1
|
Bruno DS, Mitchell C, Dowlati A, Shamp S, Fu P, Rindeau J, Zheng Y, Machtay M, Biswas T. A Pilot Trial of Proton-Based Cardiac Sparing Accelerated Fractionated Radiation Therapy in Unresectable Non-small Cell Lung Cancer With Extended Durvalumab Therapy (PARTICLE-D). Pract Radiat Oncol 2024; 14:e470-e479. [PMID: 39002856 DOI: 10.1016/j.prro.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Concurrent chemoradiation therapy is the current nonsurgical standard of care for locally advanced non-small cell lung cancer. However, this is a difficult regimen to tolerate, especially for those who are elderly, have multiple comorbidities, or have poor performance status. Alternative treatment regimens are needed for this vulnerable population. We report initial results of concurrent durvalumab, an immune checkpoint inhibitor, and hypofractionated, dose-escalating, proton external beam radiation therapy (EBRT). METHODS AND MATERIALS This phase 1, pilot dose escalation trial enrolled 7 patients with newly diagnosed stage IIIA to IIIC non-small cell lung cancer and who were unable or unwilling to undergo concurrent chemoradiation therapy. Patients previously treated with immunotherapy were excluded. Five patients in this 3 + 3 study design received a fixed dose of durvalumab on day 1 of each 28-day cycle plus hypofractionated proton EBRT with initial dose of 60 Gy (Arm 1) in 20 fractions while 2 patients received the escalation dose of 69 Gy in 23 fractions (Arm 2). The primary objective was to assess safety and the secondary objective was to assess feasibility and adverse events. RESULTS All patients experienced treatment-related adverse events, primarily grades 1 and 2. Pneumonitis and anemia were the most common. Only 1 dose-limiting toxicity occurred in arm 1, which was a grade 3 pneumonitis leading to grade 5 pneumonia. Additionally, 2 delayed-onset grade 5 tracheal necrosis events occurred >13 months after treatment initiation. CONCLUSIONS Concurrent durvalumab plus hypofractionated proton EBRT was well tolerated in the short term. However, 3 treatment-related deaths, including 2 delayed-onset grade 5 tracheal necroses negatively impacted overall safety. A dose de-escalation protocol of proton-based radiation therapy plus durvalumab is warranted.
Collapse
Affiliation(s)
- Debora S Bruno
- Department of Medicine, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Carley Mitchell
- Department of Medicine, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio
| | - Afshin Dowlati
- Department of Medicine, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Stephen Shamp
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - John Rindeau
- Department of Medicine, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio
| | - Yiran Zheng
- Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio
| | - Mitchell Machtay
- Department of Radiation Oncology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Tithi Biswas
- Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio; Department of Radiation Oncology, MetroHealth Medical Center, Cleveland, Ohio.
| |
Collapse
|
2
|
Salem PP, Chami P, Daou R, Hajj J, Lin H, Chhabra AM, Simone CB, Lee NY, Hajj C. Proton Radiation Therapy: A Systematic Review of Treatment-Related Side Effects and Toxicities. Int J Mol Sci 2024; 25:10969. [PMID: 39456752 PMCID: PMC11506991 DOI: 10.3390/ijms252010969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is the second leading cause of death worldwide. Around half of all cancer patients undergo some type of radiation therapy throughout the course of their treatment. Photon radiation remains (RT) the most widely utilized modality of radiotherapy despite recent advancements in proton radiation therapy (PBT). PBT makes use of the particle's biological property known as the Bragg peak to better spare healthy tissue from radiation damage, with data to support that this treatment modality is less toxic than photon RT. Hence, proton radiation dosimetry looks better compared to photon dosimetry; however, due to proton-specific uncertainties, unexpected acute, subacute, and long-term toxicities can be encountered. Reported neurotoxicity resulting from proton radiation treatments include radiation necrosis, moyamoya syndrome, neurosensory toxicities, brain edema, neuromuscular toxicities, and neurocognitive toxicities. Pulmonary toxicities include pneumonitis and fibrosis, pleural effusions, and bronchial toxicities. Pericarditis, pericardial effusions, and atrial fibrillations are among the cardiac toxicities related to proton therapy. Gastrointestinal and hematological toxicities are also found in the literature. Genitourinary toxicities include urinary and reproductive-related toxicities. Osteological, oral, endocrine, and skin toxicities have also been reported. The side effects will be comparable to the ones following photon RT, nonetheless at an expected lower incidence. The toxicities collected mainly from case reports and clinical trials are described based on the organs affected and functions altered.
Collapse
Affiliation(s)
- Peter P. Salem
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Remy Daou
- Family Medicine Department, Hotel Dieu de France Hospital, Beirut 1660, Lebanon;
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon;
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Arpit M. Chhabra
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Nancy Y. Lee
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Carla Hajj
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| |
Collapse
|
3
|
Cortiula F, Hendriks LEL, Wijsman R, Houben R, Steens M, Debakker S, Canters R, Trovò M, Sijtsema NM, Niezink AGH, Unipan M, Urban S, Michelotti A, Dursun S, Bootsma G, Hattu D, Nuyttens JJ, Moretti E, Taasti VT, De Ruysscher D. Proton and photon radiotherapy in stage III NSCLC: Effects on hematological toxicity and adjuvant immune therapy. Radiother Oncol 2024; 190:110019. [PMID: 38000689 DOI: 10.1016/j.radonc.2023.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND PURPOSE Concurrent chemo-radiotherapy (CCRT) followed by adjuvant durvalumab is standard-of-care for fit patients with unresectable stage III NSCLC. Intensity modulated proton therapy (IMPT) results in different doses to organs than intensity modulated photon therapy (IMRT). We investigated whether IMPT compared to IMRT reduce hematological toxicity and whether it affects durvalumab treatment. MATERIALS AND METHODS Prospectively collected series of consecutive patients with stage III NSCLC receiving CCRT between 06.16 and 12.22 (staged with FDG-PET-CT and brain imaging) were retrospectively analyzed. The primary endpoint was the incidence of lymphopenia grade ≥ 3 in IMPT vs IMRT treated patients. RESULTS 271 patients were enrolled (IMPT: n = 71, IMRT: n = 200) in four centers. All patients received platinum-based chemotherapy. Median age: 66 years, 58 % were male, 36 % had squamous NSCLC. The incidence of lymphopenia grade ≥ 3 during CCRT was 67 % and 47 % in the IMRT and IMPT group, respectively (OR 2.2, 95 % CI: 1.0-4.9, P = 0.03). The incidence of anemia grade ≥ 3 during CCRT was 26 % and 9 % in the IMRT and IMPT group respectively (OR = 4.9, 95 % CI: 1.9-12.6, P = 0.001). IMPT was associated with a lower rate of Performance Status (PS) ≥ 2 at day 21 and 42 after CCRT (13 % vs. 26 %, P = 0.04, and 24 % vs. 39 %, P = 0.02). Patients treated with IMPT had a higher probability of receiving adjuvant durvalumab (74 % vs. 52 %, OR 0.35, 95 % CI: 0.16-0.79, P = 0.01). CONCLUSION IMPT was associated with a lower incidence of severe lymphopenia and anemia, better PS after CCRT and a higher probability of receiving adjuvant durvalumab.
Collapse
Affiliation(s)
- Francesco Cortiula
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Medical Oncology, University Hospital of Udine, Udine, Italy.
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Michelle Steens
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Sarah Debakker
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Richard Canters
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Marco Trovò
- Department of Radiation Oncology, University Hospital of Udine, Udine, Italy
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne G H Niezink
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Susanna Urban
- Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - Anna Michelotti
- Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - Safiye Dursun
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gerben Bootsma
- Department of Pulmonary Diseases, Zuyderland Medical Centre, the Netherlands
| | - Djoya Hattu
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Joost J Nuyttens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eugenia Moretti
- Medical Physics Unit, University Hospital of Udine, Udine, Italy
| | - Vicki T Taasti
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
4
|
Alaswad M. Locally advanced non-small cell lung cancer: current issues and recent trends. Rep Pract Oncol Radiother 2023; 28:286-303. [PMID: 37456701 PMCID: PMC10348324 DOI: 10.5603/rpor.a2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/29/2023] [Indexed: 07/18/2023] Open
Abstract
The focus of this paper was to review and summarise the current issues and recent trends within the framework of locally advanced (LA) non-small cell lung cancer (NSCLC). The recently proposed 8th tumour-node-metastases (TNM) staging system exhibited significant amendments in the distribution of the T and M descriptors. Every revision to the TNM classification should contribute to clinical improvement. This is particularly necessary regarding LA NSCLC stratification, therapy and outcomes. While several studies reported the superiority of the 8th TNM edition in comparison to the previous 7th TNM edition, in terms of both the discrimination ability among the various T subgroups and clinical outcomes, others argued against this interpretation. Synergistic cytotoxic chemotherapy with radiotherapy is most prevalent in treating LA NSCLC. Clinical trial experience from multiple references has reported that the risk of locoregional relapse and distant metastasis was less evident for patients treated with concomitant radiochemotherapy than radiotherapy alone. Nevertheless, concern persists as to whether major incidences of toxicity may occur due to the addition of chemotherapy. Cutting-edge technologies such as four-dimensional computed tomography (4D-CT) and volumetric modulated arc therapy (VMAT) should yield therapeutic gains due to their capability to conform radiation doses to tumours. On the basis of the preceding notion, the optimum radiotherapy technique for LA NSCLC has been a controversial and much-disputed subject within the field of radiation oncology. Notably, no single-perspective research has been undertaken to determine the optimum radiotherapy modality for LA NSCLC. The landscape of immunotherapy in lung cancer is rapidly expanding. Currently, the standard of care for patients with inoperable LA NSCLC is concurrent chemoradiotherapy followed by maintenance durvalumab according to clinical outcomes from the PACIFIC trial. An estimated 42.9% of patients randomly assigned to durvalumab remained alive at five years, and free of disease progression, thereby establishing a new benchmark for the standard of care in this setting.
Collapse
Affiliation(s)
- Mohammed Alaswad
- Comprehensive Cancer Centre, Radiation Oncology, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
- Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Chen Y, Luo H, Liu R, Tan M, Wang Q, Wu X, Du T, Liu Z, Sun S, Zhang Q, Wang X. Efficacy and safety of particle therapy for inoperable stage II-III non-small cell lung cancer: a systematic review and meta-analysis. Radiat Oncol 2023; 18:86. [PMID: 37217970 DOI: 10.1186/s13014-023-02264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Particle therapy, mainly including carbon-ion radiotherapy (CIRT) and proton beam therapy (PBT), has dose distribution advantages compared to photon radiotherapy. It has been widely reported as a promising treatment method for early non-small cell lung cancer (NSCLC). However, its application in locally advanced non-small cell lung cancer (LA-NSCLC) is relatively rare, and its efficacy and safety are inconclusive. This study aimed to provide systematic evidence for evaluating the efficacy and safety of particle therapy for inoperable LA-NSCLC. METHODS To retrieve published literature, a systematic search was conducted in PubMed, Web of Science, Embase, and Cochrane Library until September 4, 2022. The primary endpoints were local control (LC) rate, overall survival (OS) rate, and progression-free survival (PFS) rate at 2 and 5 years. The secondary endpoint was treatment-related toxicity. The pooled clinical outcomes and 95% confidence intervals (CIs) were calculated by using STATA 15.1. RESULTS Nineteen eligible studies with a total sample size of 851 patients were included. The pooled data demonstrated that the OS, PFS, and LC rates at 2 years of LA-NSCLC treated by particle therapy were 61.3% (95% CI = 54.7-68.7%), 37.9% (95% CI = 33.8-42.6%) and 82.2% (95% CI = 78.7-85.9%), respectively. The pooled 5-year OS, PFS, and LC rates were 41.3% (95% CI = 27.1-63.1%), 25.3% (95% CI = 16.3-39.4%), and 61.5% (95% CI = 50.7-74.6%), respectively. Subgroup analysis stratified by treatment type showed that the concurrent chemoradiotherapy (CCRT, PBT combined with concurrent chemotherapy) group had better survival benefits than the PBT and CIRT groups. The incidence rates of grade 3/4 esophagitis, dermatitis, and pneumonia in LA-NSCLC patients after particle therapy were 2.6% (95% CI = 0.4-6.0%), 2.6% (95% CI = 0.5-5.7%) and 3.4% (95% CI = 1.4-6.0%), respectively. CONCLUSIONS Particle therapy demonstrated promising efficacy and acceptable toxicity in LA-NSCLC patients.
Collapse
Affiliation(s)
- Yanliang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Mingyu Tan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Tianqi Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China.
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China.
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.
| |
Collapse
|
6
|
Tatebe H, Harada H, Mori K, Iwata H, Akimoto T, Murakami M, Waki T, Ogino T, Nakamura M, Taguchi H, Nakayama H, Satouchi M, Aoyama H. Clinical results of proton beam radiotherapy for inoperable stage III non-small cell lung cancer: a Japanese national registry study. JOURNAL OF RADIATION RESEARCH 2023:7150736. [PMID: 37137157 DOI: 10.1093/jrr/rrad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Indexed: 05/05/2023]
Abstract
This study presents the first data of a Japanese nationwide multi-institutional cohort and compares them with the findings of systematic literature reviews on radiation therapies and inoperable stage III non-small cell lung cancer (NSCLC) conducted by the Lung Cancer Working Group in the Particle Beam Therapy (PBT) Committee and Subcommittee at Japanese Society for Radiation Oncology. The Lung Cancer Working Group extracted eight reports and compared their data with those of the PBT registry from May 2016 to June 2018. All the analyzed 75 patients aged ≤80 years underwent proton therapy (PT) with concurrent chemotherapy for inoperable stage III NSCLC. The median follow-up period of the surviving patients was 39.5 (range, 1.6-55.6) months. The 2- and 3-year overall survival (OS) and progression-free survival rates were 73.6%/64.7% and 28.9%/25.1%, respectively. During the follow-up period, six patients (8.0%) had adverse events of Grade ≥ 3, excluding abnormal laboratory values. These included esophagitis in four patients, dermatitis in one and pneumonitis in one. Adverse events of Grade ≥ 4 were not observed. The results of these PBT registry data in patients with inoperable stage III NSCLC suggest that the OS rate was at least equivalent to that of radiation therapy using X-rays and that the incidence of severe radiation pneumonitis was low. PT may be an effective treatment to reduce toxicities of healthy tissues, including the lungs and heart, in patients with inoperable stage III NSCLC.
Collapse
Affiliation(s)
- Hitoshi Tatebe
- Proton Therapy Center, Fukui Prefectural Hospital, 2-8-1 Yotsui, Fukui 910-0846, Japan
| | - Hideyuki Harada
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, 1007 Shimonagamubo, Nagaizumi-cho, Sunto-Gun, Shizuoka 411-8777, Japan
| | - Keita Mori
- Department of Biostatistics, Clinical Research Center, Shizuoka Cancer Center, 1007 Shimonagamubo, Nagaizumi-cho, Sunto-Gun, Shizuoka 411-8777, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa 277-0882, Japan
| | - Masao Murakami
- Southern Tohoku Proton Therapy Center, 7-172, Yatsuyamada, Fukushima, Koriyama 963-8052, Japan
| | - Takahiro Waki
- Department of Radiology, Tsuyama Chuo Hospital, 1756 Kawasaki, Tsuyama City, Okayama 708-0841, Japan
| | - Takashi Ogino
- Medipolis Proton Therapy and Research Center, 4423 Higashikata, Ibusuki City, Kagoshima 891-0304, Japan
| | - Masatoshi Nakamura
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Tsukuba 305-8577, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0808, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama City, Kanagawa 241-8515, Japan
| | - Miyako Satouchi
- Department of Thoracic Oncology, Hyogo Cancer Center, 13-70 kitaojicho, Akashi, Hyogo 673-8558, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Hokkaido 060-0808, Japan
| |
Collapse
|
7
|
Aguado-Barrera ME, Sosa-Fajardo P, Gómez-Caamaño A, Taboada-Valladares B, Couñago F, López-Guerra JL, Vega A. Radiogenomics in lung cancer: Where are we? Lung Cancer 2023; 176:56-74. [PMID: 36621035 DOI: 10.1016/j.lungcan.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Huge technological and biomedical advances have improved the survival and quality of life of lung cancer patients treated with radiotherapy. However, during treatment planning, a probability that the patient will experience adverse effects is assumed. Radiotoxicity is a complex entity that is largely dose-dependent but also has important intrinsic factors. One of the most studied is the genetic variants that may be associated with susceptibility to the development of adverse effects of radiotherapy. This review aims to present the current status of radiogenomics in lung cancer, integrating results obtained in association studies of SNPs (single nucleotide polymorphisms) related to radiotherapy toxicities. We conclude that despite numerous publications in this field, methodologies and endpoints vary greatly, making comparisons between studies difficult. Analyzing SNPs from the candidate gene approach, together with the study in cohorts limited by the sample size, has complicated the possibility of having validated results. All this delays the incorporation of genetic biomarkers in predictive models for clinical application. Thus, from all analysed SNPs, only 12 have great potential as esophagitis genetic risk factors and deserve further exploration. This review highlights the efforts that have been made to date in the radiogenomic study of radiotoxicity in lung cancer.
Collapse
Affiliation(s)
- Miguel E Aguado-Barrera
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain
| | - Paloma Sosa-Fajardo
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Antonio Gómez-Caamaño
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Begoña Taboada-Valladares
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, C. del Maestro Ángel Llorca 8, 28003, Madrid, Spain
| | - José Luis López-Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), C. Antonio Maura Montaner s/n, 41013, Seville, Spain
| | - Ana Vega
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Yu NY, DeWees TA, Voss MM, Breen WG, Chiang JS, Ding JX, Daniels TB, Owen D, Olivier KR, Garces YI, Park SS, Sarkaria JN, Yang P, Savvides PS, Ernani V, Liu W, Schild SE, Merrell KW, Sio TT. Cardiopulmonary Toxicity Following Intensity-Modulated Proton Therapy (IMPT) Versus Intensity-Modulated Radiation Therapy (IMRT) for Stage III Non-Small Cell Lung Cancer. Clin Lung Cancer 2022; 23:e526-e535. [PMID: 36104272 DOI: 10.1016/j.cllc.2022.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Intensity-modulated proton therapy (IMPT) has the potential to reduce radiation dose to normal organs when compared to intensity-modulated radiation therapy (IMRT). We hypothesized that IMPT is associated with a reduced rate of cardiopulmonary toxicities in patients with Stage III NSCLC when compared with IMRT. METHODS We analyzed 163 consecutively treated patients with biopsy-proven, stage III NSCLC who received IMPT (n = 35, 21%) or IMRT (n = 128, 79%). Patient, tumor, and treatment characteristics were analyzed. Overall survival (OS), freedom-from distant metastasis (FFDM), freedom-from locoregional relapse (FFLR), and cardiopulmonary toxicities (CTCAE v5.0) were calculated using the Kaplan-Meier estimate. Univariate cox regressions were conducted for the final model. RESULTS Median follow-up of surviving patients was 25.5 (range, 4.6-58.1) months. Median RT dose was 60 (range, 45-72) Gy [RBE]. OS, FFDM, and FFLR were not different based on RT modality. IMPT provided significant dosimetric pulmonary and cardiac sparing when compared to IMRT. IMPT was associated with a reduced rate of grade more than or equal to 3 pneumonitis (HR 0.25, P = .04) and grade more than or equal to 3 cardiac events (HR 0.33, P = .08). Pre-treatment predicted diffusing capacity for carbon monoxide less than equal to 57% (HR 2.8, P = .04) and forced expiratory volume in the first second less than equal to 61% (HR 3.1, P = .03) were associated with an increased rate of grade more than or equal to 3 pneumonitis. CONCLUSIONS IMPT is associated with a reduced risk of clinically significant pneumonitis and cardiac events when compared with IMRT without compromising tumor control in stage III NSCLC. IMPT may provide a safer treatment option, particularly for high-risk patients with poor pretreatment pulmonary function.
Collapse
Affiliation(s)
- Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | - Todd A DeWees
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, AZ
| | - Molly M Voss
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, AZ
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | | | - Julia X Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | - Thomas B Daniels
- Department of Radiation Oncology, NYU Langone Health, New York, NY
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | | | | | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ
| | | | - Vinicius Ernani
- Department of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | | | | | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ.
| |
Collapse
|
9
|
Carrasquilla M, Paudel N, Collins BT, Anderson E, Krochmal R, Margolis M, Balawi A, DeBlois D, Giaccone G, Kim C, Liu S, Lischalk JW. High-Risk Non-Small Cell Lung Cancer Treated With Active Scanning Proton Beam Radiation Therapy and Immunotherapy. Adv Radiat Oncol 2022; 8:101125. [PMID: 36578277 PMCID: PMC9791120 DOI: 10.1016/j.adro.2022.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose Non-small cell lung cancer (NSCLC) is a deadly malignancy that is frequently diagnosed in patients with significant medical comorbidities. When delivering local and regional therapy, an exceedingly narrow therapeutic window is encountered, which often precludes patients from receiving aggressive curative therapy. Radiation therapy advances including particle therapy have been employed in an effort to expand this therapeutic window. Here we report outcomes with the use of proton therapy with curative intent and immunotherapy to treat patients diagnosed with high-risk NSCLC. Methods and Materials Patients were determined to be high risk if they had severe underlying cardiopulmonary dysfunction, history of prior thoracic radiation therapy, and/or large volume or unfavorable location of disease (eg, bilateral hilar involvement, supraclavicular involvement). As such, patients were determined to be ineligible for conventional x-ray-based radiation therapy and were treated with pencil beam scanning proton beam therapy (PBS-PBT). Patients who demonstrated excess respiratory motion (ie, greater than 1 cm in any dimension noted on the 4-dimensional computed tomography simulation scan) were deemed to be ineligible for PBT. Toxicity was reported using the Common Terminology Criteria for Adverse Events (CTCAE), version 5.0. Overall survival and progression-free survival were calculated using the Kaplan-Meier method. Results A total of 29 patients with high-risk NSCLC diagnoses were treated with PBS-PBT. The majority (55%) of patients were defined as high risk due to severe cardiopulmonary dysfunction. Most commonly, patients were treated definitively to a total dose of 6000 cGy (relative biological effectiveness) in 30 fractions with concurrent chemotherapy. Overall, there were a total of 6 acute grade 3 toxicities observed in our cohort. Acute high-grade toxicities included esophagitis (n = 4, 14%), dyspnea (n = 1, 3.5%), and cough (n = 1, 3.5%). No patients developed grade 4 or higher toxicity. The majority of patients went on to receive immunotherapy, and high-grade pneumonitis was rare. Two-year progression-free and overall survival was estimated to be 51% and 67%, respectively. COVID-19 was confirmed or suspected to be responsible for 2 patient deaths during the follow-up period. Conclusions Radical PBS-PBT treatment delivered in a cohort of patients with high-risk lung cancer with immunotherapy is feasible with careful multidisciplinary evaluation and rigorous follow-up.
Collapse
Affiliation(s)
- Michael Carrasquilla
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Nitika Paudel
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Brian T. Collins
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Eric Anderson
- Division of Pulmonary and Critical Care Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Rebecca Krochmal
- Division of Pulmonary and Critical Care Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Marc Margolis
- Division of Thoracic Surgery, MedStar Georgetown University Hospital, Washington, DC
| | - Ahssan Balawi
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - David DeBlois
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Giuseppe Giaccone
- Department of Hematology and Oncology, Weill Cornell Medical Center, New York, New York
| | - Chul Kim
- Lombardi Cancer Center, MedStar Georgetown University Hospital, Washington, DC
| | - Stephen Liu
- Lombardi Cancer Center, MedStar Georgetown University Hospital, Washington, DC
| | - Jonathan W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Hospital – Long Island, New York, New York,Corresponding author: Jonathan W. Lischalk, MD
| |
Collapse
|
10
|
Rodríguez De Dios N, Navarro-Martin A, Cigarral C, Chicas-Sett R, García R, Garcia V, Gonzalez JA, Gonzalo S, Murcia-Mejía M, Robaina R, Sotoca A, Vallejo C, Valtueña G, Couñago F. GOECP/SEOR radiotheraphy guidelines for non-small-cell lung cancer. World J Clin Oncol 2022; 13:237-266. [PMID: 35582651 PMCID: PMC9052073 DOI: 10.5306/wjco.v13.i4.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/27/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease accounting for approximately 85% of all lung cancers. Only 17% of patients are diagnosed at an early stage. Treatment is multidisciplinary and radiotherapy plays a key role in all stages of the disease. More than 50% of patients with NSCLC are treated with radiotherapy (curative-intent or palliative). Technological advances-including highly conformal radiotherapy techniques, new immobilization and respiratory control systems, and precision image verification systems-allow clinicians to individualize treatment to maximize tumor control while minimizing treatment-related toxicity. Novel therapeutic regimens such as moderate hypofractionation and advanced techniques such as stereotactic body radiotherapy (SBRT) have reduced the number of radiotherapy sessions. The integration of SBRT into routine clinical practice has radically altered treatment of early-stage disease. SBRT also plays an increasingly important role in oligometastatic disease. The aim of the present guidelines is to review the role of radiotherapy in the treatment of localized, locally-advanced, and metastatic NSCLC. We review the main radiotherapy techniques and clarify the role of radiotherapy in routine clinical practice. These guidelines are based on the best available evidence. The level and grade of evidence supporting each recommendation is provided.
Collapse
Affiliation(s)
- Núria Rodríguez De Dios
- Department of Radiation Oncology, Hospital del Mar, Barcelona 08003, Spain
- Radiation Oncology Research Group, Hospital Del Mar Medical Research Institution, Barcelona 08003, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Thoracic Malignancies Unit, Hospital Duran i Reynals. ICO, L´Hospitalet de L, Lobregat 08908, Spain
| | - Cristina Cigarral
- Department of Radiation Oncology, Hospital Clínico de Salamanca, Salamanca 37007, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Rafael García
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Virginia Garcia
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | | | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitario Sant Joan de Reus, Reus 43204, Tarragona, Spain
| | - Rogelio Robaina
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Carmen Vallejo
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - German Valtueña
- Department of Radiation Oncology, Hospital Clínico Universitario Lozano Blesa, Zaragoza 50009, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Clinical, Universidad Europea, Madrid 28670, Spain
| |
Collapse
|
11
|
Nogueira LM, Jemal A, Yabroff KR, Efstathiou JA. Assessment of Proton Beam Therapy Use Among Patients With Newly Diagnosed Cancer in the US, 2004-2018. JAMA Netw Open 2022; 5:e229025. [PMID: 35476066 PMCID: PMC9047654 DOI: 10.1001/jamanetworkopen.2022.9025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Proton beam therapy (PBT) is a potentially superior technology to photon radiotherapy for tumors with complex anatomy, those surrounded by sensitive tissues, and childhood cancers. OBJECTIVE To assess patterns of use of PBT according to the present American Society of Radiation Oncology (ASTRO) clinical indications in the US. DESIGN, SETTING, AND PARTICIPANTS Individuals newly diagnosed with cancer between 2004 and 2018 were selected from the National Cancer Database. Data analysis was performed from October 4, 2021, to February 22, 2022. ASTRO's Model Policies (2017) were used to classify patients into group 1, for which health insurance coverage for PBT treatment is recommended, and group 2, for which coverage is recommended only if additional requirements are met. MAIN OUTCOMES AND MEASURES Use of PBT. RESULTS Of the 5 919 368 patients eligible to receive PBT included in the study, 3 206 902 were female (54.2%), and mean (SD) age at diagnosis was 62.6 (12.3) years. Use of PBT in the US increased from 0.4% in 2004 to 1.2% in 2018 (annual percent change [APC], 8.12%; P < .001) due to increases in group 1 from 0.4% in 2010 to 2.2% in 2018 (APC, 21.97; P < .001) and increases in group 2 from 0.03% in 2014 to 0.1% in 2018 (APC, 30.57; P < .001). From 2010 to 2018, among patients in group 2, PBT targeted to the breast increased from 0.0% to 0.9% (APC, 51.95%), and PBT targeted to the lung increased from 0.1% to 0.7% (APC, 28.06%) (P < .001 for both). Use of PBT targeted to the prostate decreased from 1.4% in 2011 to 0.8% in 2014 (APC, -16.48%; P = .03) then increased to 1.3% in 2018 (APC, 12.45; P < .001). Most patients in group 1 treated with PBT had private insurance coverage in 2018 (1039 [55.4%]); Medicare was the most common insurance type among those in group 2 (1973 [52.5%]). CONCLUSIONS AND RELEVANCE The findings of this study show an increase in the use of PBT in the US between 2004 to 2018; prostate was the only cancer site for which PBT use decreased temporarily between 2011 and 2014, increasing again between 2014 and 2018. These findings may be especially relevant for Medicare radiation oncology coverage policies.
Collapse
Affiliation(s)
- Leticia M. Nogueira
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Ahmedin Jemal
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - K. Robin Yabroff
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Jason A. Efstathiou
- Department of Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston
| |
Collapse
|
12
|
Hashimoto S, Iwata H, Hattori Y, Nakajima K, Nomura K, Hayashi K, Toshito T, Yamamori E, Akita K, Mizoe JE, Ogino H, Shibamoto Y. Outcomes of proton therapy for non-small cell lung cancer in patients with interstitial pneumonia. Radiat Oncol 2022; 17:56. [PMID: 35313905 PMCID: PMC8935826 DOI: 10.1186/s13014-022-02027-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
Background Interstitial pneumonia (IP) is a disease with a poor prognosis. In addition, IP patients are more likely to develop lung cancer. Since IP patients frequently develop toxicities during cancer treatment, minimally invasive cancer treatment is warranted for such patients to maintain their quality of life. This study retrospectively investigated the efficacy and safety of proton therapy (PT) for non-small cell lung cancer (NSCLC) in patients with IP. Methods Twenty-nine NSCLC patients with IP were treated with PT between September 2013 and December 2019. The patients had stage IA to IIIB primary NSCLC. Ten of the 29 patients exhibited the usual interstitial pneumonia pattern. The prescribed dose was 66–74 Grays (relative biological effectiveness) in 10–37 fractions. Results The median follow-up period was 21.1 months [interquartile range (IQR), 15.6–37.3] for all patients and 37.2 months (IQR, 24.0–49.9) for living patients. The median patient age was 77 years (IQR, 71–81). The median planning target volume was 112.0 ml (IQR, 56.1–246.3). The 2-year local control, progression-free survival, and overall survival rates were 85% (95% confidence interval: 57–95), 30% (15–47), and 45% (26–62), respectively. According to the Common Terminology Criteria for Adverse Events (version 4.0), grade 3 acute radiation pneumonitis (RP) was observed in 1 patient. Two patients developed grade 3 late RP, but no other patients experienced serious toxicities. The patients’ quality of life (European Organization for Research and Treatment of Cancer QLQ-C30 and QLQ-LC13 and SF-36) scores had not changed after 3 months. Conclusions PT may be a relatively safe treatment for NSCLC patients with IP, without deteriorating quality of life scores within 3 months.
Collapse
Affiliation(s)
- Shingo Hashimoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Yukiko Hattori
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Kento Nomura
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Kensuke Hayashi
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Eiko Yamamori
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Kenji Akita
- Department of Respiratory Medicine, Thoracic Oncology Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Jun-Etsu Mizoe
- Sapporo High Functioning Radiotherapy Center, Hokkaido Ohno Memorial Hospital, Sapporo, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Narita Memorial Proton Center, Toyohashi, Japan
| |
Collapse
|
13
|
Substantial Sparing of Organs at Risk with Modern Proton Therapy in Lung Cancer, but Altered Breathing Patterns Can Jeopardize Target Coverage. Cancers (Basel) 2022; 14:cancers14061365. [PMID: 35326516 PMCID: PMC8945974 DOI: 10.3390/cancers14061365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Treatment of locally advanced non-small cell lung cancer (LA-NSCLC) is a fine balance between toxicity and cure. Modern proton therapy might offer a more gentle radiation treatment compared to state-of-the-art photon radiotherapy, but is also more susceptible to the influence of breathing motion and anatomical changes. In this study, the influence of such uncertainties on treatment delivery was thoroughly investigated. Modern proton therapy did indeed show potential to reduce the risk of toxicity for the heart and lungs. This potential was maintained under the influence of anatomical and delivery uncertainties. However, changes in breathing motion jeopardized the target dose distribution in a subset of patients. We therefore recommend imaging at onset or early in treatment to recognize these patients and adapt the treatment. Abstract Enhancing treatment of locally advanced non-small cell lung cancer (LA-NSCLC) by using pencil beam scanning proton therapy (PBS-PT) is attractive, but little knowledge exists on the effects of uncertainties occurring between the planning (Plan) and the start of treatment (Start). In this prospective simulation study, we investigated the clinical potential for PBS-PT under the influence of such uncertainties. Imaging with 4DCT at Plan and Start was carried out for 15 patients that received state-of-the-art intensity-modulated radiotherapy (IMRT). Three PBS-PT plans were created per patient: 3D robust single-field uniform dose (SFUD), 3D robust intensity-modulated proton therapy (IMPT), and 4D robust IMPT (4DIMPT). These were exposed to setup and range uncertainties and breathing motion at Plan, and changes in breathing motion and anatomy at Start. Target coverage and dose-volume parameters relevant for toxicity were compared. The organ at risk sparing at Plan was greatest with IMPT, followed by 4DIMPT, SFUD and IMRT, and persisted at Start. All plans met the preset criteria for target robustness at Plan. At Start, three patients had a lack of CTV coverage with PBS-PT. In conclusion, the clinical potential for heart and lung toxicity reduction with PBS-PT was substantial and persistent. Altered breathing patterns between Plan and Start jeopardized target coverage for all PBS-PT techniques.
Collapse
|
14
|
Electrochemical evaluation of proton beam radiation effect on the B16 cell culture. Sci Rep 2022; 12:2261. [PMID: 35145154 PMCID: PMC8831578 DOI: 10.1038/s41598-022-06277-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
The interaction of radiation with matter takes place through energy transfer and is accomplished especially by ionized atoms or molecules. The effect of radiation on biological systems involves multiple physical, chemical and biological steps. Direct effects result in a large number of reactive oxygen species (ROS) within and outside and inside of the cells as well, which are responsible for oxidative stress. Indirect effects are defined as alteration of normal biological processes and cellular components (DNA, protein, lipids, etc.) caused by the reactive oxygen species directly induced by radiation. In this work, a classical design of an electrochemical (EC) three-electrodes system was employed for analyzing the effects of proton beam radiation on melanoma B16 cell line. In order to investigate the effect of proton radiation on the B16 cells, the cells were grown on the EC surface and irradiated. After optimization of the experimental set-up and dosimetry, the radiobiological experiments were performed at doses ranging between 0 and 2 Gy and the effect of proton beam irradiation on the cells was evaluated by the means of cyclic voltammetry and measuring the open circuit potential between working and reference electrodes.
Collapse
|
15
|
Miyasaka Y, Sato H, Okano N, Kubo N, Kawamura H, Ohno T. A Promising Treatment Strategy for Lung Cancer: A Combination of Radiotherapy and Immunotherapy. Cancers (Basel) 2021; 14:203. [PMID: 35008367 PMCID: PMC8750493 DOI: 10.3390/cancers14010203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide despite advances in treatment. In the past few decades, radiotherapy has achieved outstanding technical advances and is being widely used as a definitive, prophylactic, or palliative treatment of patients with lung cancer. The anti-tumor effects of radiotherapy are considered to result in DNA damage in cancer cells. Moreover, recent evidence has demonstrated another advantage of radiotherapy: the induction of anti-tumor immune responses, which play an essential role in cancer control. In contrast, radiotherapy induces an immunosuppressive response. These conflicting reactions after radiotherapy suggest that maximizing immune response to radiotherapy by combining immunotherapy has potential to achieve more effective anti-tumor response than using each alone. Immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4, programmed cell death-1/programmed death-ligand 1, and their inhibitors, have attracted significant attention for overcoming the immunosuppressive conditions in patients with cancer. Therefore, the combination of immune checkpoint inhibitors and radiotherapy is promising. Emerging preclinical and clinical studies have demonstrated the rationale for these combination strategies. In this review, we outlined evidence suggesting that combination of radiotherapy, including particle therapy using protons and carbon ions, with immunotherapy in lung cancer treatment could be a promising treatment strategy.
Collapse
Affiliation(s)
- Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Naoko Okano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| |
Collapse
|
16
|
Köthe A, Bizzocchi N, Safai S, Lomax AJ, Weber DC, Fattori G. Investigating the potential of proton therapy for hypoxia-targeted dose escalation in non-small cell lung cancer. Radiat Oncol 2021; 16:199. [PMID: 34635135 PMCID: PMC8507157 DOI: 10.1186/s13014-021-01914-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hypoxia is known to be prevalent in solid tumors such as non-small cell lung cancer (NSCLC) and reportedly correlates with poor prognostic clinical outcome. PET imaging can provide in-vivo hypoxia measurements to support targeted radiotherapy treatment planning. We explore the potential of proton therapy in performing patient-specific dose escalation and compare it with photon volumetric modulated arc therapy (VMAT). METHODS Dose escalation has been calibrated to the patient specific tumor response of ten stage IIb-IIIb NSCLC patients by combining HX4-PET imaging and radiobiological modelling of oxygen enhancement ratio (OER) to target variable tumor hypoxia. In a dose-escalation-by-contour approach, escalated dose levels were simulated to the most hypoxic region of the primary target and its effectiveness in improving loco-regional tumor control was assessed. Furthermore, the impact on normal tissue of proton treatments including dose escalation was evaluated in comparison to the normal tissue complication probability (NTCP) of conventional VMAT plans. RESULTS Ignoring regions of tumor hypoxia can cause overestimation of TCP values by up to 10%, which can effectively be recovered on average to within 0.9% of the nominal TCP, using patient-specific dose escalations of up to 22% of the prescribed dose to PET defined hypoxic regions. Despite such dose escalations, the use of protons could also simultaneously reduce mean doses to the heart (- 14.3 GyRBE), lung (- 8.3 GyRBE), esophagus (- 6.9 GyRBE) and spinal cord (- 3.8 Gy) compared to non-escalated VMAT plans. These reductions are predicted to lead to clinically relevant decreases in NTCP for radiation-induced pneumonitis (- 11.3%), high grade heart toxicity (- 7.4%) and esophagitis (- 7.5%). CONCLUSIONS This study suggests that the administration of proton therapy for dose escalation to patient specific regions of tumor hypoxia in the treatment of NSCLC can mitigate TCP reduction due to hypoxia-induced radio resistance, while simultaneously reducing NTCP levels even when compared to non-escalated treatments delivered with state-of-the-art photon techniques.
Collapse
Affiliation(s)
- Andreas Köthe
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland. .,Department of Physics, ETH-Hönggerberg, Zurich, Switzerland.
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland.,Department of Physics, ETH-Hönggerberg, Zurich, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland.,Radiation Oncology Department, Inselspital Universitätsspital Bern, Bern, Switzerland.,Radiation Oncology Department, University Hospital of Zurich, Zurich, Switzerland
| | - Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| |
Collapse
|
17
|
Dosimetry, Efficacy, Safety, and Cost-Effectiveness of Proton Therapy for Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13184545. [PMID: 34572772 PMCID: PMC8465697 DOI: 10.3390/cancers13184545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common malignancy which requires radiotherapy (RT) as an important part of its multimodality treatment. With the advent of the novel irradiation technique, the clinical outcome of NSCLC patients who receive RT has been dramatically improved. The emergence of proton therapy, which allows for a sharper dose of build-up and drop-off compared to photon therapy, has potentially improved clinical outcomes of NSCLC. Dosimetry studies have indicated that proton therapy can significantly reduce the doses for normal organs, especially the lung, heart, and esophagus while maintaining similar robust target volume coverage in both early and advanced NSCLC compared with photon therapy. However, to date, most studies have been single-arm and concluded no significant changes in the efficacy for early-stage NSCLC by proton therapy over stereotactic body radiation therapy (SBRT). The results of proton therapy for advanced NSCLC in these studies were promising, with improved clinical outcomes and reduced toxicities compared with historical photon therapy data. However, these studies were also mainly single-arm and lacked a direct comparison between the two therapies. Currently, there is much emerging evidence focusing on dosimetry, efficacy, safety, and cost-effectiveness of proton therapy for NSCLC that has been published, however, a comprehensive review comparing these therapies is, to date, lacking. Thus, this review focuses on these aspects of proton therapy for NSCLC.
Collapse
|
18
|
Clinical Outcomes of Pencil Beam Scanning Proton Therapy in Locally Advanced Non-Small Cell Lung Cancer: Propensity Score Analysis. Cancers (Basel) 2021; 13:cancers13143497. [PMID: 34298711 PMCID: PMC8307066 DOI: 10.3390/cancers13143497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
This study compared the efficacy and safety of pencil beam scanning proton therapy (PBSPT) versus intensity-modulated (photon) radiotherapy (IMRT) in patients with stage III non-small cell lung cancer (NSCLC). We retrospectively reviewed 219 patients with stage III NSCLC who received definitive concurrent chemoradiotherapy between November 2016 and December 2018. Twenty-five patients (11.4%) underwent PBSPT (23 with single-field optimization) and 194 patients (88.6%) underwent IMRT. Rates of locoregional control (LRC), overall survival, and acute/late toxicities were compared between the groups using propensity score-adjusted analyses. Patients treated with PBSPT were older (median: 67 vs. 62 years) and had worse pulmonary function at baseline (both FEV1 and DLCO) compared to those treated with IMRT. With comparable target coverage, PBSPT exhibited superior sparing of the lung, heart, and spinal cord to radiation exposure compared to IMRT. At a median follow-up of 21.7 (interquartile range: 16.8-26.8) months, the 2-year LRC rates were 72.1% and 84.1% in the IMRT and PBSPT groups, respectively (p = 0.287). The rates of grade ≥ 3 esophagitis were 8.2% and 20.0% after IMRT and PBSPT (p = 0.073), respectively, while corresponding rates of grade ≥ 2 radiation pneumonitis were 28.9% and 16.0%, respectively (p = 0.263). PBSPT appears to be an effective and safe treatment technique even for patients with poor lung function, and it does not jeopardize LRC.
Collapse
|
19
|
Dougherty JM, Castillo E, Castillo R, Faught AM, Pepin M, Park SS, Beltran CJ, Guerrero T, Grills I, Vinogradskiy Y. Functional avoidance-based intensity modulated proton therapy with 4DCT derived ventilation imaging for lung cancer. J Appl Clin Med Phys 2021; 22:276-285. [PMID: 34159715 PMCID: PMC8292710 DOI: 10.1002/acm2.13323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
The primary objective is to evaluate the potential dosimetric gains of performing functional avoidance‐based proton treatment planning using 4DCT derived ventilation imaging. 4DCT data of 31 patients from a prospective functional avoidance clinical trial were evaluated with intensity modulated proton therapy (IMPT) plans and compared with clinical volumetric modulated arc therapy (VMAT) plans. Dosimetric parameters were compared between standard and functional plans with IMPT and VMAT with one‐way analysis of variance and post hoc paired student t‐test. Normal Tissue Complication Probability (NTCP) models were employed to estimate the risk of two toxicity endpoints for healthy lung tissues. Dose degradation due to proton motion interplay effect was evaluated. Functional IMPT plans led to significant dose reduction to functional lung structures when compared with functional VMAT without significant dose increase to Organ at Risk (OAR) structures. When interplay effect is considered, no significant dose degradation was observed for the OARs or the clinical target volume (CTV) volumes for functional IMPT. Using fV20 as the dose metric and Grade 2+ pneumonitis as toxicity endpoint, there is a mean 5.7% reduction in Grade 2+ RP with the functional IMPT and as high as 26% in reduction for individual patient when compared to the standard IMPT planning. Functional IMPT was able to spare healthy lung tissue to avoid excess dose to normal structures while maintaining satisfying target coverage. NTCP calculation also shows that the risk of pulmonary complications can be further reduced with functional based IMPT.
Collapse
Affiliation(s)
| | - Edward Castillo
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA.,Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Richard Castillo
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Austin M Faught
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark Pepin
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas Guerrero
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
20
|
Magro G, Mein S, Kopp B, Mastella E, Pella A, Ciocca M, Mairani A. FRoG dose computation meets Monte Carlo accuracy for proton therapy dose calculation in lung. Phys Med 2021; 86:66-74. [PMID: 34058719 DOI: 10.1016/j.ejmp.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To benchmark and evaluate the clinical viability of novel analytical GPU-accelerated and CPU-based Monte Carlo (MC) dose-engines for spot-scanning intensity-modulated-proton-therapy (IMPT) towards the improvement of lung cancer treatment. METHODS Nine patient cases were collected from the CNAO clinical experience and The Cancer Imaging Archive-4D-Lung-Database for in-silico study. All plans were optimized with 2 orthogonal beams in RayStation (RS) v.8. Forward calculations were performed with FRoG, an independent dose calculation system using a fast robust approach to the pencil beam algorithm (PBA), RS-MC (CPU for v.8) and general-purpose MC (gp-MC). Dosimetric benchmarks were acquired via irradiation of a lung-like phantom and ionization chambers for both a single-field-uniform-dose (SFUD) and IMPT plans. Dose-volume-histograms, dose-difference and γ-analyses were conducted. RESULTS With respect to reference gp-MC, the average dose to the GTV was 1.8% and 2.3% larger for FRoG and the RS-MC treatment planning system (TPS). FRoG and RS-MC showed a local γ-passing rate of ~96% and ~93%. Phantom measurements confirmed FRoG's high accuracywith a deviation < 0.1%. CONCLUSIONS Dose calculation performance using the GPU-accelerated analytical PBA, MC-TPS and gp-MC code were well within clinical tolerances. FRoG predictions were in good agreement with both the full gp-MC and experimental data for proton beams optimized for thoracic dose calculations. GPU-accelerated dose-engines like FRoG may alleviate current issues related to deficiencies in current commercial analytical proton beam models. The novel approach to the PBA implemented in FRoG is suitable for either clinical TPS or as an auxiliary dose-engine to support clinical activity for lung patients.
Collapse
Affiliation(s)
- Giuseppe Magro
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Edoardo Mastella
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Andrea Pella
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Mario Ciocca
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Andrea Mairani
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy; Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
21
|
Nenoff L, Matter M, Amaya EJ, Josipovic M, Knopf AC, Lomax AJ, Persson GF, Ribeiro CO, Visser S, Walser M, Weber DC, Zhang Y, Albertini F. Dosimetric influence of deformable image registration uncertainties on propagated structures for online daily adaptive proton therapy of lung cancer patients. Radiother Oncol 2021; 159:136-143. [PMID: 33771576 DOI: 10.1016/j.radonc.2021.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE A major burden of introducing an online daily adaptive proton therapy (DAPT) workflow is the time and resources needed to correct the daily propagated contours. In this study, we evaluated the dosimetric impact of neglecting the online correction of the propagated contours in a DAPT workflow. MATERIAL AND METHODS For five NSCLC patients with nine repeated deep-inspiration breath-hold CTs, proton therapy plans were optimised on the planning CT to deliver 60 Gy-RBE in 30 fractions. All repeated CTs were registered with six different clinically used deformable image registration (DIR) algorithms to the corresponding planning CT. Structures were propagated rigidly and with each DIR algorithm and reference structures were contoured on each repeated CT. DAPT plans were optimised with the uncorrected, propagated structures (propagated DAPT doses) and on the reference structures (ideal DAPT doses), non-adapted doses were recalculated on all repeated CTs. RESULTS Due to anatomical changes occurring during the therapy, the clinical target volume (CTV) coverage of the non-adapted doses reduces on average by 9.7% (V95) compared to an ideal DAPT doses. For the propagated DAPT doses, the CTV coverage was always restored (average differences in the CTV V95 < 1% compared to the ideal DAPT doses). Hotspots were always reduced with any DAPT approach. CONCLUSION For the patients presented here, a benefit of online DAPT was shown, even if the daily optimisation is based on propagated structures with some residual uncertainties. However, a careful (offline) structure review is necessary and corrections can be included in an offline adaption.
Collapse
Affiliation(s)
- Lena Nenoff
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland; Department of Physics, ETH Zurich, Switzerland.
| | - Michael Matter
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | | | - Mirjana Josipovic
- Department of Oncology, Rigshospitalet Copenhagen University Hospital, Denmark
| | - Antje-Christin Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Antony John Lomax
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Gitte F Persson
- Department of Oncology, Rigshospitalet Copenhagen University Hospital, Denmark; Department of Oncology, Herlev-Gentofte Hospital Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Cássia O Ribeiro
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sabine Visser
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marc Walser
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland
| | - Damien Charles Weber
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, University Hospital Bern, Switzerland
| | - Ye Zhang
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland
| | | |
Collapse
|
22
|
Ohnishi K, Ishikawa H, Nakazawa K, Shiozawa T, Mori Y, Nakamura M, Okumura T, Sekine I, Hizawa N, Sakurai H. Long-term outcomes of high-dose (74 GyE) proton beam therapy with concurrent chemotherapy for stage III nonsmall-cell lung cancer. Thorac Cancer 2021; 12:1320-1327. [PMID: 33675285 PMCID: PMC8088926 DOI: 10.1111/1759-7714.13896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To evaluate the long-term outcomes of high-dose (74 GyE) proton beam therapy (PBT) with concurrent chemotherapy for stage III non-small cell lung cancer (NSCLC). METHODS Between July 2007 and March 2018, 45 patients with stage III NSCLC were treated with passive-scattering PBT of 74 GyE and concurrent chemotherapy. Among the 45 patients, the median age was 62 years (range 39-79 years) and 32 patients were men. The clinical stages were stage IIIA in 14 patients and stage IIIB in 31 patients. Thirty-six patients received chemotherapy consisting of cisplatin and vinorelbine. RESULTS The median follow-up time was 42.1 months (range 6.4-127.0 months) for all patients and 63.5 months (range 9.4-127.0 months) for the 12 survivors. The 3- and 5-year overall survival rates were 63.7% and 38.8%, respectively, and the median overall survival was 49.1 months. Over the follow-up period, disease recurrence was observed in 32 (71%) patients. The 3- and 5-year progression-free survival rates were 22.2% and 17.7%, respectively, with a median progression-free survival of 13.1 months. In-field control improved survival and the in-field control rate was better in patients with T0-3 tumors (p = 0.023) and stage IIIA/IIIB-N3 disease (p = 0.030). Dosimetric parameters of the heart and lung were not associated with survival. No grade 4 or 5 acute or late non-hematologic toxicities were observed. CONCLUSIONS Passive-scattering PBT of 74 GyE with chemotherapy showed favorable survival and a low incidence of severe adverse events in patients with stage III NSCLC.
Collapse
Affiliation(s)
- Kayoko Ohnishi
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Radiology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hitoshi Ishikawa
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kensuke Nakazawa
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshihiro Shiozawa
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yutaro Mori
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masatoshi Nakamura
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
23
|
Wong SL, Alshaikhi J, Grimes H, Amos RA, Poynter A, Rompokos V, Gulliford S, Royle G, Liao Z, Sharma RA, Mendes R. Retrospective Planning Study of Patients with Superior Sulcus Tumours Comparing Pencil Beam Scanning Protons to Volumetric-Modulated Arc Therapy. Clin Oncol (R Coll Radiol) 2021; 33:e118-e131. [PMID: 32798157 PMCID: PMC7883303 DOI: 10.1016/j.clon.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/30/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
AIMS Twenty per cent of patients with non-small cell lung cancer present with stage III locally advanced disease. Precision radiotherapy with pencil beam scanning (PBS) protons may improve outcomes. However, stage III is a heterogeneous group and accounting for complex tumour motion is challenging. As yet, it remains unclear as to whom will benefit. In our retrospective planning study, we explored if patients with superior sulcus tumours (SSTs) are a select cohort who might benefit from this treatment. MATERIALS AND METHODS Patients with SSTs treated with radical radiotherapy using four-dimensional planning computed tomography between 2010 and 2015 were identified. Tumour motion was assessed and excluded if greater than 5 mm. Photon volumetric-modulated arc therapy (VMAT) and PBS proton single-field optimisation plans, with and without inhomogeneity corrections, were generated retrospectively. Robustness analysis was assessed for VMAT and PBS plans involving: (i) 5 mm geometric uncertainty, with an additional 3.5% range uncertainty for proton plans; (ii) verification plans at maximal inhalation and exhalation. Comparative dosimetric and robustness analyses were carried out. RESULTS Ten patients were suitable. The mean clinical target volume D95 was 98.1% ± 0.4 (97.5-98.8) and 98.4% ± 0.2 (98.1-98.9) for PBS and VMAT plans, respectively. All normal tissue tolerances were achieved. The same four PBS and VMAT plans failed robustness assessment. Inhomogeneity corrections minimally impacted proton plan robustness and made it worse in one case. The most important factor affecting target coverage and robustness was the clinical target volume entering the spinal canal. Proton plans significantly reduced the mean lung dose (by 21.9%), lung V5, V10, V20 (by 47.9%, 36.4%, 12.1%, respectively), mean heart dose (by 21.4%) and thoracic vertebra dose (by 29.2%) (P < 0.05). CONCLUSIONS In this planning study, robust PBS plans were achievable in carefully selected patients. Considerable dose reductions to the lung, heart and thoracic vertebra were possible without compromising target coverage. Sparing these lymphopenia-related organs may be particularly important in this era of immunotherapy.
Collapse
Affiliation(s)
- S-L Wong
- University College London Cancer Institute, London, UK; Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| | - J Alshaikhi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Saudi Particle Therapy Centre, Riyadh, Saudi Arabia
| | - H Grimes
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - R A Amos
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - A Poynter
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - V Rompokos
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Gulliford
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - G Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Z Liao
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - R A Sharma
- University College London Cancer Institute, London, UK; Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - R Mendes
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Gjyshi O, Xu T, Elhammali A, Boyce-Fappiano D, Chun SG, Gandhi S, Lee P, Chen AB, Lin SH, Chang JY, Tsao A, Gay CM, Zhu XR, Zhang X, Heymach JV, Fossella FV, Lu C, Nguyen QN, Liao Z. Toxicity and Survival After Intensity-Modulated Proton Therapy Versus Passive Scattering Proton Therapy for NSCLC. J Thorac Oncol 2021; 16:269-277. [PMID: 33198942 PMCID: PMC7855203 DOI: 10.1016/j.jtho.2020.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Although intensity-modulated radiation therapy (IMPT) is dosimetrically superior to passive scattering proton therapy (PSPT) for locally advanced NSCLC (LA-NSCLC), direct comparisons of clinical outcomes are lacking. Here, we compare toxicity profiles and clinical outcomes after IMPT versus PSPT for LA-NSCLC. METHODS This is a nonrandomized, comparative study of two independent cohorts with LA-NSCLC (stage II-IIIB, stage IV with solitary brain metastasis) treated with concurrent chemotherapy and proton beam therapy. Toxicity (Common Terminology Criteria for Adverse Events version 4.0) and outcomes were prospectively collected as part of a clinical trial (ClinicalTrials.gov identifier NCT00915005) or prospective registry (ClinicalTrials.gov identifier NCT00991094). RESULTS Of 139 patients, 86 (62%) received PSPT and 53 (38%) IMPT; median follow-up times were 23.9 and 29.0 months, respectively. IMPT delivered lower mean radiation doses to the lungs (PSPT 16.0 Gy versus IMPT 13.0 Gy, p < 0.001), heart (10.7 Gy versus 6.6 Gy, p = 0.004), and esophagus (27.4 Gy versus 21.8 Gy, p = 0.005). Consequently, the IMPT cohort had lower rates of grade 3 or higher pulmonary (17% versus 2%, p = 0.005) and cardiac (11% versus 0%, p = 0.01) toxicities. Six patients (7%) with PSPT and zero patients (0%) with IMPT experienced grade 4 or 5 toxicity. Lower rates of pulmonary (28% versus 3%, p = 0.006) and cardiac (14% versus 0%, p = 0.05) toxicities were observed in the IMPT cohort even after propensity score matching for baseline imbalances. There was also a trend toward longer median overall survival in the IMPT group (23.9 mo versus 36.2 mo, p = 0.09). No difference was found in the 3-year rates of local (25% versus 20%, p = 0.44), local-regional (29% versus 36%, p = 0.56) and distant (52% versus 51%, p = 0.71) recurrences. CONCLUSIONS IMPT is associated with lower radiation doses to the lung, heart, and esophagus, and lower rates of grade 3 or higher cardiopulmonary toxicity; additional clinical studies will be needed to assess the potential differences in survival between the two techniques.
Collapse
Affiliation(s)
- Olsi Gjyshi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ting Xu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adnan Elhammali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Boyce-Fappiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Chun
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Percy Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aileen B Chen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Tsao
- Department of Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl M Gay
- Department of Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - X Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frank V Fossella
- Department of Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles Lu
- Department of Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
25
|
Chiang JS, Yu NY, Daniels TB, Liu W, Schild SE, Sio TT. Proton beam radiotherapy for patients with early-stage and advanced lung cancer: a narrative review with contemporary clinical recommendations. J Thorac Dis 2021; 13:1270-1285. [PMID: 33717598 PMCID: PMC7947490 DOI: 10.21037/jtd-20-2501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although lung cancer rates are decreasing nationally, lung cancer remains the leading cause of cancer related death. Despite advancements in treatment and technology, overall survival (OS) for lung cancer remains poor. Proton beam therapy (PBT) is an advanced radiation therapy (RT) modality for treatment of lung cancer with the potential to achieve dose escalation to tumor while sparing critical structures due to higher target conformality. In early and late-stage non-small cell lung cancer (NSCLC), dosimetric studies demonstrated reduced doses to organs at risk (OARs) such as the lung, spinal cord, and heart, and clinical studies report limited toxicities with PBT, including hypofractionated regimens. In limited-stage SCLC, studies showed that regimens chemo RT including PBT were well tolerated, which may help optimize clinical outcomes. Improved toxicity profiles may be beneficial in post-operative radiotherapy, for which initial dosimetric and clinical data are encouraging. Sparing of OARs may also increase the proportion of patients able to complete reirradiation for recurrent disease. However, there are various challenges of using PBT including a higher financial burden on healthcare and limited data supporting its cost-effectiveness. Further studies are needed to identify subgroups that benefit from PBT based on prognostic factors, and to evaluate PBT combined with immunotherapy, in order to elucidate the benefit that PBT may offer future lung cancer patients.
Collapse
Affiliation(s)
- Jennifer S Chiang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Thomas B Daniels
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
26
|
Patel NV, Yu NY, Koroulakis A, Diwanji T, Sawant A, Sio TT, Mohindra P. Proton therapy for thoracic malignancies: a review of oncologic outcomes. Expert Rev Anticancer Ther 2021; 21:177-191. [PMID: 33118427 DOI: 10.1080/14737140.2021.1844567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Radiotherapy is an integral component in the treatment of the majority of thoracic malignancies. By taking advantage of the steep dose fall-off characteristic of protons combined with modern optimization and delivery techniques, proton beam therapy (PBT) has emerged as a potential tool to improve oncologic outcomes while reducing toxicities from treatment.Areas covered: We review the physical properties and treatment techniques that form the basis of PBT as applicable for thoracic malignancies, including a brief discussion on the recent advances that show promise to enhance treatment planning and delivery. The dosimetric advantages and clinical outcomes of PBT are critically reviewed for each of the major thoracic malignancies, including lung cancer, esophageal cancer, mesothelioma, thymic cancer, and primary mediastinal lymphoma.Expert opinion: Despite clear dosimetric benefits with PBT in thoracic radiotherapy, the improvement in clinical outcomes remains to be seen. Nevertheless, with the incorporation of newer techniques, PBT remains a promising modality and ongoing randomized studies will clarify its role to determine which patients with thoracic malignancies receive the most benefit. Re-irradiation, advanced disease requiring high cardio-pulmonary irradiation volume and younger patients will likely derive maximum benefit with modern PBT.
Collapse
Affiliation(s)
- Nirav V Patel
- Department of Radiation Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Antony Koroulakis
- Department of Radiation Oncology, University of Maryland School of Medicine and Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Tejan Diwanji
- Department of Radiation Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine and Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine and Maryland Proton Treatment Center, Baltimore, MD, USA
| |
Collapse
|
27
|
Lazarev S, Rosenzweig K, Samstein R, Salgado LR, Hasan S, Press RH, Sharma S, Powell CA, Hirsch FR, Simone CB. Where are we with proton beam therapy for thoracic malignancies? Current status and future perspectives. Lung Cancer 2020; 152:157-164. [PMID: 33421922 DOI: 10.1016/j.lungcan.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022]
Abstract
Radiation therapy (RT) plays an important role in the curative treatment of a variety of thoracic malignancies. However, delivery of tumoricidal doses with conventional photon-based RT to thoracic tumors often presents unique challenges. Extraneous dose deposited along the entrance and exit paths of the photon beam increases the likelihood of significant acute and delayed toxicities in cardiac, pulmonary, and gastrointestinal structures. Furthermore, safe dose-escalation, delivery of concomitant systemic therapy, or reirradiation of a recurrent disease are frequently not feasible with photon RT. In contrast, protons have distinct physical properties that allow them to deposit a high irradiation dose in the target, while leaving a negligible exit dose in the adjacent organs at risk. Proton beam therapy (PBT), therefore, can reduce toxicities with similar antitumor effect or allow for dose escalation and enhanced antitumor effect with the same or even lower risk of adverse events, thus potentially improving the therapeutic ratio of the treatment. For thoracic malignancies, this favorable dose distribution can translate to decreases in treatment-related morbidities, provide more durable disease control, and potentially prolong survival. This review examines the evolving role of PBT in the treatment of thoracic malignancies and evaluates the data supporting its use.
Collapse
Affiliation(s)
- Stanislav Lazarev
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Kenneth Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Samstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lucas Resende Salgado
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Sonam Sharma
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charles A Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fred R Hirsch
- Center for Thoracic Oncology, The Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
28
|
Higher Dose Volumes May Be Better for Evaluating Radiation Pneumonitis in Lung Proton Therapy Patients Compared With Traditional Photon-Based Dose Constraints. Adv Radiat Oncol 2020; 5:943-950. [PMID: 33083657 PMCID: PMC7557193 DOI: 10.1016/j.adro.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/14/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose The dosimetric parameters used clinically to reduce the likelihood of radiation pneumonitis (RP) for lung cancer radiation therapy have traditionally been V20Gy ≤ 30% to 35% and mean lung dose ≤ 20 to 23 Gy; however, these parameters are derived based on studies from photon therapy. The purpose of this study is to evaluate whether such dosimetric predictors for RP are applicable for locally advanced non-small cell lung cancer (LA-NSCLC) patients treated with proton therapy. Methods and Materials In the study, 160 (78 photon, 82 proton) patients with LA-NSCLC treated with chemoradiotherapy between 2011 and 2016 were retrospectively identified. Forty (20 photon, 20 proton) patients exhibited grade ≥2 RP after therapy. Dose volume histograms for the uninvolved lung were extracted for each patient. The percent lung volumes receiving above various dose levels were obtained in addition to V20Gy and Dmean. These dosimetric parameters and patient characteristics were evaluated with univariate and multivariate logistic regression tests. Receiver operating characteristic curves were generated to obtain the optimal dosimetric constraints through analyzing RP and non-RP sensitivity and specificity values. Results The multivariate analysis showed V40Gy and Dmean to be statistically significant for proton and photon patients, respectively. V35Gy to V50Gy were strongly correlated to V40Gy for proton patients. Based on the receiver operating characteristic curves, V35Gy to V50Gy had the highest area under the curve compared with other dose levels for proton patients. A potential dosimetric constraint for RP predictor in proton patients is V40Gy ≤ 23%. Conclusions In addition to V20Gy and Dmean, the lung volume receiving higher doses, such as V40Gy, may be used as an additional indicator for RP in LA-NSCLC patients treated with proton therapy.
Collapse
|
29
|
Ohlsson-Nevo E, Furberg M, Giørtz M, Johansson B, Kristensen I, Kunni K, Langegård U, Lysemose Poulsen R, Striem J, Tømmerås V, Wilhøft Kristensen A, Winther D, Sjövall K. Patients' perspective in the context of proton beam therapy: summary of a Nordic workshop. Acta Oncol 2020; 59:1139-1144. [PMID: 32536238 DOI: 10.1080/0284186x.2020.1762927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION On 15-16 November 2019, the Skandion Clinic in Sweden hosted the first Nordic workshop on 'Patients' perspective in proton beam therapy'. The workshop was conducted to describe and compare the patient care in PBT clinics in the Nordic countries and to initiate a collaboration, with the target to ensure patient participation and reduce the risk of inequity of access by lowering the barriers for accepting PBT in a distant clinic. The overarching aim of this workshop was to describe and compare the use of patients' perspectives in the Nordic PBT clinics. MATERIAL AND METHODS Twelve participants attended the workshop, representing Denmark, Norway and Sweden. The participants were registered nurses working in patient care, researchers, physicist and leaders of the Skandion Clinic. RESULTS The consensus of the workshop was that systematic use of patient experiences on individual and group level is essential for developing clinical practice and understanding the overall effects of PBT. A difference in how the Nordic countries use patient experiences in clinical practise was found. The importance of lowering the barriers for participation in national proton trials and proton treatment were emphasized, however, there is a lack of knowledge about individual and organizational barriers to accepting PBT, and further research is therefore needed. CONCLUSION Collaboration between the Nordic countries regarding patients' perspectives in the context of PBT is of importance to compare national differences as well as to find similarities, but most importantly to learn from each other and to improve patient care. Nordic collaboration with focus on systematic collection of patient-reported outcomes in the context of PBT is unique. Collaboration in research offers the possibility to increase the inclusion of patients' perspectives in study protocols.
Collapse
Affiliation(s)
- Emma Ohlsson-Nevo
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- ProtonCare Study Group
| | | | - Mette Giørtz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitta Johansson
- ProtonCare Study Group
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, Uppsala, Sweden
| | - Ingrid Kristensen
- ProtonCare Study Group
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | | | - Ulrica Langegård
- ProtonCare Study Group
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Veronika Tømmerås
- Department of Radiation Physics, University Hospital of North Norway, Tromsø, Norway
| | | | - Dorte Winther
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Katarina Sjövall
- ProtonCare Study Group
- Department of Oncology, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Lund, Cancer Epidemiology and Oncology, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Käsmann L, Dietrich A, Staab-Weijnitz CA, Manapov F, Behr J, Rimner A, Jeremic B, Senan S, De Ruysscher D, Lauber K, Belka C. Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol 2020; 15:214. [PMID: 32912295 PMCID: PMC7488099 DOI: 10.1186/s13014-020-01654-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Lung, breast, and esophageal cancer represent three common malignancies with high incidence and mortality worldwide. The management of these tumors critically relies on radiotherapy as a major part of multi-modality care, and treatment-related toxicities, such as radiation-induced pneumonitis and/or lung fibrosis, are important dose limiting factors with direct impact on patient outcomes and quality of life. In this review, we summarize the current understanding of radiation-induced pneumonitis and pulmonary fibrosis, present predictive factors as well as recent diagnostic and therapeutic advances. Novel candidates for molecularly targeted approaches to prevent and/or treat radiation-induced pneumonitis and pulmonary fibrosis are discussed.
Collapse
Affiliation(s)
- Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Claudia A Staab-Weijnitz
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jürgen Behr
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Department of Internal Medicine V, LMU Munich, Munich, Germany
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| |
Collapse
|
31
|
Prognostic factors for overall survival of stage III non-small cell lung cancer patients on computed tomography: A systematic review and meta-analysis. Radiother Oncol 2020; 151:152-175. [PMID: 32710990 DOI: 10.1016/j.radonc.2020.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Prognosis prediction is central in treatment decision making and quality of life for non-small cell lung cancer (NSCLC) patients. However, conventional computed tomography (CT) related prognostic factors may not apply to the challenging stage III NSCLC group. The aim of this systematic review was therefore to identify and evaluate CT-related prognostic factors for overall survival (OS) of stage III NSCLC. METHODS The Medline, Embase, and Cochrane electronic databases were searched. After study selection, risk of bias was estimated for the included studies. Meta-analysis of univariate results was performed when sufficient data were available. RESULTS 1595 of the 11,996 retrieved records were selected for full text review, leading to inclusion of 65 studies that reported data of 144,513 stage III NSCLC patients andcompromising 26 unique CT-related prognostic factors. Relevance and validity varied substantially, few studies had low relevance and validity. Only four studies evaluated the added value of new prognostic factors compared with recognized clinical factors. Included studies suggested gross tumor volume (meta-analysis: HR = 1.22, 95%CI: 1.05-1.42), tumor diameter, nodal volume, and pleural effusion, are prognostic in patients treated with chemoradiation. Clinical T-stage and location (right/left) were likely not prognostic within stage III NSCLC. Inconclusive are several radiomic features, tumor volume, atelectasis, location (pulmonary lobes, central/peripheral), interstitial lung abnormalities, great vessel invasion, pit-fall sign, and cavitation. CONCLUSIONS Tumor-size and nodal size-related factors are prognostic for OS in stage III NSCLC. Future studies should carefully report study characteristics and contrast factors with guideline recognized factors to improve evidence evaluation and validation.
Collapse
|
32
|
Nenoff L, Matter M, Jarhall AG, Winterhalter C, Gorgisyan J, Josipovic M, Persson GF, Munck af Rosenschold P, Weber DC, Lomax AJ, Albertini F. Daily Adaptive Proton Therapy: Is it Appropriate to Use Analytical Dose Calculations for Plan Adaption? Int J Radiat Oncol Biol Phys 2020; 107:747-755. [DOI: 10.1016/j.ijrobp.2020.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
|
33
|
Nenoff L, Ribeiro CO, Matter M, Hafner L, Josipovic M, Langendijk JA, Persson GF, Walser M, Weber DC, Lomax AJ, Knopf AC, Albertini F, Zhang Y. Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiother Oncol 2020; 147:178-185. [DOI: 10.1016/j.radonc.2020.04.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/25/2022]
|
34
|
Zou Z, Bowen SR, Thomas HMT, Sasidharan BK, Rengan R, Zeng J. Scanning Beam Proton Therapy versus Photon IMRT for Stage III Lung Cancer: Comparison of Dosimetry, Toxicity, and Outcomes. Adv Radiat Oncol 2020; 5:434-443. [PMID: 32529138 PMCID: PMC7276696 DOI: 10.1016/j.adro.2020.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/03/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose There are limited clinical data on scanning-beam proton therapy (SPT) in treating locally advanced lung cancer, as most published studies have used passive-scatter technology. There is increasing interest in whether the dosimetric advantages of SPT compared with photon therapy can translate into superior clinical outcomes. We present our experience of SPT and photon intensity modulated radiation therapy (IMRT) with clinical dosimetry and outcomes in patients with stage III lung cancer. Methods and Materials Patients with stage III lung cancer treated at our center between 2013 and May 2018 were identified in compliance with our institutional review board (64 patients = 34 SPT + 30 IMRT). Most proton patients were treated with pencil beam scanning (28 of 34), and 6 of 34 were treated with uniform scanning. Fisher exact test, χ2 test, and Mann-Whitney test were used to compare groups. All tests were 2-sided. Results Patient characteristics were similar between the IMRT and SPT patients, except for worse lung function in the IMRT group. Mean dose to lung, heart, and esophagus was lower in the SPT group, with most benefit in the low-dose region (lungs, 9.7 Gy vs 15.7 Gy for SPT vs IMRT, respectively [P = .004]; heart, 7 Gy vs 14 Gy [P = .001]; esophagus, 28.2 Gy vs 30.9 Gy [P = .023]). Esophagitis and dermatitis grades were not different between the 2 groups. Grade 2+ pneumonitis was 21% in the SPT group and 40% in the IMRT group (P = .107). Changes in blood counts were not different between the 2 groups. Overall survival and progression-free survival were not different between SPT and IMRT (median overall survival, 41.6 vs 30.7 months, respectively [P = .52]; median progression-free survival, 19.5 vs 14.6 months [P = .50]). Conclusions We report our experience with SPT and IMRT in stage III lung cancer. Our cohort of patients treated with SPT had lower doses to normal organs (lungs, heart, esophagus) than our IMRT cohort. There was no statistically significant difference in toxicity rates or survival, although there may have been a trend toward lower rates of pneumonitis.
Collapse
Affiliation(s)
- Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stephen R Bowen
- Departments of Radiation Oncology, Seattle, Washington.,Radiology, University of Washington, Seattle, Washington
| | | | | | - Ramesh Rengan
- Departments of Radiation Oncology, Seattle, Washington
| | - Jing Zeng
- Departments of Radiation Oncology, Seattle, Washington
| |
Collapse
|
35
|
van der Laan HP, Anakotta RM, Korevaar EW, Dieters M, Ubbels JF, Wijsman R, Sijtsema NM, Both S, Langendijk JA, Muijs CT, Knopf AC. Organ sparing potential and inter-fraction robustness of adaptive intensity modulated proton therapy for lung cancer. Acta Oncol 2019; 58:1775-1782. [PMID: 31556764 DOI: 10.1080/0284186x.2019.1669818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: The aim of this study was to compare adaptive intensity modulated proton therapy (IMPT) robustness and organ sparing capabilities with that of adaptive volumetric arc photon therapy (VMAT).Material and methods: Eighteen lung cancer patients underwent a planning 4DCT (p4DCT) and 5 weekly repeated 4DCT (r4DCT) scans. Target volumes and organs at risk were manually delineated on the three-dimensional (3D) average scans of the p4DCT (av_p4DCT) and of the r4DCT scans (av_r4DCT). Planning target volume (PTV)-based VMAT plans and internal clinical target volume (ICTV)-based robust IMPT plans were optimized in 3D on the av_p4DCT and re-calculated on the av_r4DCTs. Re-planning on av_r4DCTs was performed when indicated and accumulated doses were evaluated on the av_p4DCT.Results: Adaptive VMAT and IMPT resulted in adequate ICTV coverage on av_r4DCT in all patients and adequate accumulated-dose ICTV coverage on av_p4DCT in 17/18 patients (due to a shrinking target in one patient). More frequent re-planning was needed for IMPT than for VMAT. The average mean heart dose reduction with IMPT compared with VMAT was 4.6 Gy (p = .001) and it was >5 Gy for five patients (6, 7, 8, 15, and 22 Gy). The average mean lung dose reduction was 3.2 Gy (p < .001). Significant reductions in heart and lung V5 Gy were observed with IMPT.Conclusion: Robust-planned IMPT required re-planning more often than VMAT but resulted in similar accumulated ICTV coverage. With IMPT, heart and lung mean dose values and low dose regions were significantly reduced. Substantial cardiac sparing was obtained in a subgroup of five patients (28%).
Collapse
Affiliation(s)
- Hans Paul van der Laan
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R. Melissa Anakotta
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik W. Korevaar
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margriet Dieters
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J. Fred Ubbels
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nanna M. Sijtsema
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christina T. Muijs
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antje C. Knopf
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Yuan TZ, Zhan ZJ, Qian CN. New frontiers in proton therapy: applications in cancers. Cancer Commun (Lond) 2019; 39:61. [PMID: 31640788 PMCID: PMC6805548 DOI: 10.1186/s40880-019-0407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Proton therapy offers dominant advantages over photon therapy due to the unique depth-dose characteristics of proton, which can cause a dramatic reduction in normal tissue doses both distal and proximal to the tumor target volume. In turn, this feature may allow dose escalation to the tumor target volume while sparing the tumor-neighboring susceptible organs at risk, which has the potential to reduce treatment toxicity and improve local control rate, quality of life and survival. Some dosimetric studies in various cancers have demonstrated the advantages over photon therapy in dose distributions. Further, it has been observed that proton therapy confers to substantial clinical advantage over photon therapy in head and neck, breast, hepatocellular, and non-small cell lung cancers. As such, proton therapy is regarded as the standard modality of radiotherapy in many pediatric cancers from the technical point of view. However, due to the limited clinical evidence, there have been concerns about the high cost of proton therapy from an economic point of view. Considering the treatment expenses for late radiation-induced toxicities, cost-effective analysis in many studies have shown that proton therapy is the most cost-effective option for brain, head and neck and selected breast cancers. Additional studies are warranted to better unveil the cost-effective values of proton therapy and to develop newer ways for better protection of normal tissues. This review aims at reviewing the recent studies on proton therapy to explore its benefits and cost-effectiveness in cancers. We strongly believe that proton therapy will be a common radiotherapy modality for most types of solid cancers in the future.
Collapse
Affiliation(s)
- Tai-Ze Yuan
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China
| | - Ze-Jiang Zhan
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, 510095, Guangdong, P. R. China
| | - Chao-Nan Qian
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China.
| |
Collapse
|
37
|
Brooks ED, Ning MS, Verma V, Zhu XR, Chang JY. Proton therapy for non-small cell lung cancer: the road ahead. Transl Lung Cancer Res 2019; 8:S202-S212. [PMID: 31673525 PMCID: PMC6795573 DOI: 10.21037/tlcr.2019.07.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Proton therapy is an evolving radiotherapy modality with indication for numerous cancer types. With the benefits of reducing dose and sparing normal tissue, protons offer a clear physical and dosimetric advantage over photon radiotherapy for many patients. However, its impact on one type of disease, non-small cell lung cancer (NSCLC), is still not fully understood. Our review aims to highlight the data for using proton therapy in NSCLC, with a focus on the clinical data-or lack thereof-supporting proton treatment for early and advanced stage disease. In evaluating these data, we consider how future directions and advances in proton technology give rise for hope in defining a role for protons in improving NSCLC outcomes. We close with considerations for next steps and the challenges ahead in using proton therapy for this unique patient population.
Collapse
Affiliation(s)
- Eric D. Brooks
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew S. Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - X. Ronald Zhu
- Proton Therapy Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
38
|
Yu NY, DeWees TA, Liu C, Daniels TB, Ashman JB, Beamer SE, Jaroszewski DE, Ross HJ, Paripati HR, Rwigema JCM, Ding JX, Shan J, Liu W, Schild SE, Sio TT. Early Outcomes of Patients With Locally Advanced Non-small Cell Lung Cancer Treated With Intensity-Modulated Proton Therapy Versus Intensity-Modulated Radiation Therapy: The Mayo Clinic Experience. Adv Radiat Oncol 2019; 5:450-458. [PMID: 32529140 PMCID: PMC7276663 DOI: 10.1016/j.adro.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose There are very little data available comparing outcomes of intensity-modulated proton therapy (IMPT) to intensity-modulated radiation therapy (IMRT) in patients with locally advanced NSCLC (LA-NSCLC). Methods Seventy-nine consecutively treated patients with LA-NSCLC underwent definitive IMPT (n = 33 [42%]) or IMRT (n = 46 [58%]) from 2016 to 2018 at our institution. Survival rates were calculated using the Kaplan-Meier method and compared with the log-rank test. Acute and subacute toxicities were graded based on Common Terminology Criteria for Adverse Events, version 4.03. Results Median follow-up was 10.5 months (range, 1-27) for all surviving patients. Most were stage III (80%), received median radiation therapy (RT) dose of 60 Gy (range, 45-72), and had concurrent chemotherapy (65%). At baseline, the IMPT cohort was older (76 vs 69 years, P < .01), were more likely to be oxygen-dependent (18 vs 2%, P = .02), and more often received reirradiation (27 vs 9%, P = .04) than their IMRT counterparts. At 1 year, the IMPT and IMRT cohorts had similar overall survival (68 vs 65%, P = .87), freedom from distant metastasis (71 vs 68%, P = .58), and freedom from locoregional recurrence (86 vs 69%, P = .11), respectively. On multivariate analyses, poorer pulmonary function and older age were associated with grade +3 toxicities during and 3 months after RT, respectively (both P ≤ .02). Only 5 (15%) IMPT and 4 (9%) IMRT patients experienced grade 3 or 4 toxicities 3 months after RT (P = .47). There was 1 treatment-related death from radiation pneumonitis 6 months after IMRT in a patient with idiopathic pulmonary fibrosis. Conclusions Compared with IMRT, our early experience suggests that IMPT resulted in similar outcomes in a frailer population of LA-NSCLC who were more often being reirradiated. The role of IMPT remains to be defined prospectively.
Collapse
Affiliation(s)
- Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Todd A DeWees
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Chenbin Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | | | | | - Staci E Beamer
- Department of Cardiothoracic Surgery, Mayo Clinic, Phoenix, Arizona
| | | | - Helen J Ross
- Department of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - Harshita R Paripati
- Department of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Julia X Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| |
Collapse
|
39
|
Gjyshi O, Liao Z. Proton therapy for locally advanced non-small cell lung cancer. Br J Radiol 2019; 93:20190378. [PMID: 31430188 DOI: 10.1259/bjr.20190378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is an essential component of treatment for locally advanced non-small cell lung cancer (NSCLC) but can be technically challenging because of the proximity of lung tumors to nearby critical organs or structures. The most effective strategy for reducing radiation-induced toxicity is to reduce unnecessary exposure of normal tissues by using advanced technology; examples from photon (X-ray) therapy have included three-dimensional conformal radiation therapy versus its predecessor, two-dimensional radiation therapy, and intensity-modulated photon radiation therapy versus its predecessor, three-dimensional conformal therapy. Using particle-beam therapy rather than photons offers the potential for further advantages because of the unique depth-dose characteristics of the particles, which can be exploited to allow still higher dose escalation to tumors with greater sparing of normal tissues, with the ultimate goal of improving local tumor control and survival while preserving quality of life by reducing treatment-related toxicity. However, the costs associated with particle therapy with protons are considerably higher than the current state of the art in photon technology, and evidence of clinical benefit from protons is increasingly being demanded to justify the higher financial burden on the healthcare system. Some such evidence is available from preclinical studies, from retrospective, single-institution clinical series, from analyses of national databases, and from single-arm prospective studies in addition to several ongoing randomized comparative trials. This review summarizes the rationale for and challenges of using proton therapy to treat thoracic cancers, reviews the current clinical experience, and suggests topics for future research.
Collapse
Affiliation(s)
- Olsi Gjyshi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston, Texas, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston, Texas, USA
| |
Collapse
|
40
|
Elhammali A, Blanchard P, Yoder A, Liao Z, Zhang X, Ronald Zhu X, Allen PK, Jeter M, Welsh J, Nguyen QN. Clinical outcomes after intensity-modulated proton therapy with concurrent chemotherapy for inoperable non-small cell lung cancer. Radiother Oncol 2019; 136:136-142. [PMID: 31015115 DOI: 10.1016/j.radonc.2019.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND & PURPOSE We report disease control, survival, and toxicity in patients with advanced inoperable non-small cell lung cancer (NSCLC) receiving concurrent chemotherapy and intensity-modulated proton therapy (IMPT) at a single institution. MATERIAL AND METHODS All patients were treated with IMPT with concurrent chemotherapy. Endpoints assessed were local, regional, and distant control, disease-free survival (DFS), and overall survival (OS). RESULTS Fifty-one patients were enrolled with a median follow-up time of 23.0 months; 39 (76%) were treated with a simultaneous integrated boost to the gross tumor volume (GTV). The median GTV dose was 67.3 CGE and the median CTV dose was 60.0 CGE. Median OS and DFS times were 33.9 months and 12.6 months. The 3-year local control rate was 78.3%. Treatment was well tolerated, with a grade 3 toxicity rate of 18% (9 events: 4 esophagitis, 3 dermatitis, 1 esophageal stricture, and 1 fatigue) and no grade 4 or 5 toxicity. The most common grade 2 toxic effects were esophagitis (22 [43%]), dermatitis (16 [31%]), pain (15 [29%]), and fatigue (14 [27%]). CONCLUSIONS Treatment of inoperable NSCLC with IMPT and concurrent chemotherapy achieves excellent disease control with tolerable toxicity.
Collapse
Affiliation(s)
- Adnan Elhammali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Pierre Blanchard
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alison Yoder
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Xiadong Zhang
- Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - X Ronald Zhu
- Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Pamela K Allen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Melenda Jeter
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - James Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
41
|
Tang X, Li Y, Tian X, Zhou X, Wang Y, Huang M, Ren L, Zhou L, Xue J, Ding Z, Zhu J, Xu Y, Peng F, Wang J, Lu Y, Gong Y. Predicting severe acute radiation pneumonitis in patients with non-small cell lung cancer receiving postoperative radiotherapy: Development and internal validation of a nomogram based on the clinical and dose–volume histogram parameters. Radiother Oncol 2019; 132:197-203. [DOI: 10.1016/j.radonc.2018.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022]
|
42
|
Radiation Therapy in Non-small-Cell Lung Cancer. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_34-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Hu M, Jiang L, Cui X, Zhang J, Yu J. Proton beam therapy for cancer in the era of precision medicine. J Hematol Oncol 2018; 11:136. [PMID: 30541578 PMCID: PMC6290507 DOI: 10.1186/s13045-018-0683-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Precision radiotherapy, which accurately delivers the dose on a tumor and confers little or no irradiation to the surrounding normal tissue and organs, results in maximum tumor control and decreases the toxicity to the utmost extent. Proton beam therapy (PBT) provides superior dose distributions and has a dosimetric advantage over photon beam therapy. Initially, the clinical practice and study of proton beam therapy focused on ocular tumor, skull base, paraspinal tumors (chondrosarcoma and chordoma), and unresectable sarcomas, which responded poorly when treated with photon radiotherapy. Then, it is widely regarded as an ideal mode for reirradiation and pediatrics due to reducing unwanted side effects by lessening the dose to normal tissue. During the past decade, the application of PBT has been rapidly increasing worldwide and gradually expanding for the treatment of various malignancies. However, to date, the role of PBT in clinical settings is still controversial, and there are considerable challenges in its application. We systematically review the latest advances of PBT and the challenges for patient treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Man Hu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
- Departments of Radiation Oncology and Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Liyang Jiang
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
- Departments of Radiation Oncology and Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Xiangli Cui
- Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jianguang Zhang
- Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Zibo, Shandong, China
| | - Jinming Yu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.
- Shandong Academy of Medical Sciences, Jinan, China.
- Departments of Radiation Oncology and Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China.
| |
Collapse
|
44
|
Abstract
OPINION STATEMENT Non-small cell lung cancer (NSCLC) accounts for 85% of new lung cancer cases and has 5-year survival rates ranging from 92% in early-stage disease to as low as 13% in locally advanced cases. Radiation therapy is a key component in the treatment repertoire for NSCLC, where it is currently used alone or in combinations with chemotherapy and surgery. Despite the broad use of modern photon radiation techniques, as many as 25% of patients experience isolated locoregional recurrences, and toxicity has been proven to be a limiting factor in many cases. Proton beam therapy (PBT) has emerged as a potential solution to improve upon clinical outcomes in both early-stage and locally advanced disease. The proton beam allows for a sharp dose build-up and drop-off, which is particularly important in lung cancer where nearby structures include the heart, spinal cord, esophagus, and uninvolved lung. There are now numerous studies showing dosimetric advantages of PBT in early and locally advanced NSCLC, particularly in the heart and lung doses. Randomized data comparing clinical outcomes between proton and photon radiation are limited to a small number of studies. Despite early results suggesting improvements or at least comparable outcomes with PBT, the most recent randomized comparisons have failed to show significant differences in toxicity and local control between photon and proton therapy. As newer PBT techniques (e.g., intensity-modulated proton therapy) are increasingly utilized, more dramatic improvements in tumor control and toxicity may be demonstrated. It is also important to recognize that there may be certain subpopulations in which the benefits of proton therapy are greater, such as central early-stage tumors, previously irradiated tumors, and locally advanced tumors, while others may best be treated with traditional photon techniques. As immunotherapy becomes more prevalent in the treatment of NSCLC, improving local control and limiting the toxicity contributed by radiation will be increasingly important. The unique dosimetric advantages of PBT may allow for tumor dose escalation while maintaining normal tissue doses to improve local control, or treating the tumor to the standard dose while decreasing normal tissue doses to improve toxicity. Finally, given the high costs of proton therapy, where low insurance approval rates have limited trial enrollment, it will be important to determine the overall cost-benefit ratio.
Collapse
Affiliation(s)
- Shane Mesko
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Daniel Gomez
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Dosimetric Comparison of Proton Radiation Therapy, Volumetric Modulated Arc Therapy, and Three-Dimensional Conformal Radiotherapy Based on Intracranial Tumor Location. Cancers (Basel) 2018; 10:cancers10110401. [PMID: 30373115 PMCID: PMC6266019 DOI: 10.3390/cancers10110401] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Selecting patients that will benefit the most from proton radiotherapy (PRT) is of major importance. This study sought to assess dose reductions to numerous organs-at-risk (OARs) with PRT, as compared to three-dimensional conformal radiotherapy (3DCRT) and volumetric-modulated arc therapy (VMAT), as a function of tumor location. (2) Materials/Methods: Patients with intracranial neoplasms (all treated with PRT) were stratified into five location-based groups (frontal, suprasellar, temporal, parietal, posterior cranial fossa; n = 10 per group). Each patient was re-planned for 3DCRT and intensity-modulated radiotherapy (IMRT) using similar methodology, including the originally planned target and organ-at-risk (OAR) dose constraints. (3) Results: In parietal tumors, PRT showed the most pronounced dose reductions. PRT lowered doses to nearly every OAR, most notably the optical system and several contralateral structures (subventricular zone, thalamus, hippocampus). For frontal lobe cases, the greatest relative dose reductions in mean dose (Dmean) with PRT were to the infratentorial normal brain, contralateral hippocampus, brainstem, pituitary gland and contralateral optic nerve. For suprasellar lesions, PRT afforded the greatest relative Dmean reductions to the infratentorial brain, supratentorial brain, and the whole brain. Similar results could be observed in temporal and posterior cranial fossa disease. (4) Conclusions: The effectiveness and degree of PRT dose-sparing to various OARs depends on intracranial tumor location. These data will help to refine selection of patients receiving PRT, cost-effectiveness, and future clinical toxicity assessment.
Collapse
|
46
|
Manabe Y, Shibamoto Y, Baba F, Yanagi T, Iwata H, Miyakawa A, Murai T, Okuda K. Definitive radiotherapy for hilar and/or mediastinal lymph node metastases after stereotactic body radiotherapy or surgery for stage I non-small cell lung cancer: 5-year results. Jpn J Radiol 2018; 36:719-725. [DOI: 10.1007/s11604-018-0776-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022]
|
47
|
Willmann J, Rimner A. The expanding role of radiation therapy for thymic malignancies. J Thorac Dis 2018; 10:S2555-S2564. [PMID: 30206499 PMCID: PMC6123186 DOI: 10.21037/jtd.2018.01.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The role of radiation therapy (RT) in thymic malignancies has long been subject to considerable controversy. The main role for RT is in the setting of adjuvant therapy after surgical tumor resection, especially in advanced or incompletely resected cases. However, recent studies with larger patient numbers and cleaner study populations than previous studies have indicated a potentially clearer than previously assumed benefit after post-operative RT (PORT) even for completely resected patients with earlier stages of thymoma. In marginally resectable patients RT may be used in combination with neoadjuvant chemotherapy to shrink tumors and thereby potentially enable resection. In unresectable patients concurrent or sequential chemotherapy and RT can be employed as the definitive nonsurgical approach. The tendency of thymic tumors to recur in the pleural space highlights the necessity for more effective approaches to identify and treat high risk patients. Experiences in other pleural malignancies may pave the way to novel treatment modalities, for example pleural IMRT. The role of these techniques in thymic malignancies has yet to be determined and is not advisable at the current time outside of a clinical study. As the disease often takes an indolent course with excellent long-term local control (LC) and survival, late toxicities related to radiation of the mediastinum and adjacent organs at risk (OARs) have to be taken into consideration and may jeopardize the benefit patients experience from RT, especially in younger patients with a long-anticipated life expectancy. Radiation techniques, such as intensity modulated RT (IMRT) and proton beam therapy (PBT), have substantially reduced the exposure of OARs to ionizing radiation which is expected to translate into reduced long-term toxicities. Hence, the risk-benefit ratio of RT in early stage thymoma patients may be shifted favorably.
Collapse
Affiliation(s)
- Jonas Willmann
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
48
|
Tsuboi K. Advantages and Limitations in the Use of Combination Therapies with Charged Particle Radiation Therapy. Int J Part Ther 2018; 5:122-132. [PMID: 31773024 DOI: 10.14338/ijpt-18-00019.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose Studies are currently underway to help provide basic and clinical evidence for combination particle beam radiation therapy, on which there are few published reports. The purpose of this article is to summarize the current status in the use of particle beams combined with other modalities. Results Following from experiences in x-ray radiation therapy, combination therapy with proton beams (PBT) has been attempted, and several clinical studies have reported improved survival rates for patients with non-small cell lung cancer, pancreatic cancers, esophageal cancers, and glioblastomas. Recently, basic studies combining PBT with PARP inhibitors and histone deacetylase inhibitors have also reported promising results. In the area of carbon ion therapy (CIT), there are few clinical reports on combination therapy; however, the number of basic research reports exceeds that for PBT. So far, the combined use of cytotoxic drugs with CIT yields independent additive effects. In addition, it is notable that combination therapy with CIT is effective against radioresistant cancer stem-like cells. Recent evidence also suggests that local radiation therapy can induce an effective antitumor immune response. There has been an increased use of combination immune-modulating agents and cytokines with particle beams, especially CIT. The field of radiation therapy is evolving from a strong reliance on local-regional treatment to a growing reliance on systemic immunotherapy. Conclusions The combined use of anticancer agents with particle radiation therapy has a considerable potential effect. Future research in molecular targeting therapy and immunotherapy may help identify the most efficacious approach for combination therapy with protons and carbon ions.
Collapse
Affiliation(s)
- Koji Tsuboi
- Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
49
|
Lühr A, von Neubeck C, Pawelke J, Seidlitz A, Peitzsch C, Bentzen SM, Bortfeld T, Debus J, Deutsch E, Langendijk JA, Loeffler JS, Mohan R, Scholz M, Sørensen BS, Weber DC, Baumann M, Krause M. "Radiobiology of Proton Therapy": Results of an international expert workshop. Radiother Oncol 2018; 128:56-67. [PMID: 29861141 DOI: 10.1016/j.radonc.2018.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022]
Abstract
The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full advantage of the opportunities offered by proton radiation for clinical radiotherapy requires a better understanding of the radiobiological effects of protons alone or combined with drugs or immunotherapy on normal tissues and tumors. This report summarizes the main results of the international expert workshop "Radiobiology of Proton Therapy" that was held in November 2016 in Dresden. It addresses the major topics (1) relative biological effectiveness (RBE) in proton beam therapy, (2) interaction of proton radiobiology with radiation physics in current treatment planning, (3) biological effects in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data repositories will be most important to achieve this goal.
Collapse
Affiliation(s)
- Armin Lühr
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health and the Maryland Proton Therapy Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Thomas Bortfeld
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, University Heidelberg German Consortium for Translational Oncology (DKTK), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eric Deutsch
- Department of Radiation Oncology Gustave Roussy Cancer Campus, INSERM, 1030 Villejuif, France; Université Paris-Sud, Faculté de Medecine du Kremlin Bicetre Paris Sud, Le Kremlin-Bicêtre, France
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, USA
| | - Radhe Mohan
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, USA
| | - Michael Scholz
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - Brita S Sørensen
- Dept. Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Michael Baumann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mechthild Krause
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | | |
Collapse
|
50
|
Abstract
The finite range of proton beams in tissues offers unique dosimetric advantages that theoretically allow the dose to the target to be escalated while minimizing exposure of surrounding tissues and thereby minimizing radiation-induced toxicity. These theoretical advantages have led to widespread adoption of proton therapy around the world for a wide variety of tumors at different anatomic sites. Many treatment-planning comparisons have shown that proton therapy has substantial dosimetric advantages over conventional photon (X-ray) radiation therapy. However, given the typically significant difference in cost between proton therapy versus conventional photon therapy, strong evidence of proton therapy's clinical benefits in terms of toxicity and survival is warranted. Some findings from retrospective studies, single-arm prospective studies, and a very few randomized clinical trials comparing these modalities are beginning to emerge. In this review, we examine the available data on proton therapy for (non-small cell lung cancer NSCLC). We begin by discussing the unique challenges involved in treating moving targets with significant tissue heterogeneity and the technologic efforts underway to overcome these challenges. We then discuss the rationale for minimizing normal tissue toxicity, particularly pulmonary, cardiac, and hematologic toxicity, within the context of previously unsuccessful attempts at dose escalation for lung cancer. Finally, we explore strategies for accelerating the development of trials aimed at measuring meaningful clinical endpoints and for maximizing the value of proton therapy by personalizing its use for individual patients.
Collapse
Affiliation(s)
- Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|