1
|
Zhu Y, Yu J, Yang Q, Xie Y, Li X, Chen Z, Xiong Y, Fu W, He H, Yin S, Lan D, Li J, Xiong X. Mitochondria-targeted antioxidant MitoQ improves the quality of low temperature-preserved yak semen via alleviating oxidative stress. Anim Reprod Sci 2025; 273:107680. [PMID: 39709684 DOI: 10.1016/j.anireprosci.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Low-temperature preservation of yak semen during transportation and conservation is crucial to accelerate yak breeding. The effects of low-temperature cooling on yak semen quality, however, are poorly understood. This study aimed to determine the dose-dependent effect of mitochondria-targeted antioxidant "MitoQ" on the motility, oxidative status, and mitochondrial function of yak semen during low-temperature preservation. Semen samples were collected from six adult healthy Maiwa yaks and preserved at 4 ℃ in semen extender containing 0, 50, 100, 200, and 400 nM MitoQ, respectively. Firstly, the motility, membrane integrity, acrosome integrity, and abnormity index of yak spermatozoa were evaluated to determine the optimal MitoQ concentration. Next, the effect of MitoQ at the optimal concentration on spermatozoa antioxidant capacity, including reactive oxygen species (ROS) and malondialdehyde (MDA) contents, total antioxidant capacity (T-AOC), and superoxide dismutase content (SOD) levels, as well as mitochondrial membrane potential were analyzed. Up to 96 h of low-temperature storage, 200 nM MitoQ showed the most optimal effect on motility, membrane integrity, and acrosome integrity (P < 0.05) but not on sperm morphology (P > 0.05). Also, 200 nM MitoQ markedly reduced yak spermatozoa ROS and MDA contents for up to 48 h of low-temperature storage (P < 0.05). Finally, 200 nM MitoQ significantly improved T-AOC, SOD, and mitochondrial membrane potential for up to 24, 48, and 72 h of low-temperature storage, respectively (P < 0.05). In summary, semen extender supplementation with 200 nM MitoQ is beneficial for low-temperature yak semen preservation via improving the oxidative status.
Collapse
Affiliation(s)
- Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jun Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xupeng Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zhuo Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
2
|
Sadeghi N, Uboh N, Ross CN, McCarrey JR, Hermann BP. Best practices for cryopreserving sperm in Nonhuman Primates: a systematic review and meta-analysis. Sci Rep 2025; 15:3947. [PMID: 39890990 PMCID: PMC11785966 DOI: 10.1038/s41598-025-88226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
Nonhuman primates (NHPs) are in increasing demand as models for preclinical research. The availability of a highly efficient cryopreservation protocol for use with NHP sperm has potential to significantly alleviate this demand and contribute to rapid increases in overall number of NHPs available for biomedical research. Thus, this systematic review assesses the state-of-the-art in NHP sperm cryopreservation and uses meta-analyses to describe the impact of varied cryopreservation approaches on NHP sperm. We searched the literature deposited in PubMed, Scopus, and Web of Science databases through June 2024 to identify data relevant to the effect of sperm cryopreservation on quality of thawed sperm compared to fresh sperm across NHP species. All original NHP studies reporting sperm parameters both before cryopreservation and after thawing were included for analysis. In total, 32 articles were included for qualitative analysis and not surprisingly, all 32 studies demonstrated negative effects of cryopreservation on sperm parameters, Specifically, motility and viability were significantly decreased in thawed NHP sperm. While the method of sperm collection did not have a significant impact on recovery of motile sperm, significant variability was evident between species. Importantly, recovery of motile NHP sperm was greatest following rapid sperm freezing methods. This analysis provides critical insights into future research directions to enhance and optimize cryopreservation protocols in NHPs.
Collapse
Affiliation(s)
- Niloofar Sadeghi
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ndifereke Uboh
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Corinna N Ross
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Brian P Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
3
|
Su G, Liu Z, Xue H, Zhao X, Yang L, Wu D, Hai C, Liu X, Song L, Bai C, Li G, Li G. Spirulina polysaccharides improve postthaw sperm quality in bulls by inhibiting the activation of pathways related to protein kinase A. Int J Biol Macromol 2025; 296:139796. [PMID: 39805438 DOI: 10.1016/j.ijbiomac.2025.139796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Sperm cryopreservation is widely used in assisted reproductive technology (ART) and livestock breeding. Although sperm cryopreservation accelerates breeding, the quality of cryopreserved sperm tends to be decreased. Improving the quality of frozen sperm is a hot topic, and spirulina polysaccharide, known for its immunomodulatory and antioxidant properties, is considered a promising natural extract for extensive studies. In this study, a pectic polysaccharide was extracted from spirulina (PSP), and its effects on postthaw bovine sperm viability were evaluated. Phosphoproteomic analysis based on TMT labelling and LC-MS/MS was employed. The results revealed that 10 mg/L PSP had significant protective effects on postthaw sperm viability, plasma membrane integrity, acrosomal integrity, and mitochondrial membrane integrity. Moreover, PSP increased the antioxidant capacity by activating antioxidant enzymes such as SOD, CAT, and GSH-PX and reduced apoptosis, ROS release and MDA levels. In addition, PSP resulted in decreased phosphorylation levels of proteins related to the acrosome, flagellum, metabolism, energy acquisition, and apoptosis. This protective effect of PSP on frozen sperm was achieved by inhibiting the activation of protein kinase A(PKA) protein-related pathways.
Collapse
Affiliation(s)
- Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Zhe Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Huiting Xue
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guanhua Li
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China.
| |
Collapse
|
4
|
Góngora A, Holt WV, Gosálvez J. Sperm Human Biobanking: An Overview. Arch Med Res 2024; 55:103130. [PMID: 39591884 DOI: 10.1016/j.arcmed.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
The purpose of this article is to analyze in detail the advantages and disadvantages of sperm cryopreservation, focusing on the cellular and molecular changes that occur during these processes. The main issue is the cellular damage caused by ice crystal formation and osmotic imbalance, along with other secondary effects such as sperm motility and viability, as well as the acrosome reaction or oxidative stress. Another important aspect is the examination of how chromatin structure and DNA integrity affect sperm. Biochemical changes affecting enzyme activity and protein stability have also been analyzed. Finally, the article highlights emerging technologies aimed at reducing the damage caused by sperm cryopreservation, as well as the potential benefits of biobanks as an essential resource for addressing male infertility.
Collapse
Affiliation(s)
| | - William V Holt
- Department of Oncology and Metabolism, The Medical School Beech Hill Road, UK
| | - Jaime Gosálvez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Suleymanova L, Bayram H, Dönmez Çakıl Y, Selam B, Cincik M. Pregnancy outcomes in patients with non-obstructive azoospermia undergoing micro-TESE: comparison of fresh vs. frozen-thawed testicular sperm. J Assist Reprod Genet 2024; 41:3399-3404. [PMID: 39432191 PMCID: PMC11707213 DOI: 10.1007/s10815-024-03291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The relative merits of fresh or frozen testicular sperm in ICSI remain a matter of contention. This study aims to compare the reproductive outcomes of non-obstructive azoospermia patients undergoing ICSI using fresh and frozen-thawed microdissection testicular sperm extraction (micro-TESE) sperm. METHODS A total of 223 men with non-obstructive azoospermia underwent micro-TESE to collect testicular spermatozoa. ICSI cycles were performed using fresh and frozen-thawed spermatozoa. The cleavage states and grading of embryos, fertilization, and pregnancy outcomes were compared between the groups to assess the impact of cryopreservation of testicular spermatozoa on embryo quality and ICSI outcomes. RESULTS A total of 223 cases were evaluated, with fertilization observed in 208 cases and no fertilization observed in 15 cases. The number of day 3 total embryos and the number of cleavage embryos differed between the fresh and frozen micro-TESE groups, whereas the number of two-pronuclei oocytes, grading of embryos, fertilization, pregnancy, and live birth rates were found to be similar between the two groups. CONCLUSION The cryopreservation of spermatozoa obtained by micro-TESE does not affect the fertilization rate or pregnancy outcome in cases of non-obstructive azoospermia. The present findings, when considered in conjunction with the extant evidence, may serve to alleviate concerns regarding the utilization of frozen-thawed micro-TESE sperm in patients with non-obstructive azoospermia.
Collapse
Affiliation(s)
- Lala Suleymanova
- Institute of Graduate Studies Clinical Embryology Master Program, Maltepe University, Istanbul, Turkey
| | - Hale Bayram
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey.
| | - Yaprak Dönmez Çakıl
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Belgin Selam
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Cincik
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| |
Collapse
|
6
|
Hakimi F, Karimi Torshizi MA, Hezavehei M, Sharafi M. Protective Effect of N-Acetylcysteine on Rooster Semen Cryopreservation. Biopreserv Biobank 2024; 22:609-615. [PMID: 38634668 PMCID: PMC11656127 DOI: 10.1089/bio.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cryopreservation of avian semen is a useful reproductive technique in the poultry industry. However, during cooling, elevated reactive oxygen species (ROS) levels have destructive effects on both quality and function of thawed sperm. The aim of the current study is to investigate the antioxidant effects of N-acetylcysteine (NAC) during rooster semen cryopreservation. Semen samples were collected from ten Ross 308 broiler breeder roosters (32 weeks) and mixed. The mixed samples were divided into five equal parts and cryopreserved in Lake Buffer extender that contained different concentrations (0, 0.01, 0.1, 1, and 10 mM) of NAC. The optimum concentration of NAC was determined based on quality parameters of mobility, viability, membrane integrity, acrosome integrity, lipid peroxidation, and mitochondrial membrane potential after the freeze-thaw process. There was a higher percentage (p < 0.05) of total motility (TM) (60.9 ± 2.4%) and progressive motility (PM) (35.6 ± 1.9%) observed with the NAC-0.1 group compared to the other groups. Significantly higher percentages of viability (74.4 ± 2.3% and 71 ± 2.3%), membrane integrity (76.4 ± 1.5% and 74.7 ± 1.5%) and mitochondrial membrane potential (67.1 ± 1.6% and 66.3 ± 1.6%) were observed in the NAC-0.1 and NAC-1 groups compared to the other frozen groups (p < 0.05). The lowest percentage of lipid peroxidation and nonviable sperm was found in the NAC-0.1 and NAC-1 groups compared to the other groups (p < 0.05). The average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), and acrosome integrity, were not affected by different concentrations of NAC in the thawed sperm (p > 0.05). Both NAC-0.1 and NAC-1 appear to be beneficial for maintaining the quality of rooster sperm after thawing.
Collapse
Affiliation(s)
- Farhad Hakimi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary medicine, Montreal University, St-Hyacinthe, Canada
| | - Mohsen Sharafi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
- Semex Alliance, Guelph, Canada
| |
Collapse
|
7
|
Evans JP, Garcia-Gonzalez F. Applying an evolutionary perspective to assisted reproductive technologies. PNAS NEXUS 2024; 3:pgae512. [PMID: 39691447 PMCID: PMC11650523 DOI: 10.1093/pnasnexus/pgae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Assisted reproductive technologies (ART) are commonly used to address human infertility and to boost livestock production. During ART, procedures such as in vitro fertilization, artificial insemination, and intracytoplasmic sperm injection introduce gametes and embryos to unnatural and potentially stressful conditions that can influence offspring health, often via epigenetic effects. In this perspective we summarize these key risks of ART for embryonic and longer-term offspring fitness, emphasizing the need for experimental research on animal models to determine causal links between ART and offspring fitness across multiple generations. We also highlight how ART can bypass a range of naturally and sexually selected mechanisms that occur in the female reproductive tract and/or via female secretions that ultimately determine which sperm fertilize their eggs. We further argue that this curtailment of female-modulated mechanisms of sperm selection may have important consequences for ART-conceived offspring. We encourage the development of ART methods that better mimic natural processes of sperm selection and embrace the fundamental principles of natural and sexual selection. Ultimately, the aim of this perspective is to encourage dialogue between the fields of evolutionary biology and applied areas of animal and human reproduction.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, 6009 WA, Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, 6009 WA, Australia
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| |
Collapse
|
8
|
Zhang G, Wen F, Li Y, Sun P, Li Y, Hu Z, Wang H, Ma Y, Liang G, Chen L, Yang K, Hu J. Sulforaphane acts through the NFE2L2/AMPK signaling pathway to protect boar spermatozoa from cryoinjury by activating antioxidant defenses. Theriogenology 2024; 230:330-340. [PMID: 39369625 DOI: 10.1016/j.theriogenology.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
During cryopreservation, a substantial portion of spermatozoa undergoes apoptosis due to cryoinjury, resulting in decreased fertility. Boar spermatozoa are highly sensitive to temperature, with low temperature triggering reactive oxygen species (ROS) generation, leading to oxidative stress and apoptosis. Sulforaphane (SFN), a potent natural compound found in cruciferous vegetables, is efficacious in mitigating oxidative stress. We here supplemented different SFN concentrations (0, 1.25, 2.5, 5, 10, and 20 μM) into the freezing extender to explore its effect on boar sperm during cryopreservation and determine the optimal SFN concentration. Supplementation of 5 μM SFN exhibited the highest sperm motility, motion performance, plasma membrane integrity, acrosome integrity, and antioxidant properties (total antioxidant capacity (T-AOC) and antioxidant enzyme activity) after freezing and thawing. Then, RT group, C group and C + SFN group were established to explore the effect of SFN on the cryopreservation-induced sperm apoptosis level and fertilizing capacity of post-thawed sperms. SFN effectively rescued the apoptosis and fertilizing capacity of post-thawed sperms. Mechanistically, SFN activated the redox-sensitive nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) by promoting adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. This activation improved antioxidant defenses, ultimately improving cryoinjury in boar spermatozoa. In summary, SFN suppressed cryopreservation-induced apoptosis of spermatozoa by activating antioxidant defenses and the AMPK/NFE2L2 signaling pathway. These findings suggest a novel approach for augmenting the cryoprotective efficiency and spermatozoa fertility after cryopreservation.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, The Youth Innovation Team of Shaanxi Universities, Zhang Yong Academician Animal Biotechnology Engineering Center, Yangling Vocational & Technical College, Yangling, 712100, Shaanxi, China
| | - Pingyu Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhangtao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Yunhui Ma
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Guodong Liang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Lin Chen
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Ke Yang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Jia B, Allai L, Li C, Liang J, Lv C, Wu G, Quan G. A review on the functional roles of trehalose during cryopreservation of small ruminant semen. Front Vet Sci 2024; 11:1467242. [PMID: 39628871 PMCID: PMC11611832 DOI: 10.3389/fvets.2024.1467242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Sperm cryopreservation is an approach to preserve sperm cells in liquid nitrogen or other cryogenic media for future use in assisted reproductive technologies, such as in vitro fertilization or artificial insemination. Sperm cryopreservation has been extensively used in the dairy industry and has attained excellent results after artificial insemination. However, for small ruminants the application of sperm cryopreservation is limited, due to the poor quality of frozen semen and special characteristics of the reproductive female tract. In order to improve post-thaw semen quality various cryoprotectants are used. Currently, many types of cryoprotectants, such as permeable organic solvents, sugars, antioxidants, and natural or synthetic ice blockers, have been tested on small ruminants' sperm cryopreservation. Among them, trehalose; has shown potential acting as an excellent cryoprotectant for semen freezing. While, the exact roles and action mechanisms of trehalose during cryopreservation remain unclear. In this review, we systematically summarized the present usage status, potential action mechanisms, and future application prospects of trehalose in small-ruminant sperm cryopreservation.
Collapse
Affiliation(s)
- Baoyu Jia
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Larbi Allai
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
- Higher School of Education and Training, Mohammed I University, Oujda, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, Yunnan, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, Yunnan, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, Yunnan, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, Yunnan, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, Yunnan, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, Yunnan, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, Yunnan, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, Yunnan, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, Yunnan, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, Yunnan, China
| |
Collapse
|
10
|
Cheraghi E, Shariatzadeh SMA, Hajiazimi F. Ameliorative impacts of carvacrol on DNA integrity, oxidative stress, and sperm quality in asthenozoospermic infertile individuals during cryopreservation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03626-2. [PMID: 39549060 DOI: 10.1007/s00210-024-03626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Nowadays, the cryopreservation process can produce reactive oxygen species (ROS), which cause damage to the motility, cell membrane, and DNA integrity of sperm. This study is aimed at evaluating the impact of carvacrol, as a powerful antioxidant, on sperm features and improving oxidative stress throughout the cryopreservation procedure. In this prospective study, semen samples from 25 patients with asthenozoospermia were separated into three groups: fresh, freezing, and freezing + carvacrol (a dose of 100 µM). The subsequent parameters were evaluated using standard methods in all three groups: sperm motility according to WHO criteria, sperm morphology using Papanicolaou staining, sperm viability with eosin-nigrosin staining, DNA integrity with acridine orange staining, levels of antioxidant enzymes (catalase, glutathione, and superoxide dismutase), total antioxidant capacity (TAC), and malondialdehyde (MDA) using ELISA. Also, DNA fragmentation was analyzed by the SDFA kit, and mitochondrial membrane potential (MMP) was assessed by rhodamine staining. Average sperm viability, motility, mitochondrial membrane potentiality, integrity of sperm membrane, and antioxidant enzyme levels are meaningfully reduced in the freezing group in contrast to the control group. The freezing group showed a meaningful rise in the mean MDA levels and DNA fragmentation compared to the control group. In the freezing group supplemented with carvacrol, a meaningful rise could be visible in mean percentages of viability, motility, and antioxidant enzyme levels, whereas mean levels of MDA and DNA fragmentation meaningfully declined in contrast to the freezing group. The results demonstrate that carvacrol, a potent antioxidant, offers significant protection against the loss generated by the freeze-thaw procedure, thereby improving sperm quality.
Collapse
Affiliation(s)
- Ebrahim Cheraghi
- Department of Biology, Faculty of Sciences, University of Qom, Ghadir Bolivar, P.O. Box: 3716146611, Qom, Iran.
| | | | - Fatemeh Hajiazimi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| |
Collapse
|
11
|
Parvin A, Erabi G, Saboohi Tasooji MR, Sadeghpour S, Mellatyar H, Rezaei Arablouydareh S, Navapour L, Taheri-Anganeh M, Ghasemnejad-Berenji H. The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochem Photobiol 2024; 100:1713-1739. [PMID: 38623963 DOI: 10.1111/php.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Navapour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Omidi F, Hajarian H, Karamishabankareh H, Soltani L, Dashtizad M. Comparison of the Effect of Adding Different Levels of Zinc Chloride, Curcumin, Zinc Oxide Nanoparticles (Zano-NPs), Curcumin Loaded on Zano-NPs on Post-Thawing Quality of Ram Semen. Vet Med Sci 2024; 10:e70091. [PMID: 39495034 PMCID: PMC11533303 DOI: 10.1002/vms3.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE This study looked at how different concentrations of curcumin (Curc), zinc chloride (ZnCl2), zinc oxide nanoparticles (ZnO-NPs) and Curc loaded on ZnO-NPs (Curc-co-ZnO-NPs) in cryopreservation dilution affected the quality of ram sperm after thawing. METHODS ZnO-NPs were synthesised using Berberis vulgaris leaf aqueous extract. Then, Curc was loaded on the ZnO-NPs that had been synthesised. We used analytical methods to look at the composition, morphology and size of green synthesised ZnO-NPs and Curc-co-ZnO-NPs, including UV-Vis, zeta potential, EDX, DLS, FE-SEM and FT-IR. Using a Tris-base extender containing various concentrations of Curc, ZnCl2, ZnO-NPs and Curc-co-ZnO-NPs (0, 1, 10 and 100 µg/mL), semen samples from four rams were combined. Sperm motility, viability, DNA and plasma membrane integrity, total abnormalities and malondialdehyde (MDA) generation were all evaluated in treatment groups after thawing. RESULTS The results showed that adding 1 µg/mL of ZnO-NPs and Curc-co-ZnO-NPs significantly reduced the level of MDA and total abnormalities (p < 0.05). Additionally, following the freeze-thawing procedure, the presence of 1 µg/mL of Curc-co-ZnO-NPs in the diluent of ram sperm significantly increased the percentage of sperm viability and motility in comparison to the control and other treatment groups (p < 0.05). Furthermore, as compared to the control group and other treatments, treatments containing 1 µg/mL of Curc-co-ZnO-NPs significantly improved membrane and DNA integrity (p < 0.05). CONCLUSIONS It appears that following freeze-thawing, the Curc-co-ZnO-NPs (1 µg/mL) enhanced sperm parameters.
Collapse
Affiliation(s)
- Fatemeh Omidi
- Department of Animal ScienceFaculty of Agricultural and Engineering ScienceRazi UniversityKermanshahIran
| | - Hadi Hajarian
- Department of Animal ScienceFaculty of Agricultural and Engineering ScienceRazi UniversityKermanshahIran
| | - Hamed Karamishabankareh
- Department of Animal ScienceFaculty of Agricultural and Engineering ScienceRazi UniversityKermanshahIran
| | - Leila Soltani
- Department of Animal ScienceFaculty of Agricultural and Engineering ScienceRazi UniversityKermanshahIran
| | - Mojtaba Dashtizad
- Department of Animal ScienceNational Institute of Genetics and BiotechnologyTehranIran
| |
Collapse
|
13
|
Fu L, Wang C, Li W, Dong H, Yang Q, Chang G, Liu J. Piceatannol Protects Sperm from Cryopreservation Damage by Modulating the Keap1-Nrf2/ARE Signaling Pathway. Reprod Sci 2024:10.1007/s43032-024-01723-4. [PMID: 39448521 DOI: 10.1007/s43032-024-01723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
The purpose of this study was to explore the mechanism of action of Piceatannol (PIC) in attenuating oxidative damage to sperm during cryopreservation. Semen samples were collected and homogenized into six equal parts for freeze-thawing experiments. Four different concentrations of PIC were utilized as cryoprotectants during the freeze-thawing process, maintaing a semen to PIC ratio of 1:1, while sperm motility after freezing and thawing was analyzed using computer-assisted sperm analysis (CASA). Sperm plasma membrane integrity was assessed via the hypo-osmotic swelling (HOS) test. The levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities, long with the ability to scavenge sperm malondialdehyde (MDA), were examined in sperm following the addition of PIC. Quantitative real-time PCR (qRT-PCR) was performed to detect the expression levels of Keap1, Nrf2, GCLC, GCLM, and HMOX1 in sperm. The mechanism by which PIC protects sperm during cryopreservation from oxidative stress damage was further verified. Treatment with PIC at a dose of 5.0 μmol/L significantly improved both sperm motility and viability while effectively reducing ROS levels in frozen sperm. Additionally, the integrity of the sperm plasma membrane was significantly enhanced. Furthermore, the expression level of Keap1 was significantly reduced, whereas the expression levels of GCLC, GCLM, HMOX1, and Nrf2 were significantly increased (p < 0.05) after the addition of PIC. Notably, a significant attenuation of sperm motility and viability was observed in this treatment group when PIC treatment was accompanied by the addition of an Nrf2 inhibitor, resulting in a significant elevation of ROS levels. The finding that PIC modulates ROS in frozen sperm via the Keap1-Nrf2/ARE pathway thereby enhancing sperm viability levels after freezing and thawing provides a novel approach to optimize semen cryopreservation.
Collapse
Affiliation(s)
- Lijie Fu
- Department of Urological Surgery No.2, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, China.
| | - Chao Wang
- Department of Urological Surgery No.2, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Wenfu Li
- Department of Urological Surgery No.2, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Hao Dong
- Department of Urological Surgery No.2, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Qian Yang
- Department of Urological Surgery No.2, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Guilin Chang
- Department of Urological Surgery No.2, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Jianping Liu
- Department of Urological Surgery No.2, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, China
| |
Collapse
|
14
|
Benko F, Baňas Š, Ďuračka M, Kačániová M, Tvrdá E. Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa. Cells 2024; 13:1710. [PMID: 39451229 PMCID: PMC11505711 DOI: 10.3390/cells13201710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Theobromine (TBR) is a methylxanthine known for its bronchodilatory and stimulatory effects. This research evaluated the vitality, capacitation patterns, oxidative characteristics, microbial profile and expression of capacitation-associated proteins (CatSper1/2, sodium bicarbonate cotransporter [NBC], protein kinases A [PKA] and C [PKC] and adenylate cyclase 10 [ADCY10]) in cryopreserved bovine spermatozoa (n = 30) in the absence (cryopreserved control [CtrlC]) or presence of different TBR concentrations (12.5, 25, and 50 µM) in egg yolk extender. Fresh ejaculate served as a negative control (CtrlN). Significant post-thaw maintenance of the sperm motility, membrane and DNA integrity and mitochondrial activity (p < 0.001) were recorded following the administration of 25 μM and 50 μM TBR, then compared to CtrlC. All groups supplemented with TBR exhibited a significantly lower percentage of prematurely capacitated spermatozoa (p < 0.001) than CtrlC. Significantly decreased levels of global reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals were observed in the presence of 25 μM and 50 μM TBR (p < 0.01). Western blot analysis revealed that supplementation with 50 μM TBR significantly prevented the loss of NBC and ADCY10 (p < 0.01), while all TBR doses stabilized the levels of PKC (p < 0.05 at 50 μM TBR; p < 0.001 at 12.5 μM and 25 μM TBR). In summary, we suggest that TBR is effective in protecting the spermatozoa during the cryopreservation process through its potential to stimulate energy synthesis while preventing ROS overproduction and the loss of proteins involved in the sperm activation process.
Collapse
Affiliation(s)
- Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| | - Štefan Baňas
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 010 43 Warsaw, Poland
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| |
Collapse
|
15
|
Khaydukova IV, Ivannikova VM, Zhidkov DA, Belikov NV, Peshkova MA, Timashev PS, Tsiganov DI, Pushkarev AV. Current State and Challenges of Tissue and Organ Cryopreservation in Biobanking. Int J Mol Sci 2024; 25:11124. [PMID: 39456905 PMCID: PMC11508709 DOI: 10.3390/ijms252011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Recent years have witnessed significant advancements in the cryopreservation of various tissues and cells, yet several challenges persist. This review evaluates the current state of cryopreservation, focusing on contemporary methods, notable achievements, and ongoing difficulties. Techniques such as slow freezing and vitrification have enabled the successful preservation of diverse biological materials, including embryos and ovarian tissue, marking substantial progress in reproductive medicine and regenerative therapies. These achievements highlight improved post-thaw survival and functionality of cryopreserved samples. However, there are remaining challenges such as ice crystal formation, which can lead to cell damage, and the cryopreservation of larger, more complex tissues and organs. This review also explores the role of cryoprotectants and the importance of optimizing both cooling and warming rates to enhance preservation outcomes. Future research priorities include developing new cryoprotective agents, elucidating the mechanisms of cryoinjury, and refining protocols for preserving complex tissues and organs. This comprehensive overview underscores the transformative potential of cryopreservation in biomedicine, while emphasizing the necessity for ongoing innovation to address existing challenges.
Collapse
Affiliation(s)
- Irina V. Khaydukova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Valeria M. Ivannikova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Dmitry A. Zhidkov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Nikita V. Belikov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Dmitry I. Tsiganov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Aleksandr V. Pushkarev
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
16
|
Ribas-Maynou J, Muiño R, Tamargo C, Yeste M. Cryopreservation of bovine sperm causes single-strand DNA breaks that are localized in the toroidal regions of chromatin. J Anim Sci Biotechnol 2024; 15:140. [PMID: 39394604 PMCID: PMC11470689 DOI: 10.1186/s40104-024-01099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Sperm cryopreservation is widely used in the cattle industry, as it allows for disassociating the localization of sires and the collection of semen from the timing of artificial insemination. While freeze-thawing is known to impair sperm DNA integrity, whether the damage induced consists of single- (SSB) or double-strand breaks (DSB) has not been determined. In addition, no previous study has addressed if DNA breaks preferentially reside in specific genome regions such as those forming the toroid linker regions, or are rather spread throughout the regions linked to protamines. The main aim of the present work, therefore, was to elucidate the type and localization of the DNA damage generated by cryopreservation and to evaluate its impact on artificial insemination outcomes in cattle. RESULTS The incidence of SSB and DSB was evaluated in 12 ejaculates before and after cryopreservation with the Comet assay, and the localization of the DNA breaks was assessed using pulsed-field gel electrophoresis (PFGE). Before cryopreservation, the incidence of SSB was 10.99% ± 4.62% and involved 20.56% ± 3.04% of sperm cells, whereas these figures significantly (P < 0.0001) increased up to 34.11% ± 3.48% and 53.36% ± 11.00% in frozen-thawed sperm. In contrast, no significant differences in the incidence of DSB were observed (P > 0.990) before and after cryopreservation (before: incidence of 13.91% ± 1.75% of sperm DNA affecting 56.04% ± 12.49% of sperm cells; after: incidence of 13.55% ± 1.55% of sperm DNA involving 53.36% ± 11.00% of sperm cells). Moreover, PFGE revealed that the percentage of sperm DNA fragments whose length was shorter than a toroid (< 31.5 kb) was greater (P < 0.0001) after (27.00% ± 4.26%) than before freeze-thawing (15.57% ± 4.53%). These differences indicated that the DNA breaks induced by cryopreservation affect the regions condensed in protamines, which are structured in toroids. On the other hand, in vivo fertility rates were associated to the incidence of SSB and DSB in frozen-thawed sperm (P = 0.032 and P = 0.005), but not with the size of the DNA fragments resulting from these breaks (P > 0.05). CONCLUSION Cryopreservation of bovine sperm generates single-strand DNA breaks, which are mainly located in protamine-condensed toroidal regions. The incidence of DNA breaks in cryopreserved sperm has an impact on cattle fertility, regardless of the size of generated fragments.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain.
- Unit of Cell Biology and Medical Genetics; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, S08193, Bellaterra, Spain.
| | - Rodrigo Muiño
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Santiago de Compostela, S15705, Lugo, Spain
| | - Carolina Tamargo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), S33394, Gijón, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), S08010, Barcelona, Spain
| |
Collapse
|
17
|
Yan B, Wang J, Zhou Y, Pei L, Zhang F, Gao B, Wang H. The application of mean number of DNA breakpoints in sperm cryopreservation. Cryobiology 2024; 116:104937. [PMID: 38942068 DOI: 10.1016/j.cryobiol.2024.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Growing concerns over declining male semen quality and rising infertility have shifted attention to male fertility. Sperm cryopreservation emerges as a crucial tool in preserving male fertility, especially for patients who need proactive preservation, such as cancer patients before undergoing radiation or chemotherapy. Although cryopreservation does not directly address infertility, effective preservation can support future fertility. However, the process may compromise sperm DNA integrity. Despite their impairment, damaged sperm often retain vitality and may still have the potential to fertilize an egg. Nonetheless, if damaged sperm fertilize an egg, excessive DNA damage could impede embryo implantation and development, despite the egg's repair capabilities. Consequently, precise detection of sperm DNA damage is crucial and urgent. To better address the issue of sperm DNA damage detection, we have introduced a novel fluorescence biosensor technology known as the TDT/SD Probe. This technology utilizes terminal deoxynucleotidyl transferase (TdT) and strand displacement probes to accurately detect the number of sperm DNA breakage points during the cryopreservation process. Experimental results reveal that the number of sperm DNA breakpoints significantly increases after both sperm vitrification (8.17 × 105) and conventional slow freezing (10.80 × 105), compared to the DNA breakpoints of fresh semen samples (5.19 × 105). However, sperm vitrification has the least impact on sperm breakage points. This research provides innovative means for further optimizing sperm preservation techniques by offering a novel DNA damage detection method, enabling more precise assessment of sperm DNA damage during the freezing process.
Collapse
Affiliation(s)
- Bei Yan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China; Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Juan Wang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Yue Zhou
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Liguo Pei
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Fan Zhang
- Reproductive Center, Yinchuan Women and Children Healthcare Hospital, Yinchuan, 750004, China
| | - Bianbian Gao
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China.
| | - Hongyan Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, 510006, China.
| |
Collapse
|
18
|
Pezo F, Contreras MJ, Zambrano F, Uribe P, Risopatron J, Andrade AFCD, Yeste M, Sánchez R. Thawing of cryopreserved sperm from domestic animals: Impact of temperature, time, and addition of molecules to thawing/insemination medium. Anim Reprod Sci 2024; 268:107572. [PMID: 39128319 DOI: 10.1016/j.anireprosci.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
In recent decades, there has been a growing interest in optimizing the protocols intended to sperm cryopreservation in domestic animals. These protocols include initial cooling, freezing, and thawing. While different attempts have been devised to improve sperm cryopreservation, the efficiency of this reproductive biotechnology is still far from being optimal. Furthermore, while much attention in improving cooling/freezing, less emphasis has been made in how thawing can be ameliorated. Despite this, the conditions through which, upon thawing, sperm return to physiological temperatures are much relevant, given that these cells must travel throughout the female genital tract until they reach the utero-tubal junction. Moreover, the composition of the media used for artificial insemination (AI) may also affect sperm survival, which is again something that one should bear because of the long journey that sperm must make. Furthermore, sperm quality and functionality decrease dramatically during post-thawing incubation time. Added to that, the deposition of the thawed sperm suspension devoid of seminal plasma in some species during an AI is accompanied by a leukocyte migration to the uterine lumen and with it the activation of immune mechanisms. Because few reviews have focused on the evidence gathered after sperm thawing, the present one aims to compile and discuss the available information concerning ruminants, pigs and horses.
Collapse
Affiliation(s)
- Felipe Pezo
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco, Chile
| | - Fabiola Zambrano
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jennie Risopatron
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Andre Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Raúl Sánchez
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile.
| |
Collapse
|
19
|
Li C, Lv C, Larbi A, Liang J, Yang Q, Wu G, Quan G. Revisiting the Injury Mechanism of Goat Sperm Caused by the Cryopreservation Process from a Perspective of Sperm Metabolite Profiles. Int J Mol Sci 2024; 25:9112. [PMID: 39201798 PMCID: PMC11354876 DOI: 10.3390/ijms25169112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Semen cryopreservation results in the differential remodeling of the molecules presented in sperm, and these alterations related to reductions in sperm quality and its physiological function have not been fully understood. Given this, this study aimed to investigate the cryoinjury mechanism of goat sperm by analyzing changes of the metabolic characteristics in sperm during the cryopreservation process. The ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) technique was performed to explore metabolite profiles of fresh sperm (C group), equilibrated sperm (E group), and frozen-thawed sperm (F group). In total, 2570 metabolites in positive mode and 2306 metabolites in negative mode were identified, respectively. After comparative analyses among these three groups, 374 differentially abundant metabolites (DAMs) in C vs. E, 291 DAMs in C vs. F, and 189 DAMs in E vs. F were obtained in the positive mode; concurrently, 530 DAMs in C vs. E, 405 DAMs in C vs. F, and 193 DAMs in E vs. F were obtained in the negative mode, respectively. The DAMs were significantly enriched in various metabolic pathways, including 31 pathways in C vs. E, 25 pathways in C vs. F, and 28 pathways in E vs. F, respectively. Among them, 65 DAMs and 25 significantly enriched pathways across the three comparisons were discovered, which may be tightly associated with sperm characteristics and function. Particularly, the functional terms such as TCA cycle, biosynthesis of unsaturated fatty acids, sphingolipid metabolism, glycine, serine and threonine metabolism, alpha-linolenic acid metabolism, and pyruvate metabolism, as well as associated pivotal metabolites like ceramide, betaine, choline, fumaric acid, L-malic acid and L-lactic acid, were focused on. In conclusion, our research characterizes the composition of metabolites in goat sperm and their alterations induced by the cryopreservation process, offering a critical foundation for further exploring the molecular mechanisms of metabolism influencing the quality and freezing tolerance of goat sperm. Additionally, the impacts of equilibration at low temperature on sperm quality may need more attentions as compared to the freezing and thawing process.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Allai Larbi
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, El Jadida 24000, Morocco;
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Qige Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming 650500, China;
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| |
Collapse
|
20
|
Weibring K, Lundberg FE, Cohn-Cedermark G, Rodriguez-Wallberg KA. Sperm Quality in 1252 Adolescents and Young Adults (AYAs) Undergoing Fertility Preservation Due to Cancer or Nonmalignant Diseases. J Adolesc Young Adult Oncol 2024. [PMID: 39069896 DOI: 10.1089/jayao.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Purpose: To investigate the quality of emergency-collected semen samples aimed at sperm cryopreservation provided by adolescents and young adults (AYAs) presenting with cancer or nonmalignant diseases. Methods: This is a prospective cohort study of postpubertal males referred for sperm cryopreservation who provided at least one semen sample for fertility preservation at the Reproductive Medicine Clinic of Karolinska University Hospital, Stockholm, Sweden, between January 2009 and January 2020. Sperm quality was assessed by total sperm count, concentration, and motility. Sperm quality by disease groups was compared with the reference population data of fertile men defined by the World Health Organization (WHO). Results: Among the 1252 patients who provided samples for cryopreservation, 1063 had cancer and 189 had nonmalignant diseases. The most common malignant indications included testicular cancers (n = 501) and Hodgkin lymphoma (n = 102). Among those with nonmalignant disease, 35% (n = 66) had testicular disease. Sperm quality was significantly lower in all groups of patients with cancer compared with the reference population. In total, azoospermia was found in 8% of the patients with cancer, in 9% of those with nonmalignant testicular disease, and in 3% of the remaining men with nonmalignant disease. Conclusion: Sperm quality in adult patients with cancer was significantly impaired compared with the WHO reference population standards for fertile men. For adolescent patients, standard reference values are lacking. AYAs wishing to preserve fertility should receive individualized counseling regarding sperm quality at the time of cryopreservation, and in selected cases, banking of additional samples should be recommended depending on the sperm quality parameters.
Collapse
Affiliation(s)
- Kristina Weibring
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Frida E Lundberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriella Cohn-Cedermark
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, Karolinska Institutet, Stockholm, Sweden
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Hallam J, Burton P, Sanders K. Poor Sperm Chromatin Condensation Is Associated with Cryopreservation-Induced DNA Fragmentation and Cell Death in Human Spermatozoa. J Clin Med 2024; 13:4156. [PMID: 39064196 PMCID: PMC11277714 DOI: 10.3390/jcm13144156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Semen cryopreservation is routinely performed in fertility clinics for a variety of reasons, including fertility preservation and storage of donor sperm, yet the freeze-thaw process leads to cellular damage via ice crystal formation, osmotic shock, and supraphysiological levels of oxidative stress. Sperm resistance to damage during the freeze-thaw process varies widely, yet the intrinsic factors associated with sperm cryotolerance are largely unknown. The study aimed to investigate whether poor chromatin condensation renders sperm vulnerable to DNA fragmentation and cell death induced by the freeze-thaw process. Methods: Participants (n = 51) from the general community who met the inclusion criteria collected a semen sample after 3-8 days of abstinence. Neat semen samples underwent traditional semen analysis, aniline blue (AB)-eosin staining for chromatin condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay for DNA fragmentation, and the Annexin V assay for apoptosis/necrosis, prior to being cryopreserved using the liquid nitrogen vapour method and stored at -196 °C. Stored samples were later thawed at room temperature and processed using density gradient centrifugation. Motile sperm concentration, DNA fragmentation and apoptosis/necrosis were analysed in post-thaw samples. Results: As indicated by a significant interaction effect in linear mixed models, an increased proportion of AB-positive sperm in the pre-freeze sample exacerbated the adverse effect of freezing on sperm DNA fragmentation (p = 0.004), late apoptosis (p = 0.007), and necrosis (p = 0.007). AB-staining was positively correlated with all three parameters in the post-thaw sample (all rs ≥ 0.424, all p < 0.01) and remained significant after adjusting for neat sperm concentration (all partial rs ≥ 0.493, all p < 0.01). Similarly, AB-staining was significantly correlated with the percentage point change in sperm DNA fragmentation (rs = 0.366, p = 0.014) and necrosis (rs = 0.403, p = 0.009), both of which remained significant after adjusting for neat sperm concentration (both partial rs ≥ 0.404, both p < 0.01), and borderline significantly correlated with percentage point change in late apoptosis (rs = 0.307, p = 0.051). Conclusions: Sperm with poorly condensed chromatin may be more susceptible to cellular damage during the freeze-thaw process, independent of pre-freeze sperm concentration. These findings may help to explain the intrinsic variation in sperm resistance to cryodamage within and between individuals that is poorly understood.
Collapse
Affiliation(s)
- Jade Hallam
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Peter Burton
- Concept Fertility Centre, Subiaco, WA 6008, Australia;
| | - Katherine Sanders
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| |
Collapse
|
22
|
Ortiz-Vallecillo A, Santamaría-López E, García-Ruiz D, Martín-Lozano D, Candenas L, Pinto FM, Fernández-Sánchez M, González-Ravina C. Influence of BMI, Cigarette Smoking and Cryopreservation on Tyrosine Phosphorylation during Sperm Capacitation. Int J Mol Sci 2024; 25:7582. [PMID: 39062825 PMCID: PMC11276716 DOI: 10.3390/ijms25147582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Capacitation involves tyrosine phosphorylation (TP) as a key marker. Lifestyle-related factors, such as obesity and smoking, are recognized for their adverse effects on semen quality and male fertility, yet the underlying mechanisms, including their potential impact on TP, remain unclear. Moreover, the effect of sperm cryopreservation on TP at the human sperm population level is unexplored. Flow cytometry analysis of global TP was performed on pre-capacitated, post-capacitated and 1- and 3-hours' incubated fresh and frozen-thawed samples from sperm donors (n = 40). Neither being overweight nor smoking (or both) significantly affected the percentage of sperm showing TP. However, elevated BMI and smoking intensity correlated with heightened basal TP levels (r = 0.226, p = 0.003) and heightened increase in TP after 3 h of incubation (r = 0.185, p = 0.017), respectively. Cryopreservation resulted in increased global TP levels after capacitation but not immediately after thawing. Nonetheless, most donors' thawed samples showed increased TP levels before and after capacitation as well as after incubation. Additionally, phosphorylation patterns in fresh and frozen-thawed samples were similar, indicating consistent sample response to capacitation stimuli despite differences in TP levels. Overall, this study sheds light on the potential impacts of lifestyle factors and cryopreservation on the dynamics of global TP levels during capacitation.
Collapse
Affiliation(s)
- Ana Ortiz-Vallecillo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain; (A.O.-V.); (C.G.-R.)
| | | | - Diego García-Ruiz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain; (A.O.-V.); (C.G.-R.)
| | - David Martín-Lozano
- Instituto de Investigaciones Químicas, CSIC, Calle Américo Vespucio, 49, 41092 Seville, Spain; (D.M.-L.); (L.C.); (F.M.P.)
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Calle Américo Vespucio, 49, 41092 Seville, Spain; (D.M.-L.); (L.C.); (F.M.P.)
| | - Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC, Calle Américo Vespucio, 49, 41092 Seville, Spain; (D.M.-L.); (L.C.); (F.M.P.)
| | - Manuel Fernández-Sánchez
- VIDA RECOLETAS Seville, Calle Américo Vespucio, 19, 41092 Seville, Spain;
- Departamento de Cirugía, Universidad de Sevilla, Avenida Sánchez Pizjuán, S/N, 41009 Seville, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, 1, 41013 Seville, Spain
| | - Cristina González-Ravina
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain; (A.O.-V.); (C.G.-R.)
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, 1, 41013 Seville, Spain
- IVI-RMA Global Headquarters, Calle Américo Vespucio, 5, 41092 Seville, Spain
| |
Collapse
|
23
|
Zhao R, Liu X, Ekpo MD, He Y, Tan S. Exploring the Cryopreservation Mechanism and Direct Removal Strategy of TAPS in Red Blood Cell Cryopreservation. ACS Biomater Sci Eng 2024; 10:4259-4268. [PMID: 38832439 DOI: 10.1021/acsbiomaterials.3c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.
Collapse
Affiliation(s)
- Rui Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Pilot Free Trade Zone Global Cell Bank, Changsha, Hunan 410000, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, SIP 215000, China
| |
Collapse
|
24
|
Wang K, Jiao H, Cheng X, Zhang L, Zhang S, Liu G, Meng F, Zhan F, Yang F. Proteomic Analysis of Differences in the Freezability of Porcine Sperm Identifies α-Amylase As a Key Protein. J Proteome Res 2024; 23:2641-2650. [PMID: 38906844 DOI: 10.1021/acs.jproteome.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
To investigate the mechanisms underlying the differences in the freezability of boar semen, Yorkshire boars with freezing-tolerant semen (YT, n = 3), Yorkshire boars with freezing-sensitive semen (YS, n = 3), Landrace boars with freezing-tolerant semen (LT, n = 3), and Landrace boars with freezing-sensitive semen (LS, n = 3) were selected for this study. Their sperm was subjected to protein extraction, followed by data-independent acquisition proteomics and functional bioinformatics analysis. A total of 3042 proteins were identified, of which 2810 were quantified. Some key KEGG pathways were enriched, such as starch and sucrose metabolism, carbohydrate digestion and absorption, mineral absorption, the HIF-1 signaling pathway, and the necroptosis pathways. Through PRM verification, we found that several proteins, such as α-amylase and epididymal sperm-binding protein 1, can be used as molecular markers of the freezing resistance of boar semen. Furthermore, we found that the addition of α-amylase to cryoprotective extender could significantly improve the post-thaw motility and quality of boar semen. In summary, this study revealed some molecular markers and potential molecular pathways contributing to the high or low freezability of boar sperm, identifying α-amylase as a key protein. This study is valuable for optimizing boar semen cryopreservation technology.
Collapse
Affiliation(s)
- Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hang Jiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinrui Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lige Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Songyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Gang Liu
- National Animal Husbandry Station, Beijing 100193, China
| | - Fei Meng
- National Animal Husbandry Station, Beijing 100193, China
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
25
|
Oktanella Y, Mustofa I, An-Haru FAFR, Putri DDM, Hendrawan VF, Susilowati S, Degu NY, Hernawati T. Conserving goat sperm post-thawed gene expression and cellular characteristics using the antioxidant coenzyme Q10 supplementation. Vet World 2024; 17:1637-1647. [PMID: 39185048 PMCID: PMC11344105 DOI: 10.14202/vetworld.2024.1637-1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The use of frozen goat semen for artificial insemination frequently results in a decline in sperm quality following thawing, which can be attributed to cold shock from cryopreservation, reduced motility, and possible DNA damage. Freezing may compromise mRNA stability due to the presence of free radicals. Despite strong post-thaw motility and no visible DNA fragmentation, sperm can still exhibit altered gene expression patterns. To reduce the damaging impact of free radicals during cryopreservation, antioxidants are typically added to the freezing medium. This study assessed the impact of adding coenzyme Q10 (CoQ10) to frozen sperm diluent on the ATP5F1A and CPT2 gene expression, sperm motility, and viability post-thawing. Materials and Methods CoQ10 was added to sperm at six different concentrations: 0 mg/dL (P0), 6.25 mg/dL (P1), 12.5 mg/dL (P2), 25 mg/dL (P3), 50 mg/dL (P4), and 100 mg/dL (P5). The Statistical Package for the Social Sciences (SPSS) software version 22 was used to conduct comparative tests using one-way analysis of variance followed by Duncan's test for motility and viability and Kruskal-Wallis test followed by pairwise comparison test for membrane integrity and gene expression. Results The addition of CoQ10 to semen diluent has a notable impact on the post-thawed quality of sperm. The most significant outcomes were observed with a 25 mg/dL dosage (P3) for cell viability, membrane integrity, and ATP5F1A gene expression, and with a 50 mg/dL dosage (P4) for sperm motility, membrane integrity, and CPT2 gene expression. Conclusion Incorporating CoQ10 into frozen semen diluent improves gene expression and prevents deterioration of the cell quality of thawed goat spermatozoa. While the study demonstrates the benefits of CoQ10, the precise molecular mechanisms through which CoQ10 enhances gene expression and cell quality were not fully elucidated. Further investigation is needed to understand these mechanisms in detail. Comparative studies with other antioxidants and cryoprotectants can help establish the relative efficacy of CoQ10 and potentially develop more effective combinations.
Collapse
Affiliation(s)
- Yudit Oktanella
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Imam Mustofa
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, Indonesia
| | | | - Desinta Dwi Melati Putri
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Viski Fitri Hendrawan
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Suherni Susilowati
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, Indonesia
| | - Nurhusien Yimer Degu
- Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Faculty of Veterinary Medicine, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, Indonesia
| | - Tatik Hernawati
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, Indonesia
| |
Collapse
|
26
|
Gül M, Russo GI, Kandil H, Boitrelle F, Saleh R, Chung E, Kavoussi P, Mostafa T, Shah R, Agarwal A. Male Infertility: New Developments, Current Challenges, and Future Directions. World J Mens Health 2024; 42:502-517. [PMID: 38164030 PMCID: PMC11216957 DOI: 10.5534/wjmh.230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 01/03/2024] Open
Abstract
There have been many significant scientific advances in the diagnostics and treatment modalities in the field of male infertility in recent decades. Examples of these include assisted reproductive technologies, sperm selection techniques for intracytoplasmic sperm injection, surgical procedures for sperm retrieval, and novel tests of sperm function. However, there is certainly a need for new developments in this field. In this review, we discuss advances in the management of male infertility, such as seminal oxidative stress testing, sperm DNA fragmentation testing, genetic and epigenetic tests, genetic manipulations, artificial intelligence, personalized medicine, and telemedicine. The role of the reproductive urologist will continue to expand in future years to address different topzics related to diverse questions and controversies of pathophysiology, diagnosis, and therapy of male infertility, training researchers and physicians in medical and scientific research in reproductive urology/andrology, and further development of andrology as an independent specialty.
Collapse
Affiliation(s)
- Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Giorgio Ivan Russo
- Urology Section, University of Catania, Catania, Italy
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Hussein Kandil
- Fakih IVF Fertility Center, Abu Dhabi, UAE
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
- Well Women's Centre, Sir HN Reliance Foundation Hospital, Mumbai, India
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
27
|
Du X, Zhang Y, Li D, Han J, Liu Y, Bai L, Huang T, Cui M, Wang P, Zheng X, Zhao A. Metabolites assay offers potential solution to improve the rooster semen cryopreservation. Theriogenology 2024; 221:9-17. [PMID: 38521007 DOI: 10.1016/j.theriogenology.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Semen cryopreservation represents a promising technology utilized for preserving high-quality chicken varieties in husbandry practices. However, the efficacy of this methodology is significantly impeded by the diminished quality of sperm. Metabolites, as the end products of metabolic reactions, serve as indicators of biological processes and offer insights into physiological conditions. In this study, we investigaged the sperm quality and alteration in metabolic profiles during the cryopreservation of Longyou Partridge Chicken semen. Following artificial semen collection, four groups of semen samples were established based on four points of the cryopreservation process (Ⅰ, fresh semen; Ⅱ, semen added extender and chilled at 4 °C for 30 min; Ⅲ, semen added cryoprotectants; Ⅳ, semen gradient freezed and stored in liquid nitrogen). Semen cryopreservation has a negative effect on the percentage of sperm in a straight-line trajectory (LIN), has no significant effect on total motile sperms (TM) or the proportion of sperm with typical morphology (NM). Metabolites were identified using LC-MS technique and analyses including Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), Univariate statistical analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were employed to identify metabolites. A total of 2471 metabolites had been identified, with the majority of the list being made up of amino acids and their metabolites as well as benzene and substituted derivatives. Group II exhibits 882 metabolites with significantly elevated abundance relative to Group I, alongside 37 metabolites displaying decreased abundance. In Group III, 836 metabolites demonstrate notably augmented abundance compared to Group II, while 87 metabolites exhibit reduced abundance. Furthermore, Group IV showcases 513 metabolites with markedly heightened abundance in comparison to Group III, and 396 metabolites with decreased abundance. Specific metabolites such as 5-Hydroxylysine, Phosphocholine, and alpha-d-glucose-6-phosphate exhibited a progressive decline during the cryopreservation process, correlating with either dilution and chilling, cryoprotectant addition, or freezing. In conclusion, our investigation systematically examined the changes of seminal metabolome and sperm quality throughout the cryopreservation process of rooster semen.
Collapse
Affiliation(s)
- Xue Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, PR China
| | - Yuanning Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, PR China
| | - Duoxi Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, PR China
| | - Jie Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, PR China
| | - Yali Liu
- Zhejiang Provincial Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Hangzhou, 310000, Zhejiang, PR China
| | - Lijuan Bai
- Zhejiang Provincial Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Hangzhou, 310000, Zhejiang, PR China
| | - Tao Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, PR China
| | - Ming Cui
- Zhejiang Provincial Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Hangzhou, 310000, Zhejiang, PR China
| | - Panlin Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, PR China
| | - Xianzhong Zheng
- Zhejiang Longchang Agriculture Development Co., LTD, Quzhou, 324400, PR China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, PR China.
| |
Collapse
|
28
|
Kargari M, Sharafi M, Torshizi MAK, Hezavehei M, Zanganeh Z. Effects of hydroxytyrosol on post-thaw quality of rooster sperm. Reprod Domest Anim 2024; 59:e14588. [PMID: 38822558 DOI: 10.1111/rda.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Semen cryopreservation is one of the most important reproduction techniques in the livestock and poultry industry. Cryopreservation induces cold stress, generating reactive oxygen species (ROS) and oxidative stress causing structural and biochemical damages in sperm. In this study, we evaluated the effects of the hydroxytyrosol (HT), as an antioxidant, at the concentrations of 0, 25, 50, and 100 μg/mL on post-thaw semen quality metrics in rooster. Semen samples were collected twice a week from 10 roosters (29 weeks), processed and frozen according to experimental groups. Different quality parameters, including total motility, progressive motility, viability, morphology, membrane integrity, and malondialdehyde were measured after thawing. Results showed that 25 and 50 μg/mL of HT produced the highest percentage of total motility (51.01 ± 2.19 and 50.15 ± 2.19, respectively) and progressive motility (35.74 ± 1.34 and 35.15 ± 1.34, respectively), membrane integrity (48.00 ± 2.18 and 46.75 ± 2.18, respectively) as well as viability (53.00 ± 2.17 and 52.50 ± 2.17, respectively) compared with the other groups (p < .05). The group with 25 μg/mL of HT showed the lowest significant (p < .05) MDA concentration (1.81 ± 0.25). Our results showed that the effect of HT was not dose-dependent and optimum concentration of HT could improve functional parameters of rooster sperm after freezing-thawing. These findings suggest that HT may have protective effects on the rooster sperm during the freezing-thawing process.
Collapse
Affiliation(s)
- Mohammad Kargari
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zeynab Zanganeh
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Rodrigues JF, Dacampo LDL, Bicca DF, Lüdtke DS, Brum DDS, Cibin FWS. Effects of organic and inorganic selenium supplementation on frozen-thawed ram semen at two cooling periods. Vet Res Commun 2024; 48:1367-1377. [PMID: 38243140 DOI: 10.1007/s11259-024-10302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The aim of this study was to evaluate the effects of different selenium compounds on the sperm quality of cryopreserved ram semen. Ejaculates from four rams, collected using an artificial vagina heated to 38 °C, were individually evaluated. The approved ejaculates were pooled and diluted (1:1 v:v) in Tris-egg yolk extender (20%, v/v) and separated into two control groups, one cooled for 2 h and the other for 4 h. The pooled ejaculates at the two cooling periods were supplemented with two doses (0.5 and 1 μg/mL) of organic selenium (ORG), and inorganic selenium (SeNa), each. The samples were packed in 0.25 ml straws, at a concentration of 400 × 106 sperms/mL and stored in liquid nitrogen. The straws were thawed in a water bath at 37 °C for 20 s, and the samples were subjected to sperm kinetics evaluation by Computer Assisted Semen Analysis software. Sperm membrane integrity, acrosome morphology, and mitochondrial potential were assessed. In addition, oxidative stress markers reactive oxygen species (ROS), ferric reducing antioxidant power (FRAP), thiobarbituric acid reactive species (TBARS), and glutathione peroxidase (GPx) enzyme activity) were also evaluated. No significant improvement was observed in the ram semen quality at the two cooling times. Supplementation of the freezing extender with 0.5 μg/mL ORG, subjected to 4 h cooling period, increased the sperm motility when compared with the control group at the same cooling time. In addition, the 0.5 μg/mL SeNa group, under the 2 h cooling period, showed an increase in sperm motility when compared to the control group at the same cooling period. Considering the importance of sperm motility as a fertility parameter, our study indicates that supplementation with ORG and SeNa can help improve the total motility of the cryopreserved ram semen.
Collapse
Affiliation(s)
- Jéssica Ferreira Rodrigues
- Laboratório de Biotecnologia da Reprodução (Biotech), Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
- Laboratório de Estresse Oxidativo, Universidade Federal do Pampa (UNIPAMPA), Campus Uruguaiana, Uruguaiana, 97500-970, RS, Brazil
| | - Lucas Dalle Laste Dacampo
- Laboratório de Biotecnologia da Reprodução (Biotech), Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Diogo Ferreira Bicca
- Laboratório de Biotecnologia da Reprodução (Biotech), Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
- Laboratório de Estresse Oxidativo, Universidade Federal do Pampa (UNIPAMPA), Campus Uruguaiana, Uruguaiana, 97500-970, RS, Brazil
| | - Diogo Seibert Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre, 91501-970, RS, Brazil
| | - Daniela Dos Santos Brum
- Laboratório de Biotecnologia da Reprodução (Biotech), Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Francielli Weber Santos Cibin
- Laboratório de Biotecnologia da Reprodução (Biotech), Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil.
- Laboratório de Estresse Oxidativo, Universidade Federal do Pampa (UNIPAMPA), Campus Uruguaiana, Uruguaiana, 97500-970, RS, Brazil.
| |
Collapse
|
30
|
Salehi E, Shadboorestan A, Mohammadi-Bardbori A, Mousavi A, Kargar-Abargouei E, Sarkoohi P, Omidi M. Effect of crocin and quercetin supplementation in cryopreservation medium on post-thaw human sperm quality. Cell Tissue Bank 2024; 25:531-540. [PMID: 37776436 DOI: 10.1007/s10561-023-10110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/28/2023] [Indexed: 10/02/2023]
Abstract
Biochemical and physical changes during the cryopreservation process adversely affect sperm function required for fertilization. Recently, many studies have been conducted to find effective pre-freezing treatments to limit these damages. The present study aimed to investigate the effects of pre-freezing treatment with quercetin and crocin, individually or in combination, on sperm parameters after thawing procedure. For this, semen samples from 20 normozoospermic men were collected and then each sample was divided into five equal parts: 1. fresh group 2. frozen-thawed group without addition of antioxidants 3. frozen-thawed group containing 1 mM crocin, 4. frozen-thawed group containing 50 μM quercetin, and 5. frozen-thawed group containing a combination of 1 mM crocin and 50 μM quercetin. Pre-cryopreservation and post-thaw sperm motility, morphology, viability, DNA fragmentation, reactive oxygen species [1] (ROS) levels, and mitochondrial membrane potential [2] (MMP) were investigated. Cryopreservation significantly reduced sperm quality. Both crocin and quercetin individually improved sperm progressive motility, decreased ROS levels, reduced DNA fragmentation, and marginally increased MMP, though crocin seems to be more successful in protecting sperm quality. More interestingly, the combined addition of crocin and quercetin to the sperm-freezing medium did not show positive effects on sperm quality. Crocin and quercetin may play a role in mitigating the cryopreservation-induced injury to sperm.
Collapse
Affiliation(s)
- Ensieh Salehi
- Department of Gynecology, School of Medicine, Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abedeh Mousavi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Elias Kargar-Abargouei
- Department of Anatomy, School of Medicine, Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Sarkoohi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
31
|
Hai E, Li B, Zhang J, Zhang J. Sperm freezing damage: the role of regulated cell death. Cell Death Discov 2024; 10:239. [PMID: 38762505 PMCID: PMC11102515 DOI: 10.1038/s41420-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Substantial progress in research on sperm cryopreservation has occurred since the twentieth century, especially focusing on improving sperm freezing procedures and optimizing semen extenders. However, the cellular biological mechanisms of sperm freezing damage are still unclear, which greatly restricts the promotion and development of sperm cryopreservation. An essential component of sperm freezing damage is the occurrence of cell death. Considering the existence of multiple types of cell death pathways, this review discusses connections between characteristics of regulated cell death (e.g., apoptosis and ferroptosis), and accidental cell death (e.g., intracellular ice crystals) with sperm freezing damage and explores possible future research directions in this field.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
32
|
Kussler APDS, Bustamante IC, Negri E, Capp E, Corleta HVE. Timing of semen cryopreservation: before or after processing? REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo36. [PMID: 38765530 PMCID: PMC11075422 DOI: 10.61622/rbgo/2024rbgo36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/26/2023] [Indexed: 05/22/2024] Open
Abstract
Objective Seminal cryopreservation causes significant damage to the sperm; therefore, different methods of cryopreservation have been studied. The aim of the study was to compare the effects of density gradient processing and washing/centrifugation with seminal plasma removal for cryopreservation in semen parameters. Methods Seminal samples of 26 normozoospermic patients were divided into 3 parts: with seminal plasma; after washing/centrifugation; and after selection through density gradient. The samples were cryopreserved for at least two weeks. Motility, sperm count, morphology and viability were evaluated before cryopreservation and after thawing. Results Density gradient processing selected motile and viable sperm with normal morphology in fresh samples (p<0.05). Cryopreservation negatively affected all sperm parameters regardless of the processing performed, and even if the sperm recovery was lower in the density gradient after the thawing, progressive motility, total motility, viability and morphology remained higher (p<0.05). Conclusion Cryopreservation significantly compromises sperm parameters (motility, morphology, viability). In normozoospermic patients, the density gradients select better quality spermatozoa compared to other processing methods; this benefit was kept after thawing.
Collapse
Affiliation(s)
- Ana Paula de Souza Kussler
- Universidade Federal do Rio Grande do SulFaculdade de MedicinaPorto AlegreRSBrazilFaculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Generar Reprodução HumanaPorto AlegreRSBrazilGenerar Reprodução Humana, Porto Alegre, RS, Brazil.
| | - Ivan Cunha Bustamante
- Universidade do Vale do TaquariLajeadoRSBrazilUniversidade do Vale do Taquari, Lajeado, RS, Brazil.
| | - Elisa Negri
- Universidade Federal do Rio Grande do SulFaculdade de MedicinaPorto AlegreRSBrazilFaculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Edison Capp
- Universidade Federal do Rio Grande do SulFaculdade de MedicinaPorto AlegreRSBrazilFaculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Hospital de Clínicas de Porto AlegrePorto AlegreRSBrazilHospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Helena von Eye Corleta
- Universidade Federal do Rio Grande do SulFaculdade de MedicinaPorto AlegreRSBrazilFaculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Generar Reprodução HumanaPorto AlegreRSBrazilGenerar Reprodução Humana, Porto Alegre, RS, Brazil.
- Hospital de Clínicas de Porto AlegrePorto AlegreRSBrazilHospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Baňas Š, Tvrdá E, Benko F, Ďuračka M, Čmiková N, Lukáč N, Kačániová M. Kaempferol as an Alternative Cryosupplement for Bovine Spermatozoa: Cytoprotective and Membrane-Stabilizing Effects. Int J Mol Sci 2024; 25:4129. [PMID: 38612937 PMCID: PMC11012659 DOI: 10.3390/ijms25074129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Kaempferol (KAE) is a natural flavonoid with powerful reactive oxygen species (ROS) scavenging properties and beneficial effects on ex vivo sperm functionality. In this paper, we studied the ability of KAE to prevent or ameliorate structural, functional or oxidative damage to frozen-thawed bovine spermatozoa. The analysis focused on conventional sperm quality characteristics prior to or following thermoresistance tests, namely the oxidative profile of semen alongside sperm capacitation patterns, and the levels of key proteins involved in capacitation signaling. Semen samples obtained from 30 stud bulls were frozen in the presence of 12.5, 25 or 50 μM KAE and compared to native ejaculates (negative control-CtrlN) as well as semen samples cryopreserved in the absence of KAE (positive control-CtrlC). A significant post-thermoresistance test maintenance of the sperm motility (p < 0.001), membrane (p < 0.001) and acrosome integrity (p < 0.001), mitochondrial activity (p < 0.001) and DNA integrity (p < 0.001) was observed following supplementation with all KAE doses in comparison to CtrlC. Experimental groups supplemented with all KAE doses presented a significantly lower proportion of prematurely capacitated spermatozoa (p < 0.001) when compared with CtrlC. A significant decrease in the levels of the superoxide radical was recorded following administration of 12.5 (p < 0.05) and 25 μM KAE (p < 0.01). At the same time, supplementation with 25 μM KAE in the cryopreservation medium led to a significant stabilization of the activity of Mg2+-ATPase (p < 0.05) and Na+/K+-ATPase (p < 0.0001) in comparison to CtrlC. Western blot analysis revealed that supplementation with 25 μM KAE in the cryopreservation medium prevented the loss of the protein kinase A (PKA) and protein kinase C (PKC), which are intricately involved in the process of sperm activation. In conclusion, we may speculate that KAE is particularly efficient in the protection of sperm metabolism during the cryopreservation process through its ability to promote energy synthesis while quenching excessive ROS and to protect enzymes involved in the process of sperm capacitation and hyperactivation. These properties may provide supplementary protection to spermatozoa undergoing the freeze-thaw process.
Collapse
Affiliation(s)
- Štefan Baňas
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (Š.B.)
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (Š.B.)
| | - Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (Š.B.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Norbert Lukáč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 010 43 Warsaw, Poland
| |
Collapse
|
34
|
Shaliutina-Loginova A, Loginov DS. Transferrin maintains the motility rate, ATP content, and DNA integrity of common carp spermatozoa during short-term storage. Anim Reprod Sci 2024; 263:107437. [PMID: 38395011 DOI: 10.1016/j.anireprosci.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Short-term sperm storage is a straightforward and cost-effective method of managing logistics in large scale fish hatchery operations but may result in decline in sperm quality. For effective artificial reproduction of fish, use of an appropriate additive to optimize sperm storage conditions is essential. In this study, it was investigated the effect of purified seminal plasma transferrin (Tf) at 10 μg/ml on relevant parameters in common carp Cyprinus carpio sperm during short-term storage. We compared sperm motility and curvilinear velocity, adenosine triphosphate (ATP) content and DNA fragmentation of fresh spermatozoa to that stored for 24, 48, 72, and 144 h with or without Tf. The percentage of motile cells and the curvilinear velocity of spermatozoa in stored samples for 72 h with transferrin supplementation were greater compared to samples with no added protein. The ATP content in samples without added transferrin was reduced (P < 0.05) after 72 h of storage, in contrast to the levels observed in transferrin-supplemented sperm. A time-dependent increase in DNA fragmentation was observed. Significantly lower DNA damage, expressed as percent tail DNA (10.99 ± 1.28) and olive tail moment (0.54 ± 0.12), was recorded in Tf-supplemented samples stored for 48 h compared to that with no Tf. Hence, it is concluded that the beneficial effects of transferrin on common carp sperm could serve as an additional tool for developing and enhancing short-term sperm preservation procedures commonly used in aquaculture.
Collapse
Affiliation(s)
- Anna Shaliutina-Loginova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, Vodňany 389 25, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic.
| | - Dmitry S Loginov
- BioCeV - Institute of Microbiology of the CAS, Průmyslová 595, Vestec 252 50, Czech Republic
| |
Collapse
|
35
|
Larbi A, Li C, Quan G. An updated review on the application of proteomics to explore sperm cryoinjury mechanisms in livestock animals. Anim Reprod Sci 2024; 263:107441. [PMID: 38412764 DOI: 10.1016/j.anireprosci.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
This comprehensive review critically examines the application of proteomics in understanding sperm cryoinjury mechanisms in livestock animals, in the context of the widespread use of semen cryopreservation for genetic conservation. Despite its global adoption, cryopreservation often detrimentally affects sperm quality and fertility due to cryoinjuries. These injuries primarily arise from ice crystal formation, osmotic shifts, oxidative stress, and the reorganization of membrane proteins and lipids during freezing and thawing, leading to premature capacitation-like changes. Moreover, the cryopreservation process induces proteome remodeling in mammalian sperm. Although there have been technological advances in semen cryopreservation, the precise mechanisms of mammalian sperm cryoinjury remain elusive. This review offers an in-depth exploration of how recent advancements in proteomic technologies have enabled a detailed investigation into these molecular disruptions. It presents an analysis of protein-level alterations post-thaw and their impact on sperm viability and functionality. Additionally, it discusses the role of proteomics in refining cryopreservation techniques to mitigate cryoinjury and enhance reproductive outcomes in livestock. This work synthesizes current knowledge, highlights gaps, and suggests directions for future research in animal reproductive science and biotechnology.
Collapse
Affiliation(s)
- Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
36
|
Moretti E, Bonechi C, Signorini C, Corsaro R, Micheli L, Liguori L, Centini G, Collodel G. In Vitro Effects of Charged and Zwitterionic Liposomes on Human Spermatozoa and Supplementation with Liposomes and Chlorogenic Acid during Sperm Freezing. Cells 2024; 13:542. [PMID: 38534386 PMCID: PMC10968722 DOI: 10.3390/cells13060542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Semen handling and cryopreservation induce oxidative stress that should be minimized. In this study, human semen was supplemented during cryopreservation with formulations of handmade liposomes and chlorogenic acid (CGA), an antioxidant compound. Zwitterionic (ZL), anionic (AL), and cationic (CL) liposomes were synthesized and characterized. Three aliquots of swim-up-selected sperm were incubated with ZL, AL, and CL (1:10,000), respectively. The percentages of sperm with progressive motility, high mitochondrial membrane potential (MMP; JC-1), double-stranded DNA (dsDNA acridine orange), and acrosome integrity (Pisum sativum agglutinin) were assessed. Then, human semen was frozen using both 1:10,000 ZL and CGA as follows: freezing medium/empty ZL (EL), freezing medium/empty ZL/CGA in the medium (CGA + EL), freezing medium/CGA loaded ZL (CGA), freezing medium (CTR). The same sperm endpoints were evaluated. ZL were the most tolerated and used for semen cryopreservation protocols. All the supplemented samples showed better endpoints versus CTR (p < 0.001). In particular, spermatozoa from the CGA and CGA + EL A samples showed increased motility, dsDNA, and acrosome integrity versus CTR and EL (p < 0.001; motility EL vs. CGA + EL p < 0.05). ZL and CGA can improve post-thaw sperm quality, acting on both cold shock effect management and oxidative stress. These findings open new perspectives on human and animal reproduction.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| | - Lucia Micheli
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Laura Liguori
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| | - Gabriele Centini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
- Obstetrics and Gynecological Clinic, University of Siena, 53100 Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| |
Collapse
|
37
|
Panda A, Judycka S, Palińska-Żarska K, Debernardis R, Jarmołowicz S, Jastrzębski JP, Rocha de Almeida T, Błażejewski M, Hliwa P, Krejszeff S, Żarski D. Paternal-effect-genes revealed through sperm cryopreservation in Perca fluviatilis. Sci Rep 2024; 14:6396. [PMID: 38493223 PMCID: PMC10944473 DOI: 10.1038/s41598-024-56971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Knowledge about paternal-effect-genes (PEGs) (genes whose expression in the progeny is influenced by paternal factors present in the sperm) in fish is very limited. To explore this issue, we used milt cryopreservation as a specific challenge test for sperm cells, thus enabling selection amidst cryo-sensitivity. We created two groups of Eurasian perch (Perca fluviatilis) as a model - eggs fertilized either with fresh (Fresh group) or cryopreserved (Cryo group) milt from the same male followed by phenotypic-transcriptomic examination of consequences of cryopreservation in obtained progeny (at larval stages). Most of the phenotypical observations were similar in both groups, except the final weight which was higher in the Cryo group. Milt cryopreservation appeared to act as a "positive selection" factor, upregulating most PEGs in the Cryo group. Transcriptomic profile of freshly hatched larvae sourced genes involved in the development of visual perception and we identified them as PEGs. Consequently, larvae from the Cryo group exhibited enhanced eyesight, potentially contributing to more efficient foraging and weight gain compared to the Fresh group. This study unveils, for the first time, the significant influence of the paternal genome on the development of the visual system in fish, highlighting pde6g, opn1lw1, and rbp4l as novel PEGs.
Collapse
Affiliation(s)
- Abhipsa Panda
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Palińska-Żarska
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Rossella Debernardis
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Jarmołowicz
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Taina Rocha de Almeida
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Maciej Błażejewski
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Piotr Hliwa
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Sławomir Krejszeff
- Department of Aquaculture, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Daniel Żarski
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
38
|
Tornacı S, Erginer M, Gökalsın B, Aysan A, Çetin M, Sadauki M, Fındıklı N, Genç S, Sesal C, Toksoy Öner E. Investigating the cryoprotective efficacy of fructans in mammalian cell systems via a structure-functional perspective. Carbohydr Polym 2024; 328:121704. [PMID: 38220340 DOI: 10.1016/j.carbpol.2023.121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Fructans have long been known with their role in protecting organisms against various stress factors due to their ability to induce controlled dehydration and support membrane stability. Considering the vital importance of such features in cryo-technologies, this study aimed to explore the cryoprotective efficacy of fructans in mammalian cell systems where structurally different fructan polymers were examined on in vitro cell models derived from organs such as the liver, frequently used in transplantation, osteoblast, and cord cells, commonly employed in cell banking, as well as human seminal fluids that are of vital importance in assisted reproductive technology. To gain insights into the fructan/membrane interplay, structural differences were linked to rheological properties as well as to lipid membrane interactions where both fluorescein leakage from unilamellar liposomes and membrane integrity of osteoblast cells were monitored. High survival rates obtained with human endothelial, osteoblast and liver cells for up to two months clearly showed that fructans could be considered as effective non-permeating cryoprotectants, especially for extended periods of cryopreservation. In trials with human seminal fluid, short chained levan in combination with human serum albumin and glycerol proved very effective in preserving semen samples across multiple patients without any morphological abnormalities.
Collapse
Affiliation(s)
- Selay Tornacı
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Merve Erginer
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey
| | - Barış Gökalsın
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Arzu Aysan
- Gebze Technical University, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Metin Çetin
- Gebze Technical University, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Mubarak Sadauki
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Necati Fındıklı
- Department of Biomedical Engineering, Beykent University, Istanbul, Turkey; Bahceci Health Group, Istanbul, Turkey
| | - Seval Genç
- Marmara University, Department of Metallurgical & Materials Engineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey.
| |
Collapse
|
39
|
Baharsaadi M, Hezavehei M, Shahverdi A, Halvaei I. Evaluation of the effects of hydroxytyrosol on human sperm parameters during cryopreservation. Cryobiology 2024; 114:104840. [PMID: 38104853 DOI: 10.1016/j.cryobiol.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Human sperm cryopreservation is a routine procedure in assisted reproductive technology, but it has detrimental effects on different sperm parameters due to oxidative stress. Our objective was to assess the impacts of hydroxytyrosol (HT), as an antioxidant, on human sperm parameters following cryopreservation. In the first phase, 20 normal human semen samples were cryopreserved using the rapid freezing method with different concentrations of HT including 0, 50, 100, 150, and 200 μg/mL. In the second phase, 20 normal semen samples were collected and cryopreserved with 50 and 100 μg/mL HT. The beneficial effects of HT were determined by evaluation of motility (computer-assisted sperm analysis; CASA), viability (Eosin-nigrosine stain), DNA integrity (sperm chromatic dispersion test, SCD), reactive oxygen species (DCF and DHE staining by flowcytometry) lipid peroxidation (malondialdehyde, MDA test) and mitochondrial membrane potential (JC1 staining by flowcytometry) of sperm after cryopreservation. After thawing, sperm motility had an increasing trend in 50 and 100 μg/mL HT groups in comparison with other groups, althought the difference was not significant. However, sperm viability was significantly increased at 50 and 100 μg/mL HT. Our data also showed that sperm DNA fragmentation was significantly decreased after thawing at 100 μg/mL in comparison with 0 and 50 μg/mL HT. However, the level of intracellular reactive oxygen species, lipid peroxidation and mitochondrial membrane potential were not significantly different between groups. Our results showed that HT may have protective effects on the viability and DNA integrity of human sperm during the freezing-thawing process.
Collapse
Affiliation(s)
- Mojtaba Baharsaadi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
40
|
Asadpour R, Aminirad M, Rahbar M, Hajibemani A, Rezaei Topraggaleh T. Effects of hyaluronic acid on sperm parameters, mitochondrial function and apoptosis of spermatozoa in Simmental bulls with good and poor freezing ability. J Anim Physiol Anim Nutr (Berl) 2024; 108:383-394. [PMID: 37899704 DOI: 10.1111/jpn.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Bulls with varying freezability exhibit substantial variation in semen characteristics after cryopreservation. Sperm freezability is positively correlated with membrane cholesterol content, membrane integrity, mitochondrial activity and antioxidant content. The purpose of this study was to determine the optimal concentration of hyaluronic acid (HA) in bull sperm with different cryotolerances. Simmental bulls (n = 10) semen samples were taken and categorized based on their progressive motility (PM) after freeze-thawing: Group I, consisting of bulls (n = 5) with progressive sperm motility ≥45%, was considered good freezability ejaculates (GF), and Group II, including bulls (n = 5) with progressive sperm motility ≤30%, was considered poor freezability ejaculates (PF) bulls. Semen samples were diluted with a Tris-egg-yolk-glycerol (TEYG) extender containing various concentrations of HA: without HA (control), 1 mM HA, 2 mM HA and 4 mM HA. After the freeze-thaw process, sperm kinematics, plasma membrane and acrosome integrity, mitochondrial activity and apoptotic status were evaluated. The addition of 1 mM HA to the diluent of bulls with GF increased PM and linearity (LIN) compared to the control group (p < 0.05). Normal morphology was improved after thawing in the samples treated with 1 and 2 mM HA in the GF and PF bulls respectively. The membrane and acrosome integrity of GF bulls treated with 1 mM HA was significantly (p < 0.05) greater than that of the control groups. Adding 1 mM HA to the extender of bulls with GF and PF improved the proportion of viable cells compared with the highest concentration (4 mM) of HA. The mitochondrial activity of PF bulls treated with 1 and 2 mM HA was significantly (p < 0.05) greater than that of the controls and 4 mM HA. Finally, it can be concluded that adding low doses of HA (1 mM) to the TEYG extender of GF and PF bulls ameliorated the post-thaw semen quality.
Collapse
Affiliation(s)
- Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Muhamadreza Aminirad
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abolfazl Hajibemani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Tohid Rezaei Topraggaleh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
41
|
Bitan R, Magnezi R, Kedem A, Avraham S, Youngster M, Yerushalmi G, Kaufman S, Umanski A, Hourvitz A, Gat I. Autologous sperm usage after cryopreservation-the crucial impact of patients' characteristics. Andrology 2024; 12:527-537. [PMID: 37528799 DOI: 10.1111/andr.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND The wide implementation of sperm freezing presents a growing burden on sperm banks. OBJECTIVES To evaluate sperm freezing and usage patterns over 30 years, according to demographic parameters of age at first cryopreservation and number of children, and indication for cryopreservation. MATERIAL AND METHODS This retrospective, population based, cohort study included all sperm cryopreservation cases performed at a tertiary referral center from October 1993 to December 2021, among patients aged 18 years and older. First, we determined the interval between first sperm sample and use. Then, we examined sperm usage separately for: (1) age, comparing patients grouped into 5-year age cohorts; (2) paternal status according to number of children; (3) indication, comparison among seven indications. Secondary analysis included correlations between main age groups and paternal status versus the four most common indications found. RESULTS During the study period 1490 men who cryopreserved sperm met the inclusion criteria. Average age at cryopreservation of the first sample was 33.9 ± 8.1 years. Average age at first sperm use was 37 ± 8.5 years. Cumulative sperm usage was 38.7% after 17.8 years. Increasing age was associated with progressive increase in sperm usage rate and shorter preservation period. Use significantly decreased with increasing number of children. Examination of seven reasons for sperm cryopreservation found the highest cumulative sperm usage was related to azoospermia (67.7%), followed by functional cryopreservation (39.3%), oligoasthenoteratospermia (27.3%), other (26.5%), patient's request (24%), cancer (19%), and systemic disease (7.2%). Secondary analysis defined specific usage patterns mainly related to age and indication, with less of an effect based on the number of children. DISCUSSION AND CONCLUSION After decades of cryopreservation, the paradigm of sperm cryopreservation is mostly related to cancer patients. This should be reevaluated and evolve to include broader patient-targeted factors and perceptions.
Collapse
Affiliation(s)
- Roy Bitan
- Department of Management, Health Systems Management Program, Bar Ilan University, Ramat Gan, Israel
- Sperm Bank & Andrology Unit, Shamir Medical Center, Zerifin, Tzrifin, Israel
| | - Racheli Magnezi
- Department of Management, Health Systems Management Program, Bar Ilan University, Ramat Gan, Israel
| | - Alon Kedem
- IVF Department, Shamir Medical Center, Zerifin, Tzrifin, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Avraham
- IVF Department, Shamir Medical Center, Zerifin, Tzrifin, Israel
| | | | - Gil Yerushalmi
- IVF Department, Shamir Medical Center, Zerifin, Tzrifin, Israel
| | - Sarita Kaufman
- Sperm Bank & Andrology Unit, Shamir Medical Center, Zerifin, Tzrifin, Israel
| | - Ana Umanski
- Sperm Bank & Andrology Unit, Shamir Medical Center, Zerifin, Tzrifin, Israel
| | - Ariel Hourvitz
- IVF Department, Shamir Medical Center, Zerifin, Tzrifin, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| | - Itai Gat
- Sperm Bank & Andrology Unit, Shamir Medical Center, Zerifin, Tzrifin, Israel
- IVF Department, Shamir Medical Center, Zerifin, Tzrifin, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Hosseini E, Afradiasbagharani P, Mohammadian M, Amjadi F, Tabatabaei M, Tanhaye Kalate Sabz F, Zandieh Z. Granulocyte-Macrophage Colony-Stimulating Factor Cytokine Addition After the Freeze-Thawing Process Improves Human Sperm Motility and Vitality in Asthenoteratozoospermia Patients. Biopreserv Biobank 2024; 22:38-45. [PMID: 37801668 DOI: 10.1089/bio.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023] Open
Abstract
The cryopreservation-thawing process of spermatozoa cells has negative impacts on their structure, function, and fertility parameters, which are known as cryoinjury. Asthenozoospermia patients are more susceptible to cryoinjury. Granulocyte-macrophage colony-stimulating factor (GM-CSF) increases sperm glucose uptake via the induction of glucose transporters, resulting in increased sperm motility. This study aimed to investigate the efficiency of GM-CSF supplementation of the cryopreservation media for semen samples of asthenoteratozoospermia patients. The study was carried out on 20 semen samples from infertile men referred to diagnosing semen analysis. To avoid subjective bias, two main sperm motility parameters, including velocity along the curvilinear path and velocity along the straight-line path were considered by the computer-assisted sperm analysis system. Afterward, each semen sample was divided into three equal aliquots and randomly assigned to one of the following groups: group I (control, freezing media only), group II (+GM-CSF, freezing medium supplemented with 2 μL/mL GM-CSF), or group III (GM-CSF added after thawing and washing). Following semen thawing, standard parameters, mitochondrial membrane potential (MMP), and the DNA Fragmentation Index were analyzed. Total sperm motility (progressive and non-progressive) improved significantly in group III samples after a 30-minute incubation with GM-CSF compared with the control group (26.5% ± 3.1% vs. 17.51% ± 2.59%). However, no differences in progressive motility or sperm morphology were found among the three thawed samples. The percentage of vitality was significantly higher in group III compared with the other two groups (28.38% ± 3.4% vs. 22.4% ± 3.08% and 22.14% ± 2.77%, respectively) (p < 0.05). JC-1 levels (a marker of MMP) were not significantly different between the examined groups (44.95% ± 8.26% vs. 36.61% ± 6.95% vs. 46.67% ± 7.7%, for control, group II, and group III, respectively) (p > 0.05). GM-CSF may be advantageous as an additive after freezing, improving total motility and viability after 30 minutes of post-thaw incubation; however, when supplied to the freezing media before cryopreservation, it is unable to protect against cryoinjury.
Collapse
Affiliation(s)
- Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parivash Afradiasbagharani
- Department of Obstetrics and Gynecology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Masoud Mohammadian
- Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - FatemehSadat Amjadi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Science, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Tabatabaei
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
| | - Fateme Tanhaye Kalate Sabz
- Department of Anatomical Sciences and Pathology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zahra Zandieh
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Science, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Song C, Zhang Z, Wei Y, Dou Y, Qi K, Li X, Yang F, Li X, Wang K, Qiao R, Han X. Proteomic analysis of boar sperm with differential ability of liquid preservation at 17 °C. Theriogenology 2024; 215:103-112. [PMID: 38029685 DOI: 10.1016/j.theriogenology.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Understanding the liquid preservation ability of boar sperm is pivotal for efficient management and breeding of livestock. Although sperm proteins play an important role in semen quality and freezability, how the levels of protein change in boar sperm with different liquid preservation abilities at 17 °C remains unclear. In this study, two groups of boar sperm with extreme difference in liquid preservation ability, namely the good preservation ability (GPA) and the poor preservation ability (PPA) groups, were selected by evaluating sperm motility parameters on the 7th day of liquid preservation at 17 °C. Quantitative proteomics based on tandem mass tag (TMT) labeling was used, sperm proteomic characteristics from two groups were analyzed, and potentially key proteins related to the fluid preservation ability of sperm were identified. A total of 187 differentially expressed proteins (DEPs) were identified among 2791 quantified proteins, including 85 upregulated, and 102 downregulated proteins. Further, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the DEPs revealed that they were enriched in GO terms associated with response to oxidative stress, enzyme activity related to oxidative stress or redox reactions, and several metabolic activities. The significant KEGG pathways included peroxisome, metabolic pathways, selenocompound metabolism, and collection duct acid secretion. In addition, analysis of protein-protein interactions further identified 8 proteins that could be used as biomarker candidates, including GPX5, GLRX, ENO4, QPCT, BBS7, OXSR1, DHRS4 and AP2S1, which may play an essential role in indicating the liquid preservation ability of boar sperm. These findings in this study provide new insights into the underlying molecular mechanisms of the liquid preservation ability of boar sperm. Moreover, the selected candidate proteins can serve as a reference for evaluating sperm quality or preservation ability in boars and their application in related biotechnologies.
Collapse
Affiliation(s)
- Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
44
|
Shi H, Li QY, Li H, Wang HY, Fan CX, Dong QY, Pan BC, Ji ZL, Li JY. ROS-induced oxidative stress is a major contributor to sperm cryoinjury. Hum Reprod 2024; 39:310-325. [PMID: 38011909 DOI: 10.1093/humrep/dead250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
STUDY QUESTION What is the mechanism behind cryoinjury in human sperm, particularly concerning the interplay between reactive oxygen species (ROS) and autophagy, and how does it subsequently affect sperm fate? SUMMARY ANSWER The freeze-thaw operation induces oxidative stress by generating abundant ROS, which impairs sperm motility and activates autophagy, ultimately guiding the sperm toward programmed cell death such as apoptosis and necrosis, as well as triggering premature capacitation. WHAT IS KNOWN ALREADY Both ROS-induced oxidative stress and autophagy are thought to exert an influence on the quality of frozen-thawed sperm. STUDY DESIGN, SIZE, DURATION Overall, 84 semen specimens were collected from young healthy fertile males, with careful quality evaluation. The specimens were split into three groups to investigate the ROS-induced cryoinjury: normal control without any treatment, sperm treated with 0.5 mM hydrogen peroxide (H2O2) for 1 h, and sperm thawed following cryopreservation. Samples from 48 individuals underwent computer-assisted human sperm analysis (CASA) to evaluate sperm quality in response to the treatments. Semen samples from three donors were analyzed for changes in the sperm proteome after H2O2 treatment, and another set of samples from three donors were analyzed for changes following the freeze-thaw process. The other 30 samples were used for fluorescence-staining and western blotting. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm motility parameters, including progressive motility (PR %) and total motility (PR + NP %), were evaluated using the CASA system on a minimum of 200 spermatozoa. The proteomic profiles were determined with label-free mass spectrometry (MS/MS) and protein identification was performed via ion search against the NCBI human database. Subsequently, comprehensive bioinformatics was applied to detect significant proteomic changes and functional enrichment. Fluorescence-staining and western blot analyses were also conducted to confirm the proteomic changes on selected key proteins. The ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate labeling and the abundance of bioactive mitochondria was determined by evaluating the inner mitochondrial membrane potential (MMP) level. Molecular behaviors of sequestosome-1 (p62 or SQSTM1) and microtubule-associated proteins 1A/1B light chain 3 (LC3) were monitored to evaluate the state of apoptosis in human sperm. Fluorescent probes oxazole yellow (YO-PRO-1) and propidium iodide (PI) were utilized to monitor programmed cell death, namely apoptosis and necrosis. Additionally, gradient concentrations of antioxidant coenzyme Q10 (CoQ10) were introduced to suppress ROS impacts on sperm. MAIN RESULTS AND THE ROLE OF CHANCE The CASA analysis revealed a significant decrease in sperm motility for both the H2O2-treatment and freeze-thaw groups. Fluorescence staining showed that high ROS levels were produced in the treated sperm and the MMPs were largely reduced. The introduction of CoQ10 at concentrations of 20 and 30 μM resulted in a significant rescue of progressive motility (P < 0.05). The result suggested that excessive ROS could be the major cause of sperm motility impairment, likely by damaging mitochondrial energy generation. Autophagy was significantly activated in sperm when they were under oxidative stress, as evidenced by the upregulation of p62 and the increased conversion of LC3 as well as the upregulation of several autophagy-related proteins, such as charged multivesicular body protein 2a, mitochondrial import receptor subunit TOM22 homolog, and WD repeat domain phosphoinositide-interacting protein 2. Additionally, fluorescent staining indicated the occurrence of apoptosis and necrosis in both H2O2-treated sperm and post-thaw sperm. The cell death process can be suppressed when CoQ10 is introduced, which consolidates the view that ROS could be the major contributor to sperm cryoinjury. The freeze-thaw process could also initiate sperm premature capacitation, demonstrated by the prominent increase in tyrosine phosphorylated proteins, verified with anti-phosphotyrosine antibody and immunofluorescence assays. The upregulation of capacitation-related proteins, such as hyaluronidase 3 and Folate receptor alpha, supported this finding. LARGE SCALE DATA The data underlying this article are available in the article and its online supplementary material. LIMITATIONS, REASONS FOR CAUTION The semen samples were obtained exclusively from young, healthy, and fertile males with progressive motility exceeding 60%, which might overemphasize the positive effects while possibly neglecting the negative impacts of cryoinjury. Additionally, the H2O2 treatment conditions in this study may not precisely mimic the oxidative stress experienced by sperm after thawing from cryopreservation, potentially resulting in the omission of certain molecular alterations. WIDER IMPLICATIONS OF THE FINDINGS This study provides substantial proteomic data for a comprehensive and deeper understanding of the impact of cryopreservation on sperm quality. It will facilitate the design of optimal protocols for utilizing cryopreserved sperm to improve applications, such as ART, and help resolve various adverse situations caused by chemotherapy, radiotherapy, and surgery. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the Major Innovation Project of Research Institute of National Health Commission (#2022GJZD01-3) and the National Key R&D Program of China (#2018YFC1003600). All authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hui Shi
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Qian-Ying Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Li
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Hai-Yan Wang
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Chuan-Xi Fan
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Qiao-Yan Dong
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Bo-Chen Pan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jian-Yuan Li
- Institute of Science and Technology, National Health Commission, Beijing, China
| |
Collapse
|
45
|
Ali M, Suleman S, Inayat I, Ahmad SN, Kanwal MA, Ahmad KR, Siddique S, Ali R, Matloob S, Abdul Sattar H, Kamran MA. Fortification of Extender with Basella rubra Fruit Extract Enhances the Cryosurvival of Ram Semen. Biopreserv Biobank 2024; 22:46-50. [PMID: 37155630 DOI: 10.1089/bio.2022.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
This study aimed to evaluate the impact of Basella rubra fruit extract (BR-FE) on cryopreserved ram sperm's motility, velocity, and membrane integrity. Thirty ejaculates collected from 3 fertile rams (10 from each) were diluted with semen dilution extender (SDE) in a ratio (1:2) and centrifuged to remove 50% supernatant. The remaining sample was mixed with semen cryopreservation extender (SCE) in 1:4 ratio. Then 1.2 mL of SCE diluted sample was divided in four aliquots (0.3 mL each) that were further extended with [(1) control group (0.7 mL of SCE), (2) BR-FE-0.6% group (0.7 mL of SCE supplemented with 0.6% BR-FE), (3) BR-FE-0.8% group (0.7 mL of SCE supplemented with 0.8% BR-FE), and (4) BR-FE-1.6% group (0.7 mL SCE supplemented with 1.6% BR-FE)]. All extended samples were cooled gradually from 25°C to 4°C in half an hour. The 0.1 mL sample from all aliquots was analyzed for precryopreservation sperm parameters and the remaining sample was loaded in 0.5 mL plastic semen straws, cooled gradually to -20°C, and then dipped in liquid nitrogen. After 24 hours of cryopreservation, the straws were thawed for postcryopreservation sperm evaluations. The results (analysis of variance based) showed significantly enhanced percentage of post-thaw sperm membrane integrity, progressive motility, and velocity in BR-FE-0.6% group at both pre- and postcryopreservation stages as compared with all other groups. However, analysis of covariance revealed concentration-dependent cryoprotective effect of BR-FE with maximum percentage of sperm membrane integrity in the 1.6% group. According to these results, BR-FE supplementation adds enormous sperm protective potential to ram sperm cryopreservation medium.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sadia Suleman
- Department of Biological Sciences, Government Associate College (W) Mochh Mianwali, Mianwali, Punjab, Pakistan
| | - Iram Inayat
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | | | - Khawaja Raees Ahmad
- Department of Zoology, Government Ambala Muslim Graduate College Sargodha, Sargodha, Punjab, Pakistan
| | - Saira Siddique
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Rabiyah Ali
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Saima Matloob
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Hafiz Abdul Sattar
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | | |
Collapse
|
46
|
Diao Y, Hao T, Liu X, Yang H. Advances in single ice crystal shaping materials: From nature to synthesis and applications in cryopreservation. Acta Biomater 2024; 174:49-68. [PMID: 38040076 DOI: 10.1016/j.actbio.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Antifreeze (glyco) proteins [AF(G)Ps], which are widely present in various extreme microorganisms, can control the formation and growth of ice crystals. Given the significance of cryogenic technology in biomedicine, climate science, electronic energy, and other fields of research, scientists are quite interested in the development and synthesis high-efficiency bionic antifreeze protein materials, particularly to reproduce their dynamic ice shaping (DIS) characteristics. Single ice crystal shaping materials, a promising class of ice-controlling materials, can alter the morphology and growth rate of ice crystals at low temperatures. This review aims to highlight the development of single ice crystal shaping materials and provide a brief comparison between a series of natural and bionic synthetic materials with DIS ability, which include AF(G)Ps, polymers, salts, and nanomaterials. Additionally, we summarize their applications in cryopreservation. Finally, this paper presents the current challenges and prospects encountered in developing high-efficiency and practical single ice crystal shaping materials. STATEMENT OF SIGNIFICANCE: The formation and growth of ice crystals hold a significant importance to an incredibly broad range of fields. Therefore, the design and fabrication of the single ice crystal shaping materials have gained the increasing popularity due to its key role in dynamic ice shaping (DIS) characteristics. Especially, single ice crystal shaping materials are considered one of the most promising candidates as ice inhibitors, presenting tremendous prospects for enhancing cryopreservation. In this work, we focus on the molecular characteristics, structure-function relationships, and DIS mechanisms of typical natural and biomimetic synthetic materials. This review may provide inspiration for the design and preparation of single ice crystal shaping materials and give guidance for the development of effective cryopreservation agent.
Collapse
Affiliation(s)
- Yunhe Diao
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Tongtong Hao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Huige Yang
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China..
| |
Collapse
|
47
|
Güngör İH, Türk G, Dayan Cinkara S, Acisu TC, Tektemur A, Yeni D, Avdatek F, Arkali G, Koca RH, Özer Kaya Ş, Sagiroglu M, Etem Önalan E, Sönmez M, Gür S, Yüce A. Reduction of cryopreservation-induced structural, functional and molecular damages in ram sperm by hydrated C 60 fullerene. Reprod Domest Anim 2024; 59:e14513. [PMID: 38038214 DOI: 10.1111/rda.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to investigate the morphological, functional and molecular changes in frozen-thawed ram sperm using an extender containing different concentrations of hydrated carbon 60 fullerene (C60 HyFn), a nanotechnological product. Semen taken from each of the seven Akkaraman rams were pooled. Semen collection was done twice a week and it continued for 3 weeks. Each pooled semen sample was divided into six equal groups and diluted with tris + egg yolk extender including 0 (control), 200, 400, 800 nM, 1 and 5 μM concentrations of C60 HyFn at 37°C. They were then frozen in liquid nitrogen vapour at -140°C, stored in liquid nitrogen container (-196°C) and thawed at 37°C for 25 s before analysis. In comparison with control, C60 HyFn addition prior to freezing procedure provided significant increases in total and progressive motility rates, glutathione peroxidase, catalase activities and percentage of highly active mitochondria, and significant decreases in dead and abnormal sperm rates, lipid peroxidation, caspase-3 and DNA fragmentation levels in frozen-thawed ram semen. When compared to control, C60 HyFn supplementation significantly down-regulated the expression levels of miR-200a and KCNJ11, and significantly up-regulated the expression levels of miR-3958-3p (at the concentrations of 200, 400, 800 nM and 1 μM), CatSper1 (at the concentrations of 200, 400 nM and 5 μM), CatSper2 (at the concentrations of 1 and 5 μM), CatSper3 (at the concentrations of 200, 400 nM, 1 and 5 μM), CatSper4 (at all concentrations), ANO1 (at the concentrations of 800 nM, 1 and 5 μM) and TRPV5 (at the concentrations of 200, 400 and 800 nM). The addition of C60 HyFn had no effect on global DNA methylation rates. As a result, C60 HyFn supplementation to ram semen extenders may be beneficial in reducing some of the functional, structural and molecular damages in sperm induced by the freeze-thawing procedure.
Collapse
Affiliation(s)
- İbrahim Halil Güngör
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Gaffari Türk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Serap Dayan Cinkara
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Tutku Can Acisu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Fırat University, Elazığ, Türkiye
| | - Deniz Yeni
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Fatih Avdatek
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Gözde Arkali
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Recep Hakkı Koca
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Türkiye
| | - Şeyma Özer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Meltem Sagiroglu
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Fırat University, Elazığ, Türkiye
| | - Mustafa Sönmez
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Seyfettin Gür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Abdurrauf Yüce
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| |
Collapse
|
48
|
Fu J, Ma J, Feng Z, Song Y, Mabrouk I, Zhou Y, Wang Y, Fu X, Jin H, Zhang Y, Sun Y. Effect of DMSO combined with trehalose on cryopreservation of goose semen. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2161551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xianou Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Honglei Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yuxin Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production, Ministry of Education, Product Quality and Security (Jilin Agricultural University), Changchun, People’s Republic of China
| |
Collapse
|
49
|
Farrokhi Z, Sharafi M, Hezavehei M, Torabi A, Shahverdi M, Rahimi S. The Effects of Glycerophospholipid Nanomicelles on the Cryotolerance of Frozen-Thawed Rooster Sperm. Biopreserv Biobank 2023; 21:593-598. [PMID: 36637861 DOI: 10.1089/bio.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Semen banking is an efficient method of artificial insemination for commercial breeders. However, the cryopreservation process induces severe damages to plasma membranes, which leads to reduced fertility potential of thawed sperm. The replacement of membrane lipids with oxidized membrane lipids repairs the cell membrane and improves its stability. The aim of this study was to investigate the effects of glycerophospholipid (GPL) nanomicelles on the cryosurvival of thawed rooster semen. Semen samples were collected from six 29-week Ross broiler breeder roosters, then mixed and divided into five equal parts. The samples were diluted with the Beltsville extender containing different concentrations of GPL according to the following groups: 0 (GPL-0), 0.1% (GPL-0.1), 0.5% (GPL-0.5), 1% (GPL-1), and 1.5% (GPL-1.5), then diluted semen was gradually cooled to 4°C during 3 hours and stored in liquid nitrogen. The optimum concentration of GPL was determined based on the quality parameters of thawed sperm. Our results showed sperm exposed to GPL-1 had significantly increased motion parameters and mitochondrial activity. The percentages of viability and membrane integrity were significantly higher in the GPL-1, and GPL-1.5 groups compared with the other groups (p < 0.05). Moreover, the lowest rate of apoptosis and lipid peroxidation were observed in the GPL-1 and GPL-1.5 groups in comparison with the frozen control group. Our findings indicated that membrane lipid replacement with GPL nanomicelles (1% and 1.5%) could substitute for damaged lipids in membranes and protect sperm cells against cryoinjury.
Collapse
Affiliation(s)
- Zahra Farrokhi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Torabi
- Research Center for Reproduction and Fertility, Faculty of Veterinary medicine, Montreal University, St-Hyacinthe, Canada
| | - Maryam Shahverdi
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
50
|
Kolyada MN, Osipova VP, Pimenov YT. Oxidative stress and cryoresistance of sturgeon sperm: A review. Cryobiology 2023; 113:104594. [PMID: 37848167 DOI: 10.1016/j.cryobiol.2023.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Currently, the majority of sturgeons are relict fishes of high economic value yet endangered with extinction. Cryopreservation of sperm has great potential in fish farming and conservation, but the problem of low cryoresistance of sturgeon sperm has not yet been solved. The goal of this work was to review current literature data on the causes of low tolerance of sturgeon sperm to cryodamage. The influence of cryopreservation on the parameters of physiology and metabolism of sturgeon sperm (morphology and fine ultrastructure, mobility and fertilization ability, integrity of the plasma membrane, protein, lipid and metabolite profiles, antioxidant status, DNA damage), as well as on biomarkers of oxidative stress (lipids peroxidation levels and carbonyl derivatives of proteins) is discussed. Since the development of oxidative stress is an important mechanism of sperm cryodamage induction, the review presents the literature on the role of oxygen-derived species in damage of sturgeon reproductive cells caused by cryopreservation. Particular attention is paid to the system of antioxidant protection of sturgeon seminal plasma and spermatozoa, represented by antioxidant enzymes and low molecular weight antioxidants capable of utilizing various reactive forms of oxygen and nitrogen. The review discusses the results of lipidomic and proteomic studies of sturgeon sperm, which made it possible to obtain new data on the lipid composition of cell membranes, to detect proteins involved in the protection of sturgeon spermatozoa from oxidative damage during cryopreservation. This review presents the use of «omics» technology to elucidate the mechanism of cryodamage in sturgeon sperm. Additionally, the review summarizes information on the unique anatomical, morphological, biochemical, and physiological features of sturgeon sperm, which may be associated with low cryoresistance of sturgeon, in order to establish prospects for further research on improving the methods of the conservation of sperm of these threatened species.
Collapse
Affiliation(s)
- Margarita N Kolyada
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - Viсtoria P Osipova
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - Yuri T Pimenov
- Astrakhan State Technical University, 16 Tatisheva str., 414056, Astrakhan, Russia.
| |
Collapse
|