Ubiali D. From Lactose to Alkyl Galactoside Fatty Acid Esters as Non-Ionic Biosurfactants: A Two-Step Enzymatic Approach to Cheese Whey Valorization. Chempluschem 2023; 88:e202200331. [PMID: 36592040 DOI: 10.1002/cplu.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Indexed: 12/14/2022]
Abstract
A library of alkyl galactosides was synthesized to provide the "polar head" of sugar fatty acid esters to be tested as non-ionic surfactants. The enzymatic transglycosylation of lactose resulted in alkyl β-D-galactopyranosides, whereas the Fischer glycosylation of galactose afforded isomeric mixtures of α- and β-galactopyranosides and α- and β-galactofuranosides. n-Butyl galactosides from either routes were enzymatically esterified with palmitic acid, used as the fatty acid "tail" of the surfactant, giving the corresponding n-butyl 6-O-palmitoyl-galactosides. Measurements of interfacial tension and emulsifying properties of n-butyl 6-O-palmitoyl-galactosides revealed that the esters of galactopyranosides are superior to those of galactofuranosides, and that the enantiopure n-butyl 6-O-palmitoyl-β-D-galactoside, prepared by the fully enzymatic route, leads to the most stable emulsion. These results pave the way to the use of lactose-rich cheese whey as raw material for the obtainment of bio-based surfactants.
Collapse
Affiliation(s)
- Riccardo Semproli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Marina Simona Robescu
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Sara Sangiorgio
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Eleonora Pargoletti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Marco Rabuffetti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Giuseppe Cappelletti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| |
Collapse
|
26
|
Synthesis and Characterization of Magnetic Poly(STY-EGDMA) Particles for Application as Biocatalyst Support in Octyl Oleate Ester Synthesis: Kinetic and Thermodynamic Parameters and Mathematical Modeling. Catal Letters 2022. [DOI: 10.1007/s10562-022-04234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Zhu JP, Liang MY, Ma YR, White LV, Banwell MG, Teng Y, Lan P. Enzymatic synthesis of an homologous series of long- and very long-chain sucrose esters and evaluation of their emulsifying and biological properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
da Costa FP, Cipolatti EP, Furigo Junior A, Oliveira Henriques R. Nanoflowers: A New Approach of Enzyme Immobilization. CHEM REC 2022; 22:e202100293. [PMID: 35103373 DOI: 10.1002/tcr.202100293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Indexed: 01/15/2023]
Abstract
Enzymes are biocatalysts known for versatility, selectivity, and brand operating conditions compared to chemical catalysts. However, there are limitations to their large-scale application, such as the high costs of enzymes and their low stability under extreme reaction conditions. Immobilization techniques can efficiently solve these problems; nevertheless, most current methods lead to a significant loss of enzymatic activity and require several steps of activation and functionalization of the supports. In this context, a new form of immobilization has been studied: forming organic-inorganic hybrids between metal phosphates as inorganic parts and enzymes as organic parts. Compared to traditional immobilization methods, the advantages of these nanomaterials are high surface area, simplicity of synthesis, high stability, and catalytic activity. The current study presents an overview of organic-inorganic hybrid nanoflowers and their applications in enzymatic catalysis.
Collapse
Affiliation(s)
- Felipe Pereira da Costa
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| | - Eliane Pereira Cipolatti
- Department of Chemical Engineering, Federal Rural University of Rio de Janeiro - UFRRJ, Seropédica, RJ 23890-000, Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| |
Collapse
|
29
|
Nagy F, Sánta-Bell E, Jipa M, Hornyánszky G, Szilágyi A, László K, Katona G, Paizs C, Poppe L, Balogh-Weiser D. Cross-Linked Enzyme-Adhered Nanoparticles (CLEANs) for Continuous-Flow Bioproduction. CHEMSUSCHEM 2022; 15:e202102284. [PMID: 34913608 DOI: 10.1002/cssc.202102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Nanostructured but micro-sized biocatalysts were created by bottom-up technology using multi-functionalized silica nanoparticles (NPs) as nano-sized building blocks to form cross-linked enzyme-adhered nanoparticles (CLEANs) as robust micro-sized particles with beneficial internal structure and good mechanical properties. Systematic surface modification of NPs with a grafting mixture consisting of organosilanes with reactive (aminopropyl) and inert (e. g., vinyl, propyl, phenyl, or octyl) functions resulted in functional NPs enabling cross-linking agents, such as glutardialdehyde or bisepoxides (glycerol diglycidyl ether, neopentylglycol diglycidyl ether, and poly(propylene glycol) diglycidyl ether), to bind and cross-link enzymes covalently and to form macroporous microparticles. These CLEANs were able to diminish several weaknesses of traditional cross-linked enzyme aggregates as biocatalysts, such as poor mechanical resistance, difficult recovery, and storage, strengthening their use for packed-bed enzyme reactors. Lipase B from Candida antarctica (CaLB) was selected as model enzyme for development of robust CLEANs, which were successfully tested for various industrially relevant applications including a kinetic resolution of a racemic alcohol and the production of various natural fragrance compounds under continuous-flow conditions.
Collapse
Affiliation(s)
- Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Monica Jipa
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gabriel Katona
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| |
Collapse
|
30
|
Abstract
Lipases are versatile enzymes widely used in the pharmaceutical, cosmetic, and food industries. They are green biocatalysts with a high potential for industrial use compared to traditional chemical methods. In recent years, lipases have been used to synthesize a wide variety of molecules of industrial interest, and extraordinary results have been reported. In this sense, this review describes the important role of lipases in the synthesis of phytosterol esters, which have attracted the scientific community’s attention due to their beneficial effects on health. A systematic search for articles and patents published in the last 20 years with the terms “phytosterol AND esters AND lipase” was carried out using the Scopus, Web of Science, Scielo, and Google Scholar databases, and the results showed that Candida rugosa lipases are the most relevant biocatalysts for the production of phytosterol esters, being used in more than 50% of the studies. The optimal temperature and time for the enzymatic synthesis of phytosterol esters mainly ranged from 30 to 101 °C and from 1 to 72 h. The esterification yield was greater than 90% for most analyzed studies. Therefore, this manuscript presents the new technological approaches and the gaps that need to be filled by future studies so that the enzymatic synthesis of phytosterol esters is widely developed.
Collapse
|
31
|
Vilas Bôas RN, de Castro HF. A review of synthesis of esters with aromatic, emulsifying, and lubricant properties by biotransformation using lipases. Biotechnol Bioeng 2021; 119:725-742. [PMID: 34958126 DOI: 10.1002/bit.28024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/15/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
The esterification reactions catalyzed by lipases are among the most significant biochemical processes of industrial relevance. The lipases have the function of versatility by catalyzing a diversity of reactions with extreme ease, obtaining quality products with high yield. Therefore, enzyme-catalyzed esterification has gained increasing attention in many applications, due to the importance of derived products. More specifically, lipase-catalyzed esterification reactions have attracted interest in research over the past decade, due to the increased use of organic esters in the chemical and biotechnology industry. These esters can be obtained by three techniques: extraction from natural sources, chemical and enzymatic syntheses. Biotechnological processes have offered several advantages and are shown as a competitive alternative to chemical methods due to high catalytic efficiency, mild operating conditions, and selectivity of natural catalysts. These an industrial point of view, reactions catalyzed by enzymes are the most economical approach to achieve green products with no toxicity and no harm to human health. Thus, this review presents a descriptive evaluation of the trends and perspectives applied to enzymatic esterification, mainly for the synthesis of esters with different properties, such as aromatics, emulsifiers, and lubricants using the esterification process. An emphasis is given to essential factors, which affect the lipase-catalyzed esterification reaction. In which, the parameters dependent on the lipase source, a form of the biocatalyst (free or immobilized), the polarity of the reaction medium, the molar ratio between alcohol and acid, among other variables, are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Renata N Vilas Bôas
- Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Heizir F de Castro
- Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
32
|
Jaiswal KS, Rathod VK. Process Intensification of Enzymatic Synthesis of Flavor Esters: A Review. CHEM REC 2021; 22:e202100213. [PMID: 34859555 DOI: 10.1002/tcr.202100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
The conventional flavor synthesis method suffers from low yields, time inefficiency, and extreme reaction conditions. Therefore, there is a necessity for the green and novel synthesis approach to overcome these limitations. The current review presents a holistic insight into different aspects associated with the synthesis of flavor esters using the immobilized enzyme. The application of process intensification tools such as ultrasound and microwave irradiation can enhance the reaction efficiency because of higher product recovery, less formation of by-products, and decreased energy consumption. This review presents the process intensification of value-added flavor esters synthesis and the mechanism of ultrasound and microwave action on the enzyme to enhance the enzyme activity and increase the reaction rate. It also summarizes the role of process intensification in enzymatic flavor ester synthesis, followed by specific examples as reported in the literature.
Collapse
Affiliation(s)
- Kajal S Jaiswal
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India
| |
Collapse
|
33
|
Simplified Method to Optimize Enzymatic Esters Syntheses in Solvent-Free Systems: Validation Using Literature and Experimental Data. Catalysts 2021. [DOI: 10.3390/catal11111357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The adoption of biocatalysis in solvent-free systems is an alternative to establish a greener esters production. An interesting correlation between the acid:alcohol molar ratio and biocatalyst (immobilized lipase) loading in the optimization of ester syntheses in solvent-free systems had been observed and explored. A simple mathematical tool named Substrate-Enzyme Relation (SER) has been developed, indicating a range of reaction conditions that resulted in high conversions. Here, SER utility has been validated using data from the literature and experimental assays, totalizing 39 different examples of solvent-free enzymatic esterifications. We found a good correlation between the SER trends and reaction conditions that promoted high conversions on the syntheses of short, mid, or long-chain esters. Moreover, the predictions obtained with SER are coherent with thermodynamic and kinetics aspects of enzymatic esterification in solvent-free systems. SER is an easy-to-handle tool to predict the reaction behavior, allowing obtaining optimum reaction conditions with a reduced number of experiments, including the adoption of reduced biocatalysts loadings.
Collapse
|
34
|
Almeida FLC, Castro MPJ, Travália BM, Forte MBS. Erratum to “Trends in lipase immobilization: Bibliometric review and patent analysis” [Process Biochem. 110 (2021) 37–51]. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Almeida FLC, Castro MPJ, Travália BM, Forte MBS. Trends in lipase immobilization: Bibliometric review and patent analysis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
|
37
|
Wang X, Chen X, Sun S, Xu R. Enhancement of the hydrophilic feruloyl glycerol synthesis using A-35 as a catalyst and its functional characteristics. Food Funct 2021; 12:9763-9772. [PMID: 34664580 DOI: 10.1039/d1fo01559a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Feruloyl glycerol (FG) is the hydrophilic ester of ferulic acid (FA), which has a high solubility in water and a strong ability to resist ultraviolet (UV) radiation. In this work, several solid acids were used as novel economical catalysts and FA was used as a cheap substrate for FG preparation. The effects of reaction variables on the esterification of FA with glycerol were investigated and optimized by response surface methodology (RSM). Results showed that a cheap solid acid cation exchange resin A-35 showed the best performance for esterification. The reaction conditions were optimized by RSM as follows: 15 : 1 (glycerol/FA) substrate molar ratio and 14% catalyst loading at 90 °C for 7 h. The maximum FG yield (98.50 ± 0.58%) was achieved under the optimized conditions. The activation energy of the esterification was 53.71 kJ mol-1. The results of UV absorbance showed that FG had good anti-UV activity and photostability, which can be used as a potential antioxidant and UV absorber in food and sunscreen products.
Collapse
Affiliation(s)
- Xinying Wang
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, P. R. China.
| | - Xiaowei Chen
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, P. R. China.
| | - Shangde Sun
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, P. R. China.
| | - Rui Xu
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, P. R. China.
| |
Collapse
|
38
|
de Sousa RR, Pinto MCC, Aguieiras ECG, Cipolatti EP, Manoel EA, da Silva AS, Pinto JC, Freire DMG, Ferreira-Leitão VS. Comparative performance and reusability studies of lipases on syntheses of octyl esters with an economic approach. Bioprocess Biosyst Eng 2021; 45:131-145. [PMID: 34605995 DOI: 10.1007/s00449-021-02646-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
A suitable immobilized lipase for esters syntheses should be selected considering not only its cost. We evaluated five biocatalysts in syntheses of octyl caprylate, octyl caprate, and octyl laurate, in which conversions higher than 90% were achieved. Novozym® 435 and non-commercial preparations (including a dry fermented solid) were selected for short-term octyl laurate syntheses using different biocatalysts loadings. By increasing the biocatalyst's loading the lipase's reusability also raised, but without strict proportionality, which resulted in a convergence between the lowest biocatalyst loading and the lowest cost per batch. The use of a dry fermented solid was cost-effective, even using loadings as high as 20.0% wt/wt due to its low obtaining cost, although exhibiting low productiveness. The combination of biocatalyst's cost, esterification activity, stability, and reusability represents proper criteria for the choice. This kind of assessment may help to establish quantitative goals to improve or to develop new biocatalysts.
Collapse
Affiliation(s)
- Ronaldo Rodrigues de Sousa
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Martina Costa Cerqueira Pinto
- Federal University of Rio de Janeiro, Chemical Engineering Program, COPPE, Rio de Janeiro, RJ, 21941-972, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Erika Cristina Gonçalves Aguieiras
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Federal University of Rio de Janeiro Campus, UFRJ - Duque de Caxias, Prof. Geraldo Cidade, Duque de Caxias, RJ, 25240-005, Brazil
| | - Eliane Pereira Cipolatti
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Evelin Andrade Manoel
- Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Ayla Sant'Ana da Silva
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - José Carlos Pinto
- Federal University of Rio de Janeiro, Chemical Engineering Program, COPPE, Rio de Janeiro, RJ, 21941-972, Brazil
| | | | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil. .,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
39
|
Fabbri F, Bertolini FA, Guebitz GM, Pellis A. Biocatalyzed Synthesis of Flavor Esters and Polyesters: A Design of Experiments (DoE) Approach. Int J Mol Sci 2021; 22:ijms22168493. [PMID: 34445200 PMCID: PMC8395215 DOI: 10.3390/ijms22168493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
In the present work, different hydrolases were adsorbed onto polypropylene beads to investigate their activity both in short-esters and polyesters synthesis. The software MODDE® Pro 13 (Sartorius) was used to develop a full-factorial design of experiments (DoE) to analyse the thermostability and selectivity of the immobilized enzyme towards alcohols and acids with different chain lengths in short-esters synthesis reactions. The temperature optima of Candida antarctica lipase B (CaLB), Humicola insolens cutinase (HiC), and Thermobifida cellulosilytica cutinase 1 (Thc_Cut1) were 85 °C, 70 °C, and 50 °C. CaLB and HiC preferred long-chain alcohols and acids as substrate in contrast to Thc_Cut1, which was more active on short-chain monomers. Polymerization of different esters as building blocks was carried out to confirm the applicability of the obtained model on larger macromolecules. The selectivity of both CaLB and HiC was investigated and best results were obtained for dimethyl sebacate (DMSe), leading to polyesters with a Mw of 18 kDa and 6 kDa. For the polymerization of dimethyl adipate (DMA) with BDO and ODO, higher molecular masses were obtained when using CaLB onto polypropylene beads (CaLB_PP) as compared with CaLB immobilized on macroporous acrylic resin beads (i.e., Novozym 435). Namely, for BDO the Mn were 7500 and 4300 Da and for ODO 8100 and 5000 Da for CaLB_PP and for the commercial enzymes, respectively. Thc_Cut1 led to polymers with lower molecular masses, with Mn < 1 kDa. This enzyme showed a temperature optimum of 50 °C with 63% of DMA and BDO when compared to 54% and 27%, at 70 °C and at 85 °C, respectively.
Collapse
Affiliation(s)
- Filippo Fabbri
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; (F.F.); (F.A.B.); (G.M.G.)
| | - Federico A. Bertolini
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; (F.F.); (F.A.B.); (G.M.G.)
| | - Georg M. Guebitz
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; (F.F.); (F.A.B.); (G.M.G.)
- Austrian Centre of Industrial Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Alessandro Pellis
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; (F.F.); (F.A.B.); (G.M.G.)
- Correspondence: ; Tel.: +43-1-47654-35073
| |
Collapse
|
40
|
Nieto S, Villa R, Donaire A, Lozano P. Ultrasound-assisted enzymatic synthesis of xylitol fatty acid esters in solvent-free conditions. ULTRASONICS SONOCHEMISTRY 2021; 75:105606. [PMID: 34058635 PMCID: PMC8170488 DOI: 10.1016/j.ultsonch.2021.105606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 05/08/2023]
Abstract
A commercial immobilized lipase was successfully used for the synthesis of five xylityl acyl esters by means of the esterification of free fatty acids (caprylic, capric, lauric and myristic, respectively) with xylitol under solvent-free conditions. Ultrasound-assistance was shown to be a key tool to overcome the handicap imposed by both the mutual immiscibility of fatty acids and xylitol substrates, and the semisolid character of the initial reaction mixtures. In such semisolid systems, ultrasonic irradiation may enable the transport of substrate molecules to the enzyme catalytic-site, leading to the efficient synthesis of xylityl fatty ester (e.g. up to 95% yield after 90 min at 40 °C), with xylityl monoacyl ester and xylitol diacyl ester appearing as the main products (greater than 96%), assessed by HPLC and NMR analyses. The separation of products was carried out by heating and simple centrifugation of the reaction medium, which was possible due to different densities of the resulting fractions.
Collapse
Affiliation(s)
- Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología. Facultad de Química, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| | - Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología. Facultad de Química, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica. Facultad de Química, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología. Facultad de Química, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
41
|
Singh M, Ungku Faiz UZA, Gravelsins S, Suganuma Y, Kotoulas NK, Croxall M, Khan-Trottier A, Goh C, Dhirani AA. Glucose oxidase kinetics using MnO 2 nanosheets: confirming Michaelis-Menten kinetics and quantifying decreasing enzyme performance with increasing buffer concentration. NANOSCALE ADVANCES 2021; 3:3816-3823. [PMID: 36133026 PMCID: PMC9419709 DOI: 10.1039/d1na00311a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/16/2021] [Indexed: 06/16/2023]
Abstract
MnO2 nanosheets and ultraviolet-visible (UV-Vis) absorbance spectroscopy are used to study glucose oxidase (GOx) kinetics. Glucose oxidation by GOx produces H2O2, which rapidly decomposes the nanosheets and reduces their absorption. This direct approach for monitoring glucose oxidation enables simpler, real time kinetics analysis compared to methods that employ additional enzymes. Using this approach, the present study confirms that GOx kinetics is consistent with the Michaelis-Menten (MM) model, and reveals that the MM constant increases by an order of magnitude with increasing buffer concentration. Since larger MM constants imply higher enzyme substrate concentrations are required to achieve the same rate of product formation, increasing MM constants imply decreasing enzyme performance. These results demonstrate the facility of using MnO2 nanosheets to study GOx kinetics and, given the widespread applications of enzymes with buffers, the important sensitivity of enzyme-buffer systems on buffer concentration.
Collapse
Affiliation(s)
- Mahip Singh
- Department of Chemistry, University of Toronto Ontario Canada M5S 3H6
| | | | - Steven Gravelsins
- Department of Chemistry, University of Toronto Ontario Canada M5S 3H6
| | | | | | - Mark Croxall
- Department of Chemistry, University of Toronto Ontario Canada M5S 3H6
| | | | - Cynthia Goh
- Department of Chemistry, University of Toronto Ontario Canada M5S 3H6
| | - Al-Amin Dhirani
- Department of Chemistry, University of Toronto Ontario Canada M5S 3H6
- Department of Physics, University of Toronto Toronto Ontario Canada M5S 3H6
| |
Collapse
|
42
|
Sha F, Chen Y, Drout RJ, Idrees KB, Zhang X, Farha OK. Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents. iScience 2021; 24:102641. [PMID: 34151233 PMCID: PMC8192563 DOI: 10.1016/j.isci.2021.102641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 01/30/2023] Open
Abstract
Enzymes are promising catalysts with high selectivity and activity under mild reaction conditions. However, their practical application has largely been hindered by their high cost and poor stability. Metal-organic frameworks (MOFs) as host materials show potential in protecting proteins against denaturing conditions, but a systematic study investigating the stabilizing mechanism is still lacking. In this study, we stabilized enzyme cytochrome c (cyt c) by encapsulating it in a hierarchical mesoporous zirconium-based MOF, NU-1000 against denaturing organic solvents. Cyt c@NU-1000 showed a significantly enhanced activity compared to the native enzyme, and the composite retained this enhanced activity after treatment with five denaturing organic solvents. Moreover, the composite was recyclable without activity loss for at least three cycles. Our cyt c@NU-1000 model system demonstrates that enzyme@MOF composites prepared via post-synthetic encapsulation offer a promising route to overcome the challenges of enzyme stability and recyclability that impede the widespread adoption of biocatalysis.
Collapse
Affiliation(s)
- Fanrui Sha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yijing Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Riki J. Drout
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Karam B. Idrees
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
43
|
Tsouko E, Papadaki A, Papanikolaou S, Danezis GP, Georgiou CA, Freire DM, Koutinas A. Enzymatic production of isopropyl and 2-ethylhexyl esters using γ-linolenic acid rich fungal oil produced from spent sulphite liquor. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Jaiswal K, Saraiya S, Rathod VK. Intensification of Enzymatic Synthesis of Decyl Oleate Using Ultrasound in Solvent Free System: Kinetic, Thermodynamic and Physicochemical Study. J Oleo Sci 2021; 70:559-570. [PMID: 33814515 DOI: 10.5650/jos.ess20235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study evaluates the potential use of ultrasound irradiation to synthesize decyl oleate using Fermase CALBTM10000 under the solvent-free system (SFS). The optimal condition to achieve a maximum yield of 97.14% was found to be 1:2 oleic acid:decanol ratio, 1.8% (w/w) enzyme loading, 45°C temperature, 200 rpm agitation speed, 50 W power input, 50% duty cycle, 22 kHz frequency and reaction time of 25 minutes. The thermodynamic study was done to determine the change in entropy, Gibb's free energy, and change in enthalpy at various temperatures. The experimental results and kinetic study showed that the reaction followed ordered bi-bi model with kinetic parameters as rate of reaction (V max ) = 35.02 M/min/g catalyst, Michaelis constant for acid (K A ) = 34.47 M, Michaelis constant for alcohol (K B ) = 3.31 M, Inhibition constant (Ki) = 4542.4 M and sum of square error (SSE) = 0.000334. The application of ultrasound irradiation combined with biocatalyst and the absence of solvent intensified the process compared to the traditional stirring method using hexane as solvent.
Collapse
Affiliation(s)
- Kajal Jaiswal
- Department of Chemical Engineering, Institute of Chemical Technology
| | - Salonee Saraiya
- Department of Chemical Engineering, Institute of Chemical Technology
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology
| |
Collapse
|
45
|
Enzymatic Synthesis of Glucose Fatty Acid Esters Using SCOs as Acyl Group-Donors and Their Biological Activities. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sugar fatty acid esters, especially glucose fatty acid esters (GEs), have broad applications in food, cosmetic and pharmaceutical industries. In this research, the fatty acid moieties derived from polyunsaturated fatty acids containing single-cell oils (SCOs) (i.e., those produced from Cunninghamella echinulata, Umbelopsis isabellina and Nannochloropsis gaditana, as well as from olive oil and an eicosapentaenoic acid (EPA) concentrate) were converted into GEs by enzymatic synthesis, using lipases as biocatalysts. The GE synthesis was monitored using thin-layer chromatography, FTIR and in situ NMR. It was found that GE synthesis carried out using immobilized Candida antarctica B lipase was very effective, reaching total conversion of reactants. It was shown that EPA-GEs were very effective against several pathogenic bacteria and their activity can be attributed to their high EPA content. Furthermore, C. echinulata-GEs were more effective against pathogens compared with U. isabellina-GEs, probably due to the presence of gamma linolenic acid (GLA) in the lipids of C. echinulata, which is known for its antimicrobial activity, in higher concentrations. C. echinulata-GEs also showed strong insecticidal activity against Aedes aegypti larvae, followed by EPA-GEs, olive oil-GEs and N. gaditana-GEs. All synthesized GEs induced apoptosis of the SKOV-3 ovarian cancer cell line, with the apoptotic rate increasing significantly after 48 h. A higher percentage of apoptosis was observed in the cells treated with EPA-GEs, followed by C. echinulata-GEs, U. isabellina-GEs and olive oil-GEs. We conclude that SCOs can be used in the synthesis of GEs with interesting biological properties.
Collapse
|
46
|
Pongpamorn P, Kiattisewee C, Kittipanukul N, Jaroensuk J, Trisrivirat D, Maenpuen S, Chaiyen P. Carboxylic Acid Reductase Can Catalyze Ester Synthesis in Aqueous Environments. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pornkanok Pongpamorn
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
- National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang Pathum Thani 12120 Thailand
| | - Cholpisit Kiattisewee
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| | - Narongyot Kittipanukul
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| | - Juthamas Jaroensuk
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| | - Somchart Maenpuen
- Department of Biochemistry Faculty of Science Burapha University Chonburi 20131 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
47
|
Pongpamorn P, Kiattisewee C, Kittipanukul N, Jaroensuk J, Trisrivirat D, Maenpuen S, Chaiyen P. Carboxylic Acid Reductase Can Catalyze Ester Synthesis in Aqueous Environments. Angew Chem Int Ed Engl 2021; 60:5749-5753. [PMID: 33247515 DOI: 10.1002/anie.202013962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Indexed: 11/06/2022]
Abstract
Most of the well-known enzymes catalyzing esterification require the minimization of water or activated substrates for activity. This work reports a new reaction catalyzed by carboxylic acid reductase (CAR), an enzyme known to transform a broad spectrum of carboxylic acids into aldehydes, with the use of ATP, Mg2+ , and NADPH as co-substrates. When NADPH was replaced by a nucleophilic alcohol, CAR from Mycobacterium marinum can catalyze esterification under aqueous conditions at room temperature. Addition of imidazole, especially at pH 10.0, significantly enhanced ester production. In comparison to other esterification enzymes such as acyltransferase and lipase, CAR gave higher esterification yields in direct esterification under aqueous conditions. The scalability of CAR catalyzed esterification was demonstrated for the synthesis of cinoxate, an active ingredient in sunscreen. The CAR esterification offers a new method for green esterification under high water content conditions.
Collapse
Affiliation(s)
- Pornkanok Pongpamorn
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.,National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Cholpisit Kiattisewee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Narongyot Kittipanukul
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| |
Collapse
|
48
|
Gonçalves MCP, Romanelli JP, Guimarães JR, Vieira AC, de Azevedo BP, Tardioli PW. Reviewing research on the synthesis of CALB-catalyzed sugar esters incorporating systematic mapping principles. Crit Rev Biotechnol 2021; 41:865-878. [PMID: 33645353 DOI: 10.1080/07388551.2021.1888071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rigorous evidence reviews must follow specific guidelines designed to improve transparency, reproducibility, and to minimize biases to which traditional reviews are susceptible. While evidence synthesis methods, such as systematic reviews and maps, have been used in several research fields, the majority of reviews published in the realm of chemical engineering are nonsystematic. In this study, we incorporated principles of systematic mapping to conduct a literature review covering research on the synthesis of sugar fatty acid esters (SFAE) with Candida antarctica lipase B (CALB). Our results showed that the simple monosaccharides were the most cited sugars among studies we conducted. The direct use of renewable raw materials and frequently available resources to produce alternative sugar esters (SE) was scarcely reported in our data set. We found that free fatty acids (FFA) were the most commonly cited acyl donors amongst all publications, with lauric, oleic, and palmitic acids accounting for ∼43% of the occurrences. Tertiary alcohols (ter-butyl alcohol (T-but) and 2-methyl-2-butanol (2M2B)) and ionic liquids were the most used solvents to synthesize SE. The co-occurence analysis of keywords involving solvent terms showed that most of the papers evaluated different solvents as reaction media (mostly in the form of a bisolvent system), also investigating the impact of their choice on sugar ester productivities. Given the potential of reviews informing us of research decisions, this article reveals trends and spaces across CALB-catalyzed SE synthesis research, in addition to introducing a new methodological perspective for developing reviews in the field of chemical engineering.
Collapse
Affiliation(s)
| | - João Paulo Romanelli
- Laboratory of Ecology and Forest Restoration (LERF), Forest Sciences Department, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, Brazil
| | - José Renato Guimarães
- Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Ana Carolina Vieira
- Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Bruna Pereira de Azevedo
- Laboratory of Ecology and Forest Restoration (LERF), Forest Sciences Department, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, Brazil
| | - Paulo Waldir Tardioli
- Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
49
|
Nguyen PC, Nguyen MTT, Kim JH, Hong ST, Kim HL, Park JT. A novel maltoheptaose-based sugar ester having excellent emulsifying properties and optimization of its lipase-catalyzed synthesis. Food Chem 2021; 352:129358. [PMID: 33657484 DOI: 10.1016/j.foodchem.2021.129358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/18/2022]
Abstract
A novel maltoheptaose-palmitate ester (G7-PA) was synthesized and investigated for emulsion properties. First of all, the optimal conditions for lipase-catalyzed G7-PA synthesis, which were 0.2 of the G7/PA molar ratio, 33.5 U of immobilized CALB per 1 g of PA in 10% DMSO, were determined by response surface methodology. G7-PA was compared with the commercial sucrose-PA (S-PA) in terms of emulsion-forming ability and stability at extreme conditions. At the 0.1% surfactant concentration, G7-PA emulsion exhibited a droplet distribution similar to the 0.2% surfactant condition, while S-PA emulsion was quickly destabilized. G7-PA showed better emulsifying properties than the S-PA at the acidic condition (pH 3). Flocculation and phase separation was observed at the S-PA emulsion, but the G7-PA emulsion was stable for 7-day. In thermostability tests, G7-PA and S-PA both were stable up to the boiling temperature. Conclusively, G7-PA exhibits excellent properties as a biosurfactant in O/W emulsion compared with S-PA.
Collapse
Affiliation(s)
- Phu Cuong Nguyen
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - My Tuyen Thi Nguyen
- Department of Food Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; College of Agriculture, Can Tho University, Can Tho City 900000, Viet Nam
| | - Jae-Han Kim
- Department of Food Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soon-Taek Hong
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye-Lynn Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
50
|
Guajardo N, Domínguez de María P. Production of Bulk Chemicals with Biocatalysis: Drivers and Challenges Reflected in Recent Industrial Granted Patents (2015-2020). Molecules 2021; 26:molecules26030736. [PMID: 33572610 PMCID: PMC7867018 DOI: 10.3390/molecules26030736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
The application of biocatalysis and White Biotechnology tools in chemical areas concerning the production of bulk compounds and other related low-added value products (with high volumes) has been gaining importance in recent years. The expected drivers of biocatalysis for these sectors are energy savings, regioselectivity (leading to cleaner products), the possibility of using thermolabile substrates, as well as the generation of less by-products and manageable wastes. This paper explores some recent industrial granted patents related to biocatalysis and bulk chemicals. Several patents have been identified in fields such as biodiesel and esterification reactions, and sugar or furan chemistry. Overall, innovative strategies involve the identification of novel enzymes, the set-up of improved immobilization methods, as well as novel reactor designs that can offer improved performances and economics. The reported examples indicate that biocatalysis can certainly offer opportunities for these areas as well, far from the typical pharmaceutical and fine chemical applications often reported in the literature.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago de Chile 8940000, Chile
- Correspondence:
| | | |
Collapse
|