1
|
Ma Z, Liu G, Hu N, Chen L, Wei J. pH-induced morphological transition of aggregates formed by miktoarm star polymers in dilute solution: a mesoscopic simulation study. RSC Adv 2024; 14:24240-24249. [PMID: 39101066 PMCID: PMC11295911 DOI: 10.1039/d4ra04511d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
The self-assembly of miktoarm star polymers μ-A i (B(D)) j C k in a neutral solution and the pH-responsive behaviors of vesicles and spherical micelles in an acidic solution have been investigated by DPD simulation. The results show that the self-assembled morphologies can be regulated by the lengths of pH-responsive arm B and hydrophilic arm C, leading to the formation of vesicles, discoidal micelles, and spherical micelles in a neutral solution. The dynamic evolution pathways of vesicles and spherical micelles are categorized into three stages: nucleation, coalescence, and growth. Subsequently, the pH-responsive behaviors of vesicles and spherical micelles have been explored by tuning the protonation degree of pH-responsive arm B. The vesicles evolves from nanodisks to nanosheets, then to nanoribbons, as the protonation degree increases, corresponding to a decrease in pH value, while the spherical micelles undergoes a transition into worm-like micelles, nanosheets, and nanoribbons. Notably, the electrostatic interaction leads the counterions to form a regular hexagonal pattern in nanosheets, while an alternative distribution of charged beads has been observed in nanoribbons. Furthermore, the role of the electrostatic interaction in the morphological transition has been elucidated through the analysis of the distribution of positive and negative charges, as well as the electrostatic potential for associates.
Collapse
Affiliation(s)
- Zengwei Ma
- College of Science, Chongqing University of Technology Chongqing 400054 China
| | - Gaiqin Liu
- College of Science, Chongqing University of Technology Chongqing 400054 China
| | - Nan Hu
- College of Science, Chongqing University of Technology Chongqing 400054 China
| | - Lin Chen
- College of Science, Chongqing University of Technology Chongqing 400054 China
| | - Jianwei Wei
- College of Science, Chongqing University of Technology Chongqing 400054 China
| |
Collapse
|
2
|
Sato T, Tsujinoue H, Arai N, Takahashi KZ. Coarse-grained molecular simulation of the effect of liquid crystal molecular pitch on structure in cylindrical confinement. Phys Rev E 2024; 110:014701. [PMID: 39161020 DOI: 10.1103/physreve.110.014701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
Blue phases (BPs) consist of three-dimensional self-assembled structures formed by a double-twisted columnar arrangement of liquid crystal molecules. Although their unique optical and structural properties render BPs particularly useful for applications such as liquid crystal displays, BPs typically appear in a narrow temperature range between the isotropic and nematic phases. This thermodynamic instability impedes their practical applicability. However, the simulations we present here showed that, in a quasi-one-dimensional system confined to nanospace, a phase equivalent to the BP appears and persists between the nematic and smectic phases. Confinement to a nanotube (NT) with a relatively small radius enables the BP to be maintained over a wide temperature range, whereas for an NT with a relatively larger radius, the BP appears only in a very narrow temperature range between the aforementioned phases. We additionally showed that the pitch of the BP is dependent on and can be controlled by adjusting the radius of the NTs. This finding has significant implications for the potential application of these materials in fields such as photonics and chiral separation technologies.
Collapse
|
3
|
Cai C, Tang H, Li F, Xu Z, Lin J, Li D, Tang Z, Yang C, Gao L. Archimedean Spirals with Controllable Chirality: Disk Substrate-Mediated Solution Assembly of Rod-Coil Block Copolymers. JACS AU 2024; 4:2363-2371. [PMID: 38938804 PMCID: PMC11200227 DOI: 10.1021/jacsau.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Spirals are common in nature; however, they are rarely observed in polymer self-assembly systems, and the formation mechanism is not well understood. Herein, we report the formation of two-dimensional (2D) spiral patterns via microdisk substrate-mediated solution self-assembly of polypeptide-based rod-coil block copolymers. The spiral pattern consists of multiple strands assembled from the block copolymers, and two central points are observed. The spirals fit well with the Archimedean spiral model, and their chirality is dependent on the chirality of the polypeptide blocks. As revealed by a combination of experiments and theoretical simulations, these spirals are induced by an interplay of the parallel ordering tendency of the strands and circular confinement of the microdisks. This work presents the first example regarding substrate-mediated self-assembly of block copolymers into spirals. The gained information could not only enhance our understanding of natural spirals but also assist in both the controllable preparations and applications of spiral nanostructures.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Hongfeng Tang
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Feiyan Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhanwen Xu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiaping Lin
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Da Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhengmin Tang
- Department
of Laboratory Medicine, the First Affiliated Hospital, College of
Medicine, Zhejiang University, Hangzhou 311121, China
| | - Chunming Yang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Liang Gao
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Xu Q, Wang Y, Zheng Y, Zhu Y, Li Z, Liu Y, Ding M. Polymersomes in Drug Delivery─From Experiment to Computational Modeling. Biomacromolecules 2024; 25:2114-2135. [PMID: 38011222 DOI: 10.1021/acs.biomac.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Polymersomes, composed of amphiphilic block copolymers, are self-assembled vesicles that have gained attention as potential drug delivery systems due to their good biocompatibility, stability, and versatility. Various experimental techniques have been employed to characterize the self-assembly behaviors and properties of polymersomes. However, they have limitations in revealing molecular details and underlying mechanisms. Computational modeling techniques have emerged as powerful tools to complement experimental studies and enabled researchers to examine drug delivery mechanisms at molecular resolution. This review aims to provide a comprehensive overview of the state of the art in the field of polymersome-based drug delivery systems, with an emphasis on insights gained from both experimental and computational studies. Specifically, we focus on polymersome morphologies, self-assembly kinetics, fusion and fission, behaviors in flow, as well as drug encapsulation and release mechanisms. Furthermore, we also identify existing challenges and limitations in this rapidly evolving field and suggest possible directions for future research.
Collapse
Affiliation(s)
- Qianru Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yiwei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuling Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Azulay R, Strugach DS, Amiram M. Self-assembly of temperature-responsive di-block polypeptides functionalized with unnatural amino acids. Protein Sci 2024; 33:e4878. [PMID: 38147468 PMCID: PMC10804675 DOI: 10.1002/pro.4878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
The incorporation of unnatural amino acids (uAAs) into protein-based polymers has emerged as a powerful methodology to expand their chemical repertoire. Recently, we demonstrated that incorporating uAAs into two temperature-responsive protein-based polymers-namely resilin- and elastin-like polypeptides (RLPs and ELPs, respectively)-can alter their properties. In this study, we incorporated aromatic uAAs into the protein sequence of RLP-ELP diblocks to yield new and diverse assemblies from a single DNA template. Specifically, we show that incorporating aromatic uAAs can modulate the phase-transition behaviors and self-assembly of the diblocks into various morphologies, including spherical and cylindrical micelles and single- and double-layered vesicles, with some constructs also demonstrating a temperature-responsive shape-shifting behavior. Next, we evaluated the ability of the RLP-ELP assemblies to encapsulate a chemotherapeutic drug, doxorubicin, and show how the identity of the incorporated uAAs and the morphology of the nanostructure affect the encapsulation efficiency. Taken together, our findings demonstrate that the multi-site incorporation of uAAs into temperature-responsive, amphiphilic protein-based diblock copolymers is a promising approach for the functionalization and tuning of self-assembled nanostructures.
Collapse
Affiliation(s)
- Rotem Azulay
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Daniela S. Strugach
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Miriam Amiram
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
6
|
Wang Z, Li F, Wang L, Liu Y, Li M, Cui N, Li C, Sun S, Hu S. A dissipative particle dynamics simulation of controlled loading and responsive release of theranostic agents from reversible crosslinked triblock copolymer vesicles. Phys Chem Chem Phys 2023; 26:304-313. [PMID: 38062783 DOI: 10.1039/d3cp04190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
To control the transport stability and release efficiency of loaded theranostic drugs in triblock copolymer carriers, the reversible crosslinking ability is of great significance. A molecular level exploration of such a function is needed to extend existing stabilizing and responsive dissociation mechanisms of carriers. Here, dissipative particle dynamics simulations were used to first demonstrate the formation of triblock copolymer vesicular carriers. Chemical crosslinking was used to strengthen the structural stability of the vesicle shell to avoid drug leakage. Reversible decrosslinking along with dissociation of the vesicle and release of loaded drugs were then explored. The structural, energetic and dynamical properties of the system were discussed at the molecular level. The regulation mechanism of drug release patterns was revealed by systematically exploring the effect of intra and intermolecular repulsive interactions. The results indicate that the chemical crosslinking of copolymers enhanced the compactness of the vesicle shell with a strengthened microstructure, increased binding energy, and limited chain migration, thus achieving more stable delivery of drugs. In terms of drug release, we clarified how the pairwise interactions of beads in the solution system affect the responsive dissociation of the vesicle and associated release patterns (speed and amount) of drugs. More efficient delivery and smart release of theranostic drugs are achieved using such reversible crosslinked triblock copolymer vesicles.
Collapse
Affiliation(s)
- Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Fengting Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Li Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Yueqi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Miantuo Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Nannan Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunling Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
7
|
Adzhieva OA, Gringolts ML, Denisova YI, Shandryuk GA, Litmanovich EA, Nikiforov RY, Belov NA, Kudryavtsev YV. Effect of Chain Structure on the Various Properties of the Copolymers of Fluorinated Norbornenes with Cyclooctene. Polymers (Basel) 2023; 15:polym15092157. [PMID: 37177303 PMCID: PMC10180767 DOI: 10.3390/polym15092157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Fluorinated polymers are attractive due to their special thermal, surface, gas separation, and other properties. In this study, new diblock, multiblock, and random copolymers of cyclooctene with two fluorinated norbornenes, 5-perfluorobutyl-2-norbornene and N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide, are synthesized by ring-opening metathesis copolymerization and macromolecular cross-metathesis in the presence of the first- to third-generation Grubbs' Ru-catalysts. Their thermal, surface, bulk, and solution characteristics are investigated and compared using differential scanning calorimetry, water contact angle measurements, gas permeation, and light scattering, respectively. It is demonstrated that they are correlated with the chain structure of the copolymers. The properties of multiblock copolymers are generally closer to those of diblock copolymers than of random ones, which can be explained by the presence of long blocks capable of self-organization. In particular, diblock and multiblock fluorine-imide-containing copolymers show a tendency to form micelles in chloroform solutions well below the overlap concentration. The results obtained may be of interest to a wide range of researchers involved in the design of functional copolymers.
Collapse
Affiliation(s)
- Olga A Adzhieva
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Maria L Gringolts
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Yulia I Denisova
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Georgiy A Shandryuk
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Ekaterina A Litmanovich
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, 119991 Moscow, Russia
| | - Roman Yu Nikiforov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Nikolay A Belov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Yaroslav V Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, 119071 Moscow, Russia
- ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
8
|
Wei Y, Cui S, Yu L, Ding J. Degradation-Influenced/Induced Self-Assembly of Copolymers with the Combinatory Effects of Changed Molecular Weight and Dispersity. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Brito ME, Mikhtaniuk SE, Neelov IM, Borisov OV, Holm C. Implicit-Solvent Coarse-Grained Simulations of Linear-Dendritic Block Copolymer Micelles. Int J Mol Sci 2023; 24:2763. [PMID: 36769091 PMCID: PMC9917066 DOI: 10.3390/ijms24032763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The design of nanoassemblies can be conveniently achieved by tuning the strength of the hydrophobic interactions of block copolymers in selective solvents. These block copolymer micelles form supramolecular aggregates, which have attracted great attention in the area of drug delivery and imaging in biomedicine due to their easy-to-tune properties and straightforward large-scale production. In the present work, we have investigated the micellization process of linear-dendritic block copolymers in order to elucidate the effect of branching on the micellar properties. We focus on block copolymers formed by linear hydrophobic blocks attached to either dendritic neutral or charged hydrophilic blocks. We have implemented a simple protocol for determining the equilibrium micellar size, which permits the study of linear-dendritic block copolymers in a wide range of block morphologies in an efficient and parallelizable manner. We have explored the impact of different topological and charge properties of the hydrophilic blocks on the equilibrium micellar properties and compared them to predictions from self-consistent field theory and scaling theory. We have found that, at higher degrees of branching in the corona and for short polymer chains, excluded volume interactions strongly influence the micellar aggregation as well as their effective charge.
Collapse
Affiliation(s)
- Mariano E. Brito
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Sofia E. Mikhtaniuk
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Oleg V. Borisov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
10
|
Hybrid Molecules Consisting of Lysine Dendrons with Several Hydrophobic Tails: A SCF Study of Self-Assembling. Int J Mol Sci 2023; 24:ijms24032078. [PMID: 36768408 PMCID: PMC9916814 DOI: 10.3390/ijms24032078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
In this article, we used the numerical self-consistent field method of Scheutjens-Fleer to study the micellization of hybrid molecules consisting of one polylysine dendron with charged end groups and several linear hydrophobic tails attached to its root. The main attention was paid to spherical micelles and the determination of the range of parameters at which they can appear. A relationship has been established between the size and internal structure of the resulting spherical micelles and the length and number of hydrophobic tails, as well as the number of dendron generations. It is shown that the splitting of the same number of hydrophobic monomers from one long tail into several short tails leads to a decrease in the aggregation number and, accordingly, the number of terminal charges in micelles. At the same time, it was shown that the surface area per dendron does not depend on the number of hydrophobic monomers or tails in the hybrid molecule. The relationship between the structure of hybrid molecules and the electrostatic properties of the resulting micelles has also been studied. It is found that the charge distribution in the corona depends on the number of dendron generations G in the hybrid molecule. For a small number of generations (up to G=3), a standard double electric layer is observed. For a larger number of generations (G=4), the charges of dendrons in the corona are divided into two populations: in the first population, the charges are in the spherical layer near the boundary between the micelle core and shell, and in the second population, the charges are near the periphery of the spherical shell. As a result, a part of the counterions is localized in the wide region between them. These results are of potential interest for the use of spherical dendromicelles as nanocontainers for drug delivery.
Collapse
|
11
|
Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers (Basel) 2022; 14:4702. [PMID: 36365696 PMCID: PMC9657626 DOI: 10.3390/polym14214702] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Dhruvi Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat 395 007, Gujarat, India
| |
Collapse
|
12
|
Zhang C, Lin J, Wang L, Gao L. 2D Liquid-Crystallization-Driven Self-Assembly of Rod-Coil Block Copolymers: Living Growth and Self-Similarity. J Phys Chem Lett 2022; 13:6215-6222. [PMID: 35770907 DOI: 10.1021/acs.jpclett.2c01570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid-crystallization-driven self-assembly (LCDSA) is an emerging methodology, which has been employed to construct controllable 1D nanostructures. However, 2D nanostructures via living LCDSA are rarely reported, and the complicated growth kinetics are not well-known. Herein, we perform Brownian dynamics (BD) simulations to investigate the 2D living growth of disklike micelles via LCDSA of rod-coil block copolymers. The 2D seeded-growth behavior is achieved by incorporating the unimers onto the edges of disklike seeds with smectic-like liquid-crystalline (LC) cores. The fluidity of such LC-like micellar cores is conducive to the chain adjustments of rod blocks during the 2D living growth process. The apparent growth rate and unique self-similarity kinetics are governed by the interplay between the variations in the growth rate coefficient and the reactive sites at the micelle edges. This work provides an in-depth understanding of the 2D living growth of micelles and guidance to construct well-defined 2D hierarchical nanostructures.
Collapse
Affiliation(s)
- Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Sunitha K, Mahesh S, Suchithra C, Unnikrishnan G, Reghunadhan Nair CP. Comb like amphiphilic graft copolymers bearing PDMS and PEO side chains: synthesis and solvent assisted self-assembly behavior. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Wu F, Lin J, Wang L, Lin S. Polymer Vesicles in a Nanochannel under Flow Fields: A DPD Simulation Study. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fangsheng Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
15
|
Jin X, Zhang C, Lin J, Cai C, Chen J, Gao L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Ha S, Kim KT. Effect of hydrophilic block end groups and block junction on block copolymer self-assembly in solution. RSC Adv 2022; 12:7446-7452. [PMID: 35424699 PMCID: PMC8982213 DOI: 10.1039/d2ra00493c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Recent research suggests that the end groups of polymers can affect their self-assembly. However, the effect of end groups on the self-assembly of block copolymers in solution remains unclear, and thus far, only micelle-vesicle transformations have been achieved via end-group modification. Herein, we report that hydrophilic block end groups and the junction between two blocks can affect the solution self-assembly of block copolymers, leading to the formation of different morphologies, including vesicles, cubosomes, and hexosomes. Poly(ethylene glycol)-b-polystyrene (PEG-b-PS) with hydroxyl, methoxy, azido, or amino groups at the PEG chain ends was synthesized and self-assembled in solution via the cosolvent method. As a result, the morphology of the block copolymers transformed from vesicles to hexosomes upon increasing the end-group hydrophobicity. In addition, a morphological transition from cubosomes to vesicles was observed upon changing the junction from a triazole to an amide, and the interaction between the solvent and end groups significantly affected the self-assembly behavior.
Collapse
Affiliation(s)
- Sungmin Ha
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
17
|
Li S, Cui R, Yu C, Zhou Y. Coarse-Grained Model of Thiol-Epoxy-Based Alternating Copolymers in Explicit Solvents. J Phys Chem B 2022; 126:1830-1841. [PMID: 35179028 DOI: 10.1021/acs.jpcb.1c09406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cosolvent method has been widely used in the self-assembly of amphiphilic alternating copolymers (ACPs), but the role of good and selective solvents is rarely investigated. Here, we have developed a coarse-grained (CG) model for the widely studied thiol-epoxy-based amphiphilic ACPs and a three-bead CG model for tetrahydrofuran (THF) as the good solvent, which is compatible with the MARTINI water model. The accuracy of both the CG polymer and THF models was validated by reproducing the structural and thermodynamic properties obtained from experiments or atomistic simulation results. Density in bulk, the radius of gyration, and solvation free energy in water or THF showed a good agreement between CG and atomistic models. The CG models were further employed to explore the self-assembly of ACPs in THF/water mixtures with different compositions. Chain folding and liquid-liquid phase separation behaviors were found with increasing water fractions, which were the key steps of the self-assembly process. This work will provide a basic platform to explore the self-assembly of amphiphilic ACPs in solvent mixtures and to reveal the real role of different solvents in self-assembly.
Collapse
Affiliation(s)
- Shanlong Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Cui
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Guo H. Dissipative particle dynamics simulation on phase behaviour of reduction-responsive polyprodrug amphiphile. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2037586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hongyu Guo
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People’s Republic of China
| |
Collapse
|
19
|
Nguyen D, Tao L, Li Y. Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design. Front Chem 2022; 9:820417. [PMID: 35141207 PMCID: PMC8819075 DOI: 10.3389/fchem.2021.820417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, the synthesis of monomer sequence-defined polymers has expanded into broad-spectrum applications in biomedical, chemical, and materials science fields. Pursuing the characterization and inverse design of these polymer systems requires our fundamental understanding not only at the individual monomer level, but also considering the chain scales, such as polymer configuration, self-assembly, and phase separation. However, our accessibility to this field is still rudimentary due to the limitations of traditional design approaches, the complexity of chemical space along with the burdened cost and time issues that prevent us from unveiling the underlying monomer sequence-structure-property relationships. Fortunately, thanks to the recent advancements in molecular dynamics simulations and machine learning (ML) algorithms, the bottlenecks in the tasks of establishing the structure-function correlation of the polymer chains can be overcome. In this review, we will discuss the applications of the integration between ML techniques and coarse-grained molecular dynamics (CGMD) simulations to solve the current issues in polymer science at the chain level. In particular, we focus on the case studies in three important topics-polymeric configuration characterization, feed-forward property prediction, and inverse design-in which CGMD simulations are leveraged to generate training datasets to develop ML-based surrogate models for specific polymer systems and designs. By doing so, this computational hybridization allows us to well establish the monomer sequence-functional behavior relationship of the polymers as well as guide us toward the best polymer chain candidates for the inverse design in undiscovered chemical space with reasonable computational cost and time. Even though there are still limitations and challenges ahead in this field, we finally conclude that this CGMD/ML integration is very promising, not only in the attempt of bridging the monomeric and macroscopic characterizations of polymer materials, but also enabling further tailored designs for sequence-specific polymers with superior properties in many practical applications.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Lei Tao
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
20
|
Hamta A, Ashtiani FZ, Karimi M, Moayedfard S. Asymmetric block copolymer membrane fabrication mechanism through self-assembly and non-solvent induced phase separation (SNIPS) process. Sci Rep 2022; 12:771. [PMID: 35031674 PMCID: PMC8760277 DOI: 10.1038/s41598-021-04759-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/30/2021] [Indexed: 01/08/2023] Open
Abstract
In this paper, the concept of the functional mechanism of copolymer membrane formation is explained and analyzed from the theoretical and experimental points of view. To understand the phase inversion process and control the final membrane morphology, styrene-acrylonitrile copolymer (SAN) membrane morphology through the self-assembly phenomena is investigated. Since the analysis of the membrane morphology requires the study of both thermodynamic and kinetic parameters, the effect of different membrane formation conditions is investigated experimentally; In order to perceive the formation mechanism of the extraordinary structure membrane, a thermodynamic hypothesis is also developed based on the hydrophilic coil migration to the membrane surface. This hypothesis is analyzed according to Hansen Solubility Parameters and proved using EDX, SAXS, and contact angle analysis of SAN25. Moreover, the SAN30 membrane is fabricated under different operating conditions to evaluate the possibility of morphological prediction based on the developed hypothesis.
Collapse
Affiliation(s)
- Afshin Hamta
- Department of Chemical Engineering, Amirkabir University of Technology, No. 424, Hafez Ave, Tehran, Iran
| | - Farzin Zokaee Ashtiani
- Department of Chemical Engineering, Amirkabir University of Technology, No. 424, Hafez Ave, Tehran, Iran.
| | - Mohammad Karimi
- Department of Textile Engineering, Amirkabir University of Technology, No. 424, Hafez Ave, Tehran, Iran
| | - Sareh Moayedfard
- Department of Chemical Engineering, Amirkabir University of Technology, No. 424, Hafez Ave, Tehran, Iran
| |
Collapse
|
21
|
Ren H, Wei Z, Wei H, Yu D, Li H, Bi F, Xu B, Zhang H, Hua Z, Yang G. Pyridine-containing block copolymeric nano-assemblies obtained through complementary hydrogen-bonding directed polymerization-induced self-assembly in water. Polym Chem 2022. [DOI: 10.1039/d2py00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diversity of pyridine-containing polymeric nanomaterials with controllable structures and multiple responses were developed through complementary hydrogen-bonding directed polymerization-induced self-assembly in aqueous solution.
Collapse
Affiliation(s)
- Hui Ren
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zengming Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Hanchen Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Hongyu Li
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Binbin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hui Zhang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| |
Collapse
|
22
|
Wessels M, Jayaraman A. Machine Learning Enhanced Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) to Determine Structures in Amphiphilic Polymer Solutions. ACS POLYMERS AU 2021; 1:153-164. [PMID: 36855654 PMCID: PMC9954245 DOI: 10.1021/acspolymersau.1c00015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article, we present a machine learning enhancement for our recently developed "Computational Reverse Engineering Analysis for Scattering Experiments" (CREASE) method to accelerate analysis of results from small angle scattering (SAS) experiments on polymer materials. We demonstrate this novel artificial neural network (NN) enhanced CREASE approach for analyzing scattering results from amphiphilic polymer solutions that can be easily extended and applied for scattering experiments on other polymer and soft matter systems. We had originally developed CREASE to analyze SAS results [i.e., intensity profiles, I(q) vs q] of amphiphilic polymer solutions exhibiting unconventional assembled structures and/or novel polymer chemistries for which traditional fits using off-the-shelf analytical models would be too approximate/inapplicable. In this paper, we demonstrate that the NN-enhancement to the genetic algorithm (GA) step in the CREASE approach improves the speed and, in some cases, the accuracy of the GA step in determining the dimensions of the complex assembled structures for a given experimental scattering profile.
Collapse
Affiliation(s)
- Michiel
G. Wessels
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Wang C, Zou H, Liu N, Wu ZQ. Recent Advances in Polyallenes: Preparation, Self-Assembly, and Stimuli-Responsiveness. Chem Asian J 2021; 16:3864-3872. [PMID: 34618408 DOI: 10.1002/asia.202101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Polyallenes, as a typical type of reactive polymers, are of great significance and have aroused widespread interest because they contain double bonds that can be post-modified into other functionalities to afford varieties of functional materials. This Minireview firstly highlights the recent advances in the preparation of polyallenes, including preparation of helical polyallenes through directly polymerization of chiral allene monomers or helix-sense-selective polymerization (HSSP) of achiral allene monomers, synthesis of 1,2-regulated polyallenes and 2,3-regulated polyallenes via selective polymerization of allene monomers, polymerization of allene monomers catalyzed by Ni(II)-terminated poly(3-hexylthiophene) (P3HT), and so on. Then, latest progress on the self-assembly and stimuli-responses of polyallene-based diblock, ABA and ABC triblock copolymers is summarized. We hope this Minireview will inspire more interest in developing polyallenes and encourage further advances in functional materials.
Collapse
Affiliation(s)
- Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| |
Collapse
|
24
|
Guo WX, Hu LF, Feng YH, Chen BZ, Guo XD. Advances in self-assembling of pH-sensitive polymers: A mini review on dissipative particle dynamics. Colloids Surf B Biointerfaces 2021; 210:112202. [PMID: 34840030 DOI: 10.1016/j.colsurfb.2021.112202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Dissipative Particle Dynamics (DPD) is a mesoscopic simulation program used to simulate the behavior of complex fluids. This work systematically reviews the use of DPD to simulate the self-assembly process of pH-sensitive drug-loaded nanoparticles. pH-sensitive drug-loaded nanoparticles have the characteristics of good targeting and slow release in the body, which is an ideal method for treating cancer and other diseases. As an excellent simulation method, DPD can help people explore the loading and release laws of drugs with complex molecular structures and has extensive applications in other medical fields. This article reviews the self-assembly process of pH-sensitive polymers under neutral conditions and explores the factors that affect the self-assembly structure. It points out that different hydrophilic-hydrophobic ratios, molecular structures, and component distributions will affect the morphology, stability and drug carrying capacity of micelles. This article also introduces the release mechanism of the drug in detail and introduces the factors that affect the release. This article can help relevant researchers to follow the latest advances in the DPD simulation and pH-sensitive drug nano-carrier and insight people to investigate the further application of DPD simulation in biomedical science.
Collapse
Affiliation(s)
- Wei Xin Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Liu Fu Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
25
|
Liquid-Crystal Ordering and Microphase Separation in the Lamellar Phase of Rod-Coil-Rod Triblock Copolymers. Molecular Theory and Computer Simulations. Polymers (Basel) 2021; 13:polym13193392. [PMID: 34641206 PMCID: PMC8512297 DOI: 10.3390/polym13193392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
A molecular model of the orientationally ordered lamellar phase exhibited by asymmetric rod-coil-rod triblock copolymers has been developed using the density-functional approach and generalizing the molecular-statistical theory of rod-coil diblock copolymers. An approximate expression for the free energy of the lamellar phase has been obtained in terms of the direct correlation functions of the system, the Flory-Huggins parameter and the Maier-Saupe orientational interaction potential between rods. A detailed derivation of several rod-rod and rod-coil density-density correlation functions required to evaluate the free energy is presented. The orientational and translational order parameters of rod and coil segments depending on the temperature and triblock asymmetry have been calculated numerically by direct minimization of the free energy. Different structure and ordering of the lamellar phase at high and low values of the triblock asymmetry is revealed and analyzed in detail. Asymmetric rod-coil-rod triblock copolymers have been simulated using the method of dissipative particle dynamics in the broad range of the Flory-Huggins parameter and for several values of the triblock asymmetry. It has been found that the lamellar phase appears to be the most stable one at strong segregation. The density distribution of the coil segments and the segments of the two different rods have been determined for different values of the segregation strength. The simulations confirm the existence of a weakly ordered lamellar phase predicted by the density-functional theory, in which the short rods separate from the long ones and are characterized by weak positional ordering.
Collapse
|
26
|
Interplay of distributions of multiple guest molecules in block copolymer micelles: A dissipative particle dynamics study. J Colloid Interface Sci 2021; 607:1142-1152. [PMID: 34571301 DOI: 10.1016/j.jcis.2021.09.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS Delivery of multiple payloads using the same micelle is of significance to achieve multifunctional or synergistic effects. The interacting distribution of different payloads in micelles is expected to influence the loading stability and capacity. It is highly desirable to explore how intermolecular interactions affect the joint distribution of multi-payloads. EXPERIMENTS Dissipative Particle Dynamics simulations were performed to probe the loading of three payloads: decane with a linear carbon chain, butylbenzene with an aromatic ring connected to carbon chain, and naphthalene with double aromatic rings, within poly(β-amino ester)-b-poly(ethylene glycol) micelles. Properties of core-shell micelles, e.g., morphological evolution, radial density distribution, mean square displacement, and contact statistics, were analyzed to reveal payloads loading stability and capacity. Explorations were extended to vesicular, multi-compartment, double helix, and layer-by-layer micelles with more complex inner structures. FINDINGS Different payloads have their own preferred locations. Decane locates at the hydrophilic/hydrophobic interface, butylbenzene occupies both the hydrophilic/hydrophobic interface and the hydrophobic core, while naphthalene enters the hydrophobic core. More efficient delivery of multi-payloads is achieved since the competition of payloads occupying preferred locations is minimized. The fusion of micelles encapsulating different payloads suggests that specific payloads will move to their preferred positions without interfering other payloads.
Collapse
|
27
|
Rizvi A, Mulvey JT, Carpenter BP, Talosig R, Patterson JP. A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chem Rev 2021; 121:14232-14280. [PMID: 34329552 DOI: 10.1021/acs.chemrev.1c00189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
28
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
29
|
Effect of stereochemistry on nanoscale assembly of ABA triblock copolymers with crystallizable blocks. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Diaz J, Pinna M, Zvelindovsky AV, Pagonabarraga I. Parallel Hybrid Simulations of Block Copolymer Nanocomposites using Coarray Fortran. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javier Diaz
- CECAM Centre Européen de Calcul Atomique et Moléculaire École Polytechnique Fédérale de Lausanne Batochime ‐ Avenue Forel 2 Lausanne 1015 Switzerland
| | - Marco Pinna
- Centre for Computational Physics University of Lincoln Brayford Pool Lincoln LN6 7TS UK
| | | | - Ignacio Pagonabarraga
- CECAM Centre Européen de Calcul Atomique et Moléculaire École Polytechnique Fédérale de Lausanne Batochime ‐ Avenue Forel 2 Lausanne 1015 Switzerland
- Departament de Física de la Matèria Condensada Universitat de Barcelona Martí i Franquès 1 Barcelona 08028 Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS) Universitat de Barcelona Barcelona 08028 Spain
| |
Collapse
|
31
|
Jin X, Wu F, Lin J, Cai C, Wang L, Chen J, Gao L. Programmable Morphology Evolution of Rod-Coil-Rod Block Copolymer Assemblies Induced by Variation of Chain Ordering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3148-3157. [PMID: 33661006 DOI: 10.1021/acs.langmuir.0c03644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Morphology transition of block copolymer assemblies in response to external stimuli has attracted considerable attention. However, our knowledge about the mechanism of such a transition is still limited, especially for rod-coil block copolymers. Here, we report a programmable morphology evolution of assemblies induced by variation of chain ordering for rod-coil-rod triblock copolymers. A sequence of morphology transition from ellipsoids to disks, bowls, and vesicles is observed by increasing the solution temperature. At high temperatures, the mobility of the rod chain increases and the rigidity of the rod chain decreases. This gives rise to an ellipsoid-to-vesicle morphology transition. Dissipative particle dynamics theoretical simulations were performed to reveal the mechanism of this morphology transition process. It was found that the increase of rod chain mobility and the decrease of rod chain rigidity induce a decrease of chain ordering of rod blocks as temperature increases, which results in an ellipsoid-to-vesicle morphology transition. The gained information can guide the construction of nanoassemblies based on the rod-coil block copolymers.
Collapse
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fangsheng Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
32
|
Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021; 181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
The ingenious design and synthesis of novel macrocycles bring out renewed vigor of supramolecular chemistry in the past decade. As an intriguing class of macrocycles, pillararene and pillararene-based functional materials that are constructed through the noncovalent bond self-assembly approach have been undergoing a rapid growth, benefiting from their unique structures and physiochemical properties. This review elaborates recent significant advances of electrochemical studies based on pillararene systems. Fundamental electrochemical behavior of pillar[n]arene[m]quinone and pillararene-based self-assemblies as well as their applications in electrochemical biosensors are highlighted. In addition, the advantages and functions of pillararene self-assembly systems resulted from the unique molecular architectures are analyzed. Finally, current challenges and future development tendency in this burgeoning field are discussed from the viewpoint of both fundamental research and applications. Overall, this review not only manifests the main development vein of pillararene-based electrochemical systems, but also conquers a solid foundation for their further bioelectrochemical applications.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
33
|
Wessels MG, Jayaraman A. Computational Reverse-Engineering Analysis of Scattering Experiments (CREASE) on Amphiphilic Block Polymer Solutions: Cylindrical and Fibrillar Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michiel G. Wessels
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
34
|
Foster JC, Akar I, Grocott MC, Pearce AK, Mathers RT, O’Reilly RK. 100th Anniversary of Macromolecular Science Viewpoint: The Role of Hydrophobicity in Polymer Phenomena. ACS Macro Lett 2020; 9:1700-1707. [PMID: 33299653 PMCID: PMC7717397 DOI: 10.1021/acsmacrolett.0c00645] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
The seemingly simple notion of the hydrophobic effect can be viewed from multiple angles involving theory, simulation, and experiments. This viewpoint examines five attributes of predictive models to enhance synthetic efforts as well as experimental methods to quantify hydrophobicity. In addition, we compare existing predictive models against experimental data for polymer surface tension, lower critical solution temperature, solution self-assembly morphology, and degradation behavior. Key conclusions suggest that both the Hildebrand solubility parameters (HSPs) and surface area-normalized Log P (Log P SA-1) values provide unique and complementary insights into polymer phenomena. In particular, HSPs appear to better describe bulk polymer phenomena for thermoplastics such as surface tension, while Log P SA-1 values are well-suited for describing and predicting the behavior of polymers in solution.
Collapse
Affiliation(s)
- Jeffrey C. Foster
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Irem Akar
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Marcus C. Grocott
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Amanda K. Pearce
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert T. Mathers
- Department
of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
35
|
How is a micelle formed from amphiphilic polymers in a dialysis process: Insight from mesoscopic studies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Sun B, Xu Z, Tang Z, Cai C, Lin J. Dot Nanopattern Self‐Assembled from Rod‐Coil Block Copolymer on Substrate. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhengmin Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
37
|
Salih M, Walvekar P, Omolo CA, Elrashedy AA, Devnarain N, Fasiku V, Waddad AY, Mocktar C, Govender T. A self-assembled polymer therapeutic for simultaneously enhancing solubility and antimicrobial activity and lowering serum albumin binding of fusidic acid. J Biomol Struct Dyn 2020; 39:6567-6584. [PMID: 32772814 DOI: 10.1080/07391102.2020.1803140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The global antimicrobial resistance crisis has prompted worldwide efforts to develop new and more efficient antimicrobial compounds, as well as to develop new drug delivery strategies and targeting mechanisms. This study aimed to synthesize a novel polyethylene glycol-fusidic acid (PEG-FA) conjugate for self-assembly into nano-sized structures and explore its potential for simultaneously enhancing aqueous solubility and antibacterial activity of FA. In addition, the ability of PEG-FA to bind to HSA with lower affinity than FA is also investigated. Haemolysis and in vitro cytotoxicity studies confirmed superior biosafety of the novel PEG-FA compared to FA. The water solubility of FA after PEG conjugation was increased by 25-fold compared to the bare drug. PEG-FA nanoparticles displayed particle size, polydispersity index and zeta potential of 149.3 ± 0.21 nm, 0.267 ± 0.01 and 5.97 ± 1.03 mV, respectively. Morphology studies using high-resolution transmission electron microscope revealed a homogenous spherical shape of the PEG-FA nanoparticles. In silico studies showed that Van der Waals forces facilitated PEG-FA self-assembly. HSA binding studies showed that PEG-FA had very weak or no interaction with HSA using in silico molecular docking (-2.93 kcal/mol) and microscale thermophoresis (Kd=14999 ± 1.36 µM), which may prevent bilirubin displacement. Conjugation with PEG did not inhibit the antibacterial activity of FA but rather enhanced it by 2.5-fold against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus, compared to the bare FA. These results show that PEG-FA can simultaneously enhance solubility and antibacterial activity of FA, whilst also reducing binding of HSA to decrease its side effects.
Collapse
Affiliation(s)
- Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Pavan Walvekar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Ahmed A Elrashedy
- School of Pharmacy and Health Sciences, United States International University, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayman Y Waddad
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Wang J, Fang T, Li J, Yan Y, Li Z, Zhang J. Precise Mesoscopic Model Providing Insights into Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8009-8016. [PMID: 32574501 DOI: 10.1021/acs.langmuir.0c01404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembly of copolymer is an important approach to obtain multifarious nanostructures. Polymerization-induced self-assembly (PISA) is a recently developed and powerful copolymer self-assembly strategy. However, some researchers have reported a different morphology prepared by PISA and the traditional copolymer self-assembly using the same copolymer system. In this work, to explore the mystery, we develop a precise mesoscopic dissipative particle dynamics (DPD) model to reveal insights into the PISA of poly(4-vinylpyridine)-b-polystyrene (P4VP-b-PS). It is observed that P4VP-b-PS nanotubes can be obtained via TSA rather than PISA, which is consistent with reported experimental results. By carefully investigating the dynamics of PISA under specific solvent and monomer conditions and different polymerization rates, we propose that combining excessive monomers with multistep PISA can help to enhance the morphological regulation ability of PISA and retain a high solid content simultaneously. The findings in this study not only provide a precise modeling method for investigating copolymer self-assembly but also serve as a rational guide for future studies toward optimization of the PISA strategy.
Collapse
Affiliation(s)
- Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Timing Fang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Jiawei Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Youguo Yan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, Shandong China
| |
Collapse
|
40
|
Hong W, Lin J, Tian X, Wang L. Viscoelasticity of Nanosheet-Filled Polymer Composites: Three Regimes in the Enhancement of Moduli. J Phys Chem B 2020; 124:6437-6447. [PMID: 32609516 DOI: 10.1021/acs.jpcb.0c04235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We employed nonequilibrium molecular dynamics simulations to elucidate the viscoelastic properties of nanosheet (NS)-filled polymer composites. The effects of NS loadings and NS-polymer interaction on viscoelasticity were examined. The simulation results show that the NS-filled polymer composites exhibit an enhanced storage modulus and loss modulus as the NSs are loaded. There are three regimes of the enhanced process based on the NS loadings. At lower NS loadings, the motion of polymers slows down owing to the interaction between NSs and polymers, and the polymer chains generally follow the Rouse dynamics. As the NS loadings increase, the polymer chains are confined between NSs, leading to a substantial increment in dynamic moduli. At higher NS loadings, a transient network is formed, which strengthens the dynamic moduli further. In addition, the attractive NS-polymer interaction can improve the dispersion of NSs and increase the storage and loss moduli. The present work could provide essential information for designing high-performance hybrid polymeric materials.
Collapse
Affiliation(s)
- Wei Hong
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
41
|
Rizvi A, Patel U, Ianiro A, Hurst PJ, Merham JG, Patterson JP. Nonionic Block Copolymer Coacervates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Urja Patel
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Alessandro Ianiro
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Paul J. Hurst
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Jovany G. Merham
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
42
|
Gao G, Zhang S, Wang L, Lin J, Qi H, Zhu J, Du L, Chu M. Developing Highly Tough, Heat-Resistant Blend Thermosets Based on Silicon-Containing Arylacetylene: A Material Genome Approach. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27587-27597. [PMID: 32459954 DOI: 10.1021/acsami.0c06292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silicon-containing arylacetylene (PSA) resins exhibit excellent heat resistance, yet their brittleness limits the applications. We proposed using acetylene-terminated polyimides (ATPI) as an additive to enhance the toughness of the PSA resins and maintain excellent heat resistance. A material genome approach (MGA) was first established for designing and screening the acetylene-terminated polyimides, and a polyimide named ATPI was filtered out by using this MGA. The ATPI was synthesized and blended with PSA resins to improve the toughness of the thermosets. Influences of the added ATPI contents and prepolymerization temperature on the properties were examined. The result shows that the blend resin can resist high temperature and bear excellent mechanical properties. The molecular dynamics simulations were carried out to understand the mechanism behind the improvement of toughness. The present work provides a method for the rapid design and screening of high-performance polymeric materials.
Collapse
Affiliation(s)
- Guanru Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Songqi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huimin Qi
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junli Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Du
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Chu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
43
|
Li Q, Wang L, Lin J, Xu Z. Distinctive Morphology Modifiers for Polymer Blends: Roles of Asymmetric Janus Nanoparticles during Phase Separation. J Phys Chem B 2020; 124:4619-4630. [PMID: 32379453 DOI: 10.1021/acs.jpcb.0c02165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Janus nanoparticles (JPs), which are anisotropic nanoparticles with multiple constituting parts, have been recognized as superior compatibilizers for polymer-blend-based nanocomposites. However, so far, most studies focused on the effects of symmetric JPs on the phase separation dynamics of polymer blends, while the roles of asymmetric JPs during phase separation remain unclear. In this work, the phase separation dynamics of symmetric blends compatibilized by JPs with various compositions was studied by using dissipative particle dynamics (DPD) simulations. It was found that the blends compatibilized by asymmetric JPs tend to undergo morphological transitions from bicontinuous networks to droplets-in-matrix structures at the late stage of phase separation, which is due to the influence of asymmetric JPs on the energetically favored curvature of the interfaces between polymer domains. Such a mechanism is absent for symmetric JPs and other compatibilizers (e.g., triblock copolymers and homogeneous particles) because they lack the unique combination of chemical asymmetry with the particulate nature like the asymmetric JPs. Moreover, it was observed that the asymmetric JPs can stably localize at the interfaces and act as efficient compatibilizers only when the fraction of the minor constituent part exceeds a critical value. These findings not only shed light upon the roles of asymmetric JPs as compatibilizers but also indicate a promising strategy for designing polymer-blend-based nanocomposites with tailor-made structures.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
44
|
Huang Q, Xu Z, Cai C, Lin J. Micelles with a Loose Core Self‐Assembled from Coil‐
g
‐Rod Graft Copolymers Displaying High Drug Loading Capacity. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qijing Huang
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
45
|
Liu Z, Xu Z, Wang L, Lin J. Distinctive Optical Properties of Hierarchically Ordered Nanostructures Self-Assembled from Multiblock Copolymer/Nanoparticle Mixtures. Macromol Rapid Commun 2020; 41:e2000131. [PMID: 32329165 DOI: 10.1002/marc.202000131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 11/06/2022]
Abstract
Hybrid materials with hierarchical nanostructures are of great interest for their advanced functions. However, the effect of the formation of hierarchical nanostructures on properties is not well understood. Here, through combining dissipative particle dynamics simulation and the finite-difference time-domain method, the optical properties of hierarchically ordered nanostructures formed by mixtures of A(BC)n multiblock copolymers and nanoparticles (NPs) are investigated. A series of hierarchically ordered nanostructures with multiple small-length-scale hybrid domains are obtained from the self-assembly of A(BC)n /NP. An increase and blueshift in optical absorption are observed when the number of small-length-scale hybrid domains increases. The small-length-scale hybrid domains enhance light scattering, which consequently contributes to the improved optical performance. These findings can yield guidelines for designing hierarchically ordered functional nanocomposites with light-harvesting characteristics.
Collapse
Affiliation(s)
- Zaojin Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
46
|
Lu Y, Lin J, Wang L, Zhang L, Cai C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem Rev 2020; 120:4111-4140. [DOI: 10.1021/acs.chemrev.9b00774] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
47
|
Gao L, Hu R, Xu P, Lin J, Zhang L, Wang L. Supramolecular cyclization of semiflexible cylindrical micelles assembled from rod-coil graft copolymers. NANOSCALE 2020; 12:296-305. [PMID: 31825050 DOI: 10.1039/c9nr07930k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Uniform toroidal micelles can be constructed via the supramolecular cyclization of semiflexible cylindrical micelles, but revealing the conditions under which the cyclization occurs and the mechanism underlying the cyclization remains a challenge. In this study, we performed Brownian dynamics simulations of the supramolecular cyclization of semiflexible cylindrical micelles formed by rod-coil graft copolymers to obtain the cyclization conditions and understand the cyclization mechanism. It was found that the balance of the bending energy of the polymer backbones with the self-attraction energy between the pendant groups on the polymer backbones plays an important role in the cyclization process. A theoretical model based on this balance is developed to explain the cyclization mechanism, and the conditions required for realizing the supramolecular cyclization are obtained. The proposed mechanism is supported by our experimental findings regarding the supramolecular cyclization of polypeptide cylindrical micelles. The cyclization conditions and the revealed mechanism can guide further preparation of uniform toroidal micelles from semiflexible cylindrical micelles in an end-to-end closure manner.
Collapse
Affiliation(s)
- Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Rui Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
48
|
Tang Z, Li D, Lin J, Zhang L, Cai C, Yao Y, Yang C, Tian X. Self-assembly of rod-coil block copolymers on a substrate into micrometer-scale ordered stripe nanopatterns. Polym Chem 2020. [DOI: 10.1039/d0py01404d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micrometer-scale ordered stripe nanopatterns are readily constructed through an adsorption-assembly of rod-coil block copolymers on the substrate.
Collapse
Affiliation(s)
- Zhengmin Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Da Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
49
|
Affiliation(s)
- F. Ruipérez
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| |
Collapse
|
50
|
Xu W, Xu Z, Cai C, Lin J, Zhang S, Zhang L, Lin S, Yao Y, Qi H. Ordered Surface Nanostructures Self-Assembled from Rod-Coil Block Copolymers on Microspheres. J Phys Chem Lett 2019; 10:6375-6381. [PMID: 31581777 DOI: 10.1021/acs.jpclett.9b02606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An ordered surface nanostructure endows materials advanced functions. However, fabricating ordered surface-patterned particles via the polymer self-assembly approach is a challenge. Here we report that poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) rod-coil block copolymers are able to form uniform-surface micelles on polystyrene microspheres through a solution self-assembly approach. The size of the surface micelles can be varied by the molecular weight of the block copolymers. These surface micelles are arranged in a manner consistent with the Euler theorem. Most of the micelles are six-fold coordinated, and the number difference between the five-fold and the seven-fold coordination is 12. Simulations on model systems qualitatively reproduced the experimental findings and provided direct observations for the surface-patterned particles, including the polymer chain packing manner in surface micelles at the molecular level and the array feature of the surface micelles through 2D projections of the surface patterns.
Collapse
Affiliation(s)
- Wenheng Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Huimin Qi
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|