1
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Broos JY, van der Burgt RTM, Konings J, Rijnsburger M, Werz O, de Vries HE, Giera M, Kooij G. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: fueling or dampening disease progression? J Neuroinflammation 2024; 21:21. [PMID: 38233951 PMCID: PMC10792915 DOI: 10.1186/s12974-023-02981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complexity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), also termed eicosanoids, may contribute to MS pathogenesis. For example, disturbances in LM profiles and especially those derived from the ω-6 PUFA arachidonic acid (AA) have been reported in people with MS (PwMS), where they may contribute to the chronicity of neuroinflammatory processes. Moreover, we have previously shown that certain AA-derived LMs also associated with neurodegenerative processes in PwMS, suggesting that AA-derived LMs are involved in more pathological events than solely neuroinflammation. Yet, to date, a comprehensive overview of the contribution of these LMs to MS-associated pathological processes remains elusive. MAIN BODY This review summarizes and critically evaluates the current body of literature on the eicosanoid biosynthetic pathway and its contribution to key pathological hallmarks of MS during different disease stages. Various parts of the eicosanoid pathway are highlighted, namely, the prostanoid, leukotriene, and hydroxyeicosatetraenoic acids (HETEs) biochemical routes that include specific enzymes of the cyclooxygenases (COXs) and lipoxygenases (LOX) families. In addition, cellular sources of LMs and their potential target cells based on receptor expression profiles will be discussed in the context of MS. Finally, we propose novel therapeutic approaches based on eicosanoid pathway and/or receptor modulation to ultimately target chronic neuroinflammation, demyelination and neurodegeneration in MS. SHORT CONCLUSION The eicosanoid pathway is intrinsically linked to specific aspects of MS pathogenesis. Therefore, we propose that novel intervention strategies, with the aim of accurately modulating the eicosanoid pathway towards the biosynthesis of beneficial LMs, can potentially contribute to more patient- and MS subtype-specific treatment opportunities to combat MS.
Collapse
Affiliation(s)
- Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rianne T M van der Burgt
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
| | - Julia Konings
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Zeng C, Liu J, Zheng X, Hu X, He Y. Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension. Respir Res 2023; 24:263. [PMID: 37915044 PMCID: PMC10619262 DOI: 10.1186/s12931-023-02559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), Group 1 pulmonary hypertension (PH), is a type of pulmonary vascular disease characterized by abnormal contraction and remodeling of the pulmonary arterioles, manifested by pulmonary vascular resistance (PVR) and increased pulmonary arterial pressure, eventually leading to right heart failure or even death. The mechanisms involved in this process include inflammation, vascular matrix remodeling, endothelial cell apoptosis and proliferation, vasoconstriction, vascular smooth muscle cell proliferation and hypertrophy. In this study, we review the mechanisms of action of prostaglandins and their receptors in PAH. MAIN BODY PAH-targeted therapies, such as endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, activators of soluble guanylate cyclase, prostacyclin, and prostacyclin analogs, improve PVR, mean pulmonary arterial pressure, and the six-minute walk distance, cardiac output and exercise capacity and are licensed for patients with PAH; however, they have not been shown to reduce mortality. Current treatments for PAH primarily focus on inhibiting excessive pulmonary vasoconstriction, however, vascular remodeling is recalcitrant to currently available therapies. Lung transplantation remains the definitive treatment for patients with PAH. Therefore, it is imperative to identify novel targets for improving pulmonary vascular remodeling in PAH. Studies have confirmed that prostaglandins and their receptors play important roles in the occurrence and development of PAH through vasoconstriction, vascular smooth muscle cell proliferation and migration, inflammation, and extracellular matrix remodeling. CONCLUSION Prostacyclin and related drugs have been used in the clinical treatment of PAH. Other prostaglandins also have the potential to treat PAH. This review provides ideas for the treatment of PAH and the discovery of new drug targets.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Jing Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xialei Zheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yuhu He
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
4
|
Kv7 Channels in Cyclic-Nucleotide Dependent Relaxation of Rat Intra-Pulmonary Artery. Biomolecules 2022; 12:biom12030429. [PMID: 35327621 PMCID: PMC8946781 DOI: 10.3390/biom12030429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension is treated with drugs that stimulate cGMP or cAMP signalling. Both nucleotides can activate Kv7 channels, leading to smooth muscle hyperpolarisation, reduced Ca2+ influx and relaxation. Kv7 activation by cGMP contributes to the pulmonary vasodilator action of nitric oxide, but its contribution when dilation is evoked by the atrial natriuretic peptide (ANP) sensitive guanylate cyclase, or cAMP, is unknown. Small vessel myography was used to investigate the ability of Kv7 channel blockers to interfere with pulmonary artery relaxation when cyclic nucleotide pathways were stimulated in different ways. The pan-Kv7 blockers, linopirdine and XE991, caused substantial inhibition of relaxation evoked by NO donors and ANP, as well as endothelium-dependent dilators, the guanylate cyclase stimulator, riociguat, and the phosphodiesterase-5 inhibitor, sildenafil. Maximum relaxation was reduced without a change in sensitivity. The blockers had relatively little effect on cAMP-mediated relaxation evoked by forskolin, isoprenaline or treprostinil. The Kv7.1-selective blocker, HMR1556, had no effect on cGMP or cAMP-dependent relaxation. Western blot analysis demonstrated the presence of Kv7.1 and Kv7.4 proteins, while selective activators of Kv7.1 and Kv7.4 homomeric channels, but not Kv7.5, caused pulmonary artery relaxation. It is concluded that Kv7.4 channels contribute to endothelium-dependent dilation and the effects of drugs that act by stimulating cGMP, but not cAMP, signalling.
Collapse
|
5
|
Liu B, Zhou Y. Endothelium-dependent contraction: The non-classical action of endothelial prostacyclin, its underlying mechanisms, and implications. FASEB J 2021; 35:e21877. [PMID: 34449098 DOI: 10.1096/fj.202101077r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
Although commonly thought to produce prostacyclin (prostaglandin I2 ; PGI2 ) that evokes vasodilatation and protects vessels from the development of diseases, the endothelial cyclooxygenase (COX)-mediated metabolism has also been found to release substance(s) called endothelium-derived contracting factor(s) (EDCF) that causes endothelium-dependent contraction and implicates in endothelial dysfunction of disease conditions. Various mechanisms have been proposed for the process; however, the major endothelial COX metabolite PGI2 , which has been classically considered to activate the I prostanoid receptor (IP) that mediates vasodilatation and opposes the effects of thromboxane (Tx) A2 produced by COX in platelets, emerges as a major EDCF in health and disease conditions. Our recent studies from genetically altered mice further suggest that vasomotor reactions to PGI2 are collectively modulated by IP, the vasoconstrictor Tx-prostanoid receptor (TP; the prototype receptor of TxA2 ) and E prostanoid receptor-3 (EP3; a vasoconstrictor receptor of PGE2 ) although with differences in potency and efficacy; a contraction to PGI2 reflects activities of TP and/or EP3 outweighing that of the concurrently activated IP. Here, we discuss the history of endothelium-dependent contraction, evidences that support the above hypothesis, proposed mechanisms for the varied reactions to endothelial PGI2 synthesis as well as the relation of its dilator activity to the effect of another NO-independent vasodilator mechanism, the endothelium-derived hyperpolarizing factor. Also, we address the possible pathological and therapeutic implications as well as questions remaining to be resolved or limitations of our above findings obtained from genetically altered mouse models.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Biringer RG. A Review of Prostanoid Receptors: Expression, Characterization, Regulation, and Mechanism of Action. J Cell Commun Signal 2021; 15:155-184. [PMID: 32970276 PMCID: PMC7991060 DOI: 10.1007/s12079-020-00585-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain to cell survival. Disruption of normal prostanoid signaling is implicated in numerous disease states. Prostaglandin signaling is facilitated by G-protein-coupled, prostanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of prostanoid receptors with particular emphasis on human isoforms.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Liu B, Zeng R, Guo T, Zhang Y, Leng J, Ge J, Yu G, Xu Y, Zhou Y. Differential properties of E prostanoid receptor-3 and thromboxane prostanoid receptor in activation by prostacyclin to evoke vasoconstrictor response in the mouse renal vasculature. FASEB J 2020; 34:16105-16116. [PMID: 33047360 DOI: 10.1096/fj.202000845rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023]
Abstract
Vasomotor reactions of prostacyclin (prostaglandin I2 ; PGI2 ) can be collectively modulated by thromboxane prostanoid receptor (TP), E-prostanoid receptor-3 (EP3), and the vasodilator I prostanoid receptor (IP). This study aimed to determine the direct effect of PGI2 on renal arteries and/or the whole renal vasculature and how each of these receptors is involved. Experiments were performed on vessels or perfused kidneys of wild-type mice and/or mice with deficiency in TP (TP-/- ) and/or EP3. Here we show that PGI2 did not evoke relaxation, but instead resulted in contraction of main renal arteries (from ~0.001-0.01 µM) or reduction of flow in perfused kidneys (from ~1 µM); either of them was reversed into a dilator response in TP-/- /EP3-/- counterparts. Also, we found that in renal arteries although it has a lesser effect than TP-/- on the maximal contraction to PGI2 (10 µM), EP3-/- but not TP-/- resulted in relaxation to the prostanoid at 0.01-1 µM. Meanwhile, TP-/- only significantly reduced the contractile activity evoked by PGI2 at ≥0.1 µM. These results demonstrate that PGI2 may evoke an overall vasoconstrictor response in the mouse renal vasculature, reflecting activities of TP and EP3 outweighing that of the vasodilator IP. Also, our results suggest that EP3, on which PGI2 can have a potency similar to that on IP, plays a major role in the vasoconstrictor effect of the prostanoid of low concentrations (≤1 µM), while TP, on which PGI2 has a lower potency but higher efficacy, accounts for a larger part of its maximal contractile activity.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Ruhui Zeng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
9
|
Zhu L, Zhang Y, Guo Z, Wang M. Cardiovascular Biology of Prostanoids and Drug Discovery. Arterioscler Thromb Vasc Biol 2020; 40:1454-1463. [PMID: 32295420 DOI: 10.1161/atvbaha.119.313234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostanoids are a group of bioactive lipids that are synthesized de novo from membrane phospholipid-released arachidonic acid and have diverse functions in normal physiology and disease. NSAIDs (non-steroidal anti-inflammatory drugs), which are among the most commonly used medications, ameliorate pain, fever, and inflammation by inhibiting COX (cyclooxygenase), which is the rate-limiting enzyme in the biosynthetic cascade of prostanoids. The use of NSAIDs selective for COX-2 inhibition increases the risk of a thrombotic event (eg, myocardial infarction and stroke). All NSAIDs are associated with an increased risk of heart failure. Substantial variation in clinical responses to aspirin exists and is associated with cardiovascular risk. Limited clinical studies suggest the involvement of prostanoids in vascular restenosis in patients who received angioplasty intervention. mPGES (microsomal PG [prostaglandin] E synthase)-1, an alternative target downstream of COX, has the potential to be therapeutically targeted for inflammatory disease, with diminished thrombotic risk relative to selective COX-2 inhibitors. mPGES-1-derived PGE2 critically regulates microcirculation via its receptor EP (receptor for prostanoid E) 4. This review summarizes the actions and associated mechanisms for modulating the biosynthesis of prostanoids in thrombosis, vascular remodeling, and ischemic heart disease as well as their therapeutic relevance.
Collapse
Affiliation(s)
- Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yuze Zhang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Ziyi Guo
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
10
|
Zhu L, Xu C, Huo X, Hao H, Wan Q, Chen H, Zhang X, Breyer RM, Huang Y, Cao X, Liu DP, FitzGerald GA, Wang M. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat Commun 2019; 10:1888. [PMID: 31015404 PMCID: PMC6478873 DOI: 10.1038/s41467-019-09492-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
The use of nonsteroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX)-1 and COX-2, increases heart failure risk. It is unknown whether microsomal (m) prostaglandin (PG) E synthase (S)-1, a target downstream of COX, regulates myocardial (M) ischemia/reperfusion (I/R) injury, a key determinant of heart failure. Here we report that COX-1 and mPGES-1 mediate production of substantial amounts of PGE2 and confer cardiac protection in MI/R. Deletion of mPges-1 impairs cardiac microvascular perfusion and increases inflammatory cell infiltration in mouse MI/R. Consistently, mPges-1 deletion depresses the arteriolar dilatory response to I/R in vivo and to acetylcholine ex vivo, and enhances leukocyte-endothelial cell interaction, which is mediated via PGE receptor-4 (EP4). Furthermore, endothelium-restricted Ep4 deletion impairs microcirculation, and exacerbates MI/R injury, irrespective of EP4 agonism. Treatment with misoprostol, a clinically available PGE analogue, improves microcirculation and reduces MI/R injury. Thus, mPGES-1, a key microcirculation protector, constrains MI/R injury and this beneficial effect is partially mediated via endothelial EP4. The use of nonsteroidal anti-inflammatory drugs inhibiting COX-1/2 is associated with an increased risk of heart failure. Here the authors show that mPGES-1, a therapeutic target downstream of COX enzymes, protects from cardiac ischemia/reperfusion injury, limiting leukocyte-endothelial interactions and preserving microvascular perfusion partly via the endothelial EP4 receptor.
Collapse
Affiliation(s)
- Liyuan Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Chuansheng Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xingyu Huo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Huifeng Hao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, 300070, China
| | - Richard M Breyer
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuetao Cao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - De-Pei Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China. .,Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
11
|
Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. Pulm Pharmacol Ther 2018; 49:75-87. [DOI: 10.1016/j.pupt.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
|
12
|
Lang IM, Gaine SP. Recent advances in targeting the prostacyclin pathway in pulmonary arterial hypertension. Eur Respir Rev 2015; 24:630-41. [PMID: 26621977 PMCID: PMC9487617 DOI: 10.1183/16000617.0067-2015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/04/2015] [Indexed: 11/05/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterised by increased pulmonary vascular resistance, which leads to restricted pulmonary arterial blood flow and elevated pulmonary arterial pressure. In patients with PAH, pulmonary concentrations of prostacyclin, a prostanoid that targets several receptors including the IP prostacyclin receptor, are reduced. To redress this balance, epoprostenol, a synthetic prostacyclin, or analogues of prostacyclin have been given therapeutically. These therapies improve exercise capacity, functional class and haemodynamic parameters. In addition, epoprostenol improves survival among patients with PAH. Despite their therapeutic benefits, treatments that target the prostacyclin pathway are underused. One key factor is their requirement for parenteral administration: continuous intravenous administration can lead to embolism and thrombosis; subcutaneous administration is associated with infusion-site pain; and inhalation is time consuming, requiring multiple daily administrations. Nevertheless, targeting the prostacyclin pathway is an important strategy for the management of PAH. The development of oral therapies for this pathway, as well as more user-friendly delivery devices, may alleviate some of the inconveniences. Continued improvements in therapeutic options will enable more patients with PAH to receive medication targeting the prostacyclin pathway.
Collapse
Affiliation(s)
- Irene M Lang
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Sean P Gaine
- National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Prostaglandin E2 switches from a stimulator to an inhibitor of cell migration after epithelial-to-mesenchymal transition. Prostaglandins Other Lipid Mediat 2014; 116-117:1-9. [PMID: 25460827 DOI: 10.1016/j.prostaglandins.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 01/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is critical for embryonic development, and this process is recapitulated in adults during wound healing, tissue regeneration, fibrosis and cancer progression. Cell migration is believed to play a key role in both normal wound repair and in abnormal tissue remodeling. Prostaglandin E2 (PGE2) inhibits fibroblast chemotaxis, but stimulates chemotaxis in airway epithelial cells. The current study was designed to explore the role of PGE2 and its four receptors on airway epithelial cell migration following EMT using both the Boyden blindwell chamber chemotaxis assay and the wound closure assay. EMT in human bronchial epithelial cells (HBECs) was induced by TGF-β1 and a mixture of cytokines (IL-1β, TNF-α, and IFN-γ). PGE2 and selective agonists for all four EP receptors stimulated chemotaxis and wound closure in HBECs. Following EMT, the EP1 and EP3 agonists were without effect, while the EP2 and EP4 agonists inhibited chemotaxis as did PGE2. The effects of the EP2 and EP4 receptors on HBEC and EMT cell migration were further confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE2 switches from a stimulator to an inhibitor of cell migration following EMT of airway epithelial cells and that this inhibition is mediated by an altered effect of EP2 and EP4 signaling and an apparent loss of the stimulatory effects of EP1 and EP3. Change in the PGE2 modulation of chemotaxis may play a role in repair following injury.
Collapse
|
14
|
Shimizu T, Tanaka K, Nakamura K, Taniuchi K, Yawata T, Higashi Y, Ueba T, Dimitriadis F, Shimizu S, Yokotani K, Saito M. Possible involvement of brain prostaglandin E2 and prostanoid EP3 receptors in prostaglandin E2 glycerol ester-induced activation of central sympathetic outflow in the rat. Neuropharmacology 2014; 82:19-27. [DOI: 10.1016/j.neuropharm.2014.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
|
15
|
A comparative study of PGI2 mimetics used clinically on the vasorelaxation of human pulmonary arteries and veins, role of the DP-receptor. Prostaglandins Other Lipid Mediat 2013; 107:48-55. [DOI: 10.1016/j.prostaglandins.2013.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/18/2013] [Accepted: 07/02/2013] [Indexed: 01/11/2023]
|
16
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yan G, Wang Q, Shi H, Han Y, Ma G, Tang C, Gu Y. Regulation of rat intrapulmonary arterial tone by arachidonic acid and prostaglandin E2 during hypoxia. PLoS One 2013; 8:e73839. [PMID: 24013220 PMCID: PMC3754945 DOI: 10.1371/journal.pone.0073839] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 07/30/2013] [Indexed: 12/11/2022] Open
Abstract
AIMS Arachidonic acid (AA) and its metabolites, prostaglandins (PG) are known to be involved in regulation of vascular homeostasis including vascular tone and vessel wall tension, but their potential role in Hypoxic pulmonary vasoconstriction (HPV) remains unclear. In this study, we examined the effects of AA and PGE2 on the hypoxic response in isolated rat intrapulmonary arteries (IPAs). METHODS AND RESULTS We carried out the investigation on IPAs by vessel tension measurement. Isotetrandrine (20 µM) significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. Both indomethacin (100 µM) and NS398 attenuated KPSS-induced vessel contraction and phase I, phase IIb and phase IIc of HPV, implying that COX-2 plays a primary role in the hypoxic response of rat IPAs. PGE2 alone caused a significant vasoconstriction in isolated rat IPAs. This constriction is mediated by EP4. Blockage of EP4 by L-161982 (1 µM) significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. However, AH6809 (3 µM), an antagonist of EP1, EP2, EP3 and DP1 receptors, exerted no effect on KPSS or hypoxia induced vessel contraction. Increase of cellular cAMP by forskolin could significantly reduce KPSS-induced vessel contraction and abolish phase I, phase II b and phase II c of HPV. CONCLUSION Our results demonstrated a vasoconstrictive effect of PGE2 on rat IPAs and this effect is via activation of EP4. Furthermore, our results suggest that intracellular cAMP plays dual roles in regulation of vascular tone, depending on the spatial distribution of cAMP and its coupling with EP receptor and Ca(2+) channels.
Collapse
Affiliation(s)
- Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China ; Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Larsson-Callerfelt AK, Dahlén SE, Kühl AR, Lex D, Uhlig S, Martin C. Modulation of antigen-induced responses by serotonin and prostaglandin E2 via EP1 and EP4 receptors in the peripheral rat lung. Eur J Pharmacol 2013; 699:141-9. [DOI: 10.1016/j.ejphar.2012.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 11/15/2012] [Accepted: 11/23/2012] [Indexed: 02/02/2023]
|
19
|
Downey JD, Saleh SA, Bridges TM, Morrison RD, Daniels JS, Lindsley CW, Breyer RM. Development of an in vivo active, dual EP1 and EP3 selective antagonist based on a novel acyl sulfonamide bioisostere. Bioorg Med Chem Lett 2013; 23:37-41. [PMID: 23218714 PMCID: PMC3534858 DOI: 10.1016/j.bmcl.2012.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 12/28/2022]
Abstract
Recent preclinical studies demonstrate a role for the prostaglandin E(2) (PGE(2)) subtype 1 (EP1) receptor in mediating, at least in part, the pathophysiology of hypertension and diabetes mellitus. A series of amide and N-acylsulfonamide analogs of a previously described picolinic acid-based human EP1 receptor antagonist (7) were prepared. Each analog had improved selectivity at the mouse EP1 receptor over the mouse thromboxane receptor (TP). A subset of analogs gained affinity for the mouse PGE(2) subtype 3 (EP3) receptor, another potential therapeutic target. One analog (17) possessed equal selectivity for EP1 and EP3, displayed a sufficient in vivo residence time in mice, and lacked the potential for acyl glucuronide formation common to compound 7. Treatment of mice with 17 significantly attenuated the vasopressor activity resulting from an acute infusion of EP1 and EP3 receptor agonists. Compound 17 represents a potentially novel therapeutic in the treatment of hypertension and diabetes mellitus.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus/drug therapy
- Half-Life
- Humans
- Hypertension/drug therapy
- Mice
- Microsomes, Liver/metabolism
- Pyridines/chemistry
- Pyridines/pharmacokinetics
- Pyridines/therapeutic use
- Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Structure-Activity Relationship
- Sulfonamides/chemistry
- Sulfonamides/pharmacokinetics
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Jason D. Downey
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sam A. Saleh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas M. Bridges
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Ryan D. Morrison
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - J. Scott Daniels
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Richard M. Breyer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Kozłowska H, Baranowska-Kuczko M, Schlicker E, Kozłowski M, Zakrzeska A, Grzęda E, Malinowska B. EP3 receptor-mediated contraction of human pulmonary arteries and inhibition of neurogenic tachycardia in pithed rats. Pharmacol Rep 2012; 64:1526-36. [DOI: 10.1016/s1734-1140(12)70950-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/03/2012] [Indexed: 11/24/2022]
|
21
|
Harland DR, Lorenz LD, Fay K, Dunn BE, Gruenloh SK, Narayanan J, Jacobs ER, Medhora M. Acute effects of prostaglandin E1 and E2 on vascular reactivity and blood flow in situ in the chick chorioallantoic membrane. Prostaglandins Leukot Essent Fatty Acids 2012; 87:79-89. [PMID: 22858445 PMCID: PMC3839254 DOI: 10.1016/j.plefa.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/04/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
The chick chorioallantoic membrane (CAM) subserves gas exchange in the developing embryo and shell-less culture affords a unique opportunity for direct observations over time of individual blood vessels to pharmacologic interventions. We tested a number of lipids including prostaglandins PGE(1&2) for vascular effects and signaling in the CAM. Application of PGE(1&2) induced a decrease in the diameter of large blood vessels and a concentration-dependent, localized, reversible loss of blood flow through small vessels. The loss of flow was also mimicked by misoprostol, an agonist for 3 of 4 known PGE receptors, EP(2-4), and by U46619, a thromboxane mimetic. Selective receptor antagonists for EP(3) and thromboxane each partially blocked the response. This is a first report of the effects of prostaglandins on vasoreactivity in the CAM. Our model allows the unique ability to examine simultaneous responses of large and small vessels in real time and in vivo.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Alprostadil/antagonists & inhibitors
- Alprostadil/pharmacology
- Animals
- Biphenyl Compounds/pharmacology
- Blood Vessels/drug effects
- Blood Vessels/physiology
- Bridged Bicyclo Compounds, Heterocyclic
- Chick Embryo
- Chorioallantoic Membrane/blood supply
- Chorioallantoic Membrane/drug effects
- Chorioallantoic Membrane/metabolism
- Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide/pharmacology
- Dinoprostone/antagonists & inhibitors
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Estradiol/pharmacology
- Estrogens/pharmacology
- Fatty Acids, Unsaturated
- Hydrazines/pharmacology
- Microsomes/drug effects
- Microsomes/metabolism
- Misoprostol/pharmacology
- Prostaglandin Antagonists/pharmacology
- Rats
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/metabolism
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/antagonists & inhibitors
- Vasoconstrictor Agents/pharmacology
- Xanthones/pharmacology
- alpha-Linolenic Acid/pharmacology
Collapse
Affiliation(s)
- D R Harland
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - L D Lorenz
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - K Fay
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - B E Dunn
- Division of Pulmonary and Critical Care, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226
- Clement J. Zablocki VA Medical Center, Milwaukee WI 53295
| | - S K Gruenloh
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - J Narayanan
- Division of Pulmonary and Critical Care, Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - E R Jacobs
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Clement J. Zablocki VA Medical Center, Milwaukee WI 53295
| | - M Medhora
- Division of Pulmonary and Critical Care, Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
22
|
Robertson JA, Sauer D, Gold JA, Nonas SA. The role of cyclooxygenase-2 in mechanical ventilation-induced lung injury. Am J Respir Cell Mol Biol 2012; 47:387-94. [PMID: 22556158 DOI: 10.1165/rcmb.2011-0005oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mechanical ventilation is necessary for patients with acute respiratory failure, but can cause or propagate lung injury. We previously identified cyclooxygenase-2 as a candidate gene in mechanical ventilation-induced lung injury. Our objective was to determine the role of cyclooxygenase-2 in mechanical ventilation-induced lung injury and the effects of cyclooxygenase-2 inhibition on lung inflammation and barrier disruption. Mice were mechanically ventilated at low and high tidal volumes, in the presence or absence of pharmacologic cyclooxygenase-2-specific inhibition with 3-(4-methylsulphonylphenyl)-4-phenyl-5-trifluoromethylisoxazole (CAY10404). Lung injury was assessed using markers of alveolar-capillary leakage and lung inflammation. Cyclooxygenase-2 expression and activity were measured by Western blotting, real-time PCR, and lung/plasma prostanoid analysis, and tissue sections were analyzed for cyclooxygenase-2 staining by immunohistochemistry. High tidal volume ventilation induced lung injury, significantly increasing both lung leakage and lung inflammation relative to control and low tidal volume ventilation. High tidal volume mechanical ventilation significantly induced cyclooxygenase-2 expression and activity, both in the lungs and systemically, compared with control mice and low tidal volume mice. The immunohistochemical analysis of lung sections localized cyclooxygenase-2 expression to monocytes and macrophages in the alveoli. The pharmacologic inhibition of cyclooxygenase-2 with CAY10404 significantly decreased cyclooxygenase activity and attenuated lung injury in mice ventilated at high tidal volume, attenuating barrier disruption, tissue inflammation, and inflammatory cell signaling. This study demonstrates the induction of cyclooxygenase-2 by mechanical ventilation, and suggests that the therapeutic inhibition of cyclooxygenase-2 may attenuate ventilator-induced acute lung injury.
Collapse
Affiliation(s)
- Joshua A Robertson
- Division of Pulmonary and Critical Care, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
23
|
Prostaglandin E2 induced contraction of human intercostal arteries is mediated by the EP3 receptor. Eur J Pharmacol 2012; 681:55-9. [DOI: 10.1016/j.ejphar.2012.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/23/2012] [Accepted: 01/28/2012] [Indexed: 12/23/2022]
|
24
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
25
|
Foudi N, Kotelevets L, Gomez I, Louedec L, Longrois D, Chastre E, Norel X. Differential reactivity of human mammary artery and saphenous vein to prostaglandin E(2) : implication for cardiovascular grafts. Br J Pharmacol 2011; 163:826-34. [PMID: 21323896 DOI: 10.1111/j.1476-5381.2011.01264.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Human internal mammary arteries (IMA) and saphenous veins (SV) are frequently used for coronary artery bypass graft surgery. Intra- and postoperatively, the bypass grafts are exposed to inflammatory conditions, under which there is a striking increase in the synthesis of prostaglandin E(2) (PGE(2) ). In this context, the physiological response of these vascular grafts to PGE(2) is highly relevant. The aim of this study was thus to characterize the PGE(2) receptor subtypes (EP(1) , EP(2) , EP(3) or EP(4) ) involved in modulation of the vascular tone in these two vessels. EXPERIMENTAL APPROACH Rings of IMA and SV were prepared from 48 patients. The rings were mounted in organ baths for isometric recording of tension, and a pharmacological study was performed, together with associated reverse transcriptase PCR and immunohistochemistry experiments. KEY RESULTS PGE(2) induced contractions of IMA (E(max) = 1.43 ± 0.20 g; pEC(50) = 7.50 ± 0.10); contractions were also observed with the EP(3) receptor agonists, sulprostone, 17-phenyl-PGE(2) , misoprostol or ONO-AE-248. In contrast, PGE(2) induced relaxation of the precontracted SV (E(max) =-0.22 ± 0.02 g; pEC(50) = 7.14 ± 0.09), as did the EP(4) receptor agonist, ONO-AE1-329. These results were confirmed by the use of selective EP receptor antagonists (GW627368X, L-826266, ONO-8713, SC-51322) and by molecular biology and immunostaining. CONCLUSIONS AND IMPLICATIONS PGE(2) induced potent and opposite effects on the human vascular segments used for grafting, namely vasoconstriction of the IMA and vasodilatation of the SV via EP(3) and EP(4) receptors respectively. These observations suggest that EP(3) and EP(4) receptors could constitute therapeutic targets to increase vascular graft patency.
Collapse
Affiliation(s)
- N Foudi
- INSERM, CHU X. Bichat, Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
27
|
Kunori S, Matsumura S, Okuda-Ashitaka E, Katano T, Audoly LP, Urade Y, Ito S. A novel role of prostaglandin E2 in neuropathic pain: blockade of microglial migration in the spinal cord. Glia 2011; 59:208-18. [PMID: 21125641 DOI: 10.1002/glia.21090] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuropathic pain produced by damage to or dysfunction of the nervous system is a common and severely disabling state that affects millions of people worldwide. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of neuropathic pain and that ATP serves as the mediator. However, the in vivo mechanism underlying the retention of activated microglia in the injured region has not yet been completely elucidated. Prostaglandin E(2) (PGE(2)) is the principal proinflammatory prostanoid and plays versatile roles by acting via four PGE receptor subtypes, EP1-EP4. In the present study, we investigated the role of PGE(2) in spinal microglial activation in relation to neuropathic pain by using genetic and pharmacological methods. Mice deficient in microsomal prostaglandin E synthase-1 impaired the activation of microglia and the NMDA-nitric oxide (NO) cascade in spinal neurons in the dorsal horn and did not exhibit mechanical allodynia after peripheral nerve injury. The intrathecal injection of indomethacin, a nonsteroidal anti-inflammatory drug, ONO-8713, a selective EP1 antagonist, or 7-nitroindole, a neuronal NO synthase inhibitor, attenuated mechanical allodynia and the increase in activated microglia observed in the established neuropathic-pain state. We further demonstrated that ATP-induced microglial migration was blocked in vitro by PGE(2) via EP2 and by S-nitrosoglutathione, an NO donor. Taken together, the present study suggests that PGE(2) participated in the maintenance of neuropathic pain in vivo not only by activating spinal neurons, but also by retaining microglia in the central terminals of primary afferent fibers via EP2 subtype and via EP1-mediated NO production.
Collapse
Affiliation(s)
- Shunji Kunori
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Downey JD, Sanders CR, Breyer RM. Evidence for the presence of a critical disulfide bond in the mouse EP3γ receptor. Prostaglandins Other Lipid Mediat 2011; 94:53-8. [PMID: 21236356 DOI: 10.1016/j.prostaglandins.2010.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 12/30/2010] [Accepted: 12/30/2010] [Indexed: 11/29/2022]
Abstract
To determine the contribution of cysteines to the function of the mouse E-prostanoid subtype 3 gamma (mEP3γ), we tested a series of cysteine-to-alanine mutants. Two of these mutants, C107A and C184A, showed no agonist-dependent activation in a cell-based reporter assay for mEP3γ, whereas none of the other cysteine-to-alanine mutations disrupted mEP3γ signal transduction. Total cell membranes prepared from HEK293 cells transfected with mEP3γ C107A or C184A had no detectable radioligand binding. Other mutant mEP3γ receptors had radioligand affinities and receptor densities similar to wild-type. Cell-surface ELISA against the N-terminal HA-tag of C107A and C184A demonstrated 40% and 47% reductions respectively in receptor protein expression at the cell surface, and no radioligand binding was detected as assessed by intact cell radioligand binding experiments. These data suggest a key role for C107 and C184 in both receptor structure/stability and function and is consistent with the presence of a conserved disulfide bond between C107 and C184 in mouse EP3 that is required for normal receptor expression and function. Our results also indicate that if a second disulfide bond is present in the native receptor it is non-essential for receptor assembly or function.
Collapse
Affiliation(s)
- Jason D Downey
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | |
Collapse
|
29
|
Mizuguchi S, Ohno T, Hattori Y, Ae T, Minamino T, Satoh T, Arai K, Saeki T, Hayashi I, Sugimoto Y, Narumiya S, Saigenji K, Majima M. Roles of prostaglandin E2-EP1 receptor signaling in regulation of gastric motor activity and emptying. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1078-86. [PMID: 20798358 DOI: 10.1152/ajpgi.00524.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is widely accepted that the inhibition of gastric motor activity as well as the maintenance of gastric mucosal blood flow and mucous secretion are important for the homeostasis of the gastric mucosa. The present study was performed to ascertain whether or not endogenous PGs, which can protect the stomach from noxious stimuli, affect gastric motor activity and emptying. The myoelectrical activity of rat gastric smooth muscle was increased at intragastric pressures of over 2 cmH(2)O. Replacement of intragastric physiological saline with 1 M NaCl solution significantly increased PGI(2) and PGE(2) in stomach and suppressed the myoelectrical activity under a pressure of 2 cmH(2)O by 70%. Indomethacin inhibited the suppression of myoelectrical activity by 1 M NaCl. The myoelectrical activity under a pressure of 2 cmH(2)O was suppressed by continuous infusion of a selective EP1 agonist (ONO-DI-004, 3-100 nmol·kg(-1)·min(-1)) into the gastric artery in a dose-dependent manner, but not by that of the PGI receptor agonist beraprost sodium (100 nmol·kg(-1)·min(-1)). Suppression of myoelectrical activity with 1 M NaCl was inhibited by continuous infusion of a selective EP1 antagonist (ONO-8711, 100 nmol·kg(-1)·min(-1)) into the gastric artery. Furthermore, gastric emptying was tested in EP1 knockout mice and their wild-type counterparts. Gastric emptying was strongly suppressed with intragastric 1 M NaCl in wild-type mice, but this 1 M NaCl-induced suppression was not seen in EP1 knockout mice. These results suggest that PGE(2)-EP1 signaling has crucial roles in suppression of myoelectrical activity of gastric smooth muscles and inhibition of gastric emptying and that EP1 is an obvious target for drugs that control gastric emptying.
Collapse
Affiliation(s)
- Sumito Mizuguchi
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li YJ, Wang XQ, Sato T, Kanaji N, Nakanishi M, Kim M, Michalski J, Nelson AJ, Sun JH, Farid M, Basma H, Patil A, Toews ML, Liu X, Rennard SI. Prostaglandin E₂ inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors. Am J Respir Cell Mol Biol 2010; 44:99-107. [PMID: 20203295 DOI: 10.1165/rcmb.2009-0163oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The migration of fibroblasts is believed to play a key role in both normal wound repair and abnormal tissue remodeling. Prostaglandin E (PGE)(2), a mediator that can inhibit many fibroblast functions including chemotaxis, was reported to be mediated by the E-prostanoid (EP) receptor EP2. PGE(2), however, can act on four receptors. This study was designed to determine if EP receptors, in addition to EP2, can modulate fibroblast chemotaxis. Using human fetal lung fibroblasts, the expression of all four EP receptors was demonstrated by Western blotting. EP2-selective and EP4-selective agonists inhibited both chemotaxis toward fibronectin in the blindwell assay and migration in a wound-closure assay. In contrast, EP1-selective and EP3-selective agonists stimulated cell migration in both assay systems. These results were confirmed using EP-selective antagonists. The role of both EP2 and EP4 receptors in mediating the PGE(2) inhibition of chemotaxis was also confirmed by small interfering RNA suppression. Furthermore, the role of EP receptors was confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE(2) can act on multiple EP receptors in human lung fibroblasts, to exert disparate effects. Alterations in EP receptor expression may have the potential to alter PGE(2) action. Targeting specific EP receptors may offer therapeutic opportunities in conditions characterized by abnormal tissue repair and remodeling.
Collapse
Affiliation(s)
- Ying-Ji Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ngiam N, Peltekova V, Engelberts D, Otulakowski G, Post M, Kavanagh BP. Early growth response-1 worsens ventilator-induced lung injury by up-regulating prostanoid synthesis. Am J Respir Crit Care Med 2010; 181:947-56. [PMID: 20110555 DOI: 10.1164/rccm.200908-1297oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Ventilator-induced lung injury (VILI) is common and serious and may be mediated in part by prostanoids. We have demonstrated increased expression of the early growth response-1 (Egr1) gene by injurious ventilation, but whether-or how-such up-regulation contributes to injury is unknown. OBJECTIVES We sought to define the role of Egr1 in the pathogenesis of VILI. METHODS An in vivo murine model of VILI was used, and Egr1(+/+) (wild-type) and Egr1(-/-) mice were studied; the effects of prostaglandin E receptor subtype 1 (EP1) inhibition were assessed. MEASUREMENTS AND MAIN RESULTS Injurious ventilation caused lung injury in wild-type mice, but less so in Egr1(-/-) mice. The injury was associated with expression of EGR1 protein, which was localized to type II cells and macrophages and was concentrated in nuclear extracts. There was a concomitant increase in expression of phosphorylated p44/p42 mitogen-activated protein kinases. The prostaglandin E synthase (mPGES-1) gene has multiple EGR1 binding sites on its promoter, and induction of mPGES-1 mRNA (as well as the prostanoid product, PGE2) by injurious ventilation was highly dependent on the presence of the Egr1 gene. PGE2 mediates many lung effects via EP1 receptors, and EP1 blockade (with ONO-8713) lessened lung injury. CONCLUSIONS This is the first demonstration of a mechanism whereby expression of a novel gene (Egr1) can contribute to VILI via a prostanoid-mediated pathway.
Collapse
Affiliation(s)
- Nicola Ngiam
- Physiology and Experimental Medicine, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
32
|
Jones RL, Giembycz MA, Woodward DF. Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol 2009; 158:104-45. [PMID: 19624532 PMCID: PMC2795261 DOI: 10.1111/j.1476-5381.2009.00317.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 04/07/2009] [Indexed: 01/17/2023] Open
Abstract
Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP(1), EP(2) ...) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP(1), TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP(2)). While some antagonists are structurally related to the natural agonist, most recent compounds are 'non-prostanoid' (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD(2) (acting on DP(1) and DP(2) receptors) and PGE(2) (on EP(1) and EP(4) receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage.
Collapse
Affiliation(s)
- R L Jones
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | |
Collapse
|
33
|
Reid HM, Kinsella BT. Intermolecular cross-talk between the prostaglandin E2 receptor (EP)3 of subtype and thromboxane A(2) receptor signalling in human erythroleukaemic cells. Br J Pharmacol 2009; 158:830-47. [PMID: 19702786 DOI: 10.1111/j.1476-5381.2009.00351.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In previous studies investigating cross-talk of signalling between prostaglandin (PG)E(2) receptor (EP) and the TPalpha and TPbeta isoforms of the human thromboxane (TX)A(2) receptor (TP), 17-phenyl trinor PGE(2)-induced desensitization of TP receptor signalling through activation of the AH6809 and SC19220-sensitive EP(1) subtype of the EP receptor family, in a cell-specific manner. Here, we sought to further investigate that cross-talk in human erythroleukaemic (HEL) 92.1.7 cells. EXPERIMENTAL APPROACH Specificity of 17-phenyl trinor PGE(2) signalling and its possible cross-talk with signalling by TPalpha/TPbeta receptors endogenously expressed in HEL cells was examined through assessment of agonist-induced inositol 1,4,5-trisphosphate (IP)(3) generation and intracellular calcium ([Ca(2+)](i)) mobilization. KEY RESULTS While 17-Phenyl trinor PGE(2) led to activation of phospholipase (PL)Cbeta to yield increases in IP(3) generation and [Ca(2+)](i), it did not desensitize but rather augmented that signalling in response to subsequent stimulation with the TXA(2) mimetic U46619. Furthermore, the augmentation was reciprocal. Signalling by 17-phenyl trinor PGE(2) was found to occur through AH6809- and SC19920-insensitive, Pertussis toxin-sensitive, G(i)/G(betagamma)-dependent activation of PLCbeta. Further pharmacological investigation using selective EP receptor subtype agonists and antagonists confirmed that 17-phenyl trinor PGE(2)-mediated signalling and reciprocal cross-talk with the TP receptors occurred through the EP(3), rather than the EP(1), EP(2) or EP(4) receptor subtype in HEL cells. CONCLUSIONS AND IMPLICATIONS The EP(1) and EP(3) subtypes of the EP receptor family mediated intermolecular cross-talk to differentially regulate TP receptor-mediated signalling whereby activation of EP(1) receptors impaired or desensitized, while that of EP(3) receptors augmented signalling through TPalpha/TPbeta receptors, in a cell type-specific manner.
Collapse
Affiliation(s)
- Helen M Reid
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
34
|
Clarke DL, Dakshinamurti S, Larsson AK, Ward JE, Yamasaki A. Lipid metabolites as regulators of airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:426-35. [PMID: 19114116 DOI: 10.1016/j.pupt.2008.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/18/2008] [Accepted: 12/10/2008] [Indexed: 02/02/2023]
Abstract
Compelling evidence identifies airway smooth muscle (ASM) not only as a target but also a cellular source for a diverse range of mediators underlying the processes of airway narrowing and airway hyperresponsiveness in diseases such as asthma. These include the growing family of plasma membrane phospholipid-derived polyunsaturated fatty acids broadly characterised by the prostaglandins, leukotrienes, lipoxins, isoprostanes and lysophospholipids. In this review, we describe the enzymatic and non-enzymatic biosynthetic pathways of these lipid mediators and how these are influenced by drug treatment, oxidative stress and airways disease. Additionally, we outline their cognate receptors, many of which are expressed by ASM. We describe potential deleterious and protective roles for these lipid mediators in airway inflammatory and remodelling processes by describing their effects on diverse functions of ASM in asthma that have the potential to contribute to asthma pathogenesis and symptoms. These functions include contractile tone development, cytokine and extracellular matrix production, and cellular proliferation and migration.
Collapse
Affiliation(s)
- Deborah L Clarke
- Respiratory Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | | | | | | | | |
Collapse
|
35
|
Sturm EM, Schratl P, Schuligoi R, Konya V, Sturm GJ, Lippe IT, Peskar BA, Heinemann A. Prostaglandin E2 inhibits eosinophil trafficking through E-prostanoid 2 receptors. THE JOURNAL OF IMMUNOLOGY 2008; 181:7273-83. [PMID: 18981149 DOI: 10.4049/jimmunol.181.10.7273] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The accumulation of eosinophils in lung tissue is a hallmark of asthma, and it is believed that eosinophils play a crucial pathogenic role in allergic inflammation. Prostaglandin (PG) E(2) exerts anti-inflammatory and bronchoprotective mechanisms in asthma, but the underlying mechanisms have remained unclear. In this study we show that PGE(2) potently inhibits the chemotaxis of purified human eosinophils toward eotaxin, PGD(2), and C5a. Activated monocytes similarly attenuated eosinophil migration, and this was reversed after pretreatment of the monocytes with a cyclooxygenase inhibitor. The selective E-prostanoid (EP) 2 receptor agonist butaprost mimicked the inhibitory effect of PGE(2) on eosinophil migration, whereas an EP2 antagonist completely prevented this effect. Butaprost, and also PGE(2), inhibited the C5a-induced degranulation of eosinophils. Moreover, selective kinase inhibitors revealed that the inhibitory effect of PGE(2) on eosinophil migration depended upon activation of PI3K and protein kinase C, but not cAMP. In animal models, the EP2 agonist butaprost inhibited the rapid mobilization of eosinophils from bone marrow of the in situ perfused guinea pig hind limb and prevented the allergen-induced bronchial accumulation of eosinophils in OVA-sensitized mice. Immunostaining showed that human eosinophils express EP2 receptors and that EP2 receptor expression in the murine lungs is prominent in airway epithelium and, after allergen challenge, in peribronchial infiltrating leukocytes. In summary, these data show that EP2 receptor agonists potently inhibit eosinophil trafficking and activation and might hence be a useful therapeutic option in eosinophilic diseases.
Collapse
Affiliation(s)
- Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kuwano K, Hashino A, Noda K, Kosugi K, Kuwabara K. A Long-Acting and Highly Selective Prostacyclin Receptor Agonist Prodrug, 2-{4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide (NS-304), Ameliorates Rat Pulmonary Hypertension with Unique Relaxant Responses of Its Active Form, {4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic Acid (MRE-269), on Rat Pulmonary Artery. J Pharmacol Exp Ther 2008; 326:691-9. [DOI: 10.1124/jpet.108.138305] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Foudi N, Kotelevets L, Louedec L, Leséche G, Henin D, Chastre E, Norel X. Vasorelaxation induced by prostaglandin E2 in human pulmonary vein: role of the EP4 receptor subtype. Br J Pharmacol 2008; 154:1631-9. [PMID: 18516068 DOI: 10.1038/bjp.2008.214] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE PGE2 has been shown to induce relaxations in precontracted human pulmonary venous preparations, while in pulmonary arteries this response was not observed. We investigated and characterized the prostanoid receptors which are activated by PGE2 in the human pulmonary veins. EXPERIMENTAL APPROACH Human pulmonary arteries and veins were cut as rings and set up in organ baths in presence of a TP antagonist. A pharmacological study was performed using selective EP1-4 ligands. The cellular localization of the EP4 receptors by immunohistochemistry and their corresponding transcripts were also investigated in these vessels. KEY RESULTS PGE2 and the EP4 agonists (L-902688, ONO-AE1-329) induced potent vasodilatation of the human pulmonary vein, pEC50 values: <7.22+/-0.20, 8.06+/-0.12 and 7.80+/-0.09, respectively. These relaxations were inhibited by the EP(4) antagonist GW627368X and not modified in presence of the DP antagonist L-877499. Higher concentrations (>or=1 microM) of the EP2 agonist ONO-AE1-259 induced relaxations of the veins. The EP4 agonists had no effect on the precontracted arteries. Finally, the EP(1) antagonists ONO-8713 and SC-51322 potentiated the relaxation of the veins induced by PGE2. EP4 and EP1 receptors were detected by immunohistochemistry in the veins but not in the arteries. EP4 mRNA accumulation was also greater in the veins when compared with the arterial preparations. CONCLUSIONS AND IMPLICATIONS Of the 4 EP receptor subtypes, smooth muscle cells in the human pulmonary vein express the EP4 and EP1 receptor subtypes. The relaxations induced by PGE2 in this vessel result from the activation of the EP4 receptor.
Collapse
|
38
|
Control of pulmonary vascular tone during exercise in health and pulmonary hypertension. Pharmacol Ther 2008; 119:242-63. [PMID: 18586325 DOI: 10.1016/j.pharmthera.2008.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 11/24/2022]
Abstract
Despite the importance of the pulmonary circulation as a determinant of exercise capacity in health and disease, studies into the regulation of pulmonary vascular tone in the healthy lung during exercise are scarce. This review describes the current knowledge of the role of various endogenous vasoactive mechanisms in the control of pulmonary vascular tone at rest and during exercise. Recent studies demonstrate an important role for endothelial factors (NO and endothelin) and neurohumoral factors (noradrenaline, acetylcholine). Moreover, there is evidence that natriuretic peptides, reactive oxygen species and phosphodiesterase activity can influence resting pulmonary vascular tone, but their role in the control of pulmonary vascular tone during exercise remains to be determined. K-channels are purported end-effectors in control of pulmonary vascular tone. However, K(ATP) channels do not contribute to regulation of pulmonary vascular tone, while the role of K(V) and K(Ca) channels at rest and during exercise remains to be determined. Pulmonary hypertension is associated with alterations in pulmonary vascular function and structure, resulting in blunted pulmonary vasodilatation during exercise and impaired exercise capacity. Although there is a paucity of studies pertaining to the regulation of pulmonary vascular tone during exercise in idiopathic pulmonary hypertension, the few studies that have been performed in models of pulmonary hypertension secondary to left ventricular dysfunction suggest altered control of pulmonary vascular tone during exercise. Since the increased pulmonary vascular tone during exercise limits exercise capacity, future studies are needed to investigate the vasomotor mechanisms that are responsible for the blunted exercise-induced pulmonary vasodilatation in pulmonary hypertension.
Collapse
|
39
|
Affiliation(s)
- Macrae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
40
|
Saleem S, Li RC, Wei G, Doré S. Effects of EP1 receptor on cerebral blood flow in the middle cerebral artery occlusion model of stroke in mice. J Neurosci Res 2007; 85:2433-40. [PMID: 17600836 PMCID: PMC2291148 DOI: 10.1002/jnr.21399] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lipid mediator prostaglandin E2 (PGE2) exhibits diverse biologic activity in a variety of tissues. Four PGE2 receptor subtypes (EP1-4) are involved in various physiologic and pathophysiologic conditions, but differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To characterize the role of the EP1 receptor, physiologic parameters (mean arterial blood pressure, pH, blood gases PaO2 and PaCO2, and body temperature), cerebral blood flow (CBF), and neuronal cell death were studied in a middle cerebral artery occlusion model of ischemic stroke in wild-type (WT) and EP1 knockout (EP1-/-) mice. The right middle cerebral artery was occluded for 60 min, and absolute CBF was measured by [14C] iodoantipyrine autoradiography. The effect of EP1 receptor on oxidative stress in neuronal cultures was investigated. Although no differences were observed in the physiologic parameters, CBF was significantly (P < 0.01) higher in EP1-/- mice than in WT mice, suggesting a role for this receptor in physiologic and pathophysiologic control of vascular tone. Similarly, neuronal cultures derived from EP1-/- mice were more resistant (90.6 +/- 5.8% viability) to tert-butyl hydroperoxide-induced oxidative stress than neurons from WT mice (39.6 +/- 17.2% viability). The EP1 receptor antagonist SC-51089 and calcium channel blocker verapamil each attenuated the neuronal cell death induced by PGE2. Thus, the prostanoid EP1 receptor plays a significant role in regulating CBF and neuronal cell death. These findings suggest that pharmacologic modulation of the EP1 receptor might be a means to improve CBF and neuronal survival during ischemic stroke.
Collapse
Affiliation(s)
- Sofiyan Saleem
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rung-chi Li
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guo Wei
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sylvain Doré
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Correspondence to: Sylvain Doré, PhD, Associate Professor, Departments of Anesthesiology/Critical Care Medicine and Neuroscience, Johns Hopkins University, 720 Rutland Ave, Ross 365, Baltimore, MD 21205. E-mail:
| |
Collapse
|
41
|
Ahmad M, Ahmad AS, Zhuang H, Maruyama T, Narumiya S, Doré S. Stimulation of prostaglandin E2-EP3 receptors exacerbates stroke and excitotoxic injury. J Neuroimmunol 2007; 184:172-9. [PMID: 17275922 PMCID: PMC1914218 DOI: 10.1016/j.jneuroim.2006.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/22/2006] [Accepted: 12/15/2006] [Indexed: 11/26/2022]
Abstract
The effect of PGE(2) EP3 receptors on injury size was investigated following cerebral ischemia and induced excitotoxicity in mice. Treatment with the selective EP3 agonist ONO-AE-248 significantly and dose-dependently increased infarct size in the middle cerebral artery occlusion model. In a separate experiment, pretreatment with ONO-AE-248 exacerbated the lesion caused by N-methyl-d-aspartic acid-induced acute excitotoxicity. Conversely, genetic deletion of EP3 provided protection against N-methyl-d-aspartic acid-induced toxicity. The results suggest that PGE(2), by stimulating EP3 receptors, can contribute to the toxicity associated with cyclooxygenase and that antagonizing this receptor could be used therapeutically to protect against stroke- and excitotoxicity-induced brain damage.
Collapse
MESH Headings
- Animals
- Body Temperature/drug effects
- Brain Infarction/etiology
- Brain Infarction/pathology
- Brain Injuries/chemically induced
- Brain Injuries/pathology
- Brain Injuries/physiopathology
- Cerebrovascular Circulation/drug effects
- Dinoprostone/adverse effects
- Dinoprostone/analogs & derivatives
- Dose-Response Relationship, Drug
- Drug Synergism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- N-Methylaspartate
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/deficiency
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP3 Subtype
Collapse
Affiliation(s)
- Muzamil Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Abdullah Shafique Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Hean Zhuang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Takayuki Maruyama
- Discovery Research Institute I, Ono Pharmaceutical Co. Ltd., Mishima-gun, Osaka, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | - Sylvain Doré
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Wang M, Zukas AM, Hui Y, Ricciotti E, Puré E, FitzGerald GA. Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis. Proc Natl Acad Sci U S A 2006; 103:14507-12. [PMID: 16973753 PMCID: PMC1566188 DOI: 10.1073/pnas.0606586103] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin (PG) E(2) is formed from PGH(2) by a series of PGE synthase (PGES) enzymes. Microsomal PGES-1(-/-) (mPGES-1(-/-)) mice were crossed into low-density lipoprotein receptor knockout (LDLR(-/-)) mice to generate mPGES-1(-/-) LDLR(-/-)s. Urinary 11alpha-hydroxy-9, 15-dioxo-2,3,4,5-tetranor-prostane-1,20-dioic acid (PGE-M) was depressed by mPGES-1 deletion. Vascular mPGES-1 was augmented during atherogenesis in LDLR(-/-)s. Deletion of mPGES-1 reduced plaque burden in fat-fed LDLR(-/-)s but did not alter blood pressure. mPGES-1(-/-) LDLR(-/-) plaques were enriched with fibrillar collagens relative to LDLR(-/-), which also contained small and intermediate-sized collagens. Macrophage foam cells were depleted in mPGES-1(-/-) LDLR(-/-) lesions, whereas the total areas rich in vascular smooth muscle cell (VSMC) and matrix were unaltered. mPGES-1 deletion augmented expression of both prostacyclin (PGI(2)) and thromboxane (Tx) synthases in endothelial cells, and VSMCs expressing PGI synthase were enriched in mPGES-1(-/-) LDLR(-/-) lesions. Stimulation of mPGES-1(-/-) VSMC and macrophages with bacterial LPS increased PGI(2) and thromboxane A(2) to varied extents. Urinary PGE-M was depressed, whereas urinary 2,3-dinor 6-keto PGF(1alpha), but not 2,3-dinor-TxB(2), was increased in mPGES-1(-/-) LDLR(-/-)s. mPGES-1-derived PGE(2) accelerates atherogenesis in LDLR(-/-) mice. Disruption of this enzyme retards atherogenesis, without an attendant impact on blood pressure. This may reflect, in part, rediversion of accumulated PGH(2) to augment formation of PGI(2). Inhibitors of mPGES-1 may be less likely than those selective for cyclooxygenase 2 to result in cardiovascular complications because of a divergent impact on the biosynthesis of PGI(2).
Collapse
Affiliation(s)
- Miao Wang
- *Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104; and
| | - Alicia M. Zukas
- Wistar Institute, 34th and Spruce Streets, Philadelphia, PA 19104
| | - Yiqun Hui
- *Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104; and
| | - Emanuela Ricciotti
- *Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104; and
| | - Ellen Puré
- Wistar Institute, 34th and Spruce Streets, Philadelphia, PA 19104
| | - Garret A. FitzGerald
- *Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Ahmad AS, Saleem S, Ahmad M, Doré S. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 2005; 89:265-70. [PMID: 16237196 DOI: 10.1093/toxsci/kfj022] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The clinical side effects associated with the inhibition of cyclooxygenase enzymes under pathologic conditions have recently raised concerns. A better understanding of neuroinflammatory mechanisms and neuronal survival requires knowledge of cyclooxygenase downstream pathways, especially PGE2 and its G-protein-coupled receptors. In this study, we postulate that EP1 receptor is one of the mechanisms that propagate neurotoxicity and could be a therapeutic target in brain injury. This hypothesis was tested by pretreating C57BL/6 wildtype mice with the EP1 receptor selective agonist ONO-DI-004 and the selective antagonist ONO-8713, followed by striatal unilateral NMDA injection. Results revealed that ONO-DI-004 increased NMDA-induced lesion volume up to 128.7 +/- 12.0%, while ONO-8713 significantly decreased lesion volume to 71.3 +/- 10.9%, as compared to the NMDA-control group. Neurotoxic EP1 receptor properties were also studied using C57BL/6 EP1 receptor knockout (EP1-/-) mice, which revealed a significant decrease to 74.5 +/- 8.2%, as compared to wildtype controls. The protective effect of the antagonist ONO-8713 was also tested in the EP1-/- mice, revealing no additional protection in these mice. Together, these results support the selectivity of ONO-8713 toward EP1 receptor and suggest the neurotoxic role of EP1 receptor. Furthermore, the EP1 receptor role in ischemic brain damage was investigated using a model of middle cerebral artery occlusion (MCAO) and reperfusion. The infarct volume was significantly reduced to 56.9 +/- 11.5% in EP1-/- mice, as compared to wildtype controls. This is the first study that demonstrates that EP1 receptor aggravates neurotoxicity and that modulation of this receptor can determine the outcomes in both excitotoxic and focal ischemic neuronal damage.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|