1
|
Sreekumar A, Nair AR, Raksha C, Swayamprabha SS, Sivan A. An Intervention into the Diverse Utilities of Fluorenes: A Brobdingnagian Family. Top Curr Chem (Cham) 2024; 383:4. [PMID: 39680345 DOI: 10.1007/s41061-024-00485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2024] [Indexed: 12/17/2024]
Abstract
The keyword "Fluorene" search in SciFinder found more than 57,000 results, including high-impact journal articles, review articles, patents, books, proceedings, etc. Against this background, a detailed enquiry has been made by our group on various classes of fluorenes and their relevancy. For the past several decades, fluorene and its related compounds have experienced extensive studies, which are attributed to the vast range of applications they possess in various fields like sensors, polymers, OLED devices and even in the pharmaceutical industries. Since fluorene is an important member of the 'polyaromatic-hydrocarbon' family and has proved its relevancy in multidisciplinary areas, summarising those milestones might be worthwhile for future researchers. Here, we intend to highlight the key applications of fluorene derivatives in the form of a review article and have put much effort into consolidating some of their most imperative applications, including those in sensors and medicinal, optoelectronic and electrochemical fields. The manuscript divides the fluorene family into multiple subclasses, counting mono- and polyfluorenes, spirofluorenes, silicon-cored fluorenes, indenofluorenes, etc., based on their structure, and portrays all the critical properties of each class. Since fluorenes are globally accepted as outstanding candidates for numerous applications and practicalities, our effort may find crucial acceptance in the near future.
Collapse
Affiliation(s)
- Anjana Sreekumar
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, 690525, India
| | - Ajil R Nair
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, 690525, India
| | - C Raksha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, 690525, India
| | | | - Akhil Sivan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, 690525, India.
| |
Collapse
|
2
|
Karakurt O, Oral P, Hacioglu SO, Yılmaz EA, Haciefendioğlu T, Bicer UI, Ozcelik E, Ozsoy GH, Yildirim E, Toppare LK, Cirpan A. Design, Synthesis, and Theoretical Studies on the Benzoxadiazole and Thienopyrrole Containing Conjugated Random Copolymers for Organic Solar Cell Applications. Macromol Rapid Commun 2024; 45:e2400343. [PMID: 39031942 DOI: 10.1002/marc.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Indexed: 07/22/2024]
Abstract
In this study, six different donor-π-acceptor1-π-donor-acceptor2 type random co-polymers containing benzodithiophene as a donor, benzooxadiazole (BO), and thieno[3,4-c]pyrrole-4,6-dione (TPD) as acceptor, have been synthesized and characterized. In addition to the acceptor core ratio at different values, the effect of aromatic bridge structures on the optical, electronic, and photovoltaic properties of six different random co-polymers is investigated by using thiophene and selenophene structures as aromatic bridge units. To investigate how the acceptor unit ratio and replacement of aromatic bridge units impact the structural, electronic, and optical properties of the polymers, density functional theory (DFT) calculations are carried out for the tetramer models. The open-circuit voltage (VOC), which is strongly correlated with the HOMO levels of the donor material, is enhanced with the increasing ratio of the TPD moiety. On the other hand, the short-circuit current (JSC), which is associated with the absorption ability of the donor material, is improved by the increasing ratio of BO moiety with the π-bridges. BO moiety dominant selenophene π-bridged co-polymer (P4) showed the best performance with a power conversion efficiency (PCE) of 6.26%, a JSC of 11.44 mA cm2, a VOC of 0.80 V, and a fill factor (FF) of 68.81%.
Collapse
Affiliation(s)
- Oguzhan Karakurt
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Pelin Oral
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
| | - Serife Ozdemir Hacioglu
- Department of Basic Sciences of Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, 31200, Turkey
| | - Eda Alemdar Yılmaz
- National Institute of Materials Physics, Laboratory of Functional Nanostructures, Atomistilor 405A, Magurele, 077125, Romania
| | - Tuğba Haciefendioğlu
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Umran Isil Bicer
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Egemen Ozcelik
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Erol Yildirim
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
| | - Levent Kamil Toppare
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Ali Cirpan
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
- ODTU GUNAM, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
3
|
Bhattacharjee R, Kertesz M. Continuous Topological Transition and Bandgap Tuning in Ethynylene-Linked Acene π-Conjugated Polymers through Mechanical Strain. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1395-1404. [PMID: 38375000 PMCID: PMC10876101 DOI: 10.1021/acs.chemmater.3c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
By variation of the chemical repeat units of conjugated polymers, only discrete tuning of essential physical parameters is possible. A unique property of a class of π-conjugated polymers, where polycyclic aromatic hydrocarbons are linked via ethynylene linkers, is their topological aromatic to quinoid phase transition discovered recently by Cirera et al. and González-Herrero et al., which is controllable in discrete steps by chemical variations. We have discovered by means of density functional theory computations that such a phase transition can be achieved by applying continuous variations of longitudinal strain, allowing us to tune the bond length alternation and bandgap. At a specific strain value, the bandgap becomes zero due to an orbital level crossing between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Our hypothesis provides a perspective on the design of organic electronic materials and provides a novel insight into the properties of a continuous phase transition in topological semiconducting polymers.
Collapse
Affiliation(s)
- Rameswar Bhattacharjee
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
4
|
Al-Azzawi AGS, Aziz SB, Dannoun EMA, Iraqi A, Nofal MM, Murad AR, M. Hussein A. A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells. Polymers (Basel) 2022; 15:polym15010164. [PMID: 36616512 PMCID: PMC9853510 DOI: 10.3390/polym15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
This review article covers the synthesis and design of conjugated polymers for carefully adjusting energy levels and energy band gap (EBG) to achieve the desired photovoltaic performance. The formation of bonds and the delocalization of electrons over conjugated chains are both explained by the molecular orbital theory (MOT). The intrinsic characteristics that classify conjugated polymers as semiconducting materials come from the EBG of organic molecules. A quinoid mesomeric structure (D-A ↔ D+ = A-) forms across the major backbones of the polymer as a result of alternating donor-acceptor segments contributing to the pull-push driving force between neighboring units, resulting in a smaller optical EBG. Furthermore, one of the most crucial factors in achieving excellent performance of the polymer is improving the morphology of the active layer. In order to improve exciton diffusion, dissociation, and charge transport, the nanoscale morphology ensures nanometer phase separation between donor and acceptor components in the active layer. It was demonstrated that because of the exciton's short lifetime, only small diffusion distances (10-20 nm) are needed for all photo-generated excitons to reach the interfacial region where they can separate into free charge carriers. There is a comprehensive explanation of the architecture of organic solar cells using single layer, bilayer, and bulk heterojunction (BHJ) devices. The short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) all have a significant impact on the performance of organic solar cells (OSCs). Since the BHJ concept was first proposed, significant advancement and quick configuration development of these devices have been accomplished. Due to their ability to combine great optical and electronic properties with strong thermal and chemical stability, conjugated polymers are unique semiconducting materials that are used in a wide range of applications. According to the fundamental operating theories of OSCs, unlike inorganic semiconductors such as silicon solar cells, organic photovoltaic devices are unable to produce free carrier charges (holes and electrons). To overcome the Coulombic attraction and separate the excitons into free charges in the interfacial region, organic semiconductors require an additional thermodynamic driving force. From the molecular engineering of conjugated polymers, it was discovered that the most crucial obstacles to achieving the most desirable properties are the design and synthesis of conjugated polymers toward optimal p-type materials. Along with plastic solar cells (PSCs), these materials have extended to a number of different applications such as light-emitting diodes (LEDs) and field-effect transistors (FETs). Additionally, the topics of fluorene and carbazole as donor units in conjugated polymers are covered. The Stille, Suzuki, and Sonogashira coupling reactions widely used to synthesize alternating D-A copolymers are also presented. Moreover, conjugated polymers based on anthracene that can be used in solar cells are covered.
Collapse
Affiliation(s)
- Ahmed G. S. Al-Azzawi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
- Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul 00964, Iraq
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq
- The Development Center for Research and Training (DCRT), University of Human Development, Sulaimani 46001, Iraq
- Correspondence: (S.B.A.); (A.I.)
| | - Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Ahmed Iraqi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
- Correspondence: (S.B.A.); (A.I.)
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq
| | - Ahang M. Hussein
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq
| |
Collapse
|
5
|
Agneeswari R, Ahn Y, Tamilavan V, Shin I, Shin C, Park SH, Jin Y. Dialkyl‐fluoroquinoxaline–based polymeric donor for binary and ternary organic solar cell applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rajalingam Agneeswari
- Department of Industrial Chemistry Pukyong National University Busan Republic of Korea
| | - Yoomi Ahn
- Department of Physics Pukyong National University Busan Republic of Korea
| | | | - Insoo Shin
- Department of Physics Pukyong National University Busan Republic of Korea
| | - Chnan‐gi Shin
- Department of Industrial Chemistry Pukyong National University Busan Republic of Korea
| | - Sung Heum Park
- Department of Physics Pukyong National University Busan Republic of Korea
| | - Youngeup Jin
- Department of Industrial Chemistry Pukyong National University Busan Republic of Korea
| |
Collapse
|
6
|
Joseph JP, Abraham SR, Dutta A, Baev A, Swihart MT, Prasad PN. Modulating the Chiroptical Response of Chiral Polymers with Extended Conjugation within the Structural Building Blocks. J Phys Chem Lett 2022; 13:9085-9095. [PMID: 36154023 DOI: 10.1021/acs.jpclett.2c02498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Advancing the emerging area of chiral photonics requires modeling-guided concepts of chiral material design to enhance optical activity and associated optical rotatory dispersion. Herein, we introduce conformational engineering achieved by tuning polymer backbone conjugation through introduction of thiophene structural units in a chiral fluorene polymer backbone. Our theoretical calculations reveal a relationship between the structural conformation and the resultant rotational strength. We further synthesize a series of chiral fluorene-based polymers copolymerized with thiophene whose optical chirality trend is in qualitative agreement with predictions of our quantum chemical calculations. Varying the number of thiophene units in the monomer building block allows us to modulate the rotational strength by tuning the intrafibril helicity of single-stranded polymer chains, whereby the monomer conjugation is retained throughout the whole length of the polymer backbone. Our design concept delineates an underexamined approach: the concept of tuning backbone conjugation and helicity within the main chain to enhance the optical activity of chiral polymer systems.
Collapse
Affiliation(s)
- Jojo P Joseph
- Department of Chemistry and The Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Shema R Abraham
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Avisek Dutta
- Department of Chemistry and The Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Alexander Baev
- Department of Chemistry and The Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Paras N Prasad
- Department of Chemistry and The Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Pigot C, Brunel D, Dumur F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022; 27:5976. [PMID: 36144711 PMCID: PMC9501146 DOI: 10.3390/molecules27185976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity, bioimaging to electronics or photopolymerization. In this review, an overview of the different chemical reactions enabling access to this scaffold but also to the most common derivatives of indane-1,3-dione are presented. Parallel to this, the different applications in which indane-1,3-dione-based structures have been used are also presented, evidencing the versatility of this structure.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
8
|
Li L, Meng F, Zhang M, Zhang Z, Zhao D. Revisiting the Dithienophthalimide Building Block: Improved Synthetic Method Yielding New High‐Performance Polymer Donors for Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202206311. [DOI: 10.1002/anie.202206311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lianghui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Zhi‐Guo Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
9
|
Li L, Meng F, Zhang M, Zhang ZG, Zhao D. Revisiting the Dithenophthalimide Building Block: Improved Synthetic Method Yielding New High‐Performance Polymer Donors of Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lianghui Li
- Nankai University College of Chemistry Chemistry CHINA
| | - Fei Meng
- Nankai University College of Chemistry Chemistry CHINA
| | - Ming Zhang
- Beijing University of Chemical Technology Chemistry and Chemical Engineering CHINA
| | - Zhi-Guo Zhang
- Beijing University of Chemical Technology Chemistry and Chemical Engineering CHINA
| | - Dongbing Zhao
- Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Weijin Rd. 94 300071 Tianjin CHINA
| |
Collapse
|
10
|
Bary G, Ghani L, Jamil MI, Arslan M, Ahmed W, Ahmad A, Sajid M, Ahmad R, Huang D. Designing small organic non-fullerene acceptor molecules with diflorobenzene or quinoline core and dithiophene donor moiety through density functional theory. Sci Rep 2021; 11:19683. [PMID: 34608168 PMCID: PMC8490382 DOI: 10.1038/s41598-021-97662-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
The non-fullerene acceptors A1-A5 with diflourobenzene or quinoline core (bridge) unit, donor cyclopenta[1,2-b:3,4-b']dithiophene unit and 2-(2-methylene-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile as acceptor unit with additional phenyl, fulvene or thieno[3,2-d]pyrimidinyl 5-oxide groups have been designed through DFT calculations. The optimization of molecular geometries were performed with density functional theory (DFT) at B3LYP 6-31G (d,p) level of theory. The frontier molecular orbital (FMO) energies, band gap energies and dipole moments (ground and excited state) have been calculated to probe the photovoltaic properties. The band gap (1.42-2.01 eV) and dipole moment values (5.5-18. Debye) showed that these designed acceptors are good candidates for organic solar cells. Time-Dependent Density Functional Theory (TD-DFT) results showed λmax (wave length at maximum absorption) value (611-837 nm), oscillator strength (f) and excitation energies (1.50-2.02 eV) in gas phase and in CHCl3 solvent (1.48-1.89 eV) using integral equation formalism variant (IEFPCM) model. The λmax in CHCl3 showed marginal red shift for all designed acceptors compared with gas phase absorption. The partial density of states (PDOS) has been plotted by using multiwfn which showed that all the designed molecules have more electronic distribution at the donor moiety and lowest at the central bridge. The reorganization energies of electron (λe) (0.0007 eV to 0.017 eV), and the hole reorganization energy values (0.0003 eV to - 0.0403 eV) were smaller which suggested that higher charged motilities. The blends of acceptors A1-A5 with donor polymer D1 provided open circuit voltage (Voc) and ∆HOMO off-set of the HOMO of donor and acceptors. These blends showed 1.04 to 1.5 eV values of Voc and 0 to 0.38 eV ∆HOMO off set values of the donor-acceptor bends which indicate improved performance of the cell. Finally, the blend of D1-A4 was used for the study of distribution of HOMO and LUMO. The HOMO were found distributed on the donor polymer (D1) while the A4 acceptor was found with LUMO distribution. Based on λmax values, and band gap energies (Eg), excitation energies (Ex), reorganization energies; the A3 and A4 will prove good acceptor molecules for the development of organic solar cells.
Collapse
Affiliation(s)
- Ghulam Bary
- Faculty of Science, Yibin University, Yibin, 644000, Sichuan, China.
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Muhammad Imran Jamil
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Muhammad Arslan
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Waqar Ahmed
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea.
- Chemistry Department, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Anees Ahmad
- Chemistry Department, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Riaz Ahmad
- Faculty of Science, Yibin University, Yibin, 644000, Sichuan, China
| | - Duohui Huang
- Faculty of Science, Yibin University, Yibin, 644000, Sichuan, China
| |
Collapse
|
11
|
Abstract
The development of degradable polymers has commanded significant attention over the past half century. Approaches have predominantly relied on ring-opening polymerization of cyclic esters (e.g., lactones, lactides) and N-carboxyanhydrides, as well as radical ring-opening polymerizations of cyclic ketene acetals. In recent years, there has been a significant effort applied to expand the family of degradable polymers accessible via olefin metathesis polymerization. Given the excellent functional group tolerance of olefin metathesis polymerization reactions generally, a broad range of conceivable degradable moieties can be incorporated into appropriate monomers and thus into polymer backbones. This approach has proven particularly versatile in synthesizing a broad spectrum of degradable polymers including poly(ester), poly(amino acid), poly(acetal), poly(carbonate), poly(phosphoester), poly(phosphoramidate), poly(enol ether), poly(azobenzene), poly(disulfide), poly(sulfonate ester), poly(silyl ether), and poly(oxazinone) among others. In this review, we will highlight the main olefin metathesis polymerization strategies that have been used to access degradable polymers, including (i) acyclic diene metathesis polymerization, (ii) entropy-driven and (iii) enthalpy-driven ring-opening metathesis polymerization, as well as (iv) cascade enyne metathesis polymerization. In addition, the livingness or control of polymerization reactions via different strategies are highlighted and compared. Potential applications, challenges and future perspectives of this new library of degradable polyolefins are discussed. It is clear from recent and accelerating developments in this field that olefin metathesis polymerization represents a powerful synthetic tool towards degradable polymers with novel structures and properties inaccessible by other polymerization approaches.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering,
Department of Biomedical Engineering, Department of Pharmacology, Chemistry of Life
Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
12
|
Na J, Chang R. Morphological Stability of Organic Photovoltaics:
Coarse‐grained
Molecular Dynamics Simulation Studies. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jihye Na
- Department of Chemistry Kwangwoon University Seoul 01897 Republic of Korea
| | - Rakwoo Chang
- Department of Applied Chemistry University of Seoul Seoul 02504 Republic of Korea
| |
Collapse
|
13
|
Non-equivalent D-A copolymerization strategy towards highly efficient polymer donor for polymer solar cells. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9988-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Du F, Wang H, Zhang Z, Yang L, Cao J, Yu J, Tang W. An unfused-ring acceptor with high side-chain economy enabling 11.17% as-cast organic solar cells. MATERIALS HORIZONS 2021; 8:1008-1016. [PMID: 34821331 DOI: 10.1039/d0mh01585g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Side-chain engineering on nonfullerene acceptors (NFAs) is crucial for modulating their solubility and crystallinity as well as packing behaviours in active layers to pursue high-performance organic solar cells (OSCs). High weight ratios of side chains are generally used by NFAs for the desired device efficiencies. Side-chain economy has seldom been discussed despite increased cost and difficulties in synthesis when optimizing the molecular design. Herein, we introduce 7H-dibenzo[c,g]carbazole (DCB) as an electron-donating core to design unfused-ring acceptors (UFAs) with a dramatically low weight ratio of side chains. DCB-4F has thus been designed and compared with the carbazole cored analogue (CB-4F). The unique conformation of the DCB core endows DCB-4F with higher solubility (8.2 mg mL-1 in chloroform) compared to CB-4F (2.2 mg mL-1) when using the same side chains. Featuring a lowest unoccupied molecular orbital (LUMO) level of -3.86 eV and an optical bandgap of 1.55 eV, the DCB-4F film exhibits an absorption profile (maximum 667 nm) complementary to polymer donor PM6. The PM6:DCB-4F as-cast OSCs deliver a power conversion efficiency (PCE) of 9.56% with a high open-circuit voltage (VOC) of 1.00 V. By adding 10 wt% PC71BM into the casting solutions, a greatly improved PCE of 11.17% is readily achieved, which is one of the highest PCEs for as-cast single-junction UFA-based devices. The PM6:DCB-4F based blends show homogeneous nano-fiberous morphology and higher hydrophobicity. The design of conformation-tuned NFAs using sterically hindered DCB-like cores is promising to achieve highly efficient as-cast OSCs.
Collapse
Affiliation(s)
- Fuqiang Du
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
R. Murad A, Iraqi A, Aziz SB, Hi H, N. Abdullah S, Brza MA, Abdulwahid RT. Influence of Fluorine Substitution on the Optical, Thermal, Electrochemical and Structural Properties of Carbazole-Benzothiadiazole Dicarboxylic Imide Alternate Copolymers. Polymers (Basel) 2020; 12:E2910. [PMID: 33291677 PMCID: PMC7761964 DOI: 10.3390/polym12122910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
In this work four novel donor-acceptor copolymers, PCDTBTDI-DMO, PCDTBTDI-8, P2F-CDTBTDI-DMO and P2F-CDTBTDI-8, were designed and synthesised via Suzuki polymerisation. The first two copolymers consist of 2,7-carbazole flanked by thienyl moieties as the electron donor unit and benzothiadiazole dicarboxylic imide (BTDI) as electron acceptor units. In the structures of P2F-CDTBTDI-DMO and P2F-CDTBTDI-8 copolymers, two fluorine atoms were incorporated at 3,6-positions of 2,7-carbazole to investigate the impact of fluorine upon the optoelectronic, structural and thermal properties of the resulting polymers. P2F-CDTBTDI-8 possesses the highest number average molecular weight (Mn = 24,200 g mol-1) among all the polymers synthesised. PCDTBTDI-DMO and PCDTBTDI-8 show identical optical band gaps of 1.76 eV. However, the optical band gaps of fluorinated copolymers are slightly higher than non-fluorinated counterparts. All polymers have deep-lying highest occupied molecular orbital (HOMO) levels. Changing the alkyl chain substituents on BTDI moieties from linear n-octyl to branched 3,7-dimethyloctyl groups as well as substituting the two hydrogen atoms at 3,6-positions of carbazole unit by fluorine atoms has negligible impact on the HOMO levels of the polymers. Similarly, the lowest unoccupied molecular orbital (LUMO) energy levels are almost comparable for all polymers. Thermogravimetric analysis (TGA) has shown that all polymers have good thermal stability and also confirmed that the fluorinated copolymers have higher thermal stability relative to those non-fluorinated analogues. Powder X-ray diffraction (XRD) studies proved that all polymers have an amorphous nature in the solid state.
Collapse
Affiliation(s)
- Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq;
| | - Ahmed Iraqi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK; (A.I.); (H.H.)
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Hunan Hi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK; (A.I.); (H.H.)
| | - Sozan N. Abdullah
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - M. A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Physics, College of Education, Old Campus, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq
| |
Collapse
|
16
|
Shmilovich K, Mansbach RA, Sidky H, Dunne OE, Panda SS, Tovar JD, Ferguson AL. Discovery of Self-Assembling π-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation. J Phys Chem B 2020; 124:3873-3891. [PMID: 32180410 DOI: 10.1021/acs.jpcb.0c00708] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronically active organic molecules have demonstrated great promise as novel soft materials for energy harvesting and transport. Self-assembled nanoaggregates formed from π-conjugated oligopeptides composed of an aromatic core flanked by oligopeptide wings offer emergent optoelectronic properties within a water-soluble and biocompatible substrate. Nanoaggregate properties can be controlled by tuning core chemistry and peptide composition, but the sequence-structure-function relations remain poorly characterized. In this work, we employ coarse-grained molecular dynamics simulations within an active learning protocol employing deep representational learning and Bayesian optimization to efficiently identify molecules capable of assembling pseudo-1D nanoaggregates with good stacking of the electronically active π-cores. We consider the DXXX-OPV3-XXXD oligopeptide family, where D is an Asp residue and OPV3 is an oligophenylenevinylene oligomer (1,4-distyrylbenzene), to identify the top performing XXX tripeptides within all 203 = 8000 possible sequences. By direct simulation of only 2.3% of this space, we identify molecules predicted to exhibit superior assembly relative to those reported in prior work. Spectral clustering of the top candidates reveals new design rules governing assembly. This work establishes new understanding of DXXX-OPV3-XXXD assembly, identifies promising new candidates for experimental testing, and presents a computational design platform that can be generically extended to other peptide-based and peptide-like systems.
Collapse
Affiliation(s)
- Kirill Shmilovich
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Rachael A Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hythem Sidky
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Olivia E Dunne
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Sayak Subhra Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Weber R, McCullagh M. The Role of Hydrophobicity in the Stability and pH-Switchability of (RXDX) 4 and Coumarin-(RXDX) 4 Conjugate β-Sheets. J Phys Chem B 2020; 124:1723-1732. [PMID: 32045245 DOI: 10.1021/acs.jpcb.0c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
pH-Switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X = Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)4 systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X = Ala are found to be unstable at both pHs, while conjugates with X = Val, Leu, Ile, and Phe are found to form stable β-sheets at least at neutral pH. The coumarin-(RFDF)4 conjugate is found to have the largest relative entropy value of 0.884 ± 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)4 containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.
Collapse
Affiliation(s)
- Ryan Weber
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074, United States
| |
Collapse
|
18
|
Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101175] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Thurston BA, Shapera EP, Tovar JD, Schleife A, Ferguson AL. Revealing the Sequence-Structure-Electronic Property Relation of Self-Assembling π-Conjugated Oligopeptides by Molecular and Quantum Mechanical Modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15221-15231. [PMID: 31657579 DOI: 10.1021/acs.langmuir.9b02593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled nanoaggregates of π-conjugated synthetic peptides present a biocompatible and highly tunable alternative to silicon-based optical and electronic materials. Understanding the relationship between structural morphology and electronic properties of these assemblies is critical for understanding and controlling their mechanical, optical, and electronic responses. In this work, we combine all-atom classical molecular simulations with quantum mechanical electronic structure calculations to ascertain the sequence-structure-electronic property relationship within a family of Asp-X-X-quaterthiophene-X-X-Asp (DXX-OT4-XXD) oligopeptides in which X is one of the five amino acids {Ala, Phe, Gly, Ile, Val} ({A, F, G, I, V}). Molecular dynamics simulations reveal that smaller amino acid substituents (A, G) favor linear stacking within a peptide dimer, whereas larger groups (F, I, V) induce larger twist angles between the peptides. Density functional theory calculations on the dimer show the absorption spectrum to be dominated by transitions between carbon and sulfur p orbitals. Although the absorption spectrum is largely insensitive to the relative twist angle, the highest occupied molecular orbital strongly localizes onto one molecule within the dimer at large twist angles, impeding the efficiency of transport between molecules. Our results provide a fundamental understanding of the relation between peptide orientation and electronic structure and offer design precepts for rational engineering of these systems.
Collapse
Affiliation(s)
- Bryce A Thurston
- Center for Integrated Nanotechnologies , Sandia National Laboratories , P.O. Box 5800, Albuquerque , New Mexico 87185 , United States
| | - Ethan P Shapera
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - John D Tovar
- Department of Chemistry, Krieger School of Arts and Sciences , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Institute for NanoBioTechnology , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Department of Materials Science and Engineering, Whiting School of Engineering , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - André Schleife
- Department of Materials Science and Engineering , 1304 West Green Street , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Materials Research Laboratory , University of Illinois at Urbana-Champaign , 104 South Goodwin Avenue , Urbana , Illinois 61801 , United States
- National Center for Supercomputing Applications , University of Illinois at Urbana-Champaign , 1205 West Clark Street , Urbana , Illinois 61801 , United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering , University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| |
Collapse
|
20
|
Zhang S, Ma L, Ye L, Qin Y, Xu Y, Liu X, Wu Y, Zhao W, Ade H, Yao H, Hou J. Modulation of Building Block Size in Conjugated Polymers with D–A Structure for Polymer Solar Cells. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shaoqing Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Long Ye
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yunpeng Qin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yi Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Wenchao Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Harald Ade
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianhui Hou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Cruz H, Law YY, Guest JS, Rabaey K, Batstone D, Laycock B, Verstraete W, Pikaar I. Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11066-11079. [PMID: 31483625 DOI: 10.1021/acs.est.9b00603] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Throughout the 20th century, the prevailing approach toward nitrogen management in municipal wastewater treatment was to remove ammonium by transforming it into dinitrogen (N2) using biological processes such as conventional activated sludge. While this has been a very successful strategy for safeguarding human health and protecting aquatic ecosystems, the conversion of ammonium into its elemental form is incompatible with the developing circular economy of the 21st century. Equally important, the activated sludge process and other emerging ammonium removal pathways have several environmental and technological limitations. Here, we assess that the theoretical energy embedded in ammonium in domestic wastewater represents roughly 38-48% of the embedded chemical energy available in the whole of the discharged bodily waste. The current routes for ammonium removal not only neglect the energy embedded in ammonium, but they can also produce N2O, a very strong greenhouse gas, with such emissions comprising the equivalent of 14-26% of the overall carbon footprint of wastewater treatment plants. N2O emissions often exceed the carbon emissions related to the electricity consumption for the process requirements of WWTPs. Considering these limitations, there is a need to develop alternative ammonium management approaches that center around recovery of ammonium from domestic wastewater rather than deal with its "destruction" into elemental dinitrogen. Current ammonium recovery techniques are applicable only at orders of magnitude above domestic wastewater strength, and so new techniques based on physicochemical adsorption are of particular interest. A new pathway is proposed that allows for mainstream ammonium recovery from wastewater based on physicochemical adsorption through development of polymer-based adsorbents. Provided adequate adsorbents corresponding to characteristics outlined in this paper are designed and brought to industrial production, this adsorption-based approach opens perspectives for mainstream continuous adsorption coupled with side-stream recovery of ammonium with minimal chemical requirements. This proposed pathway can bring forward an effective resource-oriented approach to upgrade the fate of ammonium in urban water management without generating hidden externalized environmental costs.
Collapse
Affiliation(s)
- Heidy Cruz
- School of Civil Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Ying Yu Law
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , 637551 , Singapore
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Illinois 61801 , United States
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Damien Batstone
- Advanced Water Management Centre , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Bronwyn Laycock
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Ilje Pikaar
- School of Civil Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
22
|
Ledwon P, Wiosna-Salyga G, Chapran M, Motyka R. The Effect of Acceptor Structure on Emission Color Tuning in Organic Semiconductors with D-π-A-π-D Structures. NANOMATERIALS 2019; 9:nano9081179. [PMID: 31426483 PMCID: PMC6724117 DOI: 10.3390/nano9081179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
A series of novel donor-acceptor D-π-A-π-D compounds were synthesized and characterized in order to determine the influence of different acceptor units on their properties. The introduction of acceptor moieties had a direct impact on the HOMO and LUMO energy levels. Fluorescence spectra of compounds can be changed by the choice of an appropriate acceptor and were shifted from the green to the near-infrared part of spectra. Due to observed concentration induced emission quenching, the green exciplex type host was used to evaluate the potential of synthesized molecules as emitters in organic light emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Przemyslaw Ledwon
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Gabriela Wiosna-Salyga
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Marian Chapran
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radoslaw Motyka
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
23
|
Impact of side-chain extension on physical and electronic properties of cross-conjugated Poly(thienylene vinylene)s (PTVs). POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Wang X, Tang A, Chen F, Zhou E. Side-chain effect in ethenylene fused thiophene-vinylene-thiophene (ETVT) based photovoltaic polymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Synthesis and properties of copolyarylenes containing indolo[3,2-b]carbazole moieties in the backbone. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-018-1693-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Nazari M, Cieplechowicz E, Welsh TA, Welch GC. A direct comparison of monomeric vs. dimeric and non-annulated vs. N-annulated perylene diimide electron acceptors for organic photovoltaics. NEW J CHEM 2019. [DOI: 10.1039/c8nj06491a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic structure–property-function evaluation of four structurally related organic photoactive materials based on the perylene diimide chromophore.
Collapse
Affiliation(s)
- Maryam Nazari
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| | | | | | | |
Collapse
|
27
|
Fortney A, Tsai CH, Banerjee M, Yaron D, Kowalewski T, Noonan KJT. Impact of Precise Control over Microstructure in Thiophene–Selenophene Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Andria Fortney
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chia-Hua Tsai
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Manali Banerjee
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - David Yaron
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin J. T. Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
28
|
A focus on polystyrene tacticity in synthesized conductive PEDOT:PSS thin films. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1598-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Mansbach RA, Ferguson AL. Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. J Phys Chem B 2018; 122:10219-10236. [DOI: 10.1021/acs.jpcb.8b05781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rachael A. Mansbach
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Andrew L. Ferguson
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, 1304 W Green Street, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Ponomarenko AT, Tameev AR, Shevchenko VG. Synthesis of polymers and modification of polymeric materials in electromagnetic fields. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Chochos CL, Chávez P, Bulut I, Lévêque P, Spanos M, Tatsi E, Katsouras A, Avgeropoulos A, Gregoriou VG, Leclerc N. Experimental and theoretical investigations on the optical and electrochemical properties of π-conjugated donor-acceptor-donor (DAD) compounds toward a universal model. J Chem Phys 2018; 149:124902. [PMID: 30278667 DOI: 10.1063/1.5049670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A series of nine (9) donor-acceptor-donor (DAD) π-conjugated small molecules were synthesized via palladium catalyzed Stille aromatic cross-coupling reactions by the combination of six (6) heterocycle building blocks (thiophene, furan, thiazole, 2,1,3-benzothiadiazole, 2,1,3-pyridinothiadiazole, thienothiadiazole) acting as electron donating (thiazole, furan, thiophene) and electron deficient (benzothiadiazole, pyridinethiadiazole, thienothiadiazole) units. These model compounds enable determining the correspondence between the theoretical and experimental optical and electrochemical properties for the first time, via Density Functional Theory (DFT), time-dependent DFT, UV-Vis spectroscopy, and cyclic voltammetry, accordingly. The obtained theoretical models can be utilized for the design and synthesis of new DAD structures with precise optical bandgaps, absorption maxima, and energy levels suitable for different optoelectronic applications.
Collapse
Affiliation(s)
- Christos L Chochos
- Department of Materials Science Engineering, University of Ioannina, Ioannina 45110, Greece
| | - Patricia Chávez
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, Université de Strasbourg, Ecole Européenne de Chimie, Polymères et Matériaux, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Ibrahim Bulut
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, Université de Strasbourg, Ecole Européenne de Chimie, Polymères et Matériaux, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Patrick Lévêque
- Laboratoire ICube, CNRS, Université de Strasbourg, UMR7357, 23 Rue du Loess, 67037 Strasbourg, France
| | - Michael Spanos
- Department of Materials Science Engineering, University of Ioannina, Ioannina 45110, Greece
| | - Elisavet Tatsi
- Department of Materials Science Engineering, University of Ioannina, Ioannina 45110, Greece
| | - Athanasios Katsouras
- Department of Materials Science Engineering, University of Ioannina, Ioannina 45110, Greece
| | - Apostolos Avgeropoulos
- Department of Materials Science Engineering, University of Ioannina, Ioannina 45110, Greece
| | - Vasilis G Gregoriou
- National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Nicolas Leclerc
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, Université de Strasbourg, Ecole Européenne de Chimie, Polymères et Matériaux, 25 Rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
32
|
|
33
|
Substituent effects on furan-phenylene copolymer for photovoltaic improvement: A density functional study. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Thurston BA, Ferguson AL. Machine learning and molecular design of self-assembling -conjugated oligopeptides. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1469754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Bryce A. Thurston
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Andrew L. Ferguson
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|
35
|
Vázquez-Guilló R, Falco A, Martínez-Tomé MJ, Mateo CR, Herrero MA, Vázquez E, Mallavia R. Advantageous Microwave-Assisted Suzuki Polycondensation for the Synthesis of Aniline-Fluorene Alternate Copolymers as Molecular Model with Solvent Sensing Properties. Polymers (Basel) 2018; 10:E215. [PMID: 30966250 PMCID: PMC6415332 DOI: 10.3390/polym10020215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 01/19/2023] Open
Abstract
Polymerization via Suzuki coupling under microwave (µW) irradiation has been studied for the synthesis of poly{1,4-(2/3-aminobenzene)-alt-2,7-(9,9-dihexylfluorene)} (PAF), chosen as molecular model. Briefly, µW-assisted procedures accelerated by two orders of magnitude the time required when using classical polymerization processes, and the production yield was increased (>95%). In contrast, although the sizes of the polymers that were obtained by non-conventional heating reactions were reproducible and adequate for most applications, with this methodology the molecular weight of final polymers were not increased with respect to conventional heating. Asymmetric orientation of the amine group within the monomer and the assignments of each dyad or regioregularity, whose values ranged from 38% to 95% with this molecule, were analysed using common NMR spectroscopic data. Additionally, the synthesis of a new cationic polyelectrolyte, poly{1,4-(2/3-aminobenzene)-co-alt-2,7-[9,9´-bis(6''-N,N,N-trimethylammonium-hexyl)fluorene]} dibromide (PAFAm), from poly{1,4-(2/3-aminobenzene)-co-alt-2,7-[9,9´-bis(6''-bromohexyl)fluorene]} (PAFBr) by using previously optimized conditions for µW-assisted heating procedures was reported. Finally, the characterization of the final products from these batches showed unkown interesting solvatochromic properties of the PAF molecule. The study of the solvatochromism phenomena, which was investigated as a function of the polarity of the solvents, showed a well-defined Lippert correlation, indicating that the emission shift observed in PAF might be due to its interaction with surrounding environment. Proven high sensitivity to changes of its environment makes PAF a promising candidate of sensing applications.
Collapse
Affiliation(s)
- Rebeca Vázquez-Guilló
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| | - Alberto Falco
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| | - M José Martínez-Tomé
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| | - C Reyes Mateo
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| | - María Antonia Herrero
- Departamento de Química Inorgánica, Orgánica and Bioquímica, Facultad Ciencias y Tecnologías Químicas, Universidad Castilla La Mancha, E-13071 Ciudad Real, Spain.
- Instituto Regional de Investigación Científica Aplicada (IRICA), Edificio Marie Curie, Universidad Castilla La Mancha, E-13071 Ciudad Real, Spain.
| | - Ester Vázquez
- Departamento de Química Inorgánica, Orgánica and Bioquímica, Facultad Ciencias y Tecnologías Químicas, Universidad Castilla La Mancha, E-13071 Ciudad Real, Spain.
- Instituto Regional de Investigación Científica Aplicada (IRICA), Edificio Marie Curie, Universidad Castilla La Mancha, E-13071 Ciudad Real, Spain.
| | - Ricardo Mallavia
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| |
Collapse
|
36
|
Kurowska A, Zassowski P, Kostyuchenko AS, Zheleznova TY, Andryukhova KV, Fisyuk AS, Pron A, Domagala W. Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives. Phys Chem Chem Phys 2018; 19:30261-30276. [PMID: 29110005 DOI: 10.1039/c7cp05155g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy level oligothiophene functional materials and their polymers by incorporating a structurally matching 1,3,4-oxadiazole unit.
Collapse
Affiliation(s)
- Aleksandra Kurowska
- Faculty of Chemistry, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland.
| | - Pawel Zassowski
- Faculty of Chemistry, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland.
| | - Anastasia S Kostyuchenko
- Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation and RUDN University, 6 Miklukho-Maklaya st, Moscow 117198, Russian Federation
| | - Tatyana Yu Zheleznova
- Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation
| | - Kseniya V Andryukhova
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
| | - Alexander S Fisyuk
- Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation and Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Wojciech Domagala
- Faculty of Chemistry, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
37
|
Sun Y, Guo B, Chen Y, Zhang W, Li X, Yu G, Li F. A naphthodithieno[3,2- b]thiophene-based copolymer as a novel third component in ternary polymer solar cells with a simultaneously enhanced open circuit voltage, short circuit current and fill factor. NEW J CHEM 2018. [DOI: 10.1039/c8nj00307f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ternary polymer solar cells with simultaneously improved VOC, JSC and FF have been achieved by doping PV12 as a third component.
Collapse
Affiliation(s)
- Yuqian Sun
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Biao Guo
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Youchun Chen
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Fenghong Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
38
|
Sambathkumar B, Varathan E, Subramanian V, Somanathan N. Two-acceptor one-donor random terpolymers comprising thiophene- and phenyl-capped diketopyrrolopyrrole for organic photovoltaics. NEW J CHEM 2018. [DOI: 10.1039/c8nj03536a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of random terpolymers comprising two electron deficient phenyl (PDPP) and thiophene (ThDPP)-capped diketopyrrolopyrrole (DPP) in conjugation with the electron-donating thiophene moiety are synthesised using Stille coupling.
Collapse
Affiliation(s)
- B. Sambathkumar
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
- CSIR-Network of Institutes for Solar Energy
- India
| | - E. Varathan
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
- CSIR-Network of Institutes for Solar Energy
- India
| | - V. Subramanian
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
- CSIR-Network of Institutes for Solar Energy
- India
| | - N. Somanathan
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
- CSIR-Network of Institutes for Solar Energy
- India
| |
Collapse
|
39
|
Bianchi G, Po R, Sassi M, Beverina L, Chiaberge S, Spera S, Cominetti A. Synthesis of Dithienocyclohexanones (DTCHs) as a Family of Building Blocks for π-Conjugated Compounds in Organic Electronics. ACS OMEGA 2017; 2:4347-4355. [PMID: 31457727 PMCID: PMC6641726 DOI: 10.1021/acsomega.7b00987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 06/10/2023]
Abstract
The development and widespread application of organic electronic devices require the availability of simple and cost-effective suitable materials. In this study, the preparation of a new class of conjugated compounds on the basis of a dithienocyclohexanone (DTCH) core is reported. Several synthetic strategies for the preparation of dialkyl DTCH derivatives are explored, with special emphasis on the establishment of a sustainable synthetic access. Two successful synthetic pathways, both consisting of five steps, are identified: the first one featuring readily available 3-thiophenecarboxaldeyde and the second one 3-ethynylthiophene as the starting materials. Both procedures are characterized by reasonably high overall yields (over 30%) and remarkably low E factors (<400). Preliminary evidences of the use of such building blocks in the micellar Suzuki-Miyaura cross-coupling reactions leading to promising molecular semiconductors are also given. Moreover, on a small molecule containing DTCH moiety, solar cell performance was investigated.
Collapse
Affiliation(s)
- Gabriele Bianchi
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Riccardo Po
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Mauro Sassi
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Luca Beverina
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Stefano Chiaberge
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Silvia Spera
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Alessandra Cominetti
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| |
Collapse
|
40
|
Lin Z, Wei G, Li L, Lu Z, Hai J, Li M, Tang W. Effect of carbon hybridization in 9H-fluorene unit on the photovoltaic properties of different fluorene-based conjugated polymers. HIGH PERFORM POLYM 2017. [DOI: 10.1177/0954008317716526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To investigate the effect of different carbon hybridization in 9H-fluorene on the resultant polymers, a series of donor–acceptor conjugated polymers have been synthesized by copolymerizing substituted 9H-fluorenes with triazoloquinoxaline. All polymers exhibit good solution-processability and broad absorption in 350–1000 nm region with narrow optical bandgaps ranging from 1.27 eV to 1.55 eV. The results indicate that fluorene functionalization via different carbon hybridization on 9-position could be an effective strategy to fine-tune the absorption, energy levels, and photovoltaic performance of the polymers. 9-Position sp2-hybridized carbon in fluorene could enhance absorption of ultraviolet-visible and form good morphology of blending layers, through its planar rigid structure. All polymer solar cells devices exhibited moderate performance with the best power conversion efficiency of 3.02% achieved based on P2. Compared to ladder-type multifused fluorene, carbon-hybridized 9H-fluorene units can be a very useful building block for constructing narrow bandgap polymers with facile synthesis, and even interesting optoelectronic properties.
Collapse
Affiliation(s)
- Zhiguan Lin
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, Guilin, Guangxi Province, China
| | - Gang Wei
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, Guilin, Guangxi Province, China
| | - Ling Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, Guilin, Guangxi Province, China
| | - Zhenhuan Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, Guilin, Guangxi Province, China
| | - Jiefeng Hai
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, Guilin, Guangxi Province, China
| | - Ming Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, Guilin, Guangxi Province, China
| | - Weihua Tang
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Cai Y, Huo L, Sun Y. Recent Advances in Wide-Bandgap Photovoltaic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605437. [PMID: 28370466 DOI: 10.1002/adma.201605437] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/17/2017] [Indexed: 06/07/2023]
Abstract
The past decade has witnessed significant advances in the field of organic solar cells (OSCs). Ongoing improvements in the power conversion efficiency of OSCs have been achieved, which were mainly attributed to the design and synthesis of novel conjugated polymers with different architectures and functional moieties. Among various conjugated polymers, the development of wide-bandgap (WBG) polymers has received less attention than that of low-bandgap and medium-bandgap polymers. Here, we briefly summarize recent advances in WBG polymers and their applications in organic photovoltaic (PV) devices, such as tandem, ternary, and non-fullerene solar cells. Addtionally, we also dissuss the application of high open-circuit voltage tandem solar cells in PV-driven electrochemical water dissociation. We mainly focus on the molecular design strategies, the structure-property correlations, and the photovoltaic performance of these WBG polymers. Finally, we extract empirical regularities and provide invigorating perspectives on the future development of WBG photovoltaic materials.
Collapse
Affiliation(s)
- Yunhao Cai
- Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P.R. China
| | - Lijun Huo
- Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P.R. China
| | - Yanming Sun
- Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P.R. China
| |
Collapse
|
42
|
Fradon A, Cloutet E, Hadziioannou G, Brochon C, Castet F. Optical properties of donor–acceptor conjugated copolymers: A computational study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Electrochemical preparation and characterization of a new conducting copolymer of 2,7-carbazole and 3-octylthiophene. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-016-1794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Mortuza SM, Banerjee S. Atomistic modelling – impact and opportunities in thin-film photovoltaic solar cell technologies. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1295455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. M. Mortuza
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Soumik Banerjee
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
45
|
Mansbach RA, Ferguson AL. Coarse-Grained Molecular Simulation of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. J Phys Chem B 2017; 121:1684-1706. [DOI: 10.1021/acs.jpcb.6b10165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rachael A. Mansbach
- Department
of Physics, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, Illinois 61801, United States
| | - Andrew L. Ferguson
- Department
of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
SHIBASAKI K, YASUDA T, KIJIMA M. Organic Photovoltaics Based on Poly(3,4-phenylenedioxy-2,5-thienylenevinylene)s. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kosuke SHIBASAKI
- Institute of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba
| | - Takeshi YASUDA
- Research Center for Functional Materials, National Institute for Materials Science (NIMS)
- Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba
| | - Masashi KIJIMA
- Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
47
|
Mansbach RA, Ferguson AL. Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow. Org Biomol Chem 2017; 15:5484-5502. [DOI: 10.1039/c7ob00923b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Coarse-grained molecular simulations reveal the influence of pH and flow on the self-assembly of DFAG-OPV3-GAFD optoelectronic peptides.
Collapse
Affiliation(s)
| | - Andrew L. Ferguson
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
48
|
Yoon WS, Kim DW, Park JM, Cho I, Kwon OK, Whang DR, Kim JH, Park JH, Park SY. A Novel Bis-Lactam Acceptor with Outstanding Molar Extinction Coefficient and Structural Planarity for Donor–Acceptor Type Conjugated Polymer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01680] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Won Sik Yoon
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| | - Dong Won Kim
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| | - Jun-Mo Park
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| | - Illhun Cho
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| | - Oh Kyu Kwon
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| | - Dong Ryeol Whang
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| | - Jin Hong Kim
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| | - Jung-Hwa Park
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| | - Soo Young Park
- Center for Supramolecular
Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 151-744, Korea
| |
Collapse
|
49
|
Sarigiannis Y, Spiliopoulos IK. Optical, electrochemical, and sensing properties of polyfluorenes bearing thiazole or oxazole and triphenylamine in the main chain. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
Noh S, Gobalasingham NS, Thompson BC. Facile Enhancement of Open-Circuit Voltage in P3HT Analogues via Incorporation of Hexyl Thiophene-3-carboxylate. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sangtaik Noh
- Department of Chemistry and
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Nemal S. Gobalasingham
- Department of Chemistry and
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C. Thompson
- Department of Chemistry and
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|