1
|
Xie M, Xiong Y, Wang H. The regulative role and mechanism of BNST in anxiety disorder. Front Psychiatry 2024; 15:1437476. [PMID: 39698215 PMCID: PMC11652476 DOI: 10.3389/fpsyt.2024.1437476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Anxiety disorders, common yet impactful emotional disturbances, significantly affect physical and mental health globally. Many neuron circuits are associated with anxiety regulation like septo-hippocampal loop, amygdala(AMYG), bed nucleus of the stria terminalis (BNST), ventral hippocampus (vHPC), and brain regions like medial prefrontal cortex (mPFC). However, the concrete mechanism of anxiety disorder in BNST is relatively unknown. Recent research showed BNST plays a critical role in modulating anxiety owing to its anatomical location and special circuit characteristics, which are considered to be a hub in the limbic system regulating anxiety. BNST consists with multiple subregions, which can project separately into different brain regions and exert projecting independently to various brain regions with distinct regulatory effects. Moreover, multiple signal pathways in BNST are reported to play significant roles in regulating anxiety and stress behavior. This review briefly describes anxiety disorders and subdivisions and functions of BNST, focusing on the main neural circuits that serve as fundamental pathways in both the genesis and potential treatment of anxiety disorders and the molecular mechanism of BNST on anxiety. The complexity of structures and mechanisms has facilitated the development of imaging techniques. Innovative multimodal imaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), have non-invasively illuminated BNST activities and their functional connections with other brain areas. These methodologies provide a deeper understanding of how BNST responds to anxiety-inducing stimuli, offering invaluable insights into its complex role in anxiety regulation. The continued exploration of BNST in anxiety research promises not only to elucidate fundamental neurobiological mechanisms but also to foster advancements in clinical treatments for anxiety disorders.
Collapse
Affiliation(s)
| | | | - Haijun Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese
Medicine, Jinan, China
| |
Collapse
|
2
|
Worth AA, Feetham CH, Morrissey NA, Luckman SM. Paraventricular oxytocin neurons impact energy intake and expenditure: projections to the bed nucleus of the stria terminalis reduce sucrose consumption. Front Endocrinol (Lausanne) 2024; 15:1449326. [PMID: 39286269 PMCID: PMC11402739 DOI: 10.3389/fendo.2024.1449326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background The part played by oxytocin and oxytocin neurons in the regulation of food intake is controversial. There is much pharmacological data to support a role for oxytocin notably in regulating sugar consumption, however, several recent experiments have questioned the importance of oxytocin neurons themselves. Methods Here we use a combination of histological and chemogenetic techniques to investigate the selective activation or inhibition of oxytocin neurons in the hypothalamic paraventricular nucleus (OxtPVH). We then identify a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis using the cell-selective expression of channel rhodopsin. Results OxtPVH neurons increase their expression of cFos after both physiological (fast-induced re-feeding or oral lipid) and pharmacological (systemic administration of cholecystokinin or lithium chloride) anorectic signals. Chemogenetic activation of OxtPVH neurons is sufficient to decrease free-feeding in Oxt Cre:hM3Dq mice, while inhibition in Oxt Cre:hM4Di mice attenuates the response to administration of cholecystokinin. Activation of OxtPVH neurons also increases energy expenditure and core-body temperature, without a significant effect on locomotor activity. Finally, the selective, optogenetic stimulation of a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis reduces the consumption of sucrose. Conclusion Our results support a role for oxytocin neurons in the regulation of whole-body metabolism, including a modulatory action on food intake and energy expenditure. Furthermore, we demonstrate that the pathway from OxtPVH neurons to the bed nucleus of the stria terminalis can regulate sugar consumption.
Collapse
Affiliation(s)
| | | | | | - Simon M. Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Gustison ML, Muñoz-Castañeda R, Osten P, Phelps SM. Sexual coordination in a whole-brain map of prairie vole pair bonding. eLife 2024; 12:RP87029. [PMID: 38381037 PMCID: PMC10942618 DOI: 10.7554/elife.87029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Sexual bonds are central to the social lives of many species, including humans, and monogamous prairie voles have become the predominant model for investigating such attachments. We developed an automated whole-brain mapping pipeline to identify brain circuits underlying pair-bonding behavior. We identified bonding-related c-Fos induction in 68 brain regions clustered in seven major brain-wide neuronal circuits. These circuits include known regulators of bonding, such as the bed nucleus of the stria terminalis, paraventricular hypothalamus, ventral pallidum, and prefrontal cortex. They also include brain regions previously unknown to shape bonding, such as ventromedial hypothalamus, medial preoptic area, and the medial amygdala, but that play essential roles in bonding-relevant processes, such as sexual behavior, social reward, and territorial aggression. Contrary to some hypotheses, we found that circuits active during mating and bonding were largely sexually monomorphic. Moreover, c-Fos induction across regions was strikingly consistent between members of a pair, with activity best predicted by rates of ejaculation. A novel cluster of regions centered in the amygdala remained coordinated after bonds had formed, suggesting novel substrates for bond maintenance. Our tools and results provide an unprecedented resource for elucidating the networks that translate sexual experience into an enduring bond.
Collapse
Affiliation(s)
- Morgan L Gustison
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
- Department of Psychology, Western UniversityLondonCanada
| | - Rodrigo Muñoz-Castañeda
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Pavel Osten
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
- Institute for Neuroscience, The University of Texas at AustinAustinUnited States
| |
Collapse
|
4
|
Ritz NL, Brocka M, Butler MI, Cowan CSM, Barrera-Bugueño C, Turkington CJR, Draper LA, Bastiaanssen TFS, Turpin V, Morales L, Campos D, Gheorghe CE, Ratsika A, Sharma V, Golubeva AV, Aburto MR, Shkoporov AN, Moloney GM, Hill C, Clarke G, Slattery DA, Dinan TG, Cryan JF. Social anxiety disorder-associated gut microbiota increases social fear. Proc Natl Acad Sci U S A 2024; 121:e2308706120. [PMID: 38147649 PMCID: PMC10769841 DOI: 10.1073/pnas.2308706120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/05/2023] [Indexed: 12/28/2023] Open
Abstract
Social anxiety disorder (SAD) is a crippling psychiatric disorder characterized by intense fear or anxiety in social situations and their avoidance. However, the underlying biology of SAD is unclear and better treatments are needed. Recently, the gut microbiota has emerged as a key regulator of both brain and behaviour, especially those related to social function. Moreover, increasing data supports a role for immune function and oxytocin signalling in social responses. To investigate whether the gut microbiota plays a causal role in modulating behaviours relevant to SAD, we transplanted the microbiota from SAD patients, which was identified by 16S rRNA sequencing to be of a differential composition compared to healthy controls, to mice. Although the mice that received the SAD microbiota had normal behaviours across a battery of tests designed to assess depression and general anxiety-like behaviours, they had a specific heightened sensitivity to social fear, a model of SAD. This distinct heightened social fear response was coupled with changes in central and peripheral immune function and oxytocin expression in the bed nucleus of the stria terminalis. This work demonstrates an interkingdom basis for social fear responses and posits the microbiome as a potential therapeutic target for SAD.
Collapse
Affiliation(s)
- Nathaniel L. Ritz
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Marta Brocka
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Mary I. Butler
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - Caitlin S. M. Cowan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Camila Barrera-Bugueño
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Christopher J. R. Turkington
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Lorraine A. Draper
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Thomaz F. S. Bastiaanssen
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Valentine Turpin
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Lorena Morales
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - David Campos
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Cassandra E. Gheorghe
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - Anna Ratsika
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Virat Sharma
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Anna V. Golubeva
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Maria R. Aburto
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Andrey N. Shkoporov
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Gerard M. Moloney
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - David A. Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt60528, Germany
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| |
Collapse
|
5
|
Breach MR, Akouri HE, Costantine S, Dodson CM, McGovern N, Lenz KM. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Horm Behav 2024; 157:105427. [PMID: 37743114 PMCID: PMC10842952 DOI: 10.1016/j.yhbeh.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Prenatal exposure to inflammation via maternal infection, allergy, or autoimmunity increases one's risk for developing neurodevelopmental and psychiatric disorders. Many of these disorders are associated with altered social behavior, yet the mechanisms underlying inflammation-induced social impairment remain unknown. We previously found that a rat model of acute allergic maternal immune activation (MIA) produced deficits like those found in MIA-linked disorders, including impairments in juvenile social play behavior. The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behavior, including juvenile social play, across mammalian species. OT and AVP are also implicated in neuropsychiatric disorders characterized by social impairment, making them good candidate regulators of social deficits after MIA. We profiled how acute prenatal exposure to allergic MIA changed OT and AVP innervation in several brain regions important for social behavior in juvenile male and female rat offspring. We also assessed whether MIA altered additional behavioral phenotypes related to sociality and anxiety. We found that allergic MIA increased OT and AVP fiber immunoreactivity in the medial amygdala and had sex-specific effects in the nucleus accumbens, bed nucleus of the stria terminalis, and lateral hypothalamic area. We also found that MIA reduced ultrasonic vocalizations in neonates and increased the stereotypical nature of self-grooming behavior. Overall, these findings suggest that there may be sex-specific mechanisms underlying MIA-induced behavioral impairment and underscore OT and AVP as ideal candidates for future mechanistic studies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Habib E Akouri
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sophia Costantine
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Claire M Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Nolan McGovern
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Yoest KE, Henry MG, Velisek HA, Veenema AH. Development of social recognition ability in female rats: Effect of pubertal ovarian hormones. Horm Behav 2023; 151:105347. [PMID: 36966657 DOI: 10.1016/j.yhbeh.2023.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 04/28/2023]
Abstract
The ability to recognize previously encountered conspecifics is crucial for social interaction. This social recognition ability is well characterized in adult rodents of both sexes but remains largely unexplored in juveniles. Using the social discrimination test of social recognition with short intervals (30 min and 1 h), we first found that juvenile female rats do not display a difference in investigation directed toward a novel vs. familiar stimulus rat. Using the social discrimination test with a 30-minute interval, we then showed that social recognition is established by the time of adolescence in female rats. Based on these findings, we hypothesized that social recognition is dependent on the initiation of ovarian hormone release during puberty. To test this, we ovariectomized females prior to puberty and found that prepubertal ovariectomy prevented the development of social recognition ability in adulthood. Administration of estradiol benzoate, 48 h prior to testing, to juvenile females or prepubertally ovariectomized adult females did not restore social recognition, suggesting that ovarian hormones organize the neural circuitry regulating this behavior during adolescence. These findings provide the first evidence of an effect of pubertal development on social recognition ability in female rats and highlight the importance of considering sex and age when interpreting results from behavioral paradigms initially designed for use in adult males.
Collapse
Affiliation(s)
- Katie E Yoest
- Department of Psychology, Michigan State University, East Lansing, MI, United States of America
| | - Morgen G Henry
- Department of Psychology, Michigan State University, East Lansing, MI, United States of America
| | - Haley A Velisek
- Department of Psychology, Michigan State University, East Lansing, MI, United States of America
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, MI, United States of America; Neuroscience Program, Michigan State University, East Lansing, MI, United States of America.
| |
Collapse
|
7
|
Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: Lifelong socioemotional consequences. Neuropharmacology 2023; 225:109404. [PMID: 36572178 PMCID: PMC9926961 DOI: 10.1016/j.neuropharm.2022.109404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - Steven M Herron
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Holley D, Fox AS. The central extended amygdala guides survival-relevant tradeoffs: Implications for understanding common psychiatric disorders. Neurosci Biobehav Rev 2022; 142:104879. [PMID: 36115597 PMCID: PMC11178236 DOI: 10.1016/j.neubiorev.2022.104879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
To thrive in challenging environments, individuals must pursue rewards while avoiding threats. Extensive studies in animals and humans have identified the central extended amygdala (EAc)-which includes the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis (BST)-as a conserved substrate for defensive behavior. These studies suggest the EAc influences defensive responding and assembles fearful and anxious states. This has led to the proliferation of a view that the EAc is fundamentally a defensive substrate. Yet mechanistic work in animals has implicated the EAc in numerous appetitive and consummatory processes, yielding fresh insights into the microcircuitry of survival- and emotion-relevant response selection. Coupled with the EAc's centrality in a conserved network of brain regions that encode multisensory environmental and interoceptive information, these findings suggest a broader role for the EAc as an arbiter of survival- and emotion-relevant tradeoffs for action selection. Determining how the EAc optimizes these tradeoffs promises to improve our understanding of common psychiatric illnesses such as anxiety, depression, alcohol- and substance-use disorders, and anhedonia.
Collapse
Affiliation(s)
- Dan Holley
- Department of Psychology and the California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Andrew S Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Hammerslag LR, Humburg BA, Malone SG, Beckmann JS, Saatman KE, Grinevich V, Bardo MT. Peer-induced cocaine seeking in rats: Comparison to nonsocial stimuli and role of paraventricular hypothalamic oxytocin neurons. Addict Biol 2022; 27:e13217. [PMID: 36001434 PMCID: PMC9413367 DOI: 10.1111/adb.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to determine if social vs nonsocial cues (peer vs light/tone) can serve as discriminative stimuli to reinstate cocaine seeking. In addition, to assess a potential mechanism, an oxytocin (OT) promoter-linked hM3Dq DREADD was infused into the paraventricular nucleus of the hypothalamus to determine whether peer-induced cocaine seeking is decreased by activation of OT neurons. Male rats underwent twice-daily self-administration sessions, once with cocaine in the presence of one peer (S+) and once with saline in the presence of a different peer (S-). Another experiment used similar procedures, except the discriminative stimuli were nonsocial (constant vs flashing light/tone), with one stimulus paired with cocaine (S+) and the other paired with saline (S-). A third experiment injected male and female rats with OTp-hM3Dq DREADD or control virus into PVN and tested them for peer-induced reinstatement of cocaine seeking following clozapine (0.1 mg/kg). Although acquisition of cocaine self-administration was similar in rats trained with either peer or light/tone discriminative stimuli, the latency to first response was reduced by the peer S+, but not by the light/tone S+. In addition, the effect of the conditioned stimulus was overshadowed by the peer S+ but not by the light/tone S+. Clozapine blocked the effect of the peer S+ in rats receiving the OTp-hM3Dq DREADD virus, but not in rats receiving the control virus. These results demonstrate that a social peer can serve as potent trigger for drug seeking and that OT in PVN modulates peer-induced reinstatement of cocaine seeking.
Collapse
Affiliation(s)
| | - Bree A. Humburg
- Department of Psychology, University of Kentucky, USA, 40536
| | | | | | - Kathryn E. Saatman
- Department of Physiology, and Spinal Cord and Brain Injury Research Center, University of Kentucky, USA, 40536
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
10
|
Paletta P, Bass N, Kavaliers M, Choleris E. The role of oxytocin in shaping complex social behaviours: possible interactions with other neuromodulators. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210058. [PMID: 35858107 PMCID: PMC9272141 DOI: 10.1098/rstb.2021.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 08/31/2023] Open
Abstract
This review explores the role of oxytocin in the mediation of select social behaviours, with particular emphasis on female rodents. These behaviours include social recognition, social learning, pathogen detection and avoidance, and maternal care. Specific brain regions where oxytocin has been shown to directly mediate various aspects of these social behaviours, as well as other proposed regions, are discussed. Possible interactions between oxytocin and other regulatory systems, in particular that of oestrogens and dopamine, in the modulation of social behaviour are considered. Similarities and differences between males and females are highlighted. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
- Department of Psychology, Western University, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| |
Collapse
|
11
|
Flanigan ME, Kash TL. Coordination of social behaviors by the bed nucleus of the stria terminalis. Eur J Neurosci 2022; 55:2404-2420. [PMID: 33006806 PMCID: PMC9906816 DOI: 10.1111/ejn.14991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic, neuropeptide-rich node of the extended amygdala that has been implicated in responses to stress, drugs of abuse, and natural rewards. Its function is dysregulated in neuropsychiatric disorders that are characterized by stress- or drug-induced alterations in mood, arousal, motivation, and social behavior. However, compared to the BNST's role in mood, arousal, and motivation, its role in social behavior has remained relatively understudied. Moreover, the precise cell types and circuits underlying the BNST's role in social behavior have only recently begun to be explored using modern neuroscience techniques. Here, we systematically review the existing literature investigating the neurobiological substrates within the BNST that contribute to the coordination of various sex-dependent and sex-independent social behavioral repertoires, focusing largely on pharmacological and circuit-based behavioral studies in rodents. We suggest that the BNST coordinates social behavior by promoting appropriate assessment of social contexts to select relevant behavioral outputs and that disruption of socially relevant BNST systems by stress and drugs of abuse may be an important factor in the development of social dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC,Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC,Correspondence: Thomas L. Kash, John R. Andrews Distinguished Professor, Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA, , (919) 843-7867
| |
Collapse
|
12
|
Bowling DL, Gahr J, Ancochea PG, Hoeschele M, Canoine V, Fusani L, Fitch WT. Endogenous oxytocin, cortisol, and testosterone in response to group singing. Horm Behav 2022; 139:105105. [PMID: 34999566 PMCID: PMC8915780 DOI: 10.1016/j.yhbeh.2021.105105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Humans have sung together for thousands of years. Today, regular participation in group singing is associated with benefits across psychological and biological dimensions of human health. Here we examine the hypothesis that a portion of these benefits stem from changes in endocrine activity associated with affiliation and social bonding. Working with a young adult choir (n = 71), we measured changes salivary concentrations of oxytocin, cortisol, and testosterone from before and after four experimental conditions crossing two factors: vocal production mode (singing vs. speaking) and social context (together vs. alone). Salivary oxytocin and cortisol decreased from before to after the experimental manipulations. For oxytocin the magnitude of this decrease was significantly smaller after singing compared to speaking, resulting in concentrations that were significantly elevated after singing together compared to speaking together, after controlling for baseline differences. In contrast, the magnitude of the salivary cortisol decreases was the same across experimental manipulations, and although large, could not be separated from diurnal cycling. No significant effects were found in a low-powered exploratory evaluation of testosterone (tested only in males). At a psychological level, we found that singing stimulates greater positive shifts in self-perceived affect compared to speaking-particularly when performed together-and that singing together enhances feelings of social connection more than speaking together. Finally, measurements of heart rate made for a subset of participants provide preliminary evidence regarding physical exertion levels across conditions. These results are discussed in the context of a growing multidisciplinary literature on the endocrinological correlates of musical behavior. We conclude that singing together can have biological and psychological effects associated with affiliation and social bonding, and that these effects extend beyond comparable but non-musical group activities. However, we also note that these effects appear heavily influenced by broader contextual factors that shape social dynamics, such as stress levels, the intimacy of interactions, and the status of existing relationships.
Collapse
Affiliation(s)
- D L Bowling
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, United States of America; Department of Behavioral & Cognitive Biology, University of Vienna, Austria.
| | - J Gahr
- Department of Behavioral & Cognitive Biology, University of Vienna, Austria
| | - P Graf Ancochea
- Department of Behavioral & Cognitive Biology, University of Vienna, Austria
| | - M Hoeschele
- Department of Behavioral & Cognitive Biology, University of Vienna, Austria; Acoustics Research Institute, Austrian Academy of Sciences, Austria
| | - V Canoine
- Department of Behavioral & Cognitive Biology, University of Vienna, Austria
| | - L Fusani
- Department of Behavioral & Cognitive Biology, University of Vienna, Austria; Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - W T Fitch
- Department of Behavioral & Cognitive Biology, University of Vienna, Austria; CogSci Hub University of Vienna, Austria
| |
Collapse
|
13
|
Logan CN, Rojas G, Wilkinson CS, Polo Escorcia AK, Reichel CM, Peris J, Knackstedt LA. Systemic oxytocin increases glutamate efflux in the nucleus accumbens core of cocaine-experienced male and female rats but only increases dopamine efflux in males. Behav Brain Res 2022; 417:113590. [PMID: 34551348 DOI: 10.1016/j.bbr.2021.113590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023]
Abstract
Oxytocin attenuates cocaine-seeking when administered both systemically and directly into the nucleus accumbens core. This effect is blocked by intra-accumbens antagonism of mGlu2/3 and, together with our finding that intra-accumbens oxytocin increases glutamate concentrations in this brain region, indicates that pre-synaptic regulation of glutamate release by oxytocin influences cocaine relapse. However, mGlu2/3 receptors also regulate dopamine release in the nucleus accumbens. Here we aimed to determine whether systemic oxytocin increases glutamate and dopamine concentrations in the nucleus accumbens core of cocaine-experienced and cocaine-naïve male and female rats. A subset of rats self-administered cocaine (0.5 mg/kg/infusion) and then underwent extinction training for 2-3 weeks. Rats were implanted with microdialysis probes in the accumbens core and samples were collected for a baseline period, and following saline (1 mL/kg), and oxytocin (1 mg/kg, IP) injections. Locomotion was assessed during microdialysis. In cocaine-experienced rats, oxytocin increased glutamate concentrations in the accumbens core to the same extent in males and females but only increased dopamine concentrations in male rats. Oxytocin did not alter glutamate levels in cocaine-naïve rats. Oxytocin did not produce sedation. These results extend previous findings that systemic oxytocin increases nucleus accumbens dopamine in a sex-specific manner in cocaine-experienced rats. These data are the first to find that systemic oxytocin increases nucleus accumbens glutamate after cocaine experience, providing a mechanism of action by which oxytocin attenuates the reinstatement of cocaine seeking in both male and female rats.
Collapse
Affiliation(s)
- C N Logan
- Psychology Department, University of Florida, Gainesville, FL, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA.
| | - G Rojas
- Psychology Department, University of Florida, Gainesville, FL, USA
| | - C S Wilkinson
- Psychology Department, University of Florida, Gainesville, FL, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | | | - C M Reichel
- Neuroscience Dept., Medical University of South Carolina, Charleston SC, USA
| | - J Peris
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA; Pharmacodynamics Department, University of Florida, Gainesville, FL, USA
| | - L A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Kozlova EV, Valdez MC, Denys ME, Bishay AE, Krum JM, Rabbani KM, Carrillo V, Gonzalez GM, Lampel G, Tran JD, Vazquez BM, Anchondo LM, Uddin SA, Huffman NM, Monarrez E, Olomi DS, Chinthirla BD, Hartman RE, Kodavanti PRS, Chompre G, Phillips AL, Stapleton HM, Henkelmann B, Schramm KW, Curras-Collazo MC. Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71. Arch Toxicol 2022; 96:335-365. [PMID: 34687351 PMCID: PMC8536480 DOI: 10.1007/s00204-021-03163-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kayhon M Rabbani
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gwendolyn M Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gregory Lampel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Brigitte M Vazquez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Laura M Anchondo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Syed A Uddin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Nicole M Huffman
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Eduardo Monarrez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Duraan S Olomi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Gladys Chompre
- Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, 00717-9997, USA
| | - Allison L Phillips
- Duke University, Nicholas School of the Environment, Durham, NC, 27710, USA
| | | | - Bernhard Henkelmann
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
- Department Für Biowissenschaftliche Grundlagen, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung Und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| | | |
Collapse
|
15
|
Relationship between infantile mother preference and neural regions activated by maternal contact in C57BL/6 mice. Neurosci Res 2022; 178:69-77. [DOI: 10.1016/j.neures.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
|
16
|
Noorjahan N, Cattini PA. Neurogenesis in the Maternal Rodent Brain: Impacts of Gestation-Related Hormonal Regulation, Stress, and Obesity. Neuroendocrinology 2022; 112:702-722. [PMID: 34510034 DOI: 10.1159/000519415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
In order to maintain maternal behavior, it is important that the maternal rodent brain promotes neurogenesis. Maternal neurogenesis is altered by the dynamic shifts in reproductive hormone levels during pregnancy. Thus, lifestyle events such as gestational stress and obesity that can affect hormone production will affect neuroendocrine control of maternal neurogenesis. However, there is a lack of information about the regulation of maternal neurogenesis by placental hormones, which are key components of the reproductive hormonal profile during pregnancy. There is also little known about how maternal neurogenesis can be affected by health concerns such as gestational stress and obesity, and its relationship to peripartum mental health disorders. This review summarizes the changing levels of neurogenesis in mice and rats during gestation and postpartum as well as regulation of neurogenesis by pregnancy-related hormones. The influence of neurogenesis on maternal behavior is also discussed while bringing attention to the effect of health-related concerns during gestation, such as stress and obesity on neuroendocrine control of maternal neurogenesis. In doing so, this review identifies the gaps in the literature and specifically emphasizes the importance of further research on maternal brain physiology to address them.
Collapse
Affiliation(s)
- Noshin Noorjahan
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Oxytocin, Erectile Function and Sexual Behavior: Last Discoveries and Possible Advances. Int J Mol Sci 2021; 22:ijms221910376. [PMID: 34638719 PMCID: PMC8509000 DOI: 10.3390/ijms221910376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
A continuously increasing amount of research shows that oxytocin is involved in numerous central functions. Among the functions in which oxytocin is thought to be involved are those that play a role in social and sexual behaviors, and the involvement of central oxytocin in erectile function and sexual behavior was indeed one of the first to be discovered in laboratory animals in the 1980s. The first part of this review summarizes the results of studies done in laboratory animals that support a facilitatory role of oxytocin in male and female sexual behavior and reveal mechanisms through which this ancient neuropeptide participates in concert with other neurotransmitters and neuropeptides in this complex function, which is fundamental for the species reproduction. The second part summarizes the results of studies done mainly with intranasal oxytocin in men and women with the aim to translate the results found in laboratory animals to humans. Unexpectedly, the results of these studies do not appear to confirm the facilitatory role of oxytocin found in male and female sexual behavior in animals, both in men and women. Possible explanations for the failure of oxytocin to improve sexual behavior in men and women and strategies to attempt to overcome this impasse are considered.
Collapse
|
18
|
Henningsson S, Leknes S, Asperholm M, Eikemo M, Westberg L. A randomized placebo-controlled intranasal oxytocin study on first impressions and reactions to social rejection. Biol Psychol 2021; 164:108164. [PMID: 34331996 DOI: 10.1016/j.biopsycho.2021.108164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
Oxytocin is central to pair-bonding in non-human animals. We assessed effects of intranasal oxytocin on bond formation between two opposite-sex strangers. In a double-blind placebo-controlled design, 50 pairs of one man and one woman received oxytocin or placebo spray intranasally. After treatment, they played a social interaction game, followed by tasks designed to measure first impressions of the opposite-sex co-participant, and a virtual ball-tossing game (cyberball), designed to measure reactions to rejection by the co-participant. We found no evidence that intranasal oxytocin can improve first impressions of an opposite-sex stranger, and some Bayesian support against this hypothesis. For rejection sensitivity, we observed a sex-and-context-dependent drug effect on post-ostracism mood ratings, consistent with recent studies indicating that interindividual variation and social context can interact with intranasal oxytocin effects. Further research is needed to determine the generalisability of these findings, i.e. if oxytocin can improve first impressions in humans under different conditions.
Collapse
Affiliation(s)
- Susanne Henningsson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30 Gothenburg, Sweden
| | - Siri Leknes
- Department of Psychology, University of Oslo, POB 1094, 0317 Oslo, Norway
| | - Martin Asperholm
- Department of Psychology, University of Oslo, POB 1094, 0317 Oslo, Norway
| | - Marie Eikemo
- Department of Psychology, University of Oslo, POB 1094, 0317 Oslo, Norway
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30 Gothenburg, Sweden.
| |
Collapse
|
19
|
Sanna F, De Luca MA. The potential role of oxytocin in addiction: What is the target process? Curr Opin Pharmacol 2021; 58:8-20. [PMID: 33845377 DOI: 10.1016/j.coph.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 01/27/2023]
Abstract
Oxytocin regulates a variety of centrally-mediated functions, ranging from socio-sexual behavior, maternal care, and affiliation to fear, stress, anxiety. In the past years, both clinical and preclinical studies characterized oxytocin for its modulatory role on reward-related neural substrates mainly involving the interplay with the mesolimbic and mesocortical dopaminergic pathways. This suggests a role of this nonapeptide on the neurobiology of addiction raising the possibility of its therapeutic use. Although far from a precise knowledge of the underlying mechanisms, the putative role of the bed nucleus of the stria terminalis as a key structure where oxytocin may rebalance altered neurochemical processes and neuroplasticity involved in dependence and relapse has been highlighted. This view opens new opportunities to address the health problems related to drug misuse.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | | |
Collapse
|
20
|
Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat Neurosci 2020; 23:1125-1137. [PMID: 32719563 DOI: 10.1038/s41593-020-0674-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Oxytocin (OT) is a great facilitator of social life but, although its effects on socially relevant brain regions have been extensively studied, OT neuron activity during actual social interactions remains unexplored. Most OT neurons are magnocellular neurons, which simultaneously project to the pituitary and forebrain regions involved in social behaviors. In the present study, we show that a much smaller population of OT neurons, parvocellular neurons that do not project to the pituitary but synapse onto magnocellular neurons, is preferentially activated by somatosensory stimuli. This activation is transmitted to the larger population of magnocellular neurons, which consequently show coordinated increases in their activity during social interactions between virgin female rats. Selectively activating these parvocellular neurons promotes social motivation, whereas inhibiting them reduces social interactions. Thus, parvocellular OT neurons receive particular inputs to control social behavior by coordinating the responses of the much larger population of magnocellular OT neurons.
Collapse
|
21
|
Marler CA, Trainor BC. The challenge hypothesis revisited: Focus on reproductive experience and neural mechanisms. Horm Behav 2020; 123:104645. [PMID: 31778720 DOI: 10.1016/j.yhbeh.2019.104645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Our review focuses on findings from mammals as part of a Special Issue "30th Anniversary of the Challenge Hypothesis". Here we put forth an integration of the mechanisms through which testosterone controls territorial behavior and consider how reproductive experience may alter these mechanisms. The emphasis is placed on the function of socially induced increases in testosterone (T) pulses, which occur in response to social interactions, as elegantly developed by Wingfield and colleagues. We focus on findings from the monogamous California mouse, as data from this species shows that reproductive status is a key factor influencing social interactions, site fidelity, and vigilance for offspring defense. Specifically, we examine differences in T pulses in sexually naïve versus sexually experienced pair bonded males. Testosterone pulses influence processes such as social decision making, the winner-challenge effect, and location preferences through rewarding effects of T. We also consider how social and predatory vigilance contribute to T pulses and how these interactions contribute to a territory centered around maximizing reproduction. Possible underlying mechanisms for these effects include the nucleus accumbens (rewarding effects of testosterone), hippocampus (spatial memories for territories), and the bed nucleus of the stria terminalis (social vigilance). The development of the challenge effect has provided an ideal framework for understanding the complex network of behavioral, environmental, physiological and neural mechanisms that ultimately relates to competition and territoriality across taxa. The opportunity to merge research on the challenge effect using both laboratory and field research to understand social behavior is unparalleled.
Collapse
Affiliation(s)
- Catherine A Marler
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA.
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA
| |
Collapse
|
22
|
Duarte-Guterman P, Lieblich SE, Qiu W, Splinter JEJ, Go KA, Casanueva-Reimon L, Galea LAM. Oxytocin has sex-specific effects on social behaviour and hypothalamic oxytocin immunoreactive cells but not hippocampal neurogenesis in adult rats. Horm Behav 2020; 122:104734. [PMID: 32169583 DOI: 10.1016/j.yhbeh.2020.104734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Oxytocin regulates social behaviours, pair bonding and hippocampal neurogenesis but most studies have used adult males. Our study investigated the effects of oxytocin on social investigation and adult hippocampal neurogenesis in male and female rats. Oxytocin has poor penetration of the blood-brain barrier, therefore we tested a nanoparticle drug, TRIOZAN™ (Ovensa Inc.), which permits greater blood-brain-barrier penetration. Adult male and female rats were injected daily (i.p.) for 10 days with either: oxytocin in PBS (0.5 or 1.0 mg/kg), oxytocin in TRIOZAN™ (0.5 or 1.0 mg/kg), or vehicle (PBS) and tested for social investigation. Oxytocin decreased body mass and increased social investigation and number of oxytocin-immunoreactive cells in the supraoptic nucleus (SON) of the hypothalamus in male rats only. In both sexes, oxytocin decreased the number of immature neurons (doublecortin+ cells) in the ventral hippocampus and reduced plasma 17β-estradiol levels in a dose- and delivery-dependent way. Oxytocin in TRIOZAN™ reduced "sedation" observed post-injection and increased certain central effects (oxytocin levels in the hypothalamus and neurogenesis in the ventral hippocampus) relative to oxytocin in PBS, indicating that the nanoparticle may be used as an alternative brain delivery system. We showed that oxytocin has sex-specific effects on social investigation, body mass, "sedation", and the oxytocin system. In contrast, similar effects were observed in both sexes in neurogenesis and plasma 17β-estradiol. Our work suggests that sex differences in oxytocin regulation of brain endpoints is region-specific (hypothalamus versus hippocampus) and that oxytocin does not promote social investigation in females.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Jared E J Splinter
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kimberly A Go
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Laura Casanueva-Reimon
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
24
|
Ebbesen CL, Bobrov E, Rao RP, Brecht M. Highly structured, partner-sex- and subject-sex-dependent cortical responses during social facial touch. Nat Commun 2019; 10:4634. [PMID: 31604919 PMCID: PMC6789031 DOI: 10.1038/s41467-019-12511-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Touch is a fundamental aspect of social, parental and sexual behavior. In contrast to our detailed knowledge about cortical processing of non-social touch, we still know little about how social touch impacts cortical circuits. We investigated neural activity across five frontal, motor and sensory cortical areas in rats engaging in naturalistic social facial touch. Information about social touch and the sex of the interaction partner (a biologically significant feature) is a major determinant of cortical activity. 25.3% of units were modulated during social touch and 8.3% of units displayed ‘sex-touch’ responses (responded differently, depending on the sex of the interaction partner). Single-unit responses were part of a structured, partner-sex- and, in some cases, subject-sex-dependent population response. Spiking neural network simulations indicate that a change in inhibitory drive might underlie these population dynamics. Our observations suggest that socio-sexual characteristics of touch (subject and partner sex) widely modulate cortical activity and need to be investigated with cellular resolution. Touch is an important sensory modality during social encounters. Here the authors report that during naturalistic social encounters in rats, the cortical activity in widespread areas at the level of single neurons is modulated by sociosexual characteristics such as the subject and partner sex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Neuroscience Institute, New York University, New York, NY, 10016, USA. .,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| | - Evgeny Bobrov
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Rajnish P Rao
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
25
|
Keiser AA, Wood MA. Examining the contribution of histone modification to sex differences in learning and memory. Learn Mem 2019; 26:318-331. [PMID: 31416905 PMCID: PMC6699407 DOI: 10.1101/lm.048850.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
The epigenome serves as a signal integration platform that encodes information from experience and environment that adds tremendous complexity to the regulation of transcription required for memory, beyond the directions encoded in the genome. To date, our understanding of how epigenetic mechanisms integrate information to regulate gene expression required for memory is primarily obtained from male derived data despite sex-specific life experiences and sex differences in consolidation and retrieval of memory, and in the molecular mechanisms that mediate these processes. In this review, we examine the contribution of chromatin modification to learning and memory in both sexes. We provide examples of how exposure to a number of internal and external factors influence the epigenome in sex-similar and sex-specific ways that may ultimately impact transcription required for memory processes. We also pose a number of key open questions and identify areas requiring further investigation as we seek to understand how histone modifying mechanisms shape memory in females.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
26
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
27
|
Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: A microdialysis and immunohistochemical study. Behav Brain Res 2019; 375:112147. [PMID: 31408664 DOI: 10.1016/j.bbr.2019.112147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Oxytocin (5, 20 and 100 ng) injected unilaterally into the bed nucleus of the stria terminalis (BNST) of male rats stereotaxically implanted with a microinjection cannula coupled to a microdialysis probe, induces penile erection and yawning that occur concomitantly with a dose-dependent increase in the extracellular concentration of glutamic acid, dopamine and its main metabolite 3,4-dihydroxyphenilacetic acid (DOPAC), and nitrites (NO2-) in the dialysate obtained from the BNST by intracerebral microdialysis. The responses induced by oxytocin (100 ng) were all abolished by the oxytocin receptor antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin (1 μg), and reduced by CNQX (1 μg), a competitive antagonist of the AMPA receptors, both given into the BNST 25 min before oxytocin. In contrast, (+) MK-801 (1 μg), a non-competitive antagonist of NMDA receptors, and SCH 23390 (1 μg), a selective dopamine D1 receptor antagonist, reduced penile erection and yawning, but not glutamic acid and dopamine increases in the BNST dialysate induced by oxytocin. Immunohistochemistry revealed oxytocin-labelled neuronal structures in close proximity to tyrosine hydroxylase-labelled neurons or nitric oxide synthase-labelled cell bodies surrounded by intense vesicular glutamate transporter1-stained synapses in BNST sections where oxytocin injections induce the above responses. Together, these findings show that oxytocin injected into the BNST induces penile erection and yawning by activating not only the glutamatergic (and nitrergic) but also the dopaminergic neurotransmission, leading in turn to the activation of neural pathways mediating penile erection and yawning.
Collapse
|
28
|
Worley NB, Dumais KM, Yuan JC, Newman LE, Alonso AG, Gillespie TC, Hobbs NJ, Breedlove SM, Jordan CL, Bredewold R, Veenema AH. Oestrogen and androgen receptor activation contribute to the masculinisation of oxytocin receptors in the bed nucleus of the stria terminalis of rats. J Neuroendocrinol 2019; 31:e12760. [PMID: 31233647 DOI: 10.1111/jne.12760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022]
Abstract
Oxytocin (OT) often regulates social behaviours in sex-specific ways, and this may be a result of sex differences in the brain OT system. Adult male rats show higher OT receptor (OTR) binding in the posterior bed nucleus of the stria terminalis (pBNST) than adult female rats. In the present study, we investigated the mechanisms that lead to this sex difference. First, we found that male rats have higher OTR mRNA expression in the pBNST than females at postnatal day (P) 35 and P60, which demonstrates the presence of the sex difference in OTR binding density at message level. Second, the sex difference in OTR binding density in the pBNST was absent at P0 and P3, but was present by P5. Third, systemic administration of the oestrogen receptor (ER) antagonist fulvestrant at P0 and P1 dose-dependently reduced OTR binding density in the pBNST of 5-week-old male rats, but did not eliminate the sex difference in OTR binding density. Fourth, pBNST-OTR binding density was lower in androgen receptor (AR) deficient genetic male rats compared to wild-type males, but higher compared to wild-type females. Finally, systemic administration of the histone deacetylase inhibitor valproic acid at P0 and P1 did not alter pBNST-OTR binding density in 5-week-old male and female rats. Interestingly, neonatal ER antagonism, AR deficiency, and neonatal valproic acid treatment each eliminated the sex difference in pBNST size. Overall, we demonstrate a role for neonatal ER and AR activation in setting up the sex difference in OTR binding density in the pBNST, which may underlie sexual differentiation of the pBNST and social behaviour.
Collapse
Affiliation(s)
- Nicholas B Worley
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Kelly M Dumais
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Jingting C Yuan
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Laura E Newman
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Andrea G Alonso
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Tessa C Gillespie
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Nicholas J Hobbs
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Remco Bredewold
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
29
|
Kompier NF, Keysers C, Gazzola V, Lucassen PJ, Krugers HJ. Early Life Adversity and Adult Social Behavior: Focus on Arginine Vasopressin and Oxytocin as Potential Mediators. Front Behav Neurosci 2019; 13:143. [PMID: 31404254 PMCID: PMC6676334 DOI: 10.3389/fnbeh.2019.00143] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023] Open
Abstract
Exposure to stress during the early postnatal period (i.e., early life stress, ES) can impact brain physiology and modify individual variability in adult social behavior. Arginine vasopressin (AVP) and oxytocin (OXT) are two centrally released neuropeptides that are involved in shaping essential social behaviors, like aggression, social recognition, and social motivation. AVP and OXT modulate activity in brain regions important for the establishment of social behavior, and may be particularly sensitive to ES. In this review, we discuss whether ES alters the characteristics of the AVP- and OXT- systems in rodents, and whether these changes are associated with later alterations in aggression, social recognition, and social motivation. We have integrated causal studies indicating that (1) ES affects AVP/OXT, and (2) that changing AVP/OXT in affected regions alters social behavior. Although there is encouraging evidence that ES causes AVP- and OXT-system changes, and that these may mediate social behavior, a comprehensive understanding of the exact nature of AVP- and OXT changes and whether they are causal in establishing these behavioral disturbances needs further investigation. As there are indications that ES alters AVP- and OXT characteristics in humans as well, and that these may interact with adult predisposition to psychopathology with social dysfunction, future rodent studies may lay ground for a better understanding of such changes in humans. Ultimately, this may assist in developing therapeutic strategies to target ES effects on social behavior.
Collapse
Affiliation(s)
- Nine F. Kompier
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Harmen J. Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Perkins AE, Varlinskaya EI, Deak T. Impact of housing conditions on social behavior, neuroimmune markers, and oxytocin receptor expression in aged male and female Fischer 344 rats. Exp Gerontol 2019; 123:24-33. [PMID: 31100373 DOI: 10.1016/j.exger.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 01/30/2023]
Abstract
Aging is associated with a substantial decline in social behavior, whereas positive social interaction can improve overall health in aged individuals. In laboratory rodents, manipulations of the social environment across the lifespan have been shown to affect social behavior. Therefore, we examined the effects of long-term (5-6 weeks) housing conditions (alone, with one adult, or with two adults) on social behavior and the expression of neuroinflammation-related genes as well as oxytocin receptor (OXTR) gene expression in brain areas associated with social behavior regulation in aged male and female Fischer (F) 344 rats. Single-housed males and females exhibited increased social investigation, relative to pair-housed rats (one aged and one adult). Triple-housed (one aged and two adults) aged males exhibited lower levels of social investigation, relative to triple-housed aged females. Aged females were more socially active that their male counterparts. Although social housing condition significantly affected social behavior in males, it had no impact on cytokine gene expression in the paraventricular nucleus of hypothalamus (PVN), bed nucleus of the stria terminalis (BNST) or medial amygdala (MeA). However, in triple-housed aged females, who exhibited social behavior comparable to their single- and pair-housed counterparts, there was a significant increase in the expression of IL-1β and IL-6 mRNA in the MeA. No changes in cytokine gene expression were observed in the PVN or BNST, indicating that the increased expression of cytokines in the MeA was not a result of a generalized increase in neuroinflammation. Single-housed males and females exhibited elevated OXTR gene expression in the BNST. Taken together, these data indicate that manipulations of the social environment in late aging significantly influenced social interactions with a novel partner and gene expression in social behavior circuits and that these effects are sex-specific.
Collapse
Affiliation(s)
- Amy E Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America.
| |
Collapse
|
31
|
Martinon D, Lis P, Roman AN, Tornesi P, Applebey SV, Buechner G, Olivera V, Dabrowska J. Oxytocin receptors in the dorsolateral bed nucleus of the stria terminalis (BNST) bias fear learning toward temporally predictable cued fear. Transl Psychiatry 2019; 9:140. [PMID: 31000694 PMCID: PMC6472379 DOI: 10.1038/s41398-019-0474-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
The inability to discriminate between threat and safety is a hallmark of stress-induced psychiatric disorders, including post-traumatic stress disorder. Dorsolateral bed nucleus of the stria terminalis (BNSTdl) is critically involved in the modulation of fear and anxiety, and has been proposed to regulate discrimination between signaled (cued, predictable) and unsignaled (unpredictable) threats. We recently showed that oxytocin receptors (OTRs) in the BNSTdl facilitate acquisition of cued fear measured in a fear-potentiated startle (FPS). In the current study, using in vivo microdialysis in awake male Sprague-Dawley rats, a double immunofluorescence approach with confocal microscopy, as well as retrograde tracing of hypothalamic BNST-projecting OT neurons, we investigated whether fear conditioning activates OT system and modulates OT release. To determine the role of OTR in fear memory formation, we also infused OTR antagonist or OT into the BNSTdl before fear conditioning and measured rats' ability to discriminate between cued (signaled) and non-cued (unsignaled) fear using FPS. In contrast to acute stress (exposure to forced swim stress or foot shocks alone), cued fear conditioning increases OT content in BNSTdl microdialysates. In addition, fear conditioning induces moderate activation of OT neurons in the paraventricular nucleus of the hypothalamus and robust activation in the supraoptic and accessory nuclei of the hypothalamus. Application of OT into the BNSTdl facilitates fear learning toward signaled, predictable threats, whereas blocking OTR attenuates this effect. We conclude that OTR neurotransmission in the BNSTdl plays a pivotal role in strengthening fear learning of temporally predictable, signaled threats.
Collapse
Affiliation(s)
- Daisy Martinon
- 0000 0004 0388 7807grid.262641.5Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA
| | - Paulina Lis
- 0000 0004 0388 7807grid.262641.5Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA
| | - Alexandra N. Roman
- 0000 0004 0388 7807grid.262641.5Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA
| | - Patricio Tornesi
- 0000 0004 0388 7807grid.262641.5Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA
| | - Sarah V. Applebey
- 0000 0004 0388 7807grid.262641.5Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA
| | - Garrett Buechner
- 0000 0004 0388 7807grid.262641.5Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA
| | - Valentina Olivera
- 0000 0004 0388 7807grid.262641.5Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA ,0000 0004 0388 7807grid.262641.5Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA ,0000 0004 0388 7807grid.262641.5School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 USA
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. .,Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. .,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
32
|
Comparing vasopressin and oxytocin fiber and receptor density patterns in the social behavior neural network: Implications for cross-system signaling. Front Neuroendocrinol 2019; 53:100737. [PMID: 30753840 PMCID: PMC7469073 DOI: 10.1016/j.yfrne.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 01/23/2023]
Abstract
Vasopressin (AVP) and oxytocin (OXT) regulate social behavior by binding to their canonical receptors, the vasopressin V1a receptor (V1aR) and oxytocin receptor (OTR), respectively. Recent studies suggest that these neuropeptides may also signal via each other's receptors. The extent to which such cross-system signaling occurs likely depends on anatomical overlap between AVP/OXT fibers and V1aR/OTR expression. By comparing AVP/OXT fiber densities with V1aR/OTR binding densities throughout the rat social behavior neural network (SBNN), we propose the potential for cross-system signaling in four regions: the medial amygdala (MeA), bed nucleus of the stria terminalis (BNSTp), medial preoptic area, and periaqueductal grey. We also discuss possible implications of corresponding sex (higher in males versus females) and age (higher in adults versus juveniles) differences in AVP fiber and OTR binding densities in the MeA and BNSTp. Overall, this review reveals the need to unravel the consequences of potential cross-system signaling between AVP and OXT systems in the SBNN for the regulation of social behavior.
Collapse
|
33
|
Leng G, Russell JA. The osmoresponsiveness of oxytocin and vasopressin neurones: Mechanisms, allostasis and evolution. J Neuroendocrinol 2019; 31:e12662. [PMID: 30451331 DOI: 10.1111/jne.12662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
In the rat supraoptic nucleus, every oxytocin cell projects to the posterior pituitary, and is involved both in reflex milk ejection during lactation and in regulating uterine contractions during parturition. All are also osmosensitive, regulating natriuresis. All are also regulated by signals that control appetite, including the neural and hormonal signals that arise from the gut after food intake and from the sites of energy storage. All are also involved in sexual behaviour, anxiety-related behaviours and social behaviours. The challenge is to understand how a single population of neurones can coherently regulate such a diverse set of functions and adapt to changing physiological states. Their multiple functions arise from complex intrinsic properties that confer sensitivity to a wide range of internal and environmental signals. Many of these properties have a distant evolutionary origin in multifunctional, multisensory neurones of Urbilateria, the hypothesised common ancestor of vertebrates, insects and worms. Their properties allow different patterns of oxytocin release into the circulation from their axon terminals in the posterior pituitary into other brain areas from axonal projections, as well as independent release from their dendrites.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - John A Russell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Pałasz A, Bogus K, Suszka-Świtek A, Kaśkosz A, Saint-Remy S, Piwowarczyk-Nowak A, Filipczyk Ł, Worthington JJ, Mordecka-Chamera K, Kostro K, Bajor G, Wiaderkiewicz R. The first identification of nesfatin-1-expressing neurons in the human bed nucleus of the stria terminalis. J Neural Transm (Vienna) 2019; 126:349-355. [PMID: 30770997 PMCID: PMC6449486 DOI: 10.1007/s00702-019-01984-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
Neuropeptides are involved in various brain activities being able to control a wide spectrum of higher mental functions. The purpose of this concise structural investigation was to detect the possible immunoreactivity of the novel multifunctional neuropeptide nesfatin-1 within the human bed nucleus of the stria terminalis (BNST). The BNST is involved in the mechanism of fear learning, integration of stress and reward circuits, and pathogenesis of addiction. Nesfatin-1-expressing neurons were identified for the first time in several regions of the BNST using both immunohistochemical and fluorescent methods. This may implicate a potential contribution of this neuropeptide to the BNST-related mechanisms of stress/reward responses in the human brain.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Katarzyna Bogus
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Andrzej Kaśkosz
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Shirley Saint-Remy
- American Medical Student Association (AMSA), School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Aneta Piwowarczyk-Nowak
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Filipczyk
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kinga Mordecka-Chamera
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Karol Kostro
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Grzegorz Bajor
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
35
|
Oliveira VEDM, Neumann ID, de Jong TR. Post-weaning social isolation exacerbates aggression in both sexes and affects the vasopressin and oxytocin system in a sex-specific manner. Neuropharmacology 2019; 156:107504. [PMID: 30664846 DOI: 10.1016/j.neuropharm.2019.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/22/2022]
Abstract
Post-weaning social isolation (PWSI) is known to induce exaggerated and abnormal aggression in male rats. Here we aimed to assess the effects of PWSI on aggressiveness and social behavior in both male and female rats. Furthermore, we evaluated how PWSI affects the central oxytocin (OXT) and vasopressin (AVP) systems in both sexes. Wistar rats were isolated (IS) or group housed (GH) in same-sex groups immediately after weaning. After seven weeks, rats underwent an intruder test to assess aggression. In one group, brains were immediately dissected afterwards for in situ hybridization and receptor autoradiography. The other group underwent additional anxiety-like and social behavior tests. PWSI induced increased (abnormal) aggression and impaired social memory in both sexes. Especially IS females exhibited abnormal aggression towards juveniles. Furthermore, PWSI increased OXT mRNA expression in the paraventricular nucleus of the hypothalamus (PVN) and decreased OXTR binding in the anterior portion of the nucleus accumbens (NAcc), independent of the sex. V1a receptor binding was decreased in the lateral hypothalamus (LH) and dentate gyrus (DG) in IS rats, regardless of sex. However, V1a receptor binding in the anterior portion of the bed nucleus of stria terminalis (BNSTa) was decreased in IS females but increased in IS males. Taken together, our data support PWSI as a reliable model to exacerbate aggression not only in male but also in female rats. In addition, OXT receptors in the NAcca and V1a receptors in the LH, DG, and BNSTa may play a role in the link between PWSI and aggression. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
Affiliation(s)
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Germany
| | - Trynke R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Germany; Lifelines Biobank Noord-Nederland B.V. Groningen, Netherlands
| |
Collapse
|
36
|
Dhungel S, Rai D, Terada M, Orikasa C, Nishimori K, Sakuma Y, Kondo Y. Oxytocin is indispensable for conspecific-odor preference and controls the initiation of female, but not male, sexual behavior in mice. Neurosci Res 2018; 148:34-41. [PMID: 30502354 DOI: 10.1016/j.neures.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) has been demonstrated to be involved in various social behaviors in mammals. However, OT gene knockout (OTKO) mice can conceive and deliver successfully, though females cannot rear their pups because of lack of lactation. Here, we investigated the sociosexual behavior of both sexes in two experimental setups: olfactory preference for sexual partner's odor and direct social interaction in an enriched condition. In the preference test, mice were given a choice of two airborne odors derived from intact male and receptive female mice, or from intact or castrated male mice. Wild-type (WT) mice significantly preferred opposite-sex odors, whereas OTKO mice showed vigorous but equivalent exploration to all stimuli. In social interactions in the enriched condition, no difference in sexual behavior was found between WT and OTKO males. In contrast, WT female initiated sexual behavior at the second week test, while OTKO females required 4 weeks to receive successful mounts. Neuronal activation by odor stimulation was compared between WT and OTKO mice. The numbers of cFos-immunoreactive cells increased in the medial amygdala and the preoptic area after exposure to opposite-sex odors in WT mice, whereas the increase was suppressed in OTKO mice. We conclude that OT plays an important role in the regulation of olfactory-related social behavior in both male and female mice. The influence of OT was greater in female mice, especially during social interactions involving the acquisition of sexual experience.
Collapse
Affiliation(s)
- Sunil Dhungel
- Department of Physiology, Nippon Medical School, Tokyo, Japan; Department of Physiology, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Misao Terada
- Laboratory Animal Research Center, Dokkyo Medical School, Tochigi, Japan
| | - Chitose Orikasa
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Yasuo Sakuma
- Department of Physiology, Nippon Medical School, Tokyo, Japan; University of Tokyo Health Sciences, Tokyo, Japan
| | - Yasuhiko Kondo
- Department of Physiology, Nippon Medical School, Tokyo, Japan; Department of Animal Sciences, Teikyo University of Science, Yamanashi, Japan.
| |
Collapse
|
37
|
|
38
|
García-Díaz C, Sánchez-Catalán MJ, Castro-Salazar E, García-Avilés A, Albert-Gascó H, Sánchez-Sarasúa de la Bárcena S, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE. Nucleus incertus ablation disrupted conspecific recognition and modified immediate early gene expression patterns in 'social brain' circuits of rats. Behav Brain Res 2018; 356:332-347. [PMID: 30195021 DOI: 10.1016/j.bbr.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Social interaction involves neural activity in prefrontal cortex, septum, hippocampus, amygdala and hypothalamus. Notably, these areas all receive projections from the nucleus incertus (NI) in the pontine tegmentum. Therefore, we investigated the effect of excitotoxic lesions of NI neurons in adult male, Wistar rats on performance in a social discrimination test, and associated changes in immediate-early gene protein levels. NI was lesioned with quinolinic acid, and after recovery, rats underwent two trials in the 3-chamber test. In the first trial, NI-lesioned and sham-lesioned rats spent longer exploring a conspecific than an inanimate object. By contrast, in the second trial, NI-lesioned rats visited the familiar and novel conspecific chambers equally, whereas sham-lesioned rats spent longer engaging with the novel rat. Quantification of Fos- and Egr-1-immunoreactivity (IR) levels in brain areas implicated in social behaviour, revealed that social encounter and NI lesion produced complex, differential changes. For example, Egr-1-IR was broadly decreased in several amygdala nuclei in NI-lesioned rats relative to sham, but Fos-IR levels were unaltered. In hippocampus, NI-lesioned rats displayed decreased Fos-IR in CA2 and CA3, while Egr-1-IR was increased in the polymorphic dentate gyrus, CA1, CA2 and subiculum of NI-lesioned rats, relative to sham. Social encounter-related Egr-1-IR was also decreased in septum and anterior and lateral hypothalamus of NI-lesioned rats. Overall, these data suggest NI networks can modulate the activity of sensory, emotional and executive brain areas involved in social recognition, with a likely involvement of neuronal Egr-1 activation in amygdala, septum and hypothalamus, and Erg-1 inhibition in hippocampus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | |
Collapse
|
39
|
Hodges TE, Baumbach JL, McCormick CM. Predictors of social instability stress effects on social interaction and anxiety in adolescent male rats. Dev Psychobiol 2018; 60:651-663. [DOI: 10.1002/dev.21626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Cheryl M. McCormick
- Department of Psychology; Brock University; Ontario Canada
- Centre for Neuroscience; Brock University; Ontario Canada
| |
Collapse
|
40
|
Lian B, Gao J, Sui N, Feng T, Li M. Object, spatial and social recognition testing in a single test paradigm. Neurobiol Learn Mem 2018; 152:39-49. [PMID: 29778762 DOI: 10.1016/j.nlm.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/29/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022]
Abstract
Animals have the ability to process information about an object or a conspecific's physical features and location, and alter its behavior when such information is updated. In the laboratory, the object, spatial and social recognition are often studied in separate tasks, making them unsuitable to study the potential dissociations and interactions among various types of recognition memories. The present study introduced a single paradigm to detect the object and spatial recognition, and social recognition of a familiar and novel conspecific. Specifically, male and female Sprague-Dawley adult (>75 days old) or preadolescent (25-28 days old) rats were tested with two objects and one social partner in an open-field arena for four 10-min sessions with a 20-min inter-session interval. After the first sample session, a new object replaced one of the sampled objects in the second session, and the location of one of the old objects was changed in the third session. Finally, a new social partner was introduced in the fourth session and replaced the familiar one. Exploration time with each stimulus was recorded and measures for the three recognitions were calculated based on the discrimination ratio. Overall results show that adult and preadolescent male and female rats spent more time exploring the social partner than the objects, showing a clear preference for social stimulus over nonsocial one. They also did not differ in their abilities to discriminate a new object, a new location and a new social partner from a familiar one, and to recognize a familiar conspecific. Acute administration of MK-801 (a NMDA receptor antagonist, 0.025 and 0.10 mg/kg, i.p.) after the sample session dose-dependently reduced the total time spent on exploring the social partner and objects in the adult rats, and had a significantly larger effect in the females than in the males. MK-801 also dose-dependently increased motor activity. However, it did not alter the object, spatial and social recognitions. These findings indicate that the new triple recognition paradigm is capable of recording the object, spatial location and social recognition together and revealing potential sex and age differences. This paradigm is also useful for the study of object and social exploration concurrently and can be used to evaluate cognition-altering drugs in various stages of recognition memories.
Collapse
Affiliation(s)
- Bin Lian
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Jun Gao
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA; Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
41
|
Kelly AM, Hiura LC, Saunders AG, Ophir AG. Oxytocin Neurons Exhibit Extensive Functional Plasticity Due To Offspring Age in Mothers and Fathers. Integr Comp Biol 2018; 57:603-618. [PMID: 28957529 DOI: 10.1093/icb/icx036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The needs of offspring change as they develop. Thus, parents should concomitantly change their investment based on the age-related needs of the offspring as they mature. Due to the high costs of parental care, it is optimal for parents to exhibit a shift from intense caregiving of young offspring to promoting independence in older offspring. Yet, the neural mechanisms that underlie shifts in parental behavior are poorly understood, and little is known about how the parental brain responds to offspring of different ages. To elucidate mechanisms that relate to shifts in parental behavior as offspring develop, we examined behavioral and neural responses of male and female prairie voles (Microtus ochrogaster), a biparental rodent, to interactions with offspring at different stages of development (ranging from neonatal to weaning age). Importantly, in biparental species, males and females may adjust their behavior differentially as offspring develop. Because the nonapeptides, vasopressin (VP) and oxytocin (OT), are well known for modulating aspects of parental care, we focused on functional activity of distinct VP and OT cell groups within the maternal and paternal brain in response to separation from, reunion (after a brief period of separation) with, or no separation from offspring of different ages. We found several differences in the neural responses of individual VP and OT cell groups that varied based on the age of pups and sex of the parent. Hypothalamic VP neurons exhibit similar functional responses in both mothers and fathers. However, hypothalamic and amygdalar OT neurons exhibit differential functional responses to being separated from pups based on the sex of the parent. Our results also reveal that the developmental stage of offspring significantly impacts neural function within OT, but not VP, cell groups of both mothers and fathers. These findings provide insight into the functional plastic capabilities of the nonapeptide system, specifically in relation to parental behavior. Identifying neural mechanisms that exhibit functional plasticity can elucidate one way in which animals are able to shift behavior on relatively short timescales in order to exhibit the most context-appropriate and adaptive behaviors.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
42
|
Sex differences in the regulation of social and anxiety-related behaviors: insights from vasopressin and oxytocin brain systems. Curr Opin Neurobiol 2018. [PMID: 29518698 DOI: 10.1016/j.conb.2018.02.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To understand how the brain regulates behavior, many variables must be taken into account, with sex as a prominent variable. In this review, we will discuss recent human and rodent studies showing the sex-specific involvement of the neuropeptides vasopressin and oxytocin in social and anxiety-related behaviors. We discuss that sex differences can be evident at pre-pubertal ages as seen in the sex-specific regulation of social recognition, social play, and anxiety by the vasopressin system in juvenile rats. We further discuss that the oxytocin system in humans and rodents alters brain activation, anxiety, and sociosexual motivation in sex-specific ways. Finally, we propose that knowledge of vasopressin and oxytocin mediated sex-specific brain mechanisms can provide essential insights into how these neuropeptide systems contribute to sex-specific vulnerability as well as resilience to perturbations, with subsequent relevance to social and emotional disorders.
Collapse
|
43
|
Kelly AM, Saunders AG, Ophir AG. Mechanistic substrates of a life history transition in male prairie voles: Developmental plasticity in affiliation and aggression corresponds to nonapeptide neuronal function. Horm Behav 2018; 99:14-24. [PMID: 29407458 PMCID: PMC5880752 DOI: 10.1016/j.yhbeh.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022]
Abstract
Although prairie vole (Microtus ochrogaster) social behavior is well-characterized in adults, surprisingly little is known about the development of social behavior in voles. Further, the overwhelming majority of studies in prairie voles examine social behavior in a reproductive context. Here, we examine developmental plasticity in affiliation and aggression and their underlying neural correlates. Using sexually naïve males, we characterized interactions with an age-matched, novel, same-sex conspecific in four different age groups that span pre-weaning to adulthood. We found that prosocial behavior decreased and aggression increased as males matured. Additionally, pre-weaning males were more prosocial than nonsocial, whereas post-weaning males were more nonsocial than prosocial. We also examined nonapeptide neural activity in response to a novel conspecific in brain regions important for promoting sociality and aggression using the immediate early gene cFos. Assessment of developmental changes in neural activity showed that vasopressin neurons in the medial bed nucleus of the stria terminalis exhibit functional plasticity, providing a potential functional mechanism that contributes to this change in sociality as prairie voles mature. This behavioral shift corresponds to the transition from a period of allopatric cohabitation with siblings to a period of time when voles disperse and presumably attempt to establish and defend territories. Taken together our data provide a putative mechanism by which brain and behavior prepare for the opportunity to pairbond (characterized by selective affiliation with a partner and aggression toward unfamiliar conspecifics) by undergoing changes away from general affiliation and toward selective aggression, accounting for this important life history event.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
44
|
Perkins AE, Piazza MK, Deak T. Stereological Analysis of Microglia in Aged Male and Female Fischer 344 Rats in Socially Relevant Brain Regions. Neuroscience 2018; 377:40-52. [PMID: 29496632 DOI: 10.1016/j.neuroscience.2018.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
Aging is associated with a substantial decline in the expression of social behavior as well as increased neuroinflammation. Since immune activation and subsequent increased expression of cytokines can suppress social behavior in young rodents, we examined age and sex differences in microglia within brain regions critical to social behavior regulation (PVN, BNST, and MEA) as well as in the hippocampus. Adult (3-month) and aged (18-month) male and female F344 (N = 26, n = 5-8/group) rats were perfused and Iba-1 immunopositive microglia were assessed using unbiased stereology and optical density. For stereology, microglia were classified based on the following criteria: (1) thin ramified processes, (2) thick long processes, (3) stout processes, or (4) round/ameboid shape. Among the structures examined, the highest density of microglia was evident in the BNST and MEA. Aged rats of both sexes displayed increased total number of microglia number exclusively in the MEA. Sex differences also emerged, whereby aged females (but not males) displayed greater total number of microglia in the BNST relative to their young adult counterparts. When morphological features of microglia were assessed, aged rats exhibited increased soma size in the BNST, MEA, and CA3. Together, these findings provide a comprehensive characterization of microglia number and morphology under ambient conditions in CNS sites critical for the normal expression of social processes. To the extent that microglia morphology is predictive of reactivity and subsequent cytokine release, these data suggest that the expression of social behavior in late aging may be adversely influenced by heightened inflammation.
Collapse
Affiliation(s)
- Amy E Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Michelle K Piazza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
45
|
Cutuli D, Berretta E, Caporali P, Sampedro-Piquero P, De Bartolo P, Laricchiuta D, Gelfo F, Pesoli M, Foti F, Farioli Vecchioli S, Petrosini L. Effects of pre-reproductive maternal enrichment on maternal care, offspring's play behavior and oxytocinergic neurons. Neuropharmacology 2018; 145:99-113. [PMID: 29462694 DOI: 10.1016/j.neuropharm.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 01/10/2023]
Abstract
Potentiating social, cognitive, and sensorimotor stimulations the Environmental Enrichment (EE) increases levels of novelty and complexity experienced by individuals. Growing evidence demonstrates that parental EE experience, even occurring in the pre-reproductive phase, affects behavioral and neural developmental trajectories of the offspring. To discover how the accumulation of early maternal complex experiences may inform and shape the social behavior of the following generation, we examined the effects of pre-reproductive enrichment of dams (post-natal days 21-72) on the play performances of their male and female adolescent offspring. Furthermore, we examined the effects of pre-reproductive enrichment on maternal behavior (during post-partum days 1-10) and male intruder aggression (on post-partum day 11). Since oxytocin modulates maternal care, social bonding, and agonistic behavior, the number of oxytocinergic neurons of the paraventricular (PVN) and supraoptic (SON) nuclei was examined in both dams and offspring. Results revealed that enriched females exhibited higher levels of pup-oriented behaviors, especially Crouching, and initiated pup-retrieval more quickly than standard females after the maternal aggression test. Such behavioral peculiarities were accompanied by increased levels of oxytocinergic neurons in PVN and SON. Moreover, pre-reproductive maternal EE cross-generationally influenced the offspring according to sex. Indeed, male pups born to enriched females exhibited a reduced play fighting associated with a higher number of oxytocinergic neurons in SON in comparison to male pups born to standard-housed females. In conclusion, pre-reproductive EE to the mothers affects their maternal care and has a cross-generational impact on the social behavior of their offspring that do not directly experiences EE. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Rome, Italy.
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Rome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Patricia Sampedro-Piquero
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento. Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Spain
| | - Paola De Bartolo
- Fondazione Santa Lucia, Rome, Italy; Department of TeCoS, Guglielmo Marconi University, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy; Department of TeCoS, Guglielmo Marconi University, Rome, Italy
| | - Matteo Pesoli
- Fondazione Santa Lucia, Rome, Italy; Department of Motor Science and Wellness, University Parthenope, Naples, Italy
| | - Francesca Foti
- Fondazione Santa Lucia, Rome, Italy; Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
46
|
Donovan M, Liu Y, Wang Z. Anxiety-like behavior and neuropeptide receptor expression in male and female prairie voles: The effects of stress and social buffering. Behav Brain Res 2018; 342:70-78. [PMID: 29355675 DOI: 10.1016/j.bbr.2018.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/23/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
Strong social support can negate negative health outcomes - an effect defined as 'social buffering'. In the present study, using the socially monogamous prairie vole (Microtus ochrogaster), we examined whether the presence of a bonded partner during a stressful event can reduce stress responses. Adult, pair-bonded female and male voles were assigned into experimental groups that were either handled (Control), experienced a 1-h immobilization (IMO) stress alone (IMO-Alone), or experienced IMO with their partner (IMO-Partner). Thereafter, subjects were tested for anxiety-like behavior, and brain sections were subsequently processed for oxytocin receptor (OTR) and vasopressin V1a-type receptor (V1aR) binding. Our data indicate that while IMO stress significantly decreased the time that subjects spent in the open arms of an elevated plus maze, partner's presence prevented this behavioral change - this social buffering on anxiety-like behavior was the same for both male and female subjects. Further, IMO stress decreased OTR binding in the nucleus accumbens (NAcc), but a partner's presence dampened this effect. No effects were found in V1aR binding. These data suggest that the neuropeptide- and brain region-specific OTR alterations in the NAcc may be involved in both the mediation and social buffering of stress responses. Some sex differences in the OTR and V1aR binding were also found in selected brain regions, offering new insights into the sexually dimorphic roles of the two neuropeptides. Overall, our results suggest a potential preventative approach in which the presence of social interactions during a stressor may buffer typical negative outcomes.
Collapse
Affiliation(s)
- Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
47
|
Sanna F, Bratzu J, Argiolas A, Melis MR. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide. Horm Behav 2017; 96:52-61. [PMID: 28916137 DOI: 10.1016/j.yhbeh.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 02/02/2023]
Abstract
Oxytocin (5-100ng), but not Arg8-vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABAA receptor antagonist, phaclofen (5μg), a GABAB receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy.
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Institute of Neuroscience, National Research Council, Cagliari Section, Cittadella Universitaria, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
48
|
Social instability stress in adolescent male rats reduces social interaction and social recognition performance and increases oxytocin receptor binding. Neuroscience 2017; 359:172-182. [DOI: 10.1016/j.neuroscience.2017.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022]
|
49
|
Moaddab M, Dabrowska J. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats. Neuropharmacology 2017; 121:130-139. [PMID: 28456687 PMCID: PMC5553312 DOI: 10.1016/j.neuropharm.2017.04.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 01/25/2023]
Abstract
Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNSTdl) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNSTdl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNSTdl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNSTdl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNSTdl administration of specific OTR antagonist (OTA), (d(CH2)51, Tyr(Me)2, Thr4, Orn8, des-Gly-NH29)-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNSTdl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNSTdl in learning to discriminate between threatening and safe stimuli.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
50
|
Smith CJW, Mogavero JN, Tulimieri MT, Veenema AH. Involvement of the oxytocin system in the nucleus accumbens in the regulation of juvenile social novelty-seeking behavior. Horm Behav 2017; 93:94-98. [PMID: 28512038 DOI: 10.1016/j.yhbeh.2017.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
Exploration of novel environments, stimuli, and conspecifics is highly adaptive during the juvenile period, as individuals transition from immaturity to adulthood. We recently showed that juvenile rats prefer to interact with a novel individual over a familiar cage mate. However, the neural mechanisms underlying this juvenile social novelty-seeking behavior remain largely unknown. One potential candidate is the oxytocin (OXT) system, given its involvement in various motivated social behaviors. Here, we show that administration of the specific oxytocin receptor antagonist desGly-NH2,d(CH2)5-[Tyr(Me)2,Thr4]OVT reduces social novelty seeking-behavior in juvenile male rats when injected into the nucleus accumbens (10ng/0.5μl/side). The same drug dose was ineffective at altering social novelty-seeking behavior when administered into the lateral septum or basolateral amygdala. These results are the first to suggest the involvement of the OXT system in the nucleus accumbens in the regulation of juvenile social novelty-seeking behavior.
Collapse
Affiliation(s)
- Caroline J W Smith
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA.
| | - Jazmin N Mogavero
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Maxwell T Tulimieri
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| |
Collapse
|