1
|
Kundu B, Dvorácskó S, Basu A, Pommerolle L, Kim KA, Wood CM, Gibbs E, Behee M, Tarasova NI, Cinar R, Iyer MR. Evaluation of the Therapeutic Potential of Sulfonyl Urea Derivatives as Soluble Epoxide Hydrolase (sEH) Inhibitors. Molecules 2024; 29:3036. [PMID: 38998987 PMCID: PMC11242993 DOI: 10.3390/molecules29133036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The inhibition of soluble epoxide hydrolase (sEH) can reduce the level of dihydroxyeicosatrienoic acids (DHETs) effectively maintaining endogenous epoxyeicosatrienoic acids (EETs) levels, resulting in the amelioration of inflammation and pain. Consequently, the development of sEH inhibitors has been a prominent research area for over two decades. In the present study, we synthesized and evaluated sulfonyl urea derivatives for their potential to inhibit sEH. These compounds underwent extensive in vitro investigation, revealing their potency against human and mouse sEH, with 4f showing the most promising sEH inhibitory potential. When subjected to lipopolysaccharide (LPS)-induced acute lung injury (ALI) in studies in mice, compound 4f manifested promising anti-inflammatory efficacy. We investigated the analgesic efficacy of sEH inhibitor 4f in a murine pain model of tail-flick reflex. These results validate the role of sEH inhibition in inflammatory diseases and pave the way for the rational design and optimization of sEH inhibitors based on a sulfonyl urea template.
Collapse
Affiliation(s)
- Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Szabolcs Dvorácskó
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Abhishek Basu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Lenny Pommerolle
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Kyu Ah Kim
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Casey M. Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Eve Gibbs
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Madeline Behee
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Nadya I. Tarasova
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), P.O. Box B, Frederick, MD 21702, USA
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
2
|
Feng ZQ, Ding J, Zhu MZ, Xie WS, Liu RC, Liu SS, Liu SM, Yu MJ, Zhu XH, Liang JH. Discovery of a novel lead characterized by a stilbene-extended scaffold against sepsis as soluble epoxide hydrolase inhibitors. Eur J Med Chem 2024; 266:116113. [PMID: 38215588 DOI: 10.1016/j.ejmech.2023.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Recently, some inhibitors of soluble epoxide hydrolase (sEH) showed limited potential in treating sepsis by increasing survival time, but they have unfortunately failed to improve survival rates. In this study, we initially identified a new hit 11D, belonging to a natural skeleton known as stilbene and having an IC50 of 644 nM on inhibiting murine sEH. Natural scaffold-based sEH inhibitors are paid less attention. A combination of structure-activity relationships (SARs)-guided structural optimization and computer-aided skeleton growth led to a highly effective lead compound 70P (IC50: 4.0 nM). The dose-response study indicated that 70P (at doses of 0.5-5 mg/kg, ip.) significantly increased survival rates and survival time by reducing the levels of the inflammatory factors TNF-α and IL-6 in the liver. Interestingly, 70P exhibited much higher accumulation in the liver than in plasma (AUC ratio: 175). In addition, 70P exhibits equal IC50 value (1.5 nM) on inhibiting human sEH as EC5026 (1.7 nM). In conclusion, the natural scaffold-extended sEH inhibitor 70P has the potential to become a new promising lead for addressing the unmet medical need in sepsis treatment, which highlighted the importance of natural skeleton in developing sEH inhibitors.
Collapse
Affiliation(s)
- Zi-Qiang Feng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China
| | - Wei-Song Xie
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui-Chen Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Si-Si Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
3
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol Ther 2023; 247:108460. [PMID: 37244406 PMCID: PMC10335230 DOI: 10.1016/j.pharmthera.2023.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Pulmonary fibrotic diseases are characterized by proliferation of lung fibroblasts and myofibroblasts and excessive deposition of extracellular matrix proteins. Depending on the specific form of lung fibrosis, there can be progressive scarring of the lung, leading in some cases to respiratory failure and/or death. Recent and ongoing research has demonstrated that resolution of inflammation is an active process regulated by families of small bioactive lipid mediators termed "specialized pro-resolving mediators." While there are many reports of beneficial effects of SPMs in animal and cell culture models of acute and chronic inflammatory and immune diseases, there have been fewer reports investigating SPMs and fibrosis, especially pulmonary fibrosis. Here, we will review evidence that resolution pathways are impaired in interstitial lung disease, and that SPMs and other similar bioactive lipid mediators can inhibit fibroblast proliferation, myofibroblast differentiation, and accumulation of excess extracellular matrix in cell culture and animal models of pulmonary fibrosis, and we will consider future therapeutic implications of SPMs in fibrosis.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Margaret A T Freeberg
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
6
|
Takeshita AA, Hammock BD, Wagner KM. Soluble epoxide hydrolase inhibition alleviates chemotherapy induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1100524. [PMID: 36700145 PMCID: PMC9868926 DOI: 10.3389/fpain.2022.1100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.
Collapse
Affiliation(s)
| | - Bruce D. Hammock
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen M. Wagner
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States,Correspondence: Karen M. Wagner ;
| |
Collapse
|
7
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
9
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
10
|
Brunst S, Schönfeld J, Breunig P, Burgers LD, DeMeglio M, Ehrler JHM, Lillich FF, Weizel L, Hefendehl JK, Fürst R, Proschak E, Hiesinger K. Designing a Small Fluorescent Inhibitor to Investigate Soluble Epoxide Hydrolase Engagement in Living Cells. ACS Med Chem Lett 2022; 13:1062-1067. [DOI: 10.1021/acsmedchemlett.2c00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Julia Schönfeld
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Peter Breunig
- Buchmann Institute for Molecular Life Sciences and Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Luisa D. Burgers
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Murphy DeMeglio
- Buchmann Institute for Molecular Life Sciences and Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Johanna H. M. Ehrler
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Felix F. Lillich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jasmin K. Hefendehl
- Buchmann Institute for Molecular Life Sciences and Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
11
|
Tian Y, Li S, Dong K, Su X, Fu S, Lv X, Duan M, Yang T, Han Y, Hu G, Liu J, Sun Y, Yue H, Sun Y, Zhang H, Du Z, Miao Z, Tong M, Liu Y, Qin M, Gong P, Hou Y, Gao Z, Zhao Y. Discovery of benzamide derivatives containing urea moiety as soluble epoxide hydrolase inhibitors. Bioorg Chem 2022; 127:105898. [DOI: 10.1016/j.bioorg.2022.105898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
|
12
|
El-Sherbeni AA, Bhatti R, Isse FA, El-Kadi AOS. Identifying simultaneous matrix metalloproteinases/soluble epoxide hydrolase inhibitors. Mol Cell Biochem 2022; 477:877-884. [PMID: 35067781 DOI: 10.1007/s11010-021-04337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
Matrix metalloproteinase (MMP) and soluble epoxide hydrolase (sEH) have completely unrelated biological functions; however, their dysregulation produce similar effects on biological systems. Based on the similarity in the reported structural requirements for their inhibition, the current study aimed to identify a simultaneous inhibitor for MMP and sEH. Six compounds were identified as potential simultaneous MMP/sEH inhibitors and tested for their capacity to inhibit MMP and sEH. Inhibition of MMP and sEH activity using their endogenous and exogenous substrates was measured by liquid chromatography/mass spectrometry, spectrophotometry, and zymography. Two compounds, CTK8G1143 and ONO-4817, were identified to inhibit both MMP and sEH activity. CTK8G1143 and ONO-4817 inhibited the recombinant human sEH activity by an average of 67.4% and 55.2%, respectively. The IC50 values for CTK8G1143 and ONO-4817 to inhibit recombinant human sEH were 5.2 and 3.5 µM, respectively, whereas their maximal inhibition values were 71.4% and 42.8%, respectively. Also, MMP and sEH activity of human cardiomyocytes were simultaneously inhibited by CTK8G1143 and ONO-4817. Regarding other compounds, they showed either MMP or sEH inhibitory activity but not both. In conclusion, these two simultaneous inhibitors of MMP and sEH could provide a promising intervention for the prevention and control of several diseases, especially cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rabia Bhatti
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
13
|
Sunkari YK, Siripuram VK, Nguyen TL, Flajolet M. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol Sci 2021; 43:4-15. [PMID: 34782164 DOI: 10.1016/j.tips.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Thu-Lan Nguyen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Li M, Cui Y, Xu Z, Chen X, Feng J, Wang M, Yao P, Wu Q, Zhu D. Asymmetric Synthesis of
N
‐Substituted γ‐Amino Esters and γ‐Lactams Containing α,γ‐Stereogenic Centers via a Stereoselective Enzymatic Cascade. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ming Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Yunfeng Cui
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Zefei Xu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Xi Chen
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| |
Collapse
|
15
|
Amin NH, Hamed MIA, Abdel-Fattah MM, Abusabaa AHA, El-Saadi MT. Design, synthesis and mechanistic study of novel diarylpyrazole derivatives as anti-inflammatory agents with reduced cardiovascular side effects. Bioorg Chem 2021; 116:105394. [PMID: 34619468 DOI: 10.1016/j.bioorg.2021.105394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
Abstract
Novel diarylpyrazole (5a-d, 6a-e, 12, 13, 14, 15a-c and 11a-g) derivatives were designed, synthesized and evaluated for their dual COX-2/sEH inhibitory activities via recombinant enzyme assays to explore their anti-inflammatory activities and cardiovascular safety profiles. Comprehensively, the structures of the synthesized compounds were established via spectral and elemental analyses, followed by the assessment of both their in vitro COX inhibitory and in vivo anti-inflammatory activities. The most active compounds as COX inhibitors were further evaluated for their in vitro 5-LOX and sEH inhibitory activities, alongside with their in vivo analgesic and ulcerogenic effects. Compounds 6d and 11f showed excellent inhibitory activities against both COX-2 and sEH (COX-2 IC50 = 0.043 and 0.048 µM; sEH IC50 = 83.58 and 83.52 μM, respectively). Moreover, the compounds demonstrated promising results as anti-inflammatory and analgesic agents with considerable ED50 values and gastric safety profiles. Remarkably, the most active COX inhibitors 6d and 11f possessed improved cardiovascular safety profiles, if compared to celecoxib, as shown by the laboratory evaluation of both essential cardiac biochemical parameters (troponin-1, prostacyclin, tumor necrosis factor-α, lactate dehydrogenase, reduced glutathione and creatine kinase-M) and histopathological studies. On the other hand, docking simulations confirmed that the newly synthesized compounds displayed sufficient structural features required for binding to the target COX-2 and sEH enzymes. Also, in silico ADME studies prediction and drug-like properties of the compounds revealed favorable oral bioavailability results. Collectively, the present work could be featured as a promising future approach towards novel selective COX-2 inhibitors with declined cardiovascular risks.
Collapse
Affiliation(s)
- Noha H Amin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H A Abusabaa
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Mohammed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch, Egypt
| |
Collapse
|
16
|
Verma K, Jain S, Paliwal S, Paliwal S, Sharma S. A clinical perspective of soluble epoxide hydrolase inhibitors in metabolic and related cardiovascular diseases. Curr Mol Pharmacol 2021; 15:763-778. [PMID: 34544352 DOI: 10.2174/1874467214666210920104352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Epoxide hydrolase (EH) is a crucial enzyme responsible for catabolism, detoxification, and regulation of signaling molecules in various organisms including human beings. In mammals, EHs are classified according to their DNA sequence, sub-cellular location, and activity into eight major classes: soluble EH (sEH), microsomal EH (mEH), leukotriene A4 hydrolase (LTA4H), cholesterol EH (ChEH), hepoxilin EH, paternally expressed gene 1 (peg1/MEST), EH3 and EH4. The sEH, an α/β-hydrolase fold family enzyme is an emerging pharmacological target in multiple diseases namely, cardiovascular disease, neurodegenerative disease, chronic pain, fibrosis, diabetes, pulmonary diseases, and immunological disease. It exhibits prominent physiological effect that includes anti-inflammatory, anti-migratory and vasodilatory effects. Its efficacy has been documented in several kinds of clinical trials and observational studies. This review specifically highlights the development of soluble epoxide hydrolase inhibitors (sEHIs) in the clinical setting for the management of metabolic syndrome and related disorders such as cardiovascular effects, endothelial dysfunction, arterial disease, hypertension, diabetes, obesity, heart failure, and dyslipidemia. In addition, limitations and future aspects of sEHIs have also been highlighted which will help the investigators to bring the sEHI to the clinics.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| | - Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| |
Collapse
|
17
|
Bergmann CB, Hammock BD, Wan D, Gogolla F, Goetzman H, Caldwell CC, Supp DM. TPPU treatment of burned mice dampens inflammation and generation of bioactive DHET which impairs neutrophil function. Sci Rep 2021; 11:16555. [PMID: 34400718 PMCID: PMC8368302 DOI: 10.1038/s41598-021-96014-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Oxylipins modulate the behavior of immune cells in inflammation. Soluble epoxide hydrolase (sEH) converts anti-inflammatory epoxyeicosatrienoic acid (EET) to dihydroxyeicosatrienoic acid (DHET). An sEH-inhibitor, TPPU, has been demonstrated to ameliorate lipopolysaccharide (LPS)- and sepsis-induced inflammation via EETs. The immunomodulatory role of DHET is not well characterized. We hypothesized that TPPU dampens inflammation and that sEH-derived DHET alters neutrophil functionality in burn induced inflammation. Outbred mice were treated with vehicle, TPPU or 14,15-DHET and immediately subjected to either sham or dorsal scald 28% total body surface area burn injury. After 6 and 24 h, interleukin 6 (IL-6) serum levels and neutrophil activation were analyzed. For in vitro analyses, bone marrow derived neutrophil functionality and mRNA expression were examined. In vivo, 14,15-DHET and IL-6 serum concentrations were decreased after burn injury with TPPU administration. In vitro, 14,15-DHET impaired neutrophil chemotaxis, acidification, CXCR1/CXCR2 expression and reactive oxygen species (ROS) production, the latter independent from p38MAPK and PI3K signaling. We conclude that TPPU administration decreases DHET post-burn. Furthermore, DHET downregulates key neutrophil immune functions and mRNA expression. Altogether, these data reveal that TPPU not only increases anti-inflammatory and inflammation resolving EET levels, but also prevents potential impairment of neutrophils by DHET in trauma.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce D Hammock
- Department of Entomology, University of California, Davis, CA, USA
| | - Debin Wan
- Department of Entomology, University of California, Davis, CA, USA
| | - Falk Gogolla
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Holly Goetzman
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Dorothy M Supp
- Division of Plastic, Reconstructive and Hand Surgery/Burn Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA.
| |
Collapse
|
18
|
Fit-for-purpose LC-MS/MS quantification of leukotoxin and leukotoxin diol in mouse plasma without sample pre-concentration. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122897. [PMID: 34450476 DOI: 10.1016/j.jchromb.2021.122897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022]
Abstract
LC/MS quantification of leukotoxin (LTX) and leukotoxin diol (LTXdiol) in plasma has been previously reported, however large sample volumes are required for achieving stated assay Lower Limit of Quantification (LLOQ). Reported here is a fit-for-purpose LC/MS method that reduces plasma volume from 700 to 25 µL and omits pre-concentration steps. These improvements make for a method with increased utility in mouse studies offering limited sample volumes. Additionally, omitting pre-concentration steps streamlines sample processing, which can now be completed in under 10 min. This method can be used to quickly answer if the ratio of LTX to LTXdiol changes with the dose of the therapeutic drug so this could be used as a potential biomarker for correlating PK/PD effects. No extensive assay characterization was performed before application to an exploratory in-life study. Basal levels of LTX and LTXdiol in plasma were quantified by LC-MRM across 10 individual mice, and the average signal-to-noise was 36 for LTX and 3039 for LTXdiol, with CVs of 29.4% and 15.2%, respectively. Addition of LTX and LTXdiol reference standard at 5, 25, and 75 ng/mL into pooled mouse plasma was quantifiable within 30% relative error using a surrogate matrix calibration curve ranging from 0.8 to 200 ng/mL. The average ratio of LTX to LTXdiol across the 10 mice was 0.32, consistent with previous reports. Finally, the method was applied to a mouse PK/PD study to monitor LTX/LTXdiol kinetics after a single oral dose of a soluble epoxide hydrolase inhibitor. The mean plasma ratio of LTX to LTXdiol increased up to 10-fold by 3 h post-dose followed by a decrease to near pre-dose levels by 24 h, consistent with transient inhibition of sEH-mediated conversion of LTX to LTXdiol. The method improvements described here will make subsequent quantification of LTX and LTXdiol in mouse studies significantly easier.
Collapse
|
19
|
Ding Y, Belyanskaya S, DeLorey JL, Messer JA, Joseph Franklin G, Centrella PA, Morgan BA, Clark MA, Skinner SR, Dodson JW, Li P, Marino JP, Israel DI. Discovery of soluble epoxide hydrolase inhibitors through DNA-encoded library technology (ELT). Bioorg Med Chem 2021; 41:116216. [PMID: 34023664 DOI: 10.1016/j.bmc.2021.116216] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Inhibition of soluble epoxide hydrolase (sEH) has recently emerged as a new approach to treat cardiovascular disease and respiratory disease. Inhibitors based on 1,3,5-triazine chemotype were discovered through affinity selection against two triazine-based DNA-encoded libraries. The structure and activity relationship study led to the expansion of the original 1,4-cycloalkyl series to related aniline, piperidine, quinoline, aryl-ether and benzylic series. The 1,3-cycloalkyl chemotype led to the discovery of a clinical candidate (GSK2256294) for COPD.
Collapse
Affiliation(s)
- Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | - Svetlana Belyanskaya
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Jennifer L DeLorey
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Jeffrey A Messer
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - G Joseph Franklin
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Paolo A Centrella
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Barry A Morgan
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Matthew A Clark
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Steven R Skinner
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Jason W Dodson
- Department of Chemistry, Heart Failure Disease Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GSK, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Peng Li
- Department of Chemistry, Heart Failure Disease Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GSK, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Joseph P Marino
- Department of Chemistry, Heart Failure Disease Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GSK, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - David I Israel
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| |
Collapse
|
20
|
Hammock B, McReynolds CB, Wagner K, Buckpitt A, Cortes-Puch I, Croston G, Lee KSS, Yang J, Schmidt WK, Hwang SH. Movement to the Clinic of Soluble Epoxide Hydrolase Inhibitor EC5026 as an Analgesic for Neuropathic Pain and for Use as a Nonaddictive Opioid Alternative. J Med Chem 2021; 64:1856-1872. [PMID: 33550801 PMCID: PMC7917437 DOI: 10.1021/acs.jmedchem.0c01886] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 12/12/2022]
Abstract
This report describes the development of an orally active analgesic that resolves inflammation and neuropathic pain without the addictive potential of opioids. EC5026 acts on the cytochrome P450 branch of the arachidonate cascade to stabilize epoxides of polyunsaturated fatty acids (EpFA), which are natural mediators that reduce pain, resolve inflammation, and maintain normal blood pressure. EC5026 is a slow-tight binding transition-state mimic that inhibits the soluble epoxide hydrolase (sEH) at picomolar concentrations. The sEH rapidly degrades EpFA; thus, inhibiting sEH increases EpFA in vivo and confers beneficial effects. This mechanism addresses disease states by shifting endoplasmic reticulum stress from promoting cellular senescence and inflammation toward cell survival and homeostasis. We describe the synthesis and optimization of EC5026 and its development through human Phase 1a trials with no drug-related adverse events. Additionally, we outline fundamental work leading to discovery of the analgesic and inflammation-resolving CYP450 branch of the arachidonate cascade.
Collapse
Affiliation(s)
- Bruce
D. Hammock
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Cindy B. McReynolds
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Karen Wagner
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Alan Buckpitt
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Irene Cortes-Puch
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Glenn Croston
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | | | - Jun Yang
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - William K. Schmidt
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Sung Hee Hwang
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| |
Collapse
|
21
|
Bhat TA, Kalathil SG, Bogner PN, Lehmann PV, Thatcher TH, Sime PJ, Thanavala Y. AT-RvD1 Mitigates Secondhand Smoke-Exacerbated Pulmonary Inflammation and Restores Secondhand Smoke-Suppressed Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:1348-1360. [PMID: 33558371 DOI: 10.4049/jimmunol.2001228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
Cigarette smoke is a potent proinflammatory trigger contributing to acute lung injury and the development of chronic lung diseases via mechanisms that include the impairment of inflammation resolution. We have previously demonstrated that secondhand smoke (SHS) exposure exacerbates bacterial infection-induced pulmonary inflammation and suppresses immune responses. It is now recognized that resolution of inflammation is a bioactive process mediated by lipid-derived specialized proresolving mediators that counterregulate proinflammatory signaling and promote resolution pathways. We therefore hypothesized that proresolving mediators could reduce the burden of inflammation due to chronic lung infection following SHS exposure and restore normal immune responses to respiratory pathogens. To address this question, we exposed mice to SHS followed by chronic infection with nontypeable Haemophilus influenzae (NTHI). Some groups of mice were treated with aspirin-triggered resolvin D1 (AT-RvD1) during the latter half of the smoke exposure period or during a period of smoking cessation and before infection. Treatment with AT-RvD1 markedly reduced the recruitment of neutrophils, macrophages, and T cells in lung tissue and bronchoalveolar lavage and levels of proinflammatory cytokines in the bronchoalveolar lavage. Additionally, treatment with AT-RvD1 improved Ab titers against the NTHI outer membrane lipoprotein Ag P6 following infection. Furthermore, treatment with AT-RvD1 prior to classically adjuvanted immunization with P6 increased Ag-specific Ab titers, resulting in rapid clearance of NTHI from the lungs after acute challenge. Collectively, we have demonstrated that AT-RvD1 potently reverses the detrimental effects of SHS on pulmonary inflammation and immunity and thus could be beneficial in reducing lung injury associated with smoke exposure and infection.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
22
|
Sun CP, Zhang XY, Morisseau C, Hwang SH, Zhang ZJ, Hammock BD, Ma XC. Discovery of Soluble Epoxide Hydrolase Inhibitors from Chemical Synthesis and Natural Products. J Med Chem 2020; 64:184-215. [PMID: 33369424 DOI: 10.1021/acs.jmedchem.0c01507] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soluble epoxide hydrolase (sEH) is an α/β hydrolase fold protein and widely distributed in numerous organs including the liver, kidney, and brain. The inhibition of sEH can effectively maintain endogenous epoxyeicosatrienoic acids (EETs) levels and reduce dihydroxyeicosatrienoic acids (DHETs) levels, resulting in therapeutic potentials for cardiovascular, central nervous system, and metabolic diseases. Therefore, since the beginning of this century, the development of sEH inhibitors is a hot research topic. A variety of potent sEH inhibitors have been developed by chemical synthesis or isolated from natural sources. In this review, we mainly summarized the interconnected aspects of sEH with cardiovascular, central nervous system, and metabolic diseases and then focus on representative inhibitors, which would provide some useful guidance for the future development of potential sEH inhibitors.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xin-Yue Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zhan-Jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
23
|
Kölmel DK, Ratnayake AS, Flanagan ME. Photoredox cross-electrophile coupling in DNA-encoded chemistry. Biochem Biophys Res Commun 2020; 533:201-208. [DOI: 10.1016/j.bbrc.2020.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
|
24
|
Hiesinger K, Kramer JS, Beyer S, Eckes T, Brunst S, Flauaus C, Wittmann SK, Weizel L, Kaiser A, Kretschmer SBM, George S, Angioni C, Heering J, Geisslinger G, Schubert-Zsilavecz M, Schmidtko A, Pogoryelov D, Pfeilschifter J, Hofmann B, Steinhilber D, Schwalm S, Proschak E. Design, Synthesis, and Structure–Activity Relationship Studies of Dual Inhibitors of Soluble Epoxide Hydrolase and 5-Lipoxygenase. J Med Chem 2020; 63:11498-11521. [DOI: 10.1021/acs.jmedchem.0c00561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Jan S. Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Sandra Beyer
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Timon Eckes
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Cathrin Flauaus
- Institute of Pharmacology and Clinical Pharmacy, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt a.M., Germany
| | - Sandra K. Wittmann
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Simon B. M. Kretschmer
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Jan Heering
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt a.M., Germany
| | - Denys Pogoryelov
- Institute of Biochemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt a.M., Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Stephanie Schwalm
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9 D-60438 Frankfurt a.M., Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt a.M., Germany
| |
Collapse
|
25
|
Lee KSS, Ng JC, Yang J, Hwang SH, Morisseau C, Wagner K, Hammock BD. Preparation and evaluation of soluble epoxide hydrolase inhibitors with improved physical properties and potencies for treating diabetic neuropathic pain. Bioorg Med Chem 2020; 28:115735. [PMID: 33007552 DOI: 10.1016/j.bmc.2020.115735] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/18/2022]
Abstract
Soluble epoxide hydrolase (sEH), a novel therapeutic target for neuropathic pain, is a largely cytosolic enzyme that degrades epoxy-fatty acids (EpFAs), an important class of lipid signaling molecules. Many inhibitors of sEH have been reported, and to date, the 1,3-disubstituted urea has the highest affinity reported for the sEH among the central pharmacophores evaluated. An earlier somewhat water soluble sEH inhibitor taken to the clinic for blood pressure control had mediocre potency (both affinity and kinetics) and a short in vivo half-life. We undertook a study to overcome these difficulties, but the sEH inhibitors carrying a 1,3-disubstituted urea often suffer poor physical properties that hinder their formulation. In this report, we described new strategies to improve the physical properties of sEH inhibitors with a 1,3-disubstituted urea while maintaining their potency and drug-target residence time (a complementary in vitro parameter) against sEH. To our surprise, we identified two structural modifications that substantially improve the potency and physical properties of sEH inhibitors carrying a 1,3-disubstituted urea pharmacophore. Such improvements will greatly facilitate the movement of sEH inhibitors to the clinic.
Collapse
Affiliation(s)
| | - Jen C Ng
- Department of Entomology and Nematology, One Shields Ave, University of California-Davis, Davis, CA 95616, United States
| | - Jun Yang
- EicOsis Human Health, 140 B Street, Suite 5, Number 346, Davis, CA 95616, United States
| | - Sung-Hee Hwang
- EicOsis Human Health, 140 B Street, Suite 5, Number 346, Davis, CA 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, One Shields Ave, University of California-Davis, Davis, CA 95616, United States
| | - Karen Wagner
- EicOsis Human Health, 140 B Street, Suite 5, Number 346, Davis, CA 95616, United States
| | - Bruce D Hammock
- Synthia LLC, Davis, CA 95616, United States; Department of Entomology and Nematology, One Shields Ave, University of California-Davis, Davis, CA 95616, United States; EicOsis Human Health, 140 B Street, Suite 5, Number 346, Davis, CA 95616, United States
| |
Collapse
|
26
|
Resolution of eicosanoid/cytokine storm prevents carcinogen and inflammation-initiated hepatocellular cancer progression. Proc Natl Acad Sci U S A 2020; 117:21576-21587. [PMID: 32801214 DOI: 10.1073/pnas.2007412117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Toxic environmental carcinogens promote cancer via genotoxic and nongenotoxic pathways, but nongenetic mechanisms remain poorly characterized. Carcinogen-induced apoptosis may trigger escape from dormancy of microtumors by interfering with inflammation resolution and triggering an endoplasmic reticulum (ER) stress response. While eicosanoid and cytokine storms are well-characterized in infection and inflammation, they are poorly characterized in cancer. Here, we demonstrate that carcinogens, such as aflatoxin B1 (AFB1), induce apoptotic cell death and the resulting cell debris stimulates hepatocellular carcinoma (HCC) tumor growth via an "eicosanoid and cytokine storm." AFB1-generated debris up-regulates cyclooxygenase-2 (COX-2), soluble epoxide hydrolase (sEH), ER stress-response genes including BiP, CHOP, and PDI in macrophages. Thus, selective cytokine or eicosanoid blockade is unlikely to prevent carcinogen-induced cancer progression. Pharmacological abrogation of both the COX-2 and sEH pathways by PTUPB prevented the debris-stimulated eicosanoid and cytokine storm, down-regulated ER stress genes, and promoted macrophage phagocytosis of debris, resulting in suppression of HCC tumor growth. Thus, inflammation resolution via dual COX-2/sEH inhibition is an approach to prevent carcinogen-induced cancer.
Collapse
|
27
|
Lemke M, Ravenscroft H, Rueb NJ, Kireev D, Ferraris D, Franzini RM. Integrating DNA-encoded chemical libraries with virtual combinatorial library screening: Optimizing a PARP10 inhibitor. Bioorg Med Chem Lett 2020; 30:127464. [PMID: 32768646 DOI: 10.1016/j.bmcl.2020.127464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 12/17/2022]
Abstract
Two critical steps in drug development are 1) the discovery of molecules that have the desired effects on a target, and 2) the optimization of such molecules into lead compounds with the required potency and pharmacokinetic properties for translation. DNA-encoded chemical libraries (DECLs) can nowadays yield hits with unprecedented ease, and lead-optimization is becoming the limiting step. Here we integrate DECL screening with structure-based computational methods to streamline the development of lead compounds. The presented workflow consists of enumerating a virtual combinatorial library (VCL) derived from a DECL screening hit and using computational binding prediction to identify molecules with enhanced properties relative to the original DECL hit. As proof-of-concept demonstration, we applied this approach to identify an inhibitor of PARP10 that is more potent and druglike than the original DECL screening hit.
Collapse
Affiliation(s)
- Mike Lemke
- Department of Chemistry, McDaniel College, 2 College Hill, Westminster, MD 21157, USA
| | - Hannah Ravenscroft
- Department of Chemistry, McDaniel College, 2 College Hill, Westminster, MD 21157, USA
| | - Nicole J Rueb
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Dana Ferraris
- Department of Chemistry, McDaniel College, 2 College Hill, Westminster, MD 21157, USA.
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
28
|
Hejazi L, Rezaee E, Tabatabai SA. Quinazoline-4(3H)-one derivatives as novel and potent inhibitors of soluble epoxide hydrolase: Design, synthesis and biological evaluation. Bioorg Chem 2020; 99:103736. [DOI: 10.1016/j.bioorg.2020.103736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/03/2020] [Accepted: 03/07/2020] [Indexed: 12/31/2022]
|
29
|
Vascular Lipidomic Profiling of Potential Endogenous Fatty Acid PPAR Ligands Reveals the Coronary Artery as Major Producer of CYP450-Derived Epoxy Fatty Acids. Cells 2020; 9:cells9051096. [PMID: 32365470 PMCID: PMC7290345 DOI: 10.3390/cells9051096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
A number of oxylipins have been described as endogenous PPAR ligands. The very short biological half-lives of oxylipins suggest roles as autocrine or paracrine signaling molecules. While coronary arterial atherosclerosis is the root of myocardial infarction, aortic atherosclerotic plaque formation is a common readout of in vivo atherosclerosis studies in mice. Improved understanding of the compartmentalized sources of oxylipin PPAR ligands will increase our knowledge of the roles of PPAR signaling in diverse vascular tissues. Here, we performed a targeted lipidomic analysis of ex vivo-generated oxylipins from porcine aorta, coronary artery, pulmonary artery and perivascular adipose. Cyclooxygenase (COX)-derived prostanoids were the most abundant detectable oxylipin from all tissues. By contrast, the coronary artery produced significantly higher levels of oxylipins from CYP450 pathways than other tissues. The TLR4 ligand LPS induced prostanoid formation in all vascular tissue tested. The 11-HETE, 15-HETE, and 9-HODE were also induced by LPS from the aorta and pulmonary artery but not coronary artery. Epoxy fatty acid (EpFA) formation was largely unaffected by LPS. The pig CYP2J homologue CYP2J34 was expressed in porcine vascular tissue and primary coronary artery smooth muscle cells (pCASMCs) in culture. Treatment of pCASMCs with LPS induced a robust profile of pro-inflammatory target genes: TNFα, ICAM-1, VCAM-1, MCP-1 and CD40L. The soluble epoxide hydrolase inhibitor TPPU, which prevents the breakdown of endogenous CYP-derived EpFAs, significantly suppressed LPS-induced inflammatory target genes. In conclusion, PPAR-activating oxylipins are produced and regulated in a vascular site-specific manner. The CYP450 pathway is highly active in the coronary artery and capable of providing anti-inflammatory oxylipins that prevent processes of inflammatory vascular disease progression.
Collapse
|
30
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
31
|
Soluble epoxide hydrolase is an endogenous regulator of obesity-induced intestinal barrier dysfunction and bacterial translocation. Proc Natl Acad Sci U S A 2020; 117:8431-8436. [PMID: 32220957 DOI: 10.1073/pnas.1916189117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.
Collapse
|
32
|
McReynolds C, Morisseau C, Wagner K, Hammock B. Epoxy Fatty Acids Are Promising Targets for Treatment of Pain, Cardiovascular Disease and Other Indications Characterized by Mitochondrial Dysfunction, Endoplasmic Stress and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:71-99. [PMID: 32894508 PMCID: PMC7737916 DOI: 10.1007/978-3-030-50621-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive lipid mediators resulting from the metabolism of polyunsaturated fatty acids (PUFA) are controlled by many pathways that regulate the levels of these mediators and maintain homeostasis to prevent disease. PUFA metabolism is driven primarily through three pathways. Two pathways, the cyclooxygenase (COX) and lipoxygenase (LO) enzymatic pathways, form metabolites that are mostly inflammatory, while the third route of metabolism results from the oxidation by the cytochrome P450 enzymes to form hydroxylated PUFA and epoxide metabolites. These epoxygenated fatty acids (EpFA) demonstrate largely anti-inflammatory and beneficial properties, in contrast to the other metabolites formed from the degradation of PUFA. Dysregulation of these systems often leads to chronic disease. Pharmaceutical targets of disease focus on preventing the formation of inflammatory metabolites from the COX and LO pathways, while maintaining the EpFA and increasing their concentration in the body is seen as beneficial to treating and preventing disease. The soluble epoxide hydrolase (sEH) is the major route of metabolism of EpFA. Inhibiting its activity increases concentrations of beneficial EpFA, and often disease states correlate to mutations in the sEH enzyme that increase its activity and decrease the concentrations of EpFA in the body. Recent approaches to increasing EpFA include synthetic mimics that replicate biological activity of EpFA while preventing their metabolism, while other approaches focus on developing small molecule inhibitors to the sEH. Increasing EpFA concentrations in the body has demonstrated multiple beneficial effects in treating many diseases, including inflammatory and painful conditions, cardiovascular disease, neurological and disease of the central nervous system. Demonstration of efficacy in so many disease states can be explained by the fundamental mechanism that EpFA have of maintaining healthy microvasculature and preventing mitochondrial and endoplasmic reticulum stress. While there are no FDA approved methods that target the sEH or other enzymes responsible for metabolizing EpFA, current clinical efforts to test for efficacy by increasing EpFA that include inhibiting the sEH or administration of EpFA mimics that block metabolism are in progress.
Collapse
Affiliation(s)
- Cindy McReynolds
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Bhagwati S, Siddiqi MI. Identification of potential soluble epoxide hydrolase (sEH) inhibitors by ligand-based pharmacophore model and biological evaluation. J Biomol Struct Dyn 2019; 38:4956-4966. [DOI: 10.1080/07391102.2019.1691659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sudha Bhagwati
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| |
Collapse
|
34
|
Kölmel DK, Meng J, Tsai MH, Que J, Loach RP, Knauber T, Wan J, Flanagan ME. On-DNA Decarboxylative Arylation: Merging Photoredox with Nickel Catalysis in Water. ACS COMBINATORIAL SCIENCE 2019; 21:588-597. [PMID: 31283168 DOI: 10.1021/acscombsci.9b00076] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new catalytic manifold that merges photoredox with nickel catalysis in aqueous solution is presented. Specifically, the combination of a highly active, yet air-stable, nickel precatalyst with a new electron-deficient pyridyl carboxamidine ligand was key to the development of a water-compatible nickel catalysis platform, which is a crucial requirement for the preparation of DNA-encoded libraries (DELs). Together with an iridium-based photocatalyst and a powerful light source, this dual catalysis approach enabled the efficient decarboxylative arylation of α-amino acids with DNA-tagged aryl halides. This C(sp2)-C(sp3) coupling tolerates a wide variety of functional groups on both the amino acid and the aryl halide substrates. Due to the mild and DNA-compatible reaction conditions, the presented transformation holds great potential for the construction of DELs. This was further evidenced by showing that well plate-compatible LED arrays can serve as competent light sources to facilitate parallel synthesis. Lastly, we demonstrate that this procedure can serve as a blueprint toward the adaptation of other established nickel metallaphotoredox transformations to the idiosyncratic requirements of a DEL.
Collapse
Affiliation(s)
- Dominik K. Kölmel
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Jiang Meng
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu
International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province, P. R. China
| | - Mei-Hsuan Tsai
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu
International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province, P. R. China
| | - Jiamin Que
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu
International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province, P. R. China
| | - Richard P. Loach
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Thomas Knauber
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Jinqiao Wan
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu
International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province, P. R. China
| | - Mark E. Flanagan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|
35
|
Flood DT, Asai S, Zhang X, Wang J, Yoon L, Adams ZC, Dillingham BC, Sanchez BB, Vantourout JC, Flanagan ME, Piotrowski DW, Richardson P, Green SA, Shenvi RA, Chen JS, Baran PS, Dawson PE. Expanding Reactivity in DNA-Encoded Library Synthesis via Reversible Binding of DNA to an Inert Quaternary Ammonium Support. J Am Chem Soc 2019; 141:9998-10006. [PMID: 31136164 PMCID: PMC7033622 DOI: 10.1021/jacs.9b03774] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA Encoded Libraries have proven immensely powerful tools for lead identification. The ability to screen billions of compounds at once has spurred increasing interest in DEL development and utilization. Although DEL provides access to libraries of unprecedented size and diversity, the idiosyncratic and hydrophilic nature of the DNA tag severely limits the scope of applicable chemistries. It is known that biomacromolecules can be reversibly, noncovalently adsorbed and eluted from solid supports, and this phenomenon has been utilized to perform synthetic modification of biomolecules in a strategy we have described as reversible adsorption to solid support (RASS). Herein, we present the adaptation of RASS for a DEL setting, which allows reactions to be performed in organic solvents at near anhydrous conditions opening previously inaccessible chemical reactivities to DEL. The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions. The utility of these reactions was demonstrated through a DEL-rehearsal in which all newly developed chemistries were orchestrated to afford a compound rich in diverse skeletal linkages. We believe that RASS will offer expedient access to new DEL reactivities, expanded chemical space, and ultimately more drug-like libraries.
Collapse
Affiliation(s)
- Dillon T. Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shota Asai
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Xuejing Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jie Wang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zoë C. Adams
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Blythe C. Dillingham
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brittany B. Sanchez
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Julien C. Vantourout
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Mark E. Flanagan
- Pfizer Medicinal Chemistry, Eastern Point Road, Groton, CT 06340, United States
| | - David W. Piotrowski
- Pfizer Medicinal Chemistry, Eastern Point Road, Groton, CT 06340, United States
| | - Paul Richardson
- Pfizer Medicinal Chemistry, 10578 Science Center Drive, San Diego, CA 92121, United States
| | - Samantha A. Green
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan A. Shenvi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason S. Chen
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
36
|
Abis G, Charles RL, Kopec J, Yue WW, Atkinson RA, Bui TTT, Lynham S, Popova S, Sun YB, Fraternali F, Eaton P, Conte MR. 15-deoxy-Δ 12,14-Prostaglandin J 2 inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism. Commun Biol 2019; 2:188. [PMID: 31123712 PMCID: PMC6525171 DOI: 10.1038/s42003-019-0426-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Human soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ2 in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site. Biophysical characterisations allied with in silico investigations indicate that the covalent modification of the reactive cysteines may be part of a hitherto undiscovered allosteric regulatory mechanism of the enzyme. This study provides insights into the molecular modes of inhibition of hsEH epoxy-hydrolytic activity and paves the way for the development of new allosteric inhibitors.
Collapse
Affiliation(s)
- Giancarlo Abis
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Rebecca L. Charles
- School of Cardiovascular Medicine & Science, The Rayne Institute, Lambeth Wing, St Thomas’ Hospital, King’s College London, London, SE1 7EH UK
| | - Jolanta Kopec
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - Wyatt W. Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - R. Andrew Atkinson
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| | - Tam T. T. Bui
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, The James Black Centre, King’s College London, London, SE5 9NU UK
| | - Simona Popova
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Philip Eaton
- School of Cardiovascular Medicine & Science, The Rayne Institute, Lambeth Wing, St Thomas’ Hospital, King’s College London, London, SE1 7EH UK
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| |
Collapse
|
37
|
Reisdorf WC, Xie Q, Zeng X, Xie W, Rajpal N, Hoang B, Burgert ME, Kumar V, Hurle MR, Rajpal DK, O’Donnell S, MacDonald TT, Vossenkämper A, Wang L, Reilly M, Votta BJ, Sanchez Y, Agarwal P. Preclinical evaluation of EPHX2 inhibition as a novel treatment for inflammatory bowel disease. PLoS One 2019; 14:e0215033. [PMID: 31002701 PMCID: PMC6474586 DOI: 10.1371/journal.pone.0215033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are signaling lipids produced by cytochrome P450 epoxygenation of arachidonic acid, which are metabolized by EPHX2 (epoxide hydrolase 2, alias soluble epoxide hydrolase or sEH). EETs have pleiotropic effects, including anti-inflammatory activity. Using a Connectivity Map (CMAP) approach, we identified an inverse-correlation between an exemplar EPHX2 inhibitor (EPHX2i) compound response and an inflammatory bowel disease patient-derived signature. To validate the gene-disease link, we tested a pre-clinical tool EPHX2i (GSK1910364) in a mouse disease model, where it showed improved outcomes comparable to or better than the positive control Cyclosporin A. Up-regulation of cytoprotective genes and down-regulation of proinflammatory cytokine production were observed in colon samples obtained from EPHX2i-treated mice. Follow-up immunohistochemistry analysis verified the presence of EPHX2 protein in infiltrated immune cells from Crohn's patient tissue biopsies. We further demonstrated that GSK2256294, a clinical EPHX2i, reduced the production of IL2, IL12p70, IL10 and TNFα in both ulcerative colitis and Crohn's disease patient-derived explant cultures. Interestingly, GSK2256294 reduced IL4 and IFNγ in ulcerative colitis, and IL1β in Crohn's disease specifically, suggesting potential differential effects of GSK2256294 in these two diseases. Taken together, these findings suggest a novel therapeutic use of EPHX2 inhibition for IBD.
Collapse
Affiliation(s)
- William C. Reisdorf
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
- * E-mail:
| | - Qing Xie
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Xin Zeng
- Target & Pathway Validation, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Wensheng Xie
- Target & Pathway Validation, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Neetu Rajpal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Bao Hoang
- Exploratory Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mark E. Burgert
- Research Statistics, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Vinod Kumar
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mark R. Hurle
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Deepak K. Rajpal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Sarah O’Donnell
- Centre for Digestive Diseases, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | - Anna Vossenkämper
- Centre for Immunobiology, Blizard Institute, QMUL, London, United Kingdom
| | - Lin Wang
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mike Reilly
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Bart J. Votta
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Yolanda Sanchez
- Stress and Repair DPU, Respiratory Therapy Area, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Pankaj Agarwal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| |
Collapse
|
38
|
Thatcher TH, Woeller CF, McCarthy CE, Sime PJ. Quenching the fires: Pro-resolving mediators, air pollution, and smoking. Pharmacol Ther 2019; 197:212-224. [PMID: 30759375 DOI: 10.1016/j.pharmthera.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to air pollution and other environmental inhalation hazards, such as occupational exposures to dusts and fumes, aeroallergens, and tobacco smoke, is a significant cause of chronic lung inflammation leading to respiratory disease. It is now recognized that resolution of inflammation is an active process controlled by a novel family of small lipid mediators termed "specialized pro-resolving mediators" or SPMs, derived mainly from dietary omega-3 polyunsaturated fatty acids. Chronic inflammation results from an imbalance between pro-inflammatory and pro-resolution pathways. Research is ongoing to develop SPMs, and the pro-resolution pathway more generally, as a novel therapeutic approach to diseases characterized by chronic inflammation. Here, we will review evidence that the resolution pathway is dysregulated in chronic lung inflammatory diseases, and that SPMs and related molecules have exciting therapeutic potential to reverse or prevent chronic lung inflammation, with a focus on lung inflammation due to inhalation of environmental hazards including urban particulate matter, organic dusts and tobacco smoke.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Collynn F Woeller
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Claire E McCarthy
- National Cancer Institute, Division of Cancer Biology, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
39
|
Park B, Corson TW. Soluble Epoxide Hydrolase Inhibition for Ocular Diseases: Vision for the Future. Front Pharmacol 2019; 10:95. [PMID: 30792659 PMCID: PMC6374558 DOI: 10.3389/fphar.2019.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Ocular diseases cause visual impairment and blindness, imposing a devastating impact on quality of life and a substantial societal economic burden. Many such diseases lack universally effective pharmacotherapies. Therefore, understanding the mediators involved in their pathophysiology is necessary for the development of therapeutic strategies. To this end, the hydrolase activity of soluble epoxide hydrolase (sEH) has been explored in the context of several eye diseases, due to its implications in vascular diseases through metabolism of bioactive epoxygenated fatty acids. In this mini-review, we discuss the mounting evidence associating sEH with ocular diseases and its therapeutic value as a target. Substantial data link sEH with the retinal and choroidal neovascularization underlying diseases such as wet age-related macular degeneration, retinopathy of prematurity, and proliferative diabetic retinopathy, although some conflicting results pose challenges for the synthesis of a common mechanism. sEH also shows therapeutic relevance in non-proliferative diabetic retinopathy and diabetic keratopathy, and sEH inhibition has been tested in a uveitis model. Various approaches have been implemented to assess sEH function in the eye, including expression analyses, genetic manipulation, pharmacological targeting of sEH, and modulation of certain lipid metabolites that are upstream and downstream of sEH. On balance, sEH inhibition shows considerable promise for treating multiple eye diseases. The possibility of local delivery of inhibitors makes the eye an appealing target for future sEH drug development initiatives.
Collapse
Affiliation(s)
- Bomina Park
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
40
|
Marín-Ocampo L, Veloza LA, Abonia R, Sepúlveda-Arias JC. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur J Med Chem 2018; 162:435-447. [PMID: 30469039 DOI: 10.1016/j.ejmech.2018.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Triazines are heterocyclic compounds with a variety of biological activities that have been increasingly studied in recent years due to their versatile structure (three isoforms) and the different derivatives that can be synthesized from them to ensure functional motifs. This systematic review provides the evidence in the literature of the in vitro and in vivo anti-inflammatory activity of triazine derivatives from 2008 to June 2018. Four bibliographical databases were consulted (PubMed, Web of Science, EMBASE and Scopus), and a total of 48 studies were included in this paper based on our eligibility criteria. Although 35.17% of evaluated triazines were demonstrated to be promising anti-inflammatory agents, further studies need to be conducted to explore their pharmacological profiles in the medical research of drug discovery to control the risk factors and pathophysiology of several chronic inflammation-based diseases.
Collapse
Affiliation(s)
- Laura Marín-Ocampo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Rodrigo Abonia
- Department of Chemistry, Universidad del Valle, Cali, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
41
|
Kodani SD, Wan D, Wagner KM, Hwang SH, Morisseau C, Hammock BD. Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS OMEGA 2018; 3:14076-14086. [PMID: 30411058 PMCID: PMC6210075 DOI: 10.1021/acsomega.8b01625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is responsible for regulating concentrations of the endocannabinoid arachidonoyl ethanolamide. Multiple FAAH inhibitors have been developed for clinical trials and have failed to demonstrate efficacy at treating pain, despite promising preclinical data. One approach toward increasing the efficacy of FAAH inhibitors is to concurrently inhibit other targets responsible for regulating pain. Here, we designed dual inhibitors targeting the enzymes FAAH and soluble epoxide hydrolase (sEH), which are targets previously shown to synergize at reducing inflammatory and neuropathic pain. Exploration of the sEH/FAAH inhibitor structure-activity relationship started with PF-750, a FAAH inhibitor (IC50 = 19 nM) that weakly inhibited sEH (IC50 = 640 nM). Potency was optimized resulting in an inhibitor with improved potency on both targets (11, sEH IC50 = 5 nM, FAAH IC50 = 8 nM). This inhibitor demonstrated good target selectivity, pharmacokinetic properties (AUC = 1200 h nM, t 1/2 = 4.9 h in mice), and in vivo target engagement.
Collapse
|
42
|
Sun H, Lee P, Yan C, Gao N, Wang J, Fan X, Yu FS. Inhibition of Soluble Epoxide Hydrolase 2 Ameliorates Diabetic Keratopathy and Impaired Wound Healing in Mouse Corneas. Diabetes 2018; 67:1162-1172. [PMID: 29615440 PMCID: PMC5961414 DOI: 10.2337/db17-1336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/17/2018] [Indexed: 12/18/2022]
Abstract
EPHX2 (encoding soluble epoxide hydrolase [sEH]) converts biologically active epoxyeicosatrienoic acids (EETs), anti-inflammatory and profibrinolytic effectors, into the less biologically active metabolites, dihydroxyeicostrienoic acids. We sought to characterize the expression and the function of EPHX2 in diabetic corneas and during wound healing. The expression of EPHX2 at both mRNA and protein levels, as well as sEH enzymatic activity, was markedly upregulated in the tissues/cells, including corneal epithelial cells as well as the retina of human type 2 and mouse type 1 (streptozotocin [STZ] induced) and/or type 2 diabetes. Ephx2 depletion had no detectable effects on STZ-induced hyperglycemia but prevented the development of tear deficiency. Ephx2-/- mice showed an acceleration of hyperglycemia-delayed epithelium wound healing. Moreover, inhibition of sEH increased the rate of epithelium wound closure and restored hyperglycemia-suppressed STAT3 activation and heme oxygenase-1 (HO-1) expression in the diabetic corneas. Treatment of diabetic corneas with cobalt protoporphyrin, a well-known HO-1 inducer, restored wound-induced HO-1 upregulation and accelerated delayed wound healing. Finally, Ephx2 depletion enhanced sensory innervation and regeneration in diabetic corneas at 1 month after epithelial debridement. Our data suggest that increased sEH activity may be a contributing factor for diabetic corneal complications; targeting sEH pharmacologically or supplementing EETs may represent a new, adjunctive therapy for treating diabetic keratopathy.
Collapse
Affiliation(s)
- Haijing Sun
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Patrick Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Chenxi Yan
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Department of Ophthalmology, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Jiemei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fu-Shin Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
43
|
Blöcher R, Wagner KM, Gopireddy RR, Harris TR, Wu H, Barnych B, Hwang SH, Xiang YK, Proschak E, Morisseau C, Hammock BD. Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 2018; 61:3541-3550. [PMID: 29614224 PMCID: PMC5933862 DOI: 10.1021/acs.jmedchem.7b01804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inspired by previously discovered enhanced analgesic efficacy between soluble epoxide hydrolase (sEH) and phosphodiesterase 4 (PDE4) inhibitors, we designed, synthesized and characterized 21 novel sEH/PDE4 dual inhibitors. The best of these displayed good efficacy in in vitro assays. Further pharmacokinetic studies of a subset of four selected compounds led to the identification of a bioavailable dual inhibitor N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA). In a lipopolysaccharide induced inflammatory pain rat model, MPPA rapidly increased in the blood ( Tmax = 30 min; Cmax = 460 nM) after oral administration of 3 mg/kg and reduced inflammatory pain with rapid onset of action correlating with blood levels over a time course of 4 h. Additionally, MPPA does not alter self-motivated exploration of rats with inflammatory pain or the withdrawal latency in control rats.
Collapse
Affiliation(s)
- René Blöcher
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Karen M. Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Raghavender R. Gopireddy
- Department of Pharmacology, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A., and VA Northern California Health Care System, CA 95655 Mather, U.S.A
| | - Todd R. Harris
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Hao Wu
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Bogdan Barnych
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A., and VA Northern California Health Care System, CA 95655 Mather, U.S.A
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| |
Collapse
|
44
|
Wagner KM, McReynolds CB, Schmidt WK, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for pain, inflammatory and neurodegenerative diseases. Pharmacol Ther 2017; 180:62-76. [PMID: 28642117 PMCID: PMC5677555 DOI: 10.1016/j.pharmthera.2017.06.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eicosanoids are biologically active lipid signaling molecules derived from polyunsaturated fatty acids. Many of the actions of eicosanoid metabolites formed by cyclooxygenase and lipoxygenase enzymes have been characterized, however, the epoxy-fatty acids (EpFAs) formed by cytochrome P450 enzymes are newly described by comparison. The EpFA metabolites modulate a diverse set of physiologic functions that include inflammation and nociception among others. Regulation of EpFAs occurs primarily via release, biosynthesis and enzymatic transformation by the soluble epoxide hydrolase (sEH). Targeting sEH with small molecule inhibitors has enabled observation of the biological activity of the EpFAs in vivo in animal models, greatly contributing to the overall understanding of their role in the inflammatory response. Their role in modulating inflammation has been demonstrated in disease models including cardiovascular pathology and inflammatory pain, but extends to neuroinflammation and neuroinflammatory disease. Moreover, while EpFAs demonstrate activity against inflammatory pain, interestingly, this action extends to blocking chronic neuropathic pain as well. This review outlines the role of modulating sEH and the biological action of EpFAs in models of pain and inflammatory diseases.
Collapse
Affiliation(s)
- Karen M Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Cindy B McReynolds
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | | | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
45
|
Li Y, Yu G, Yuan S, Tan C, Lian P, Fu L, Hou Q, Xu B, Wang H. Cigarette Smoke-Induced Pulmonary Inflammation and Autophagy Are Attenuated in Ephx2-Deficient Mice. Inflammation 2017; 40:497-510. [PMID: 28028752 PMCID: PMC5357505 DOI: 10.1007/s10753-016-0495-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS) increases the risk of chronic obstructive pulmonary disease (COPD) by causing inflammation, emphysema, and reduced lung function. Additionally, CS can induce autophagy which contributes to COPD. Arachidonic acid-derived epoxyeicosatrienoic acids (EETs) have promising anti-inflammatory properties that may protect the heart and liver by regulating autophagy. For this reason, the effect of decreased soluble epoxide hydrolase (sEH, Ephx2)-mediated EET hydrolysis on inflammation, emphysema, lung function, and autophagy was here studied in CS-induced COPD in vivo. Adult male wild-type (WT) C57BL/6J and Ephx2−/− mice were exposed to air or CS for 12 weeks, and lung inflammatory responses, air space enlargement (emphysema), lung function, and autophagy were assessed. Lungs of Ephx2−/− mice had a less pronounced inflammatory response and less autophagy with mild distal airspace enlargement accompanied by restored lung function and steady weight gain. These findings support the idea that Ephx2 may hold promise as a therapeutic target for COPD induced by CS, and it may be protective property by inhibiting autophagy.
Collapse
Affiliation(s)
- Yunxiao Li
- The Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Ganggang Yu
- The Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Shaopeng Yuan
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chunting Tan
- The Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Puqiao Lian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lixia Fu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qi Hou
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bo Xu
- The Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Haoyan Wang
- The Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xichen District, Beijing, 100050, China.
| |
Collapse
|
46
|
Belyanskaya SL, Ding Y, Callahan JF, Lazaar AL, Israel DI. Discovering Drugs with DNA-Encoded Library Technology: From Concept to Clinic with an Inhibitor of Soluble Epoxide Hydrolase. Chembiochem 2017; 18:837-842. [DOI: 10.1002/cbic.201700014] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 12/27/2022]
Affiliation(s)
| | - Yun Ding
- GlaxoSmithKline R&D; 830 Winter Street Waltham MA 02451 USA
| | - James F. Callahan
- GlaxoSmithKline R&D; 709 Swedeland Road King of Prussia PA 19406 USA
| | - Aili L. Lazaar
- GlaxoSmithKline R&D; 709 Swedeland Road King of Prussia PA 19406 USA
| | | |
Collapse
|
47
|
Yuen LH, Franzini RM. Achievements, Challenges, and Opportunities in DNA-Encoded Library Research: An Academic Point of View. Chembiochem 2017; 18:829-836. [DOI: 10.1002/cbic.201600567] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| | - Raphael M. Franzini
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| |
Collapse
|
48
|
El-Sherbeni AA, El-Kadi AOS. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev 2016; 49:1-17. [DOI: 10.1080/03602532.2016.1257021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Yang L, Cheriyan J, Gutterman DD, Mayer RJ, Ament Z, Griffin JL, Lazaar AL, Newby DE, Tal-Singer R, Wilkinson IB. Mechanisms of Vascular Dysfunction in COPD and Effects of a Novel Soluble Epoxide Hydrolase Inhibitor in Smokers. Chest 2016; 151:555-563. [PMID: 27884766 PMCID: PMC5332206 DOI: 10.1016/j.chest.2016.10.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/04/2016] [Accepted: 10/28/2016] [Indexed: 12/03/2022] Open
Abstract
Background Smoking and COPD are risk factors for cardiovascular disease, and the pathogenesis may involve endothelial dysfunction. We tested the hypothesis that endothelium-derived epoxyeicosatrienoic acid (EET)-mediated endothelial function is impaired in patients with COPD and that a novel soluble epoxide hydrolase inhibitor, GSK2256294, attenuates EET-mediated endothelial dysfunction in human resistance vessels both in vitro and in vivo. Methods Endogenous and stimulated endothelial release of EETs was assessed in 12 patients with COPD, 11 overweight smokers, and two matched control groups, using forearm plethysmography with intraarterial infusions of fluconazole, bradykinin, and the combination. The effects of GSK2256294 on EET-mediated vasodilation in human resistance arteries were assessed in vitro and in vivo in a phase I clinical trial in healthy overweight smokers. Results Compared with control groups, there was reduced vasodilation with bradykinin (P = .005), a blunted effect of fluconazole on bradykinin-induced vasodilation (P = .03), and a trend toward reduced basal EET/dihydroxyepoxyeicosatrienoic acid ratio in patients with COPD (P = .08). A similar pattern was observed in overweight smokers. In vitro, 10 μM GSK2256294 increased 11,12-EET-mediated vasodilation compared with vehicle (90% ± 4.2% vs 72.6% ± 6.2% maximal dilatation) and shifted the bradykinin half-maximal effective concentration (EC50) (–8.33 ± 0.172 logM vs –8.10 ± 0.118 logM; P = .001 for EC50). In vivo, 18 mg GSK2256294 improved the maximum bradykinin response from 338% ± 46% before a dose to 566% ± 110% after a single dose (P = .02) and to 503% ± 123% after a chronic dose (P = .003). Conclusions GSK2256294 attenuates smoking-related EET-mediated endothelial dysfunction, suggesting potential therapeutic benefits in patients with COPD. Trial Registry ClinicalTrials.gov; No.: NCT01762774; URL: www.clinicaltrials.gov
Collapse
Affiliation(s)
- Lucy Yang
- Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Addenbrooke's Hospital, Cambridge, England
| | - Joseph Cheriyan
- Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Addenbrooke's Hospital, Cambridge, England; Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Clinical Unit Cambridge, GSK R&D, Cambridge, England.
| | - David D Gutterman
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | | | - Zsuzsanna Ament
- MRC Human Nutrition Research, Elsie Widdowson Laboratory; and Department of Biochemistry, University of Cambridge, Cambridge, England
| | - Jules L Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory; and Department of Biochemistry, University of Cambridge, Cambridge, England
| | | | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland
| | | | - Ian B Wilkinson
- Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Addenbrooke's Hospital, Cambridge, England; Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| |
Collapse
|
50
|
Li Y, Yu G, Yuan S, Tan C, Xie J, Ding Y, Lian P, Fu L, Hou Q, Xu B, Wang H. 14,15-Epoxyeicosatrienoic acid suppresses cigarette smoke condensate-induced inflammation in lung epithelial cells by inhibiting autophagy. Am J Physiol Lung Cell Mol Physiol 2016; 311:L970-L980. [PMID: 27591243 DOI: 10.1152/ajplung.00161.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolic products of free arachidonic acid, which are produced through cytochrome P-450 (CYP) epoxygenases. EETs have anti-inflammatory, antiapoptotic, and antioxidative activities. However, the effect of EETs on cigarette smoke-induced lung inflammation is not clear. Autophagy is believed to be involved in the pathogenesis of chronic obstructive pulmonary disease. In addition, nuclear erythroid-related factor 2 (Nrf2), a transcription factor that regulates many antioxidant genes, is thought to regulate antioxidant defenses in several lung diseases. In addition, interaction between EETs, autophagy, and Nrf2 has been reported. The aim of this study was to explore the effect of 14,15-EET on cigarette smoke condensate (CSC)-induced inflammation in a human bronchial epithelial cell line (Beas-2B), and to determine whether the underlying mechanisms involved in the regulation of Nrf2 through inhibition of autophagy. Autophagy and expression of autophagy signaling pathway proteins (LC3B, p62, PI3K, Akt, p-Akt, and p-mTOR) and anti-inflammatory proteins (Nrf2 and HO-1) were assessed via Western blot analysis. Autophagosomes and autolysosomes were detected by adenoviral mRFP-GFP-LC3 transfection. Inflammatory factors (IL-6, IL-8, and MCP-1) were detected by ELISA. Lentiviral vectors carrying p62 short hairpin RNA were used to interfere with p62 expression to evaluate the effect of p62 on Nrf2 expression. Nrf2 expression was determined through immunocytochemistry. 14,15-EET treatment resulted in a significant reduction in IL-6, IL-8, and MCP-1 secretion, and increased accumulation of Nrf2 and expression of HO-1. In addition, 14,15-EET inhibited CSC-induced autophagy in Beas-2B cells. The mechanism of the anti-inflammatory effect of 14,15-EET involved inhibition of autophagy and an increase in p62 levels, followed by translocation of Nrf2 into the nucleus, which then upregulated expression of the antioxidant enzyme HO-1. 14,15-EET protects against CSC-induced lung inflammation by promoting accumulation of Nrf2 via inhibition of autophagy.
Collapse
Affiliation(s)
- Yunxiao Li
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China; and
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China; and
| | - Shaopeng Yuan
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunting Tan
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China; and
| | - Jianlin Xie
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yasi Ding
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Puqiao Lian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixia Fu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Hou
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China; and
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China; and
| |
Collapse
|