1
|
Rode KD, Van Hemert C, Wilson RR, Woodruff SP, Pabilonia K, Ballweber L, Kwok O, Dubey JP. Increased pathogen exposure of a marine apex predator over three decades. PLoS One 2024; 19:e0310973. [PMID: 39441768 PMCID: PMC11498681 DOI: 10.1371/journal.pone.0310973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Environmental changes associated with global warming create new opportunities for pathogen and parasite transmission in Arctic wildlife. As an apex predator ranging over large, remote areas, changes in pathogens and parasites in polar bears are a useful indicator of changing transmission dynamics in Arctic ecosystems. We examined prevalence and risk factors associated with exposure to parasites and viral and bacterial pathogens in Chukchi Sea polar bears. Serum antibodies to six pathogens were detected and prevalence increased between 1987-1994 and 2008-2017 for five: Toxoplasma gondii, Neospora caninum, Francisella tularensis, Brucella abortus/suis, and canine distemper virus. Although bears have increased summer land use, this behavior was not associated with increased exposure. Higher prevalence of F. tularensis, Coxiella burnetii, and B. abortus/suis antibodies in females compared to males, however, could be associated with terrestrial denning. Exposure was related to diet for several pathogens indicating increased exposure in the food web. Elevated white blood cell counts suggest a possible immune response to some pathogens. Given that polar bears face multiple stressors in association with climate change and are a subsistence food, further work is warranted to screen for signs of disease.
Collapse
Affiliation(s)
- Karyn D. Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Caroline Van Hemert
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Ryan R. Wilson
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | - Susannah P. Woodruff
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | - Kristy Pabilonia
- Colorado State University Veterinary Diagnostic Laboratory, Fort Collins, Colorado, United States of America
| | - Lora Ballweber
- Colorado State University Veterinary Diagnostic Laboratory, Fort Collins, Colorado, United States of America
| | - Oliver Kwok
- US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Jitender P. Dubey
- US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| |
Collapse
|
2
|
Van Hemert C, Ballweber LR, Sinnett DR, Atwood TC, Fischbach A, Gustine DD, Pabilonia KL. Giardia and Cryptosporidium in resident wildlife species in Arctic Alaska. Food Waterborne Parasitol 2023; 32:e00206. [PMID: 37692371 PMCID: PMC10482744 DOI: 10.1016/j.fawpar.2023.e00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Giardia and Cryptosporidium are zoonotic protozoan parasites that can infect humans and other taxa, including wildlife, often causing gastrointestinal illness. Both have been identified as One Health priorities in the Arctic, where climate change is expected to influence the distribution of many wildlife and zoonotic diseases, but little is known about their prevalence in local wildlife. To help fill information gaps, we collected fecal samples from four wildlife species that occur seasonally on the northern Alaska coastline or in nearshore marine waters-Arctic fox (Vulpes lagopus), polar bear (Ursus maritimus), Pacific walrus (Odobenus rosmarus divergens), and caribou (Rangifer tarandus)-and used immunofluorescence assays to screen for Giardia cysts and Cryptosporidium oocysts. We detected Giardia cysts in 18.3% and Cryptosporidium oocysts in 16.5% of Arctic foxes (n = 109), suggesting that foxes may be potentially important hosts in this region. We also detected Giardia cysts in a single polar bear (12.5%; n = 8), which to our knowledge represents the first such report for this species. Neither parasite was detected in walruses or caribou.
Collapse
Affiliation(s)
| | - Lora R. Ballweber
- Colorado State University Veterinary Diagnostic Laboratories, Fort Collins, CO, USA
| | - David R. Sinnett
- U.S. Department of Agriculture APHIS Wildlife Services, Palmer, AK, USA
| | - Todd C. Atwood
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA
| | | | - David D. Gustine
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA
- Current affiliation: U.S. Fish and Wildlife Service, Marine Mammals Management—Polar Bears, Anchorage, AK, USA
| | - Kristy L. Pabilonia
- Colorado State University Veterinary Diagnostic Laboratories, Fort Collins, CO, USA
| |
Collapse
|
3
|
Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, Olival KJ, Ross N, Bansal S. Climate change increases cross-species viral transmission risk. Nature 2022; 607:555-562. [PMID: 35483403 DOI: 10.1101/2020.01.24.918755] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2022] [Indexed: 05/28/2023]
Abstract
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC, USA.
- Center for Global Health Science & Security, Georgetown University, Washington, DC, USA.
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA.
- EcoHealth Alliance, New York, NY, USA.
| | - Cory Merow
- Eversource Energy Center, University of Connecticut, Storrs, CT, USA
| | - Christopher H Trisos
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
| | - Casey M Zipfel
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Evan A Eskew
- EcoHealth Alliance, New York, NY, USA
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | | | - Noam Ross
- EcoHealth Alliance, New York, NY, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
4
|
Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, Olival KJ, Ross N, Bansal S. Climate change increases cross-species viral transmission risk. Nature 2022; 607:555-562. [PMID: 35483403 DOI: 10.1038/s41586-022-04788-w] [Citation(s) in RCA: 261] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC, USA. .,Center for Global Health Science & Security, Georgetown University, Washington, DC, USA.
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA. .,EcoHealth Alliance, New York, NY, USA.
| | - Cory Merow
- Eversource Energy Center, University of Connecticut, Storrs, CT, USA
| | - Christopher H Trisos
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
| | - Casey M Zipfel
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Evan A Eskew
- EcoHealth Alliance, New York, NY, USA.,Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | | | - Noam Ross
- EcoHealth Alliance, New York, NY, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Buchanan PJ, Tagliabue A, de la Vega C, Mahaffey C. Oceanographic and biogeochemical drivers cause divergent trends in the nitrogen isoscape in a changing Arctic Ocean. AMBIO 2022; 51:383-397. [PMID: 34628601 PMCID: PMC8692545 DOI: 10.1007/s13280-021-01635-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 05/15/2023]
Abstract
Nitrogen stable isotopes (δ15N) are used to study food web and foraging dynamics due to the step-wise enrichment of tissues with increasing trophic level, but they rely on the isoscape baseline that varies markedly in the Arctic due to the interplay between Atlantic- and Pacific-origin waters. Using a hierarchy of simulations with a state-of-the-art ocean-biogeochemical model, we demonstrate that the canonical isotopic gradient of 2-3‰ between the Pacific and Atlantic sectors of the Arctic Ocean has grown to 3-4‰ and will continue to expand under a high emissions climate change scenario by the end of the twenty-first century. δ15N increases in the Pacific-influenced high Arctic due to increased primary production, while Atlantic sector decreases result from the integrated effects of Atlantic inflow and anthropogenic inputs. While these trends will complicate longitudinal food web studies using δ15N, they may aid those focussed on movement as the Arctic isoscape becomes more regionally distinct.
Collapse
Affiliation(s)
- Pearse James Buchanan
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, L693GP UK
| | - Alessandro Tagliabue
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, L693GP UK
| | - Camille de la Vega
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, L693GP UK
- Leibniz Institute for Baltic Sea Research, Warnemünde, 18119 Rostock, Germany
| | - Claire Mahaffey
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, L693GP UK
| |
Collapse
|
6
|
Kubelka V, Sandercock BK, Székely T, Freckleton RP. Animal migration to northern latitudes: environmental changes and increasing threats. Trends Ecol Evol 2021; 37:30-41. [PMID: 34579979 DOI: 10.1016/j.tree.2021.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
Every year, many wild animals undertake long-distance migration to breed in the north, taking advantage of seasonally high pulses in food supply, fewer parasites, and lower predation pressure in comparison with equatorial latitudes. Growing evidence suggests that climate-change-induced phenological mismatches have reduced food availability. Furthermore, novel pathogens and parasites are spreading northwards, and nest or offspring predation has increased at many Arctic and northern temperate locations. Altered trophic interactions have decreased the reproductive success and survival of migratory animals. Reduced advantages for long-distance migration have potentially serious consequences for community structure and ecosystem function. Changes in the benefits of migration need to be integrated into projections of population and ecosystem dynamics and targeted by innovative conservation actions.
Collapse
Affiliation(s)
- Vojtěch Kubelka
- School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK; Department of Zoology and Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic; Department of Evolutionary Zoology and Human Biology, Faculty of Science, University of Debrecen, Egyetem tér 1, Debrecen, Hungary; Department of Biodiversity Research, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, Brno, 603 00, Czech Republic.
| | - Brett K Sandercock
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Høgskoleringen 9, Trondheim, 7485, Norway
| | - Tamás Székely
- Department of Evolutionary Zoology and Human Biology, Faculty of Science, University of Debrecen, Egyetem tér 1, Debrecen, Hungary; Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Robert P Freckleton
- School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
7
|
Berg RPKD, Stensvold CR, Jokelainen P, Grønlund AK, Nielsen HV, Kutz S, Kapel CMO. Zoonotic pathogens in wild muskoxen (Ovibos moschatus) and domestic sheep (Ovis aries) from Greenland. Vet Med Sci 2021; 7:2290-2302. [PMID: 34390537 PMCID: PMC8604140 DOI: 10.1002/vms3.599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to estimate the prevalence of zoonotic pathogens Giardia duodenalis, Cryptosporidium spp., Toxoplasma gondii and Erysipelothrix in muskoxen (Ovibos moschatus) and sheep (Ovis aries) from Greenland. In 2017 and 2018, faecal samples were collected from wild muskoxen from three distinct populations (Zackenberg, Kangerlussuaq, and Ivittuut) and from domestic sheep from southwest Greenland. Blood samples were collected from muskoxen from Kangerlussuaq and Ivittuut and from sheep. Faecal samples were tested for specific DNA of G. duodenalis and Cryptosporidium spp., and blood samples were tested for antibodies against T. gondii and Erysipelothrix. The estimated prevalence of G. duodenalis was 0% (0/58), 17% (7/41) and 0% (0/55) in muskoxen from Zackenberg, Kangerlussuaq and Ivittuut, respectively, and 37% (16/43) in sheep. The estimated prevalence of Cryptosporidium was 0% (0/58), 2% (1/41), 7% (4/55) in muskoxen from Zackenberg, Kangerlussuaq, Ivittuut, respectively, and 2% (1/43) in sheep. Neither Giardia nor Cryptosporidium were detected in winter samples (0/78). Of the positive samples, Giardia from one muskox sample only was successfully typed as G. duodenalis assemblage A, and Cryptosporidium from two muskoxen was successfully typed as C. parvum, subtype IIdA20G1e. The estimated T. gondii seroprevalence was 2% (1/44) and 0% (0/8) in muskoxen from Kangerlussuaq and Ivittuut, respectively, and 1% (1/155) in sheep. The estimated Erysipelothrix seroprevalence was 2% (1/45) and 13% (1/8) in muskoxen from Kangerlussuaq and Ivittuut, respectively, and 7% (10/150) in sheep. The results of this study add to the scarce knowledge on zoonotic pathogens in the Arctic.
Collapse
Affiliation(s)
- Rebecca P K D Berg
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.,Department of Birds and Mammals, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - C Rune Stensvold
- Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Pikka Jokelainen
- Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Anna K Grønlund
- Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik V Nielsen
- Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Christian M O Kapel
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Thomas A, Enemark HL, Poulsen PM, Pedersen ML. First case of community acquired giardiasis in Nuuk, Greenland. Int J Circumpolar Health 2021; 80:1954363. [PMID: 34328057 PMCID: PMC8330710 DOI: 10.1080/22423982.2021.1954363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a case of community acquired giardiasis, in Nuuk, Greenland. Likely source of infection being consumption of untreated water from a local reservoir, alternatively through contact with sewage. Giardia is widespread worldwide but has not commonly been considered a cause of gastrointestinal distress in patients in Greenland, without relevant travel history. This may be due to under diagnosis, or historically low prevalence of Giardia in the region. Climate change with increasing temperatures, growing tourism and pet travel may influence the presence of Giardia in the region. This case highlights the need to include giardiasis as a differential diagnosis in patients presenting with suspected infectious gastroenteritis in Greenland.
Collapse
Affiliation(s)
| | - Heidi L Enemark
- The Veterinary and Food Authority, Ministry of Fisheries and Hunting, Nuuk, Greenland
| | | | - Michael Lynge Pedersen
- Greenland Center for Health Research, Institute of Nursing and Health Science, University of Greenland, Nuuk, Greenland
| |
Collapse
|
9
|
Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ, Joly DO, Kutz S, Lee DS, Chetkiewicz CLB, Lair S, Preston ND, Pruvot M, Ray JC, Reid D, Sleeman JM, Stimmelmayr R, Stephen C, Walzer C. Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. Front Public Health 2021; 9:627654. [PMID: 34026707 PMCID: PMC8131663 DOI: 10.3389/fpubh.2021.627654] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.
Collapse
Affiliation(s)
- Lucy O. Keatts
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Martin Robards
- Wildlife Conservation Society, Arctic Beringia Program, Fairbanks, AK, United States
| | - Sarah H. Olson
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine & Arctic and Northern Studies Program, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Stephen J. Insley
- Wildlife Conservation Society Canada, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David S. Lee
- Department of Wildlife and Environment, Nunavut Tunngavik Inc., Ottawa, ON, Canada
| | | | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Université de Montréal, Montreal, QC, Canada
| | | | - Mathieu Pruvot
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Justina C. Ray
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Donald Reid
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Jonathan M. Sleeman
- United States Geological Survey National Wildlife Health Center, Madison, WI, United States
| | - Raphaela Stimmelmayr
- North Slope Department of Wildlife Management, Utqiagvik, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Craig Stephen
- University of British Columbia, Vancouver, BC, Canada
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Chris Walzer
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Conservation Medicine Unit, Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
10
|
Unexpected diversity in northern Europe: trematodes from salmonid fishes in Iceland with two new species of Crepidostomum Braun, 1900. Parasitol Res 2020; 119:2439-2462. [DOI: 10.1007/s00436-020-06724-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
11
|
Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas - A review. INFECTION GENETICS AND EVOLUTION 2020; 81:104244. [PMID: 32087345 DOI: 10.1016/j.meegid.2020.104244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Avian Plasmodium is of special interest to health care scientists and veterinarians due to the potency of causing avian malaria in non-adapted birds and their evolutionary phylogenetic relationship with human malaria species. This article aimed to provide a comprehensive list of the common avian Plasmodium parasites in the birds and mosquitoes, to specify the common Plasmodium species and lineages in the selected regions of West of Asia, East of Europe, and North of Africa/Middle East, and to determine the contribution of generalist and host-specific Plasmodium species and lineages. The final list of published infected birds includes 146 species, among which Passer domesticus was the most prevalent in the studied areas. The species of Acrocephalus arundinaceus and Sylvia atricapilla were reported as common infected hosts in the examined regions of three continents. The highest numbers of common species of infected birds between continent pairs were from Asia and Europe, and no common record was found from Europe and Africa. The species of Milvus migrans and Upupa epops were recorded as common species from Asia and Africa. The lineage of GRW11 and species of P. relictum were the most prevalent parasites among all the infection records in birds. The most prevalent genus of vectors of avian malaria belonged to Culex and species of Cx. pipiens. The lineage SGS1 with the highest number of occurrence has been found in various vectors comprising Cx. pipiens, Cx. modestus, Cx. theileri, Cx. sasai, Cx. perexiguus, Lutzia vorax, and Culicoides alazanicus. A total of 31 Plasmodium species and 59 Plasmodium lineages were recorded from these regions. SGS1, GRW04, and GRW11, and P. relictum and P. vaughani are specified as common generalist avian malaria parasites from these three geographic areas. The presence of avian Plasmodium parasites in distant geographic areas and various hosts may be explained by the movement of the infected birds through the migration routes. Although most recorded lineages were from Asia, investigating the distribution of lineages in some of the countries has not been done. Thus, the most important outcome of this review is the determination of the distribution pattern of parasite and vector species that shed light on gaps requiring further studies on the monitoring of avian Plasmodium and common vectors extension. This task could be achieved through scientific field and laboratory networking, performing active surveillance and designing regional/continental control programs of birds' malaria and other zoonotic diseases.
Collapse
|
12
|
Walker WH, Meléndez‐Fernández OH, Nelson RJ, Reiter RJ. Global climate change and invariable photoperiods: A mismatch that jeopardizes animal fitness. Ecol Evol 2019; 9:10044-10054. [PMID: 31534712 PMCID: PMC6745832 DOI: 10.1002/ece3.5537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
The Earth's surface temperature is rising, and precipitation patterns throughout the Earth are changing; the source of these shifts is likely anthropogenic in nature. Alterations in temperature and precipitation have obvious direct and indirect effects on both plants and animals. Notably, changes in temperature and precipitation alone can have both advantageous and detrimental consequences depending on the species. Typically, production of offspring is timed to coincide with optimal food availability; thus, individuals of many species display annual rhythms of reproductive function. Because it requires substantial time to establish or re-establish reproductive function, individuals cannot depend on the arrival of seasonal food availability to begin breeding; thus, mechanisms have evolved in many plants and animals to monitor and respond to day length in order to anticipate seasonal changes in the environment. Over evolutionary time, there has been precise fine-tuning of critical photoperiod and onset/offset of seasonal adaptations. Climate change has provoked changes in the availability of insects and plants which shifts the timing of optimal reproduction. However, adaptations to the stable photoperiod may be insufficiently plastic to allow a shift in the seasonal timing of bird and mammal breeding. Coupled with the effects of light pollution which prevents these species from determining day length, climate change presents extreme evolutionary pressure that can result in severe deleterious consequences for individual species reproduction and survival. This review describes the effects of climate change on plants and animals, defines photoperiod and the physiological events it regulates, and addresses the consequences of global climate change and a stable photoperiod.
Collapse
Affiliation(s)
- William H. Walker
- Department of NeuroscienceWest Virginia UniversityMorgantownWVUSA
- Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWVUSA
| | - Olga Hecmarie Meléndez‐Fernández
- Department of NeuroscienceWest Virginia UniversityMorgantownWVUSA
- Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWVUSA
| | - Randy J. Nelson
- Department of NeuroscienceWest Virginia UniversityMorgantownWVUSA
- Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWVUSA
| | - Russel J. Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science CenterSan AntonioTXUSA
| |
Collapse
|
13
|
Helminths in common eiders ( Somateria mollissima): Sex, age, and migration have differential effects on parasite loads. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:184-194. [PMID: 31193602 PMCID: PMC6536730 DOI: 10.1016/j.ijppaw.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/27/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022]
Abstract
In birds, parasites cause detrimental effects to the individual host, including reduced survival and reproductive output. The level of parasitic infection can vary with a range of factors, including migratory status, body size, sex, and age of hosts, or season. Understanding this baseline variation is important in order to identify the effects of external changes such as climate change on the parasitic load and potential impacts to individuals and populations. In this study, we compared the infection level (prevalence, intensity, and abundance) of gastrointestinal parasites in a total of 457 common eiders (Somateria mollissima) from four different sampling locations (Belcher Islands, Cape Dorset, West Greenland and Newfoundland), and explored the effects of migration, sex and age on levels of parasitism. Across all samples, eiders were infected with one nematode genus, two acanthocephalan genera, three genera of cestodes, and three trematode genera. Migratory phase and status alone did not explain the observed variation in infection levels; the expectation that post-migratory eiders would be more parasitized than pre-migratory eiders, due to the energetic cost of migration, did not fit our results. No effect of age was detected, whereas effects of sex and body size were only detected for certain parasitic taxa and was inconsistent with location. Since gastrointestinal helminths are trophically-transmitted, future studies of the regional and temporal variation in the diet of eiders and the associated variation and infestation level of intermediate hosts might further explain the observed variation of the parasitic load in eiders in different regions. Parasitic infections are understudied for avian populations in the Arctic. The helminth infection level in eiders varied greatly between sites and subspecies. Migratory phase and status alone did not explain observed helminth variation. Inconsistent effects of sex were detected for a few helminth taxa; no effect of age. Future studies investigating associations between diet and parasites are needed.
Collapse
|
14
|
Khan JS, Provencher JF, Forbes MR, Mallory ML, Lebarbenchon C, McCoy KD. Parasites of seabirds: A survey of effects and ecological implications. ADVANCES IN MARINE BIOLOGY 2019; 82:1-50. [PMID: 31229148 PMCID: PMC7172769 DOI: 10.1016/bs.amb.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Parasites are ubiquitous in the environment, and can cause negative effects in their host species. Importantly, seabirds can be long-lived and cross multiple continents within a single annual cycle, thus their exposure to parasites may be greater than other taxa. With changing climatic conditions expected to influence parasite distribution and abundance, understanding current level of infection, transmission pathways and population-level impacts are integral aspects for predicting ecosystem changes, and how climate change will affect seabird species. In particular, a range of micro- and macro-parasites can affect seabird species, including ticks, mites, helminths, viruses and bacteria in gulls, terns, skimmers, skuas, auks and selected phalaropes (Charadriiformes), tropicbirds (Phaethontiformes), penguins (Sphenisciformes), tubenoses (Procellariiformes), cormorants, frigatebirds, boobies, gannets (Suliformes), and pelicans (Pelecaniformes) and marine seaducks and loons (Anseriformes and Gaviiformes). We found that the seabird orders of Charadriiformes and Procellariiformes were most represented in the parasite-seabird literature. While negative effects were reported in seabirds associated with all the parasite groups, most effects have been studied in adults with less information known about how parasites may affect chicks and fledglings. We found studies most often reported on negative effects in seabird hosts during the breeding season, although this is also the time when most seabird research occurs. Many studies report that external factors such as condition of the host, pollution, and environmental conditions can influence the effects of parasites, thus cumulative effects likely play a large role in how parasites influence seabirds at both the individual and population level. With an increased understanding of parasite-host dynamics it is clear that major environmental changes, often those associated with human activities, can directly or indirectly affect the distribution, abundance, or virulence of parasites and pathogens.
Collapse
Affiliation(s)
- Junaid S Khan
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - Jennifer F Provencher
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada.
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, Saint Denis, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, UMR 5290 CNRS-IRD-University of Montpellier, Centre IRD, Montpellier, France
| |
Collapse
|
15
|
O'Malley KG, Vaux F, Black AN. Characterizing neutral and adaptive genomic differentiation in a changing climate: The most northerly freshwater fish as a model. Ecol Evol 2019; 9:2004-2017. [PMID: 30847088 PMCID: PMC6392408 DOI: 10.1002/ece3.4891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Arctic freshwater ecosystems have been profoundly affected by climate change. Given that the Arctic charr (Salvelinus alpinus) is often the only fish species inhabiting these ecosystems, it represents a valuable model for studying the impacts of climate change on species life-history diversity and adaptability. Using a genotyping-by-sequencing approach, we identified 5,976 neutral single nucleotide polymorphisms and found evidence for reduced gene flow between allopatric morphs from two high Arctic lakes, Linne'vatn (Anadromous, Normal, and Dwarf) and Ellasjøen (Littoral and Pelagic). Within each lake, the degree of genetic differentiation ranged from low (Pelagic vs. Littoral) to moderate (Anadromous and Normal vs. Dwarf). We identified 17 highly diagnostic, putatively adaptive SNPs that differentiated the allopatric morphs. Although we found no evidence for adaptive differences between morphs within Ellasjøen, we found evidence for moderate (Anadromous vs. Normal) to high genetic differentiation (Anadromous and Normal vs. Dwarf) among morphs within Linne'vatn based on two adaptive loci. As these freshwater ecosystems become more productive, the frequency of sympatric morphs in Ellasjøen will likely shift based on foraging opportunities, whereas the propensity to migrate may decrease in Linne'vatn, increasing the frequency of the Normal morph. The Dwarf charr was the most genetically distinct group. Identifying the biological basis for small body size should elucidate the potential for increased growth and subsequent interbreeding with sympatric morphs. Overall, neutral and adaptive genomic differentiation between allopatric and some sympatric morphs suggests that the response of Arctic charr to climate change will be variable across freshwater ecosystems.
Collapse
Affiliation(s)
- Kathleen G. O'Malley
- Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Department of Fisheries and WildlifeOregon State UniversityNewportOregon
| | - Felix Vaux
- Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Department of Fisheries and WildlifeOregon State UniversityNewportOregon
| | - Andrew N. Black
- Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Department of Fisheries and WildlifeOregon State UniversityNewportOregon
- Present address:
Center for Genome Research and BiocomputingOregon State UniversityCorvallisOregon
| |
Collapse
|
16
|
What do we know about parasites of wildlife in high biodiversity areas with anthropogenic disturbance? The special case of Mexico. Anim Health Res Rev 2019; 19:155-161. [DOI: 10.1017/s1466252318000087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe continual rise of anthropogenic disturbance of ecosystems has been associated with an increasing incidence of emerging diseases. The largest amount of data on emerging diseases relates to bacterial and viral pathogens, but there is a lack of parasite data, especially from wildlife. Monitoring wildlife parasitic diseases should be considered a priority, especially in high biodiversity regions with strong anthropogenic impacts, like Mexico, where the wildlife/livestock/human interface is associated with increased risk of disease transmission. Mexico belongs to the top-ten megadiverse countries and is located between two biogeographic regions. This situation makes Mexico a favourable region for the spillover of animal pathogens to human beings, causing pandemics, such as the one recently caused by influenza virus A (H1N1). The current state of knowledge of Mexican wildlife parasites is scarce and focuses mainly in Neotropical fauna. Moreover, this knowledge is heterogeneous for different parasite groups, especially concerning their pathologic effects and epidemiology. The goals of this review are to compile information on Mexican wildlife parasites and to identify knowledge gaps in order to stimulate research on pending epidemiological, public health, ecological and pathological areas, and to encourage the creation of more specialized groups from the perspective of the One-Health concept.
Collapse
|
17
|
Sources of variation in endohelminth parasitism of common eiders over-wintering in the Canadian Arctic. Polar Biol 2018. [DOI: 10.1007/s00300-018-2423-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Andersen-Ranberg EU, Barnes CJ, Rasmussen L, Salgado-Flores A, Grøndahl C, Mosbacher JB, Hansen AJ, Sundset MA, Schmidt NM, Sonne C. A Comparative Study on the Faecal Bacterial Community and Potential Zoonotic Bacteria of Muskoxen ( Ovibos moschatus) in Northeast Greenland, Northwest Greenland and Norway. Microorganisms 2018; 6:E76. [PMID: 30044373 PMCID: PMC6164070 DOI: 10.3390/microorganisms6030076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Muskoxen (Ovibos moschatus) are ruminants adapted to a high-fibre diet. There is increasing interest in the role that gut microbes play in the digestion and utilization of these specialized diets but only limited data available on the gut microbiome of high-Arctic animals. In this study, we metabarcoded the 16S rRNA region of faecal samples from muskoxen of Northeast Greenland, Northwest Greenland and Norway, and quantified the effects of physiological and temporal factors on bacterial composition. We found significant effects of body mass, year of sampling and location on the gut bacterial communities of North East Greenland muskoxen. These effects were however dwarfed by the effects of location, emphasizing the importance of the local ecology on the gut bacterial community. Habitat alterations and rising temperatures may therefore have a considerable impact on muskoxen health and reproductive success. Moreover, muskoxen are hunted and consumed in Greenland, Canada and Alaska; therefore, this study also screened for potential zoonoses of food safety interest. A total of 13 potentially zoonotic genera were identified, including the genera Erysipelothrix and Yersinia implicated in recent mass die-offs of the muskoxen themselves.
Collapse
Affiliation(s)
- Emilie U Andersen-Ranberg
- Department of Bioscience, Faculty of Science and Technology, Arctic Research Centre, Aarhus University, 4000 Roskilde, Denmark.
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Christopher J Barnes
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark.
| | - Linett Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark.
| | - Alejandro Salgado-Flores
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Carsten Grøndahl
- Copenhagen Zoo, Centre for Zoo and Wild Animal Health, DK-2000 Frederiksberg, Denmark.
| | - Jesper B Mosbacher
- Department of Bioscience, Faculty of Science and Technology, Arctic Research Centre, Aarhus University, 4000 Roskilde, Denmark.
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark.
| | | | - Niels Martin Schmidt
- Department of Bioscience, Faculty of Science and Technology, Arctic Research Centre, Aarhus University, 4000 Roskilde, Denmark.
| | - Christian Sonne
- Department of Bioscience, Faculty of Science and Technology, Arctic Research Centre, Aarhus University, 4000 Roskilde, Denmark.
| |
Collapse
|
19
|
Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, Clements CF, Castaldo G, Dallas TA, Cizauskas CA, Cumming GS, Doña J, Harris NC, Jovani R, Mironov S, Muellerklein OC, Proctor HC, Getz WM. Parasite biodiversity faces extinction and redistribution in a changing climate. SCIENCE ADVANCES 2017; 3:e1602422. [PMID: 28913417 PMCID: PMC5587099 DOI: 10.1126/sciadv.1602422] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 08/08/2017] [Indexed: 05/07/2023]
Abstract
Climate change is a well-documented driver of both wildlife extinction and disease emergence, but the negative impacts of climate change on parasite diversity are undocumented. We compiled the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades. On the basis of 53,133 occurrences capturing the geographic ranges of 457 parasite species, conservative model projections suggest that 5 to 10% of these species are committed to extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites with zoonotic potential have a significantly higher potential to gain range in a changing climate, but we do find that ectoparasites (especially ticks) fare disproportionately worse than endoparasites. Accounting for host-driven coextinctions, models predict that up to 30% of parasitic worms are committed to extinction, driven by a combination of direct and indirect pressures. Despite high local extinction rates, parasite richness could still increase by an order of magnitude in some places, because species successfully tracking climate change invade temperate ecosystems and replace native species with unpredictable ecological consequences.
Collapse
Affiliation(s)
- Colin J. Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin R. Burgio
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
| | - Eric R. Dougherty
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anna J. Phillips
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Veronica M. Bueno
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
| | - Christopher F. Clements
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Giovanni Castaldo
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tad A. Dallas
- Environmental Science and Policy, University of California, Davis, Davis, CA 95616, USA
| | - Carrie A. Cizauskas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Graeme S. Cumming
- ARC Centre of Excellence in Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Jorge Doña
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Americo Vespucio s/n, E-41092 Sevilla, Spain
| | - Nyeema C. Harris
- Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | - Roger Jovani
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Americo Vespucio s/n, E-41092 Sevilla, Spain
| | - Sergey Mironov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya Embankment 1, Saint Petersburg 199034, Russia
| | - Oliver C. Muellerklein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Heather C. Proctor
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Wayne M. Getz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Pardal S, Drews A, Alves JA, Ramos JA, Westerdahl H. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit. Immunogenetics 2017; 69:463-478. [PMID: 28534224 PMCID: PMC5486808 DOI: 10.1007/s00251-017-0993-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.
Collapse
Affiliation(s)
- Sara Pardal
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Anna Drews
- MEEL - Molecular Ecology and Evolution Laboratory, Lund University, Ecology building, SE-223 62, Lund, Sweden.
| | - José A Alves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,South Iceland Research Centre, University of Iceland, Fjolheimer, IS-800, Selfoss, Iceland
| | - Jaime A Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Helena Westerdahl
- MEEL - Molecular Ecology and Evolution Laboratory, Lund University, Ecology building, SE-223 62, Lund, Sweden
| |
Collapse
|
21
|
Romig T, Deplazes P, Jenkins D, Giraudoux P, Massolo A, Craig PS, Wassermann M, Takahashi K, de la Rue M. Ecology and Life Cycle Patterns of Echinococcus Species. ADVANCES IN PARASITOLOGY 2017; 95:213-314. [PMID: 28131364 DOI: 10.1016/bs.apar.2016.11.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genus Echinococcus is composed of eight generally recognized species and one genotypic cluster (Echinococcus canadensis cluster) that may in future be resolved into one to three species. For each species, we review existing information on transmission routes and life cycles in different geographical contexts and - where available - include basic biological information of parasites and hosts (e.g., susceptibility of host species). While some Echinococcus spp. are transmitted in life cycles that involve predominantly domestic animals (e.g., dog - livestock cycles), others are wildlife parasites that do or do not interact with domestic transmission. In many cases, life cycle patterns of the same parasite species differ according to geography. Simple life cycles contrast with transmission patterns that are highly complex, involving multihost systems that may include both domestic and wild mammals. Wildlife transmission may be primary or secondary, i.e., resulting from spillovers from domestic animals. For most of the species and regions, existing information does not yet permit a conclusive description of transmission systems. Such data, however, would be highly relevant, e.g., for anticipation of geographical changes of the presence and frequency of these parasites in a warming world, or for initiating evidence-based control strategies.
Collapse
Affiliation(s)
- T Romig
- University of Hohenheim, Stuttgart, Germany
| | - P Deplazes
- University of Zürich, Zurich, Switzerland
| | - D Jenkins
- Charles Sturt University, Wagga Wagga, NSW, Australia
| | - P Giraudoux
- University of Franche-Comté and Institut Universitaire de France, Besancon, France
| | - A Massolo
- University of Calgary, Calgary, Alberta, Canada
| | - P S Craig
- University of Salford, Greater Manchester, United Kingdom
| | | | | | - M de la Rue
- University of Santa Maria, Santa Maria RS, Brazil
| |
Collapse
|
22
|
Provencher JF, Forbes MR, Mallory ML, Wilson S, Gilchrist HG. Anti-parasite treatment, but not mercury burdens, influence nesting propensity dependent on arrival time or body condition in a marine bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:849-857. [PMID: 27692942 DOI: 10.1016/j.scitotenv.2016.09.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Arctic wildlife can be exposed to high mercury (Hg) levels, and are also naturally exposed to gastrointestinal parasites that can reduce condition and negatively affect reproductive output and/or survival in similar ways. Importantly, both Hg and parasites are increasing in wildlife in some Arctic regions. We studied the northern common eider duck (Somateria mollissima) to explore how Hg in association with both natural levels and experimentally reduced parasitic infections, affect reproduction and survival. Female eiders were measured, banded, and blood sampled to determine blood Hg burdens, prior to breeding. Propensity to nest, clutch size, nest survival, nest attendance, and return rates were assessed in relation to both Hg burden and parasite treatment. Neither reproduction nor return rates of females varied with Hg concentrations, but females arriving late to the colony, or in low body condition, showed increased nesting propensity when given the anti-parasite treatment as compared to placebo treatment. Our results suggest that parasites can play a critical role in decisions to invest in avian breeding annually, particularly among individuals with a late onset to breeding, and in poor condition.
Collapse
Affiliation(s)
- J F Provencher
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | - M R Forbes
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | - M L Mallory
- Department of Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada.
| | - S Wilson
- Environment and Climate Change Canada, Wildlife Research Division, Raven Road, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | - H G Gilchrist
- Environment and Climate Change Canada, Wildlife Research Division, Raven Road, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
23
|
Simard AA, Kutz S, Ducrocq J, Beckmen K, Brodeur V, Campbell M, Croft B, Cuyler C, Davison T, Elkin B, Giroux T, Kelly A, Russell D, Taillon J, Veitch A, Côté SD. Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative studies across time and geographical regions are useful to improve our understanding of the health of wildlife populations. Our goal was to study parasitism in migratory caribou (Rangifer tarandus (L., 1758)) of North America and Greenland. A total of 1507 caribou were sampled across 12 herds to assess seven of their main helminth and arthropod macroparasites between 1978 and 2010. We sought to determine which factors such as sex, age class, herd size, and season best explained the prevalence and intensity of those parasites. Intensity of warble fly (Hypoderma tarandi (L., 1758)) larvae increased with age for males, whereas the opposite was observed in females. Prevalence of giant liver flukes (Fascioloides magna (Bassi, 1875) Ward, 1917), tapeworm Taenia hydatigena Pallas, 1766, and nose bot fly (Cephenemyia trompe (Modeer, 1786)) larvae was higher in adults than in calves. Prevalence of F. magna and T. hydatigena was higher at high herd size than at lower herd size. Greenland herds had the lowest prevalence of T. hydatigena and of the tapeworm Taenia krabbei Moniez, 1879, a higher intensity of H. tarandi, and a higher prevalence of C. trompe than the other herds. Of the herds from Quebec and Labrador, the Rivière-George herd had a higher prevalence of F. magna than the Rivière-aux-Feuilles herd. Our research provides the first comparative survey of these parasites of caribou across a broad spatial–temporal range.
Collapse
Affiliation(s)
- Alice-Anne Simard
- Université Laval, Département de biologie and Centre d’études nordiques, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Susan Kutz
- University of Calgary, Faculty of Veterinary Medicine, 3330 University Drive Northwest, Calgary, AB T2N 4N1, Canada
| | - Julie Ducrocq
- University of Calgary, Faculty of Veterinary Medicine, 3330 University Drive Northwest, Calgary, AB T2N 4N1, Canada
| | - Kimberlee Beckmen
- Alaska Department of Fish and Game, Division of Wildlife Conservation, 1300 College Road, Fairbanks, AK 99701, USA
| | - Vincent Brodeur
- Ministère des Forêts, de la Faune et des Parcs, Direction des opérations régionales du Nord-du-Québec, 951 boulevard Hamel, Chibougamau, QC G8P 2Z3, Canada
| | - Mitch Campbell
- Government of Nunavut, Department of Environment, Kivalliq Region, P.O. Box 120, Arviat, NU X0C 0E0, Canada
| | - Bruno Croft
- Government of the Northwest Territories, Environment and Natural Resources, Wildlife Division, 600 5102-50th Avenue, Yellowknife, NT X1A 3S8, Canada
| | - Christine Cuyler
- Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland
| | - Tracy Davison
- Government of the Northwest Territories in Inuvik, Department of Environment and Natural Resources, Inuvik Region Shell Lake, P.O. Box 2749, Inuvik, NT X0E 0T0, Canada
| | - Brett Elkin
- Government of the Northwest Territories, Environment and Natural Resources, Wildlife Division, 600 5102-50th Avenue, Yellowknife, NT X1A 3S8, Canada
| | - Tina Giroux
- Athabasca Denesuline Né Né Land Corporation, P.O. Box 23126, South Hill, Prince Albert, SK S6V 8A7, Canada
| | - Allicia Kelly
- Government of the Northwest Territories, Department of Environment and Natural Resources, South Slave Region, P.O. Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Don Russell
- Conservation and Sustainability, Environment and Climate Change Canada, Canadian Wildlife Service, Pacific and Yukon Region, 91782 Alaska Highway, Whitehorse, YT Y1A 5B7, Canada
| | - Joëlle Taillon
- Université Laval, Département de biologie and Centre d’études nordiques, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Alasdair Veitch
- Government of the Northwest Territories, Department of Environment and Natural Resources, Wildlife Management – Sahtu Region, P.O. Box 130, Norman Wells NT X0E 0V0, Canada
| | - Steeve D. Côté
- Université Laval, Département de biologie and Centre d’études nordiques, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
24
|
|
25
|
Yurkowski DJ, Ferguson SH, Semeniuk CAD, Brown TM, Muir DCG, Fisk AT. Spatial and temporal variation of an ice-adapted predator's feeding ecology in a changing Arctic marine ecosystem. Oecologia 2015. [PMID: 26210748 DOI: 10.1007/s00442-015-3384-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Spatial and temporal variation can confound interpretations of relationships within and between species in terms of diet composition, niche size, and trophic position (TP). The cause of dietary variation within species is commonly an ontogenetic niche shift, which is a key dynamic influencing community structure. We quantified spatial and temporal variations in ringed seal (Pusa hispida) diet, niche size, and TP during ontogeny across the Arctic-a rapidly changing ecosystem. Stable carbon and nitrogen isotope analysis was performed on 558 liver and 630 muscle samples from ringed seals and on likely prey species from five locations ranging from the High to the Low Arctic. A modest ontogenetic diet shift occurred, with adult ringed seals consuming more forage fish (approximately 80 versus 60 %) and having a higher TP than subadults, which generally decreased with latitude. However, the degree of shift varied spatially, with adults in the High Arctic presenting a more restricted niche size and consuming more Arctic cod (Boreogadus saida) than subadults (87 versus 44 %) and adults at the lowest latitude (29 %). The TPs of adult and subadult ringed seals generally decreased with latitude (4.7-3.3), which was mainly driven by greater complexity in trophic structure within the zooplankton communities. Adult isotopic niche size increased over time, likely due to the recent circumpolar increases in subarctic forage fish distribution and abundance. Given the spatial and temporal variability in ringed seal foraging ecology, ringed seals exhibit dietary plasticity as a species, suggesting adaptability in terms of their diet to climate change.
Collapse
Affiliation(s)
- David J Yurkowski
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| | - Steven H Ferguson
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, R3T 2N6, Canada.
| | - Christina A D Semeniuk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| | - Tanya M Brown
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| | - Derek C G Muir
- Aquatic Ecosystem Protection Research Division, Environment Canada, Burlington, ON, L7R 4A6, Canada.
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
26
|
Kafle P, Lejeune M, Verocai GG, Hoberg EP, Kutz SJ. Morphological and morphometric differentiation of dorsal-spined first stage larvae of lungworms (Nematoda: Protostrongylidae) infecting muskoxen (Ovibos moschatus) in the central Canadian Arctic. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:283-90. [PMID: 26155463 PMCID: PMC4487832 DOI: 10.1016/j.ijppaw.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 12/05/2022]
Abstract
Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis are the two most common protostrongylid nematodes infecting muskoxen in the North American Arctic and Subarctic. First stage larvae (L1) of these lungworms have considerable morphological similarity that makes their differential diagnosis very difficult. Using light microscopy, we studied in detail the L1 of these two species and identified the key differences in morphological and morphometric attributes. Thirty L1 of each species from naturally infected muskox were heat-killed and then assessed for morphological and morphometric features that could be used for species-level differentiation. Key differentiating features include: length and morphology of the tail extension, curvature of the body, ventral post-anal transverse cuticular striations, and total body length. A laboratory guide for differentiation of L1 based on these species-specific characters was prepared and used by an experienced observer to identify an additional 35 L1 extracted from a different set of fecal samples from free-ranging muskoxen with mixed infections. The identities of these L1 were confirmed by sequence analysis of the ITS-2 region of the nuclear ribosomal DNA. Accuracy of morphological identification was 100 percent, reflecting the reliability of the proposed guide for differentiation. Using the guide, three minimally trained lab assistants each fixed and accurately identified 10 of 10 randomly selected L1. Ability to morphologically differentiate these facilitates the monitoring of overlapping range expansion of both parasites in the Canadian Arctic. Studies enabling species-level parasite identification are also critical for defining biodiversity, detecting mixed infections, and understanding host–parasite interactions. Morphological identification is a simple, reliable and cost-effective alternative to labor and equipment intensive molecular methods and can easily be performed in low resource settings. Morphological differentiation of larval protostrongylid nematodes is challenging. We developed a guide for identification of first-stage larvae of muskox lungworms. Morphological observations were verified with sequencing results from PCR. We achieved 100% accuracy of the protocol. This is a rapid and effective alternative to currently employed molecular methods.
Collapse
Affiliation(s)
- Pratap Kafle
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Manigandan Lejeune
- Canadian Wildlife Health Cooperative - Alberta Node, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Guilherme G Verocai
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Eric P Hoberg
- U.S. National Parasite Collection, Animal Parasitic Diseases Laboratory, USDA, ARS, BARC East 1180, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Susan J Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada ; Canadian Wildlife Health Cooperative - Alberta Node, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
27
|
Tryland M, Nesbakken T, Robertson L, Grahek-Ogden D, Lunestad BT. Human pathogens in marine mammal meat – a northern perspective. Zoonoses Public Health 2015; 61:377-94. [PMID: 24344685 DOI: 10.1111/zph.12080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Indexed: 11/27/2022]
Abstract
Only a few countries worldwide hunt seals and whales commercially. In Norway, hooded and harp seals and minke whales are commercially harvested, and coastal seals (harbour and grey seals) are hunted as game. Marine mammal meat is sold to the public and thus included in general microbiological meat control regulations. Slaughtering and dressing of marine mammals are performed in the open air on deck, and many factors on board sealing or whaling vessels may affect meat quality, such as the ice used for cooling whale meat and the seawater used for cleaning, storage of whale meat in the open air until ambient temperature is reached, and the hygienic conditions of equipment, decks, and other surfaces. Based on existing reports, it appears that meat of seal and whale does not usually represent a microbiological hazard to consumers in Norway, because human disease has not been associated with consumption of such foods. However, as hygienic control on marine mammal meat is ad hoc, mainly based on spot-testing, and addresses very few human pathogens, this conclusion may be premature. Additionally, few data from surveys or systematic quality control screenings have been published. This review examines the occurrence of potential human pathogens in marine mammals, as well as critical points for contamination of meat during the slaughter, dressing, cooling, storage and processing of meat. Some zoonotic agents are of particular relevance as foodborne pathogens, such as Trichinella spp., Toxoplasma gondii, Salmonella and Leptospira spp. In addition, Mycoplasma spp. parapoxvirus and Mycobacterium spp. constitute occupational risks during handling of marine mammals and marine mammal products. Adequate training in hygienic procedures is necessary to minimize the risk of contamination on board, and acquiring further data is essential for obtaining a realistic assessment of the microbiological risk to humans from consuming marine mammal meat.
Collapse
|
28
|
Jolles AE, Ezenwa VO. Ungulates as model systems for the study of disease processes in natural populations. J Mammal 2015; 96:4-15. [PMID: 32287382 PMCID: PMC7107476 DOI: 10.1093/jmammal/gyu007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parasites and pathogens are a fundamental driving force in the ecology and evolution of mammalian populations, and understanding disease processes in natural populations is an urgent priority in the face of increased rates of infectious disease emergence. In this review, we argue that mammalogists are uniquely placed to contribute to addressing these challenges because in-depth knowledge of mammal species is fundamental to the development of wild model systems that could accelerate discovery in disease ecology. The use of animal models-species for which a broad range of diagnostic, molecular, and genetic tools have been developed-in tightly controlled laboratory environments has been instrumental in driving progress in the biomedical sciences. However, in natural populations, disease processes operate in the context of enormous genetic, phenotypic, and environmental variability. Understanding diseases in animal populations (including humans) thus requires investment in "wild animal models" that explicitly include individual variation and relevant environmental gradients. Wild mammal groups such as primates and rodents have already been identified as potentially useful models of infectious diseases in the wild. Here, we discuss the enormous potential that ungulates hold as candidates for wild model systems. The diversity, broad geographic distribution, and often high abundance of species in this group make them a highly accessible target for disease research. Moreover, a depth of background knowledge, close relationships to domesticated animals, and ongoing management of many wild ungulate species provide context, tools, and opportunity for cutting-edge research at the interface of ecological and biomedical sciences. Studies of wild ungulates are already helping to unravel some key challenges in infectious disease research, including the role of parasites in trophic cascades, the consequences of climate change for disease dynamics, and the systems biology of host-parasite interactions. Other areas where ungulate studies may provide new insight include research on the sources and drivers of emerging infectious diseases.
Collapse
|
29
|
Selstad Utaaker K, Robertson LJ. Climate change and foodborne transmission of parasites: A consideration of possible interactions and impacts for selected parasites. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.06.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Mascarelli PE, Elmore SA, Jenkins EJ, Alisauskas RT, Walsh M, Breitschwerdt EB, Maggi RG. Vector-borne pathogens in arctic foxes, Vulpes lagopus, from Canada. Res Vet Sci 2014; 99:58-9. [PMID: 25596149 DOI: 10.1016/j.rvsc.2014.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022]
Abstract
Because of the relatively low biodiversity within arctic ecosystems, arctic foxes, Vulpes lagopus, could serve as sentinels for the study of changes in the ecology of vector-borne zoonotic pathogens. The objective of this study was to determine the molecular prevalence of 5 different genera of vector borne pathogens (Anaplasma, Babesia, Bartonella, Ehrlichia, and Hemotropic Mycoplasma spp.) using blood collected from 28 live-trapped arctic foxes from the region of Karrak Lake, Nunavut, Canada. Bartonella henselae (n = 3), Mycoplasma haemocanis (n = 1), Ehrlichia canis (n = 1), and an Anaplasma sp. (n = 1) DNA were PCR amplified and subsequently identified by sequencing. This study provides preliminary evidence that vector borne pathogens, not typically associated with the arctic ecosystem, exist at low levels in this arctic fox population, and that vector exposure, pathogen transmission dynamics, and changes in the geographic distribution of pathogens over time should be investigated in future studies.
Collapse
Affiliation(s)
- Patricia E Mascarelli
- Intracellular Pathogens Research Laboratory (IPRL), Center for Comparative Medicine and Translational Research College of Veterinary Medicine, North Carolina State University, NC, USA
| | - Stacey A Elmore
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N EB4, Canada
| | - Emily J Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N EB4, Canada
| | - Ray T Alisauskas
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Mary Walsh
- Intracellular Pathogens Research Laboratory (IPRL), Center for Comparative Medicine and Translational Research College of Veterinary Medicine, North Carolina State University, NC, USA
| | - Edward B Breitschwerdt
- Intracellular Pathogens Research Laboratory (IPRL), Center for Comparative Medicine and Translational Research College of Veterinary Medicine, North Carolina State University, NC, USA
| | - Ricardo G Maggi
- Intracellular Pathogens Research Laboratory (IPRL), Center for Comparative Medicine and Translational Research College of Veterinary Medicine, North Carolina State University, NC, USA.
| |
Collapse
|
31
|
Van Hemert C, Pearce JM, Handel CM. Wildlife health in a rapidly changing North: focus on avian disease. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2014; 12:548-556. [PMID: 32313510 PMCID: PMC7164092 DOI: 10.1890/130291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Climate-related environmental changes have increasingly been linked to emerging infectious diseases in wildlife. The Arctic is facing a major ecological transition that is expected to substantially affect animal and human health. Changes in phenology or environmental conditions that result from climate warming may promote novel species assemblages as host and pathogen ranges expand to previously unoccupied areas. Recent evidence from the Arctic and subarctic suggests an increase in the spread and prevalence of some wildlife diseases, but baseline data necessary to detect and verify such changes are still lacking. Wild birds are undergoing rapid shifts in distribution and have been implicated in the spread of wildlife and zoonotic diseases. Here, we review evidence of current and projected changes in the abundance and distribution of avian diseases and outline strategies for future research. We discuss relevant climatic and environmental factors, emerging host-pathogen contact zones, the relationship between host condition and immune function, and potential wildlife and human health outcomes in northern regions.
Collapse
Affiliation(s)
| | - John M Pearce
- US Geological Survey Alaska Science Center, Anchorage, AK
| | | |
Collapse
|
32
|
Provencher JF, Braune BM, Gilchrist HG, Forbes MR, Mallory ML. Trace element concentrations and gastrointestinal parasites of Arctic terns breeding in the Canadian High Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:308-16. [PMID: 24472719 DOI: 10.1016/j.scitotenv.2014.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 05/24/2023]
Abstract
Baseline data on trace element concentrations are lacking for many species of Arctic marine birds. We measured essential and non-essential element concentrations in Arctic tern (Sterna paradisaea) liver tissue and brain tissue (mercury only) from Canada's High Arctic, and recorded the presence/absence of gastrointestinal parasites during four different phases of the breeding season. Arctic terns from northern Canada had similar trace element concentrations to other seabird species feeding at the same trophic level in the same region. Concentrations of bismuth, selenium, lead and mercury in Arctic terns were high compared to published threshold values for birds. Selenium and mercury concentrations were also higher in Arctic terns from northern Canada than bird species sampled in other Arctic areas. Selenium, mercury and arsenic concentrations varied across the time periods examined, suggesting potential regional differences in the exposure of biota to these elements. For unknown reasons, selenium concentrations were significantly higher in birds with gastrointestinal parasites as compared to those without parasites, while bismuth concentrations were higher in Arctic terns not infected with gastrointestinal parasites.
Collapse
Affiliation(s)
- J F Provencher
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | - B M Braune
- Environment Canada, Science and Technology Branch, Raven Road, Carleton University, Ottawa, Ontario K1S 5 B6, Canada
| | - H G Gilchrist
- Environment Canada, Science and Technology Branch, Raven Road, Carleton University, Ottawa, Ontario K1S 5 B6, Canada
| | - M R Forbes
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - M L Mallory
- Biology Department, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
33
|
Panic M, Ford JD. A review of national-level adaptation planning with regards to the risks posed by climate change on infectious diseases in 14 OECD nations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:7083-109. [PMID: 24351735 PMCID: PMC3881155 DOI: 10.3390/ijerph10127083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022]
Abstract
Climate change is likely to have significant implications for human health, particularly through alterations of the incidence, prevalence, and distribution of infectious diseases. In the context of these risks, governments in high income nations have begun developing strategies to reduce potential climate change impacts and increase health system resilience (i.e., adaptation). In this paper, we review and evaluate national-level adaptation planning in relation to infectious disease risks in 14 OECD countries with respect to "best practices" for adaptation identified in peer-reviewed literature. We find a number of limitations to current planning, including negligible consideration of the needs of vulnerable population groups, limited emphasis on local risks, and inadequate attention to implementation logistics, such as available funding and timelines for evaluation. The nature of planning documents varies widely between nations, four of which currently lack adaptation plans. In those countries where planning documents were available, adaptations were mainstreamed into existing public health programs, and prioritized a sectoral, rather than multidisciplinary, approach. The findings are consistent with other scholarship examining adaptation planning indicating an ad hoc and fragmented process, and support the need for enhanced attention to adaptation to infectious disease risks in public health policy at a national level.
Collapse
Affiliation(s)
- Mirna Panic
- Institut national de santé publique du Québec, 190 boulevard Crémazie Est, Montréal, Québec, H2P1E2, Canada
| | - James D. Ford
- Department of Geography, McGill University, 805 Sherbrooke Ouest, Montréal, H3A2K6, Canada; E-Mail:
| |
Collapse
|
34
|
Thompson RCA. Parasite zoonoses and wildlife: One Health, spillover and human activity. Int J Parasitol 2013; 43:1079-88. [PMID: 23892130 PMCID: PMC7126848 DOI: 10.1016/j.ijpara.2013.06.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 01/16/2023]
Abstract
This review examines parasite zoonoses and wildlife in the context of the One Health triad that encompasses humans, domestic animals, wildlife and the changing ecosystems in which they live. Human (anthropogenic) activities influence the flow of all parasite infections within the One Health triad and the nature and impact of resulting spillover events are examined. Examples of spillover from wildlife to humans and/or domestic animals, and vice versa, are discussed, as well as emerging issues, particularly the need for parasite surveillance of wildlife populations. Emphasis is given to Trypanosoma cruzi and related species in Australian wildlife, Trichinella, Echinococcus, Giardia, Baylisascaris, Toxoplasma and Leishmania.
Collapse
Affiliation(s)
- R C Andrew Thompson
- School of Veterinary and Health Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
35
|
Parkinson AJ. The Arctic Human Health Initiative: a legacy of the International Polar Year 2007-2009. Int J Circumpolar Health 2013; 72:21655. [PMID: 23971017 PMCID: PMC3749855 DOI: 10.3402/ijch.v72i0.21655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The International Polar Year (IPY) 2007-2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI) was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH) and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. DESIGN The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention strategies and health promotion; and promoting synergy and strategic direction of Arctic human health research and health promotion. RESULTS As of 31 March, 2009, the official end of the IPY, AHHI represented a total of 38 proposals, including 21 individual Expressions of Intent (EoI), and 9 full proposals (FP), submitted to the IPY Joint Committee for review and approval from lead investigators from the US, Canada, Greenland, Norway, Finland, Sweden and the Russian Federation. In addition, there were 10 National Initiatives (NI-projects undertaken during IPY beyond the IPY Joint Committee review process). Individual project details can be viewed at www.arctichealth.org. The AHHI currently monitors the progress of 28 individual active human health projects in the following thematic areas: health network expansion (5 projects), infectious disease research (7 projects), environmental health research (7 projects), behavioral and mental health research (4 projects), and outreach education and communication (5 projects). CONCLUSIONS While some projects have been completed, others will continue well beyond the IPY. The IPY 2007-2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions.
Collapse
Affiliation(s)
- Alan J Parkinson
- Arctic Investigations Program, Centres for Disease Control and Prevention, Anchorage, AK 99508, USA.
| |
Collapse
|
36
|
Samuelsson F, Nejsum P, Raundrup K, Hansen TVA, Kapel CMO. Warble infestations by Hypoderma tarandi (Diptera; Oestridae) recorded for the first time in West Greenland muskoxen. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2013; 2:214-6. [PMID: 24533338 PMCID: PMC3862539 DOI: 10.1016/j.ijppaw.2013.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 02/04/2023]
Abstract
Warble larvae were found in 16 of 424 muskoxen examined post-mortem in Kangerlussuaq, West Greenland in February. Sequencing PCR products identified the larvae as Hypoderma tarandi. Infestation by oestrid flies has not previously been reported in muskoxen in West Greenland. Second-instar development of H. tarandi larvae in muskoxen.
In the northern hemisphere, Caribou (Rangifer spp.) populations are known to be infested with the skin-penetrating ectoparasite, Hypoderma tarandi (Diptera; Oestridae). Although regarded as host specific, H. tarandi has been reported from other species, and has become of increasing concern as a zoonosis infecting humans. In February 2012, concurrent with the hunting of muskoxen, we examined carcasses for muscle and tissue parasites, and recorded warble larvae infestations. DNA extracted from samples of larvae was amplified targeting 579 bp of the COI gene, and subsequently sequenced, to be confirmed as H. tarandi. Infestation by oestrid flies has not previously been reported in muskoxen in West Greenland.
Collapse
Affiliation(s)
- Fredrik Samuelsson
- Department of Agriculture and Ecology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Peter Nejsum
- Department of Veterinary Disease Biology, Section for Parasitology, Health and Development, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katrine Raundrup
- Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland
| | - Tina Vicky Alstrup Hansen
- Department of Veterinary Disease Biology, University of Copenhagen, Dyrlaegevej 100, 1870 Frederiksberg C, Denmark
| | | |
Collapse
|
37
|
Descamps S. Winter temperature affects the prevalence of ticks in an Arctic seabird. PLoS One 2013; 8:e65374. [PMID: 23750259 PMCID: PMC3672161 DOI: 10.1371/journal.pone.0065374] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
The Arctic is rapidly warming and host-parasite relationships may be modified by such environmental changes. Here, I showed that the average winter temperature in Svalbard, Arctic Norway, explained almost 90% of the average prevalence of ticks in an Arctic seabird, the Brünnich’s guillemot Uria lomvia. An increase of 1°C in the average winter temperature at the nesting colony site was associated with a 5% increase in the number of birds infected by these ectoparasites in the subsequent breeding season. Guillemots were generally infested by only a few ticks (≤5) and I found no direct effect of tick presence on their body condition and breeding success. However, the strong effect of average winter temperature described here clearly indicates that tick-seabird relationships in the Arctic may be strongly affected by ongoing climate warming.
Collapse
|
38
|
Hueffer K, Parkinson AJ, Gerlach R, Berner J. Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control. Int J Circumpolar Health 2013; 72:19562. [PMID: 23399790 PMCID: PMC3568173 DOI: 10.3402/ijch.v72i0.19562] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 12/03/2022] Open
Abstract
Over the last 60 years, Alaska's mean annual temperature has increased by 1.6°C, more than twice the rate of the rest of the United States. As a result, climate change impacts are more pronounced here than in other regions of the United States. Warmer temperatures may allow some infected host animals to survive winters in larger numbers, increase their population and expand their range of habitation thus increasing the opportunity for transmission of infection to humans. Subsistence hunting and gathering activities may place rural residents of Alaska at a greater risk of acquiring zoonotic infections than urban residents. Known zoonotic diseases that occur in Alaska include brucellosis, toxoplasmosis, trichinellosis, giardiasis/cryptosporidiosis, echinococcosis, rabies and tularemia. Actions for early disease detection, research and prevention and control include: (1) determining baseline levels of infection and disease in both humans and host animals; (2) conducting more research to understand the ecology of infection in the Arctic environment; (3) improving active and passive surveillance systems for infection and disease in humans and animals; (4) improving outreach, education and communication on climate-sensitive infectious diseases at the community, health and animal care provider levels; and (5) improving coordination between public health and animal health agencies, universities and tribal health organisations.
Collapse
Affiliation(s)
- Karsten Hueffer
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Alan J. Parkinson
- Arctic Investigations Program, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, AK, USA
| | - Robert Gerlach
- Office of the State Veterinarian, Alaska Division of Environmental Health, Anchorage, AK, USA
| | - James Berner
- Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| |
Collapse
|
39
|
Jenkins EJ, Castrodale LJ, de Rosemond SJ, Dixon BR, Elmore SA, Gesy KM, Hoberg EP, Polley L, Schurer JM, Simard M, Thompson RCA. Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland. ADVANCES IN PARASITOLOGY 2013; 82:33-204. [PMID: 23548085 DOI: 10.1016/b978-0-12-407706-5.00002-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Zoonotic parasites are important causes of endemic and emerging human disease in northern North America and Greenland (the North), where prevalence of some parasites is higher than in the general North American population. The North today is in transition, facing increased resource extraction, globalisation of trade and travel, and rapid and accelerating environmental change. This comprehensive review addresses the diversity, distribution, ecology, epidemiology, and significance of nine zoonotic parasites in animal and human populations in the North. Based on a qualitative risk assessment with criteria heavily weighted for human health, these zoonotic parasites are ranked, in the order of decreasing importance, as follows: Echinococcus multilocularis, Toxoplasma gondii, Trichinella and Giardia, Echinococcus granulosus/canadensis and Cryptosporidium, Toxocara, anisakid nematodes, and diphyllobothriid cestodes. Recent and future trends in the importance of these parasites for human health in the North are explored. For example, the incidence of human exposure to endemic helminth zoonoses (e.g. Diphyllobothrium, Trichinella, and Echinococcus) appears to be declining, while water-borne protozoans such as Giardia, Cryptosporidium, and Toxoplasma may be emerging causes of human disease in a warming North. Parasites that undergo temperature-dependent development in the environment (such as Toxoplasma, ascarid and anisakid nematodes, and diphyllobothriid cestodes) will likely undergo accelerated development in endemic areas and temperate-adapted strains/species will move north, resulting in faunal shifts. Food-borne pathogens (e.g. Trichinella, Toxoplasma, anisakid nematodes, and diphyllobothriid cestodes) may be increasingly important as animal products are exported from the North and tourists, workers, and domestic animals enter the North. Finally, key needs are identified to better assess and mitigate risks associated with zoonotic parasites, including enhanced surveillance in animals and people, detection methods, and delivery and evaluation of veterinary and public health services.
Collapse
|
40
|
Wheeler HC, Hik DS. Arctic ground squirrelsUrocitellus parryiias drivers and indicators of change in northern ecosystems. Mamm Rev 2012. [DOI: 10.1111/j.1365-2907.2012.00220.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helen C. Wheeler
- Department of Biological Sciences; University of Alberta; Edmonton; Alberta; T6G 2E9; Canada
| | - David S. Hik
- Department of Biological Sciences; University of Alberta; Edmonton; Alberta; T6G 2E9; Canada
| |
Collapse
|
41
|
Parasites in ungulates of Arctic North America and Greenland: a view of contemporary diversity, ecology, and impact in a world under change. ADVANCES IN PARASITOLOGY 2012; 79:99-252. [PMID: 22726643 DOI: 10.1016/b978-0-12-398457-9.00002-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parasites play an important role in the structure and function of arctic ecosystems, systems that are currently experiencing an unprecedented rate of change due to various anthropogenic perturbations, including climate change. Ungulates such as muskoxen, caribou, moose and Dall's sheep are also important components of northern ecosystems and are a source of food and income, as well as a focus for maintenance of cultural traditions, for northerners. Parasites of ungulates can influence host health, population dynamics and the quality, quantity and safety of meat and other products of animal origin consumed by people. In this article, we provide a contemporary view of the diversity of nematode, cestode, trematode, protozoan and arthropod parasites of ungulates in arctic and subarctic North America and Greenland. We explore the intricate associations among host and parasite assemblages and identify key issues and gaps in knowledge that emerge in a regime of accelerating environmental transition.
Collapse
|
42
|
Loiseau C, Harrigan RJ, Cornel AJ, Guers SL, Dodge M, Marzec T, Carlson JS, Seppi B, Sehgal RNM. First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS One 2012; 7:e44729. [PMID: 23028595 PMCID: PMC3446979 DOI: 10.1371/journal.pone.0044729] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory bird species. We found both residents and hatch year birds infected with Plasmodium as far north as 64°N, providing clear evidence that malaria transmission occurs in these climates. Based on our empirical data, we make the first projections of the habitat suitability for Plasmodium under a future-warming scenario in Alaska. These findings raise new concerns about the spread of malaria to naïve host populations.
Collapse
Affiliation(s)
- Claire Loiseau
- Department of Biology, San Francisco State University, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Carlsson AM, Justin Irvine R, Wilson K, Piertney SB, Halvorsen O, Coulson SJ, Stien A, Albon SD. Disease transmission in an extreme environment: Nematode parasites infect reindeer during the Arctic winter. Int J Parasitol 2012; 42:789-95. [DOI: 10.1016/j.ijpara.2012.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 02/02/2023]
|
44
|
Hoberg EP, Abrams A, Pilitt PA, Kutz SJ. Discovery and Description of the “Davtiani” Morphotype for Teladorsagia boreoarcticus (Trichostrongyloidea: Ostertagiinae) Abomasal Parasites In Muskoxen, Ovibos moschatus, and Caribou, Rangifer tarandus, from the North American Arctic: Implications for Parasite Faunal Diversity. J Parasitol 2012; 98:355-64. [DOI: 10.1645/ge-2898.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Grémillet D, Ims RA, Meltofte H, Moreau J, Post E, Schmidt NM, Yannic G, Bollache L. Climate change and the ecology and evolution of Arctic vertebrates. Ann N Y Acad Sci 2012; 1249:166-90. [DOI: 10.1111/j.1749-6632.2011.06412.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Raundrup K, Al-Sabi MNS, Kapel CMO. First record of Taenia ovis krabbei muscle cysts in muskoxen from Greenland. Vet Parasitol 2011; 184:356-8. [PMID: 21955737 DOI: 10.1016/j.vetpar.2011.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/17/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
A first record of Taenia ovis krabbei muscle cysts in a muskoxen (Ovibos moschatus) from the Kangerlussuaq population in West Greenland suggests that introduced muskoxen now contributes to the transmission of this parasite in addition to previous observations from caribou (Rangifer tarandus). Muskoxen and caribou are the only wild ungulates in Greenland.
Collapse
Affiliation(s)
- Katrine Raundrup
- Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland.
| | | | | |
Collapse
|