1
|
Wu M, Yu X, Zhang W, Chen S, Xu X, Cao C, Liu X, Liao W, Tian Y, Dong X, Zhong G, Xiu L. Haizao-Gancao herb pair ameliorates propylthiouracil-induced goiter by regulating the Beclin1-mediated autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118945. [PMID: 39427742 DOI: 10.1016/j.jep.2024.118945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Haizao, Sargassum, is widely used to treat goiter. Gancao, Glycyrrhizae radix et rhizome, is renowned for reducing toxicity or increasing effects in traditional Chinese medicine. As a classic herb pair, Haizao-Gancao (HG) is a commonly used and effective combined therapy for goiter. The underlying biological mechanisms of HG on goiter is still unclear. AIM OF THE STUDY To explore the effect of HG on goiter, employing molecular docking combined with experimental validation to elucidate the molecular mechanism. MATERIALS AND METHODS The rat goiter model was created by gavageing propylthiouracil (PTU) intragastrically for a duration of 14 days. The rats had been separated into six groups: control, model, euthyrox, HG high-dose (HG-H), medium-dose (HG-M) and low-dose (HG-L) group. Based on general observations (such as the rats' living status, body weight, and rectal temperature), the relative weight of the thyroid, thyroid function, hematoxylin-eosin (HE) staining, and transmission electron microscopy (TEM) to view the pathological variations of the thyroid glands, the effect of HG was evaluated. Discovered the chemical composition of HG by UPLC-MS/MS and the possible targets were predicted adopting several databases. Next, we explored their pharmacological mechanisms using molecular docking and validated key targets using western blotting (WB) and co-immunoprecipitation (Co-IP). RESULTS HG significantly increased the levels of triiodothyronine(T3), free triiodothyronine (FT3), free thyroxine (FT4), gained body weight and reduced tumescent thyroid glands in PTU-induced rats. The model group pathological changes such as uneven size, irregular shape and disordered arrangement of follicular epithelial cells occurred. However, HG groups thyroid follicles and epithelial cells appeared apparently normal. A variety of characteristic changes of autophagic vesicles appeared in the HG groups as opposed to the model group. In conclusion, the HG-L showed the best therapeutic effect. By UPLC-MS/MS, the major chemical components of HG were identified. The result revealed that HG contained flavonoids, alkaloids, organic acids, phenolic acidsand and terpenoids, etc. The molecular docking results of formononetin and naringenin and Beclin1 protein showed a high interaction of -5.38 kcal/mol and -5.25 kcal/mol. This implies that formononetin and naringenin may have a therapeutic effect in goiter rats by controlling the Beclin1-mediated autophagy. Western Blot (WB) and co-immunoprecipitation (Co-IP) results showed that HG can disrupt Beclin1/class III phosphatidylinositol 3-kinase(PI3KC3) binding and promote Beclin1/B-cell leukemia/lymphoma-2(Bcl-2) complex formation. Taken together, results demonstrate that autophagy inhibition via reducing Beclin1/PI3KC3 formation and increasing Beclin1/Bcl-2 binding activity. CONCLUSIONS HG ameliorates propylthiouracil-induced goiter by regulating the Beclin1-mediated autophagy, thus promoting the autophagy of thyroid cells.
Collapse
Affiliation(s)
- Meijing Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenkang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangnan Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Can Cao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoqing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenyong Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gansheng Zhong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Linlin Xiu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Zhang Q, Yaoita N, Tabuchi A, Liu S, Chen SH, Li Q, Hegemann N, Li C, Rodor J, Timm S, Laban H, Finkel T, Stevens T, Alvarez DF, Erfinanda L, de Perrot M, Kucherenko MM, Knosalla C, Ochs M, Dimmeler S, Korff T, Verma S, Baker AH, Kuebler WM. Endothelial Heterogeneity in the Response to Autophagy Drives Small Vessel Muscularization in Pulmonary Hypertension. Circulation 2024; 150:466-487. [PMID: 38873770 DOI: 10.1161/circulationaha.124.068726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Endothelial cell (EC) apoptosis and proliferation of apoptosis-resistant cells is a hallmark of pulmonary hypertension (PH). Yet, why some ECs die and others proliferate and how this contributes to vascular remodeling is unclear. We hypothesized that this differential response may: (1) relate to different EC subsets, namely pulmonary artery (PAECs) versus microvascular ECs (MVECs); (2) be attributable to autophagic activation in both EC subtypes; and (3) cause replacement of MVECs by PAECs with subsequent distal vessel muscularization. METHODS EC subset responses to chronic hypoxia were assessed by single-cell RNA sequencing of murine lungs. Proliferative versus apoptotic responses, activation, and role of autophagy were assessed in human and rat PAECs and MVECs, and in precision-cut lung slices of wild-type mice or mice with endothelial deficiency in the autophagy-related gene 7 (Atg7EN-KO). Abundance of PAECs versus MVECs in precapillary microvessels was assessed in lung tissue from patients with PH and animal models on the basis of structural or surface markers. RESULTS In vitro and in vivo, PAECs proliferated in response to hypoxia, whereas MVECs underwent apoptosis. Single-cell RNA sequencing analyses support these findings in that hypoxia induced an antiapoptotic, proliferative phenotype in arterial ECs, whereas capillary ECs showed a propensity for cell death. These distinct responses were prevented in hypoxic Atg7EN-KO mice or after ATG7 silencing, yet replicated by autophagy stimulation. In lung tissue from mice, rats, or patients with PH, the abundance of PAECs in precapillary arterioles was increased, and that of MVECs reduced relative to controls, indicating replacement of microvascular by macrovascular ECs. EC replacement was prevented by genetic or pharmacological inhibition of autophagy in vivo. Conditioned medium from hypoxic PAECs yet not MVECs promoted pulmonary artery smooth muscle cell proliferation and migration in a platelet-derived growth factor-dependent manner. Autophagy inhibition attenuated PH development and distal vessel muscularization in preclinical models. CONCLUSIONS Autophagic activation by hypoxia induces in parallel PAEC proliferation and MVEC apoptosis. These differential responses cause a progressive replacement of MVECs by PAECs in precapillary pulmonary arterioles, thus providing a macrovascular context that in turn promotes pulmonary artery smooth muscle cell proliferation and migration, ultimately driving distal vessel muscularization and the development of PH.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Q.Z.)
| | - Nobuhiro Yaoita
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Arata Tabuchi
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Shaofei Liu
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
| | - Shiau-Haln Chen
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
| | - Qiuhua Li
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Niklas Hegemann
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Caihong Li
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Julie Rodor
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
| | - Sara Timm
- Core Facility Electron Microscopy (S.T., M.O.), Charité-Universitätsmedizin, Berlin, Germany
| | - Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology (H.L.), Heidelberg University, Germany
- German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg (H.L.)
| | - Toren Finkel
- Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (T.F.)
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile (T.S.)
| | - Diego F Alvarez
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX (D.F.A.)
| | - Lasti Erfinanda
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Canada (M.d.P.)
- Department of Surgery (M.d.P., W.M.K.), University of Toronto, Canada
| | - Mariya M Kucherenko
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Christoph Knosalla
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Matthias Ochs
- Core Facility Electron Microscopy (S.T., M.O.), Charité-Universitätsmedizin, Berlin, Germany
- Institute of Functional Anatomy (M.O.), Charité-Universitätsmedizin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.D.)
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology (T.K.), Heidelberg University, Germany
- European Center for Angioscience, Medical Faculty Mannheim (T.K.), Heidelberg University, Germany
| | - Subodh Verma
- Division of Cardiac Surgery (S.V.), University of Toronto, Canada
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
- Department of Pathology, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht University, The Netherlands (A.H.B.)
| | - Wolfgang M Kuebler
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Surgery (M.d.P., W.M.K.), University of Toronto, Canada
- Department of Physiology (W.M.K.), University of Toronto, Canada
- Keenan Research Centre, St Michael's Hospital, Canada (W.M.K.)
| |
Collapse
|
3
|
Wei Y, Gao S, Li C, Huang X, Xie B, Geng J, Dai H, Wang C. Aldehyde Dehydrogenase 2 Deficiency Aggravates Lung Fibrosis through Mitochondrial Dysfunction and Aging in Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1458-1477. [PMID: 38777148 DOI: 10.1016/j.ajpath.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis, a fatal interstitial lung disease, is characterized by fibroblast activation and aberrant extracellular matrix accumulation. Effective therapeutic development is limited because of incomplete understanding of the mechanisms by which fibroblasts become aberrantly activated. Here, we show aldehyde dehydrogenase 2 (ALDH2) in fibroblasts as a potential therapeutic target for pulmonary fibrosis. A decrease in ALDH2 expression was observed in patients with idiopathic pulmonary fibrosis and bleomycin-treated mice. ALDH2 deficiency spontaneously induces collagen accumulation in the lungs of aged mice. Furthermore, young ALDH2 knockout mice exhibited exacerbated bleomycin-induced pulmonary fibrosis and increased mortality compared with that in control mice. Mechanistic studies revealed that transforming growth factor (TGF)-β1 induction and ALDH2 depletion constituted a positive feedback loop that exacerbates fibroblast activation. TGF-β1 down-regulated ALDH2 through a TGF-β receptor 1/Smad3-dependent mechanism. The subsequent deficiency in ALDH2 resulted in fibroblast dysfunction that manifested as impaired mitochondrial autophagy and senescence, leading to fibroblast activation and extracellular matrix production. ALDH2 overexpression markedly suppressed fibroblast activation, and this effect was abrogated by PTEN-induced putative kinase 1 (PINK1) knockdown, indicating that the profibrotic effects of ALDH2 are PINK1- dependent. Furthermore, ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) reversed the established pulmonary fibrosis in both young and aged mice. In conclusion, ALDH2 expression inhibited the pathogenesis of pulmonary fibrosis. Strategies to up-regulate or activate ALDH2 expression could be potential therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanqiu Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuwei Gao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoxi Huang
- Department of Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bingbing Xie
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Geng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
4
|
Hwang N, Ghanta S, Li Q, Lamattina AM, Murzin E, Lederer JA, El-Chemaly S, Chung SW, Liu X, Perrella MA. Carbon monoxide-induced autophagy enhances human mesenchymal stromal cell function via paracrine actions in murine polymicrobial sepsis. Mol Ther 2024; 32:2232-2247. [PMID: 38734903 PMCID: PMC11286814 DOI: 10.1016/j.ymthe.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a life-threatening process due to organ dysfunction resulting from severe infections. Mesenchymal stromal cells (MSCs) are being investigated as therapy for sepsis, along with conditioning regimens to improve their function. Carbon monoxide (CO) gas, which is cytoprotective at low doses, induces autophagy and is a mediator of inflammation. We evaluated CO-induced autophagy in human MSCs (hMSCs), and its impact on cell function in murine cecal ligation and puncture. Conditioning of hMSCs with CO ex vivo resulted in enhanced survival and bacterial clearance in vivo, and neutrophil phagocytosis of bacteria in vitro. Decreased neutrophil infiltration and less parenchymal cell death in organs were associated with increased macrophage efferocytosis of apoptotic neutrophils, promoting resolution of inflammation. These CO effects were lost when the cells were exposed to autophagy inhibition prior to gas exposure. When assessing paracrine actions of CO-induced autophagy, extracellular vesicles (EVs) were predominantly responsible. CO had no effect on EV production, but altered their miRNA cargo. Increased expression of miR-145-3p and miR-193a-3p by CO was blunted with disruption of autophagy, and inhibitors of these miRNAs led to a loss of neutrophil phagocytosis and macrophage efferocytosis. Collectively, CO-induced autophagy enhanced hMSC function during sepsis via paracrine actions of MSC-derived EVs.
Collapse
Affiliation(s)
- Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Jackson Health System, Miami, FL, USA
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ekaterina Murzin
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Liu N, Fan X, Shao Y, Chen S, Wang T, Yao T, Chen X. Resveratrol attenuates inflammation and fibrosis in rheumatoid arthritis-associated interstitial lung disease via the AKT/TMEM175 pathway. J Transl Med 2024; 22:457. [PMID: 38745204 PMCID: PMC11095009 DOI: 10.1186/s12967-024-05228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-β1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1β in combination with TGF-β1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-β1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xuefei Fan
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yubao Shao
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Suhuan Chen
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Taorong Wang
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yao
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, No. 390 Huaihe Road, Hefei, 230061, Anhui, China.
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Yu PR, Tseng CY, Hsu CC, Chen JH, Lin HH. In vitro and in vivo protective potential of quercetin-3-glucuronide against lipopolysaccharide-induced pulmonary injury through dual activation of nuclear factor-erythroid 2 related factor 2 and autophagy. Arch Toxicol 2024; 98:1415-1436. [PMID: 38436694 DOI: 10.1007/s00204-024-03691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
In vitro and in vivo models of lipopolysaccharide (LPS)-induced pulmonary injury, quercetin-3-glucuronide (Q3G) has been previously revealed the lung-protective potential via downregulation of inflammation, pyroptotic, and apoptotic cell death. However, the upstream signals mediating anti-pulmonary injury of Q3G have not yet been clarified. It has been reported that concerted dual activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) and autophagy may prove to be a better treatment strategy in pulmonary injury. In this study, the effect of Q3G on antioxidant and autophagy were further investigated. Noncytotoxic doses of Q3G abolished the LPS-caused cell injury, and reactive oxygen species (ROS) generation with inductions in Nrf2-antioxidant signaling. Moreover, Q3G treatment repressed Nrf2 ubiquitination, and enhanced the association of Keap1 and p62 in the LPS-treated cells. Q3G also showed potential in inducing autophagy, as demonstrated by formation of acidic vesicular organelles (AVOs) and upregulation of autophagy factors. Next, the autolysosomes formation and cell survival were decreased by Q3G under pre-treatment with a lysosome inhibitor, chloroquine (CQ). Furthermore, mechanistic assays indicated that anti-pulmonary injury effects of Q3G might be mediated via Nrf2 signaling, as confirmed by the transfection of Nrf2 siRNA. Finally, Q3G significantly alleviated the development of pulmonary injury in vivo, which may result from inhibiting the LPS-induced lung dysfunction and edema. These findings emphasize a toxicological perspective, providing new insights into the mechanisms of Q3G's protective effects on LPS-induced pulmonary injury and highlighting its role in dual activating Nrf2 and autophagy pathways.
Collapse
Affiliation(s)
- Pei-Rong Yu
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| | - Hui-Hsuan Lin
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung City, 40201, Taiwan.
| |
Collapse
|
7
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal S, Wang T, Black SM. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol 2024; 70:103049. [PMID: 38295575 PMCID: PMC10844980 DOI: 10.1016/j.redox.2024.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alejandro Garcia-Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - David Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Maria C Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, UC San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
9
|
Chen YC, Chen KF, Lin KYA, Tsang YF, Hsu YF, Lin CH. Evaluation of the pulmonary toxicity of PSNPs using a Transwell-based normal human bronchial epithelial cell culture system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165213. [PMID: 37391157 DOI: 10.1016/j.scitotenv.2023.165213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
To reduce the nanoplastics (NPs) toxicity assessment error, we established a Transwell-based bronchial epithelial cell exposure system to assess the pulmonary toxicity of polystyrene NPs (PSNPs). Transwell exposure system was more sensitive than submerged culture for toxicity detection of PSNPs. PSNPs adhered to the BEAS-2B cell surface, were ingested by the cell, and accumulated in the cytoplasm. PSNPs induced oxidative stress and inhibited cell growth through apoptosis and autophagy. A noncytotoxic dose of PSNPs (1 ng/cm2) increased the expression levels of inflammatory factors (ROCK-1, NF-κB, NLRP3, ICAM-1, etc) in BEAS-2B cells, whereas a cytotoxic dose (1000 ng/cm2) induced apoptosis and autophagy, which might inhibit the activation of ROCK-1 and contribute to reducing inflammation. In addition, the noncytotoxic dose increased the expression levels of zonula occludens-2 (ZO-2) and α1-antitrypsin (α-AT) proteins in BEAS-2B cells. Therefore, in response to PSNP exposure, a compensatory increase in the activities of inflammatory factors, ZO-2, and α-AT may be triggered at low doses as a mechanism to preserve the survival of BEAS-2B cells. In contrast, exposure to a high dose of PSNPs elicits a noncompensatory response in BEAS-2B cells. Overall, these findings suggest that PSNPs may be harmful to human pulmonary health even at an ultralow concentration.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan; Department of Science and Environment Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong; Centre for Environment and Sustainable Development (CESD), The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yiu Fai Tsang
- Department of Science and Environment Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong; Centre for Environment and Sustainable Development (CESD), The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Yu-Fang Hsu
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan; Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
10
|
Saengsiwaritt W, Ngamtipakon P, Udomsinprasert W. Vitamin D and autophagy in knee osteoarthritis: A review. Int Immunopharmacol 2023; 123:110712. [PMID: 37523972 DOI: 10.1016/j.intimp.2023.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Knee osteoarthritis (KOA), the highly prevalent degenerative disease affecting the joint, perpetually devastates the health of the elderly. Of various mechanisms known to participate in KOA etiology, apoptosis of chondrocytes is widely regarded as the primary cause of cartilage degradation. It has been suggested that the induction of autophagy in chondrocytes could potentially prolong the progression of KOA by modulating intracellular metabolic processes, which may be helpful for ameliorating chondrocyte apoptosis and eventual cartilage degeneration. Autophagy, a physiological process characterized by intracellular self-degradation, has been reportedly implicated in various pathologic conditions including KOA. Interestingly, vitamin D has been shown to regulate autophagy in human chondrocytes through multiple pathways, specifically AMPK/mTOR signaling pathway. This observation underscores the potential of vitamin D as a novel approach for restoring the functionality and survivability of chondrocytes in KOA. Supporting vitamin D's clinical significance, previous studies have demonstrated its substantial involvement in the symptoms and irregular joint morphology observed in KOA patients, strengthening potential therapeutic efficacy of vitamin D in treatment of KOA. Herein, the purpose of this review was to determine the mechanisms underlying the multi-processes of vitamin D implicated in autophagy in several cells including chondrocytes, which would bring unique insights into KOA pathogenesis.
Collapse
Affiliation(s)
| | - Phatchana Ngamtipakon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
11
|
Albano GD, Montalbano AM, Gagliardo R, Profita M. Autophagy/Mitophagy in Airway Diseases: Impact of Oxidative Stress on Epithelial Cells. Biomolecules 2023; 13:1217. [PMID: 37627282 PMCID: PMC10452925 DOI: 10.3390/biom13081217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Autophagy is the key process by which the cell degrades parts of itself within the lysosomes. It maintains cell survival and homeostasis by removing molecules (particularly proteins), subcellular organelles, damaged cytoplasmic macromolecules, and by recycling the degradation products. The selective removal or degradation of mitochondria is a particular type of autophagy called mitophagy. Various forms of cellular stress (oxidative stress (OS), hypoxia, pathogen infections) affect autophagy by inducing free radicals and reactive oxygen species (ROS) formation to promote the antioxidant response. Dysfunctional mechanisms of autophagy have been found in different respiratory diseases such as chronic obstructive lung disease (COPD) and asthma, involving epithelial cells. Several existing clinically approved drugs may modulate autophagy to varying extents. However, these drugs are nonspecific and not currently utilized to manipulate autophagy in airway diseases. In this review, we provide an overview of different autophagic pathways with particular attention on the dysfunctional mechanisms of autophagy in the epithelial cells during asthma and COPD. Our aim is to further deepen and disclose the research in this direction to stimulate the develop of new and selective drugs to regulate autophagy for asthma and COPD treatment.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Section of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.M.M.); (R.G.); (M.P.)
| | | | | | | |
Collapse
|
12
|
Xiao Z, Long J, Zhang J, Qiu Z, Zhang C, Liu H, Liu X, Wang K, Tang Y, Chen L, Lu Z, Zhao G. Administration of protopine prevents mitophagy and acute lung injury in sepsis. Front Pharmacol 2023; 14:1104185. [PMID: 37361224 PMCID: PMC10285494 DOI: 10.3389/fphar.2023.1104185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Sepsis is a severe life-threatening infection that induces a series of dysregulated physiologic responses and results in organ dysfunction. Acute lung injury (ALI), the primary cause of respiratory failure brought on by sepsis, does not have a specific therapy. Protopine (PTP) is an alkaloid with antiinflammatory and antioxidant properties. However, the function of PTP in septic ALI has not yet been documented. This work sought to investigate how PTP affected septic ALI and the mechanisms involved in septic lung damage, including inflammation, oxidative stress, apoptosis, and mitophagy. Methods: Here, we established a mouse model induced by cecal ligation and puncture (CLP) and a BEAS-2B cell model exposed to lipopolysaccharide (LPS). Results: PTP treatment significantly reduced mortality in CLP mice. PTP mitigated lung damage and reduced apoptosis. Western blot analysis showed that PTP dramatically reduced the expression of the apoptosis-associated protein (Cleaved Caspase-3, Cyto C) and increased Bcl-2/Bax. In addition, PTP decreased the production of inflammatory cytokines (IL-6, IL-1β, TNF-α), increased glutathione (GSH) levels and superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) levels. Meanwhile, PTP significantly reduced the expression of mitophagy-related proteins (PINK1, Parkin, LC-II), and downregulated mitophagy by transmission electron microscopy. Additionally, the cells were consistent with animal experiments. Discussion: PTP intervention reduced inflammatory responses, oxidative stress, and apoptosis, restored mitochondrial membrane potential, and downregulated mitophagy. The research shows that PTP prevents excessivemitophagy and ALI in sepsis, suggesting that PTP has a potential role in the therapy of sepsis.
Collapse
Affiliation(s)
- Zhong Xiao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Juan Long
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Jie Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Zhimin Qiu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Chen Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Hongbing Liu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Xinyong Liu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Kang Wang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Longwang Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- The Key Specialty of Traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan Period (Emergency Department), Wenzhou, China
| |
Collapse
|
13
|
Zhao J, Xia H, Wu Y, Lu L, Cheng C, Sun J, Xiang Q, Bian T, Liu Q. CircRNA_0026344 via miR-21 is involved in cigarette smoke-induced autophagy and apoptosis of alveolar epithelial cells in emphysema. Cell Biol Toxicol 2023; 39:929-944. [PMID: 34524572 DOI: 10.1007/s10565-021-09654-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Cigarette smoke (CS), a main source of indoor air pollution, is a primary risk factor for emphysema, and aberrant cellular autophagy is related to the pathogenesis of emphysema. Circular RNAs (circRNAs) affect the expression of mRNAs via acting as microRNA (miRNA) sponges, but their role in emphysema progression is not established. In the present investigation, CS, acting on alveolar epithelial cells, caused higher levels of miR-21, p-ERK, and cleaved-caspase 3 and led to lower levels of circRNA_0026344 and PTEN, which induced autophagy and apoptosis. miR-21 suppressed the expression of PTEN, which was involved in the regulation of autophagy and apoptosis. Further, in alveolar epithelial cells, overexpression of circRNA_0026344 blocked cigarette smoke extract (CSE)-induced autophagy and apoptosis, but this blockage was reversed by upregulation of miR-21 with a mimic. These results demonstrated that, in alveolar epithelial cells, CS decreases circRNA_0026344 levels, which sponge miR-21 to inhibit the miR-21 target, PTEN, which, in turn, activates ERK and thereby promotes autophagy and apoptosis, leading to emphysema. Thus, for emphysema, circRNA_0026344 regulates the PTEN/ERK axis by sponging miR-21, which is associated with the CS-induced autophagy and apoptosis of alveolar epithelial cells. In sum, the present investigation identifies a novel mechanism for CS-induced emphysema and provides information useful for the diagnosis and treatment of CS-induced emphysema.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yan Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Quanyong Xiang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tao Bian
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
- China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Draper M, Bester M, Van Rooy M, Oberholzer H. Adverse pulmonary effects after oral exposure to copper, manganese and mercury, alone and in mixtures, in a Spraque-Dawley rat model. Ultrastruct Pathol 2023; 47:146-159. [PMID: 36857290 DOI: 10.1080/01913123.2023.2184891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The rise in respiratory disease has been attributed to an increase in environmental pollution. Heavy metals contribute to environmental contamination via air, water, soil and food. The effects of atmospheric exposure to heavy metals on pulmonary structure and function have been researched, but the effects through drinking water have been neglected. The aim of this study was to investigate the potential in vivo alterations in the pulmonary tissue of male Sprague-Dawley rats after a 28-day oral exposure to copper (Cu), manganese (Mn) and mercury (Hg), alone and in mixtures, at 100 times the World Health Organization's (WHO) safety limit for each heavy metal in drinking water. Forty-eight male Sprague-Dawley rats were randomly divided into eight groups (n = 6): control, Cu, Mn, Hg, Cu + Mn, Cu + Hg, Mn + Hg and Cu, Mn + Hg. The morphology of lung tissue and the bronchioles were evaluated using light- and transmission electron microscopy. For all exposed groups, morphological changes included thickened inter- and intra-alveolar spaces, stratified epithelium, disrupted smooth muscle and early fibrosis and desquamation of the epithelia of the bronchioles to varying degrees. In all exposed groups, ultrastructurally, an increase in disarranged collagen and elastin fibers, nuclear membrane detachment, chromatin condensation, indistinct nucleoli and an increase in collagen fiber disarrangement was observed. This study has identified that oral exposure to Cu, Mn and Hg and as part of mixtures caused pathogenesis due to inflammation, cellular damage and fibrosis with Mn + Hg being the most potent heavy metal group.
Collapse
Affiliation(s)
- M Draper
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Mj Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - M Van Rooy
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Hm Oberholzer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
15
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Triamcinolone acetonide induces the autophagy of Ag85B-treated WI-38 cells via SIRT1/FOXO3 pathway. Allergol Immunopathol (Madr) 2023; 51:27-35. [PMID: 36916085 DOI: 10.15586/aei.v51i2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 03/07/2023]
Abstract
BACKGROUND Tracheobronchial stenosis due to tuberculosis (TSTB) seriously threatens the health of tuberculosis patients. The inflammation and autophagy of fibroblasts affect the development of TSTB. Triamcinolone acetonide (TA) can regulate the autophagy of fibroblasts. Nevertheless, the impact of TA on TSTB and underlying mechanism has remained unclear. OBJECTIVE To study the impact of TA on TSTB and underlying mechanism. MATERIAL AND METHODS In order to simulate the TSTB-like model in vitro, WI-38 cells were exposed to Ag85B protein. In addition, the cell counting kit (CCK)-8 assay was applied to assess the function of TA in Ag85B-treated WI-38 cells. Quantitative real-time polymerase chain reaction was applied to detect the mRNA level of sirtuin 1 (SIRT1) and forkhead box O3 (FOXO3a), and autophagy-related proteins were evaluated by Western blot analysis. Vascular endothelial growth factor (VEGF) level was investigated by immunohistochemical staining. Enzyme-linked immunosorbent serologic assay was applied to detect the secretion of inflammatory cytokines. Furthermore, hematoxylin and eosin staining was applied to observe tissue injuries. RESULTS Ag85B affected WI-38 cell viability in a limited manner, while TA notably suppressed Ag85B-treated WI-38 cell viability. TA induced the apoptosis of Ag85B-treated WI-38 cells in a dose-dependent manner. In addition, Ag85B-treated WI-38 cells demonstrated the upregulation of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), interferon gamma (IFN-γ), and fibrotic proteins (transforming growth factor-beta [TGF-β] and vascular endothelial growth factor [VEGF]), which can be significantly destroyed by the TA. Meanwhile, TA reversed Ag85-induced inhibition of cell autophagy by mediation of p62, LC3, and Beclin1. Furthermore, silencing of SIRT1/FOXO3a pathway could reverse the effect of TA on the autophagy of Ag85B-treated cells. CONCLUSION TA significantly induced the autophagy of fibroblasts in Ag85B-treated cells by mediation of SIRT1/FOXO3 pathway. This study established a new theoretical basis for exploring strategies against TSTB.
Collapse
|
17
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
18
|
Kao WC, Chen JC, Liu PC, Lu CC, Lin SY, Chuang SC, Wu SC, Chang LH, Lee MJ, Yang CD, Lee TC, Wang YC, Li JY, Wei CW, Chen CH. The Role of Autophagy in Osteoarthritic Cartilage. Biomolecules 2022; 12:biom12101357. [PMID: 36291565 PMCID: PMC9599131 DOI: 10.3390/biom12101357] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases leading to physical disability, with age being the main risk factor, and degeneration of articular cartilage is the main focus for the pathogenesis of OA. Autophagy is a crucial intracellular homeostasis system recycling flawed macromolecules and cellular organelles to sustain the metabolism of cells. Growing evidences have revealed that autophagy is chondroprotective by regulating apoptosis and repairing the function of damaged chondrocytes. Then, OA is related to autophagy depending on different stages and models. In this review, we discuss the character of autophagy in OA and the process of the autophagy pathway, which can be modulated by some drugs, key molecules and non-coding RNAs (microRNAs, long non-coding RNAs and circular RNAs). More in-depth investigations of autophagy are needed to find therapeutic targets or diagnostic biomarkers through in vitro and in vivo situations, making autophagy a more effective way for OA treatment in the future. The aim of this review is to introduce the concept of autophagy and make readers realize its impact on OA. The database we searched in is PubMed and we used the keywords listed below to find appropriate article resources.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jian-Chih Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ping-Cheng Liu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chang Lu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ling-hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 71101, Taiwan
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Chun Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chun-Wang Wei
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Materials Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Drug use in elderly people is high compared to younger people. Simultaneously, elderly are at greater risk when exposed to environmental substances. It is puzzling therefore, that ageing, as a variable in pharmacological and toxicological processes is not investigated in more depth. Moreover, recent data suggest that molecular manifestations of the ageing process also hallmark the pathogenesis of chronic lung diseases, which may impact pharmacology and toxicology. RECENT FINDINGS In particular, absorption, distribution, metabolism and excretion (ADME) processes of drugs and toxins alter because of ageing. Polypharmacy, which is quite usual with increasing age, increases the risk of drug-drug interactions. Individual differences in combination of drugs use in conjunction with individual variations in drug metabolizing enzymes can influence lung function. SUMMARY Exploring exposure throughout life (i.e. during ageing) to potential triggers, including polypharmacy, may avoid lung disease or unexplained cases of lung damage. Understanding of the ageing process further unravels critical features of chronic lung disease and helps to define new protective targets and therapies. Optimizing resilience can be key in pharmacology and toxicology and helps in maintaining healthy lungs for a longer period.
Collapse
|
20
|
Caveolin-1 scaffolding domain peptide abrogates autophagy dysregulation in pulmonary fibrosis. Sci Rep 2022; 12:11086. [PMID: 35773303 PMCID: PMC9246916 DOI: 10.1038/s41598-022-14832-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of interstitial lung disease. IPF is characterized by irreversible scarring of the lungs leading to lung function decline. Although the etiology remains poorly understood, dysregulated autophagy in alveolar-epithelial cells (AECs) together with interplay between apoptotic-AECs and proliferative-myofibroblasts have been strongly implicated in IPF pathogenesis. Recent studies have revealed that a caveolin-1-derived 7-mer peptide, CSP7, mitigates established PF at least in part by improving AEC viability. In the present study, we aimed to determine whether and how CSP7 regulates autophagy in fibrotic-lung AECs. We found that p53 and autophagic proteins were markedly upregulated in AECs from mice with single/multi-doses of bleomycin—or silica-induced PF. This was abolished following treatment of PF-mice with CSP7. Further, CSP7 abrogated silica- or bleomycin-induced p53 and autophagy proteins in AECs. Immunoprecipitation further revealed that CSP7 abolishes the interaction of caveolin-1 with LC3BII and p62 in AECs. AEC-specific p53-knockout mice resisted silica- or bleomycin-induced changes in autophagy proteins, or CSP7 treatment. Our findings provide a novel mechanism by which CSP7 inhibits dysregulated autophagy in injured AECs and mitigates existing PF. These results affirm the potential of CSP7 for treating established PF, including IPF and silicosis.
Collapse
|
21
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|
22
|
Zhao Z, Hou B, Tang L, Wang Y, Zhang Y, Ying Z, Duo J. High-altitude hypoxia-induced rat alveolar cell injury by increasing autophagy. Int J Exp Pathol 2022; 103:132-139. [PMID: 35235244 PMCID: PMC9264343 DOI: 10.1111/iep.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy has been implicated in the pathogenesis of various lung diseases. This study aimed to investigate the role of autophagy in lung injury induced by high-altitude hypoxia. Wistar rats were randomized into four groups for exposure to normal altitude or high altitude for 1, 7, 14 and 21 days with no treatment or with the treatment of 1 mg/kg rapamycin or 2 mg/kg 3-methyladenine (3-MA) for consecutive 21 days respectively. In control rats, the alveolar structure was intact with regularly arranged cells. However, inflammatory cell infiltration and shrunk alveoli were observed in rats exposed to hypoxia. Rapamycin treatment led to many shrunken alveoli with a large number of red blood cells in them. In contrast, 3-MA treatment led to almost intact alveoli or only a few shrunken alveoli. Compared to the control group exposure to high-altitude hypoxia for longer periods resulted in the aggravation of the lung injury, the formation of autophagosomes with a double-membrane structure and increased levels of Beclin-1 and LC3-II in alveolar tissues. Rapamycin treatment resulted in significant increase in Beclin-1 and LC3-II levels and further aggravation of alveolar tissue damage, while 3-MA treatment led to opposite effects. In conclusion, exposure to high-altitude hypoxia can induce autophagy of alveolar cells, which may be an important mechanism of high-altitude hypoxia-induced lung injury. The inhibition of autophagy may be a promising therapy strategy for high-altitude hypoxia-induced lung injury.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Respiratory Medicine, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Bing Hou
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Li Tang
- Department of Respiratory Medicine, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yaping Wang
- Department of Respiratory Medicine, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yueqing Zhang
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Zhanzhuan Ying
- Department of Respiratory Medicine, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jie Duo
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
23
|
Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: a new era for cancer treatment. J Cancer Res Clin Oncol 2022; 148:547-564. [PMID: 35083552 DOI: 10.1007/s00432-021-03892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Autophagy and EMT (epithelial-mesenchymal transition) are the two principal biological processes and ideal therapeutic targets during cancer development. Autophagy, a highly conserved process for degrading dysfunctional cellular components, plays a dual role in tumors depending on the tumor stage and tissue types. The EMT process is the transition differentiation from an epithelial cell to a mesenchymal-like cell and acquiring metastatic potential. There is evidence that the crosstalk between autophagy and EMT is complex in cancer. In recent years, more studies have shown that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in autophagy, EMT, and their crosstalk. Therefore, accurate understanding of the regulatory mechanisms of lncRNAs and miRNAs in autophagy, EMT and their interactions is crucial for the clinical management of cancers. METHODS An extensive literature search was conducted on the Google Scholar and PubMed databases. The keywords used for the search included: autophagy, EMT, crosstalk, lncRNAs, miRNAs, cancers, diagnostic biomarkers, and therapeutic targets. This search provided relevant articles published in peer-reviewed journals until 2021. Data from these various studies were extracted and used in this review. RESULTS The results showed that lncRNAs/miRNAs as tumor inhibitors or tumor inducers could regulate autophagy, EMT, and their interaction by regulating several molecular signaling pathways. The lncRNAs/miRNAs involved in autophagy and EMT processes could have potential uses in cancer diagnosis, prognosis, and therapy. CONCLUSION Such information could help find and develop lncRNAs/miRNAs based new tools for diagnosing, prognosis, and creating anti-cancer therapies.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| | - Lu Ding
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| |
Collapse
|
24
|
Kong M, Wei D, Li X, Zhu X, Hong Z, Ni M, Wang Y, Dong A. The dynamic changes in autophagy activity and its role in lung injury after deep hypothermic circulatory arrest. J Cell Mol Med 2022; 26:1113-1127. [PMID: 35014165 PMCID: PMC8831962 DOI: 10.1111/jcmm.17165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022] Open
Abstract
Deep hypothermic circulatory arrest (DHCA) can cause acute lung injury (ALI), and its pathogenesis mimics ischaemia/reperfusion (I/R) injury. Autophagy is also involved in lung I/R injury. The present study aimed to elucidate whether DHCA induces natural autophagy activation and its role in DHCA‐mediated lung injury. Here, rats were randomly assigned to the Sham or DHCA group. The sham group (n = 5) only received anaesthesia and air intubation. DHCA group rats underwent cardiopulmonary bypass (CPB) followed by the DHCA procedure. The rats were then sacrificed at 3, 6 and 24 h after the DHCA procedure (n = 5) to measure lung injury and autophagy activity. Chloroquine (CQ) was delivered to evaluate autophagic flux. DHCA caused lung injury, which was prominent 3–6 h after DHCA, as confirmed by histological examination and inflammatory cytokine quantification. Lung injury subsided at 24 h. Autophagy was suppressed 3 h but was exaggerated at 6 h. At both time points, autophagic flux appeared uninterrupted. To further assess the role of autophagy in DHCA‐mediated lung injury, the autophagy inducer rapamycin and its inhibitor 3‐methyladenine (3‐MA) were applied, and lung injury was reassessed. When rapamycin was administered at an early time point, lung injury worsened, whereas administration of 3‐MA at a late time point ameliorated lung injury, indicating that autophagy contributed to lung injury after DHCA. Our study presents a time course of lung injury following DHCA. Autophagy showed adaptive yet protective suppression 3 h after DHCA, as induction of autophagy caused worsening of lung tissue. In contrast, autophagy was exaggerated 6 h after DHCA, and autophagy inhibition attenuated DHCA‐mediated lung injury.
Collapse
Affiliation(s)
- Minjian Kong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wei
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuebiao Li
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xian Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Hong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Ni
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Aiqiang Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Yu YY, Li XQ, Hu WP, Cu SC, Dai JJ, Gao YN, Zhang YT, Bai XY, Shi DY. Self-developed NF-κB inhibitor 270 protects against LPS-induced acute kidney injury and lung injury through improving inflammation. Biomed Pharmacother 2022; 147:112615. [PMID: 35026488 DOI: 10.1016/j.biopha.2022.112615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 12/11/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) and acute lung injury (ALI) have high morbidity and mortality, with no effective clinically available drugs. Anti-inflammation is effective strategy in the therapy of AKI and ALI. NF-κB is a target for the development of anti‑inflammatory agents. The purpose of the study is to evaluate the effect of 270, self-developed NF-κB inhibitor, in LPS-induced AKI and ALI. LPS-induced macrophages were used to examine the anti-inflammation activity of 270 in vitro. Sepsis-induced AKI and ALI mice models were established by intraperitoneal injection of LPS (10 mg/kg) for 24 h. Oral administration 270 for 14 days before LPS stimulation. Plasma, kidney and lung tissues were collected and used for histopathology, biochemical assay, ELISA, RT-PCR, and western blot analyses. In vitro, we showed that 270 suppressed the inflammation response in LPS-induced RAW 264.7 macrophages and bone marrow derived macrophages. In vivo, we found that 270 ameliorated LPS-induced AKI and ALI, as evidenced by improving various pathological changes, reducing the expression of pro-inflammation genes, blocking the activation of NF-κB and JNK pathways, attenuating the elevated myeloperoxidase (MPO) activity and malondialdehyde (MDA) content, ameliorating the activated ER stress, reversing the inhibition effect on autophagy in kidney and lung tissues, and alleviating the enhanced plasma level of creatinine (Crea), blood urea nitrogen (BUN) and pro-inflammation cytokines. Our investigations provides evidence that NF-κB inhibitor 270 is a potential drug that against LPS-induced AKI and ALI in the future.
Collapse
Affiliation(s)
- Yan-Yan Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Xiang-Qian Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Wen-Peng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Shi-Chao Cu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Jia-Jia Dai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Ya-Nan Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Yi-Ting Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Xiao-Yi Bai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Da-Yong Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
26
|
Li J, Li M, Li L, Ma J, Yao C, Yao S. Hydrogen sulfide attenuates ferroptosis and stimulates autophagy by blocking mTOR signaling in sepsis-induced acute lung injury. Mol Immunol 2022; 141:318-327. [PMID: 34952420 DOI: 10.1016/j.molimm.2021.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
Sepsis often leads to multiple organ failure or even death and is a significant health problem that contributes to a heavy economic burden. The lung is the first organ to be affected by sepsis. Presently, there is no specific drug or method to treat sepsis and sepsis-induced acute lung injury (ALI). H2S, along with CO and NO, is a physiological gas that acts as a signaling molecule and plays an active role in fighting various lung infections. GYY4137 is a novel H2S donor that is stable in vivo and in vitro. However, particularly in the context of ferroptosis, GYY4137 affects cecal ligation and puncture (CLP)-induced ALI by a mechanism that is not understood. Ferroptosis is a new form of cell necrosis. The primary mechanism is the accumulation of cellular lipid ROS in an iron-dependent manner. The principal objective of this project was to investigate the effects of GYY4137 on ferroptosis and autophagy in a mouse model of sepsis-induced ALI. We divided the experimental mice randomly into 5 groups: (1) sham group; (2) CLP group; (3) CLP + DMSO group: (4) CLP + GYY4137 (25 mg/kg) group; and (5) CLP + GYY4137 (50 mg/kg) group. (6) CLP + Rapamycin (2.0 mg/Kg) group. (7) CLP + Chloroquine (80 mg/Kg) group. (8) the Chloroquine (80 mg/Kg) + GYY (50 mg/Kg) group. The findings showed that GYY4137 significantly protected against CLP-induced ALI by improving sepsis-induced lung histopathological changes, diminishing lung tissue damage, ameliorating oxidative stress, and attenuating the severity of lung injury in mice. In this study, we found that GYY4137 could alleviate septicemia-induced ferroptosis in ALI by increasing the expression of GPx4 and SLC7A11 in lung tissue after CLP. One unexpected finding was the extent to which the levels of ferritin and ferritin light chain increased after CLP, which may be a compensatory mechanism for storing abnormally increased iron. We also found that the expression of p-mTOR, P62, and Beclin1 was significantly increased and that LC3II/LC3I declined after LPS stimulation, but the effect was inhibited by treatment with GYY4137, indicating that GYY4137 could inhibit the activation of autophagy in sepsis-induced ALI by blocking mTOR signaling.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Critical Care Medicine, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi 832000, China
| | - Mengyu Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Li
- Department of Traumatology, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi 832000, China
| | - Jiamin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
27
|
Investigation of the role of the autophagic protein LC3B in the regulation of human airway epithelium cell differentiation in COPD using a biomimetic model. Mater Today Bio 2021; 13:100182. [PMID: 34917923 PMCID: PMC8668979 DOI: 10.1016/j.mtbio.2021.100182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most lethal chronic disease worldwide; however, the establishment of reliable in vitro models for exploring the biological mechanisms of COPD remains challenging. Here, we determined the differences in the expression and characteristics of the autophagic protein LC3B in normal and COPD human small airway epithelial cells and found that the nucleus of COPD cells obviously accumulated LC3B. We next established 3D human small airway tissues with distinct disease characteristics by regulating the biological microenvironment, extracellular matrix, and air-liquid interface culture methods. Using this biomimetic model, we found that LC3B affects the differentiation of COPD cells into basal, secretory, mucous, and ciliated cells. Moreover, although chloroquine and ivermectin effectively inhibited the expression of LC3B in the nucleus, chloroquine specifically maintained the performance of LC3B in cytoplasm, thereby contributing to the differentiation of ciliated cells and subsequent improvement in the beating functions of the cilia, whereas ivermectin only facilitated differentiation of goblet cells. We demonstrated that the autophagic mechanism of LC3B in the nucleus is one factor regulating the ciliary differentiation and function of COPD cells. Our innovative model can be used to further analyze the physiological mechanisms in the in vitro airway environment.
Collapse
|
28
|
Yang J, Do-Umehara HC, Zhang Q, Wang H, Hou C, Dong H, Perez EA, Sala MA, Anekalla KR, Walter JM, Liu S, Wunderink RG, Budinger GRS, Liu J. miR-221-5p-Mediated Downregulation of JNK2 Aggravates Acute Lung Injury. Front Immunol 2021; 12:700933. [PMID: 34899681 PMCID: PMC8656235 DOI: 10.3389/fimmu.2021.700933] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Sepsis and acute lung injury (ALI) are linked to mitochondrial dysfunction; however, the underlying mechanism remains elusive. We previously reported that c-Jun N-terminal protein kinase 2 (JNK2) promotes stress-induced mitophagy by targeting small mitochondrial alternative reading frame (smARF) for ubiquitin-mediated proteasomal degradation, thereby preventing mitochondrial dysfunction and restraining inflammasome activation. Here we report that loss of JNK2 exacerbates lung inflammation and injury during sepsis and ALI in mice. JNK2 is downregulated in mice with endotoxic shock or ALI, concomitantly correlated inversely with disease severity. Small RNA sequencing revealed that miR-221-5p, which contains seed sequence matching to JNK2 mRNA 3’ untranslated region (3’UTR), is upregulated in response to lipopolysaccharide, with dynamically inverse correlation with JNK2 mRNA levels. miR-221-5p targets the 3’UTR of JNK2 mRNA leading to its downregulation. Accordingly, miR-221-5p exacerbates lung inflammation and injury during sepsis in mice by targeting JNK2. Importantly, in patients with pneumonia in medical intensive care unit, JNK2 mRNA levels in alveolar macrophages flow sorted from non-bronchoscopic broncholaveolar lavage (BAL) fluid were inversely correlated strongly and significantly with the percentage of neutrophils, neutrophil and white blood cell counts in BAL fluid. Our data suggest that miR-221-5p targets JNK2 and thereby aggravates lung inflammation and injury during sepsis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Hanh Chi Do-Umehara
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Qiao Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Huashan Wang
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Changchun Hou
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Huali Dong
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Edith A Perez
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Marc A Sala
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James M Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jing Liu
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Liao FX, Huang F, Ma WG, Qin KP, Xu PF, Wu YF, Wang H, Chang J, Yin ZS. The New Role of Sirtuin1 in Human Osteoarthritis Chondrocytes by Regulating Autophagy. Cartilage 2021; 13:1237S-1248S. [PMID: 31072129 PMCID: PMC8804807 DOI: 10.1177/1947603519847736] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The aim of this study is to investigate the role of Sirtuin1 (Sirt1) in the regulation of autophagy for human osteoarthritis (OA) chondrocytes. DESIGN All cartilage samples were collected from human donors, including young group, aged group, and OA group. Primary chondrocytes were isolated and cultured with Sirt1 activator or inhibitor. Sirt1 expression in cartilage tissue and chondrocytes was evaluated, and the deacetylation activity of Sirt1 was determined. The alteration of autophagy activity after upregulating or downregulating Sirt1 was detected. Chondrocytes were treated with autophagy activator and inhibitor, and then the protein level of Sirt1 was examined. The interactions between Sirt1 and autophagy-related proteins Atg7, microtubule associated protein 1 light chain 3 (LC3), and Beclin-1 were determined by using immunoprecipitation. RESULTS The assay of articular cartilage revealed that the expression of Sirt1 might be age-related: highly expressed in of younger people, and respectively decreased in the elderly people and OA patients. In vitro study was also validated this result. Further study confirmed that higher levels of Sirt1 significantly increased autophagy in aged chondrocytes, while the lower expression of Sirt1 reduced autophagy in young chondrocytes. Of note, the high levels of Sirt1 reduced autophagy in OA chondrocytes. When the chondrocytes were treated with autophagy activator or inhibitor, we found the expression of Sirt1 was not affected. In addition, we found that Sirt1 could interact with Atg7. CONCLUSION These results suggest that Sirt1 in human chondrocytes regulates autophagy by interacting with autophagy related Atg7, and Sirt1 may become a more important target in OA treatment.
Collapse
Affiliation(s)
- Fa-Xue Liao
- Department of Orthopaedics, The First
Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s
Republic of China,Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Fei Huang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Wen-Guang Ma
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Kun-Peng Qin
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Peng-Fei Xu
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Yun-Feng Wu
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Hao Wang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Jun Chang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Zong-Sheng Yin
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China,Zong-Sheng Yin, Department of Orthopaedics,
The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road,
Hefei, Anhui Province 230022, China.
| |
Collapse
|
30
|
Tao W, Cao C, Ren G, Zhou D. Circular RNA circCPA4 promotes tumorigenesis by regulating miR-214-3p/TGIF2 in lung cancer. Thorac Cancer 2021; 12:3356-3369. [PMID: 34741437 PMCID: PMC8671903 DOI: 10.1111/1759-7714.14210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background Lung cancer is the most prevalent malignancy in adults. Circular RNA (circRNA) circCPA4 (hsa_circ_0082374) is highly expressed in non‐small cell lung cancer (NSCLC). The purpose of this study was to explore the role and mechanism of circCPA4 in lung cancer. Methods CircCPA4, linear CPA4, TGF‐β‐induced factor homeobox 2 (TGIF2), and microRNA‐214‐3p (miR‐214‐3p) levels were measured by real‐time quantitative polymerase chain reaction (RT‐qPCR). The protein levels of TGIF2, Beclin1, and p62 were assessed by western blot assay. Colony numbers, migration, invasion, apoptosis, and cell cycle progression were examined by colony formation, wound‐healing, transwell, and flow cytometry assays, respectively. The binding relationship between miR‐214‐3p and circCPA4 or TGIF2 was predicted by StarBase or TargetScan and then verified by a dual‐luciferase reporter, RNA immunoprecipitation (RIP), and RNA pulldown assays. The biological role of circCPA4 on lung tumor growth was assessed by a xenograft tumor model in vivo, and TGIF2 and ki‐67 expression was assessed by immunohistochemistry. Results We determined that CircCPA4 and TGIF2 were increased, and miR‐214‐3p was decreased in lung cancer tissues and cells. Functionally, circCPA4 knockdown could suppress colony formation, migration, invasion, cell cycle progression, and expedite apoptosis of lung cancer cells in vitro. Mechanically, circCPA4 could regulate TGIF2 expression by sponging miR‐214‐3p. In addition, circCPA4 deficiency inhibited the tumor growth in lung cancer in the mouse model. Conclusions CircCPA4 could act as a sponge of miR‐214‐3p to upregulate TGIF2 expression, thereby promoting the progression of lung cancer cells. These findings suggested underlying therapeutic targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Wenhu Tao
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Cao
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gaofei Ren
- Department of Cardiovascular Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Decun Zhou
- Department of Cardiovascular Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, China
| |
Collapse
|
31
|
Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021; 13:cancers13215557. [PMID: 34771718 PMCID: PMC8582658 DOI: 10.3390/cancers13215557] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Recent studies have shown that cancer processes are involved under normoxic conditions. These findings completely change the way of approaching the study of the cancer process. In this review, we focus on the fact that, under normoxic conditions, the overstimulation of the WNT/β-catenin pathway leads to modifications in the tumor micro-environment and the activation of the Warburg effect, i.e., aerobic glycolysis, autophagy and glutaminolysis, which in turn participate in tumor growth. Abstract The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR, CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
32
|
Tan HY, Qing B, Luo XM, Liang HX. Downregulation of miR-223 promotes HMGB2 expression and induces oxidative stress to activate JNK and promote autophagy in an in vitro model of acute lung injury. J Inflamm (Lond) 2021; 18:29. [PMID: 34732212 PMCID: PMC8565047 DOI: 10.1186/s12950-021-00295-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Excessive autophagic activity in alveolar epithelial cells is one of the main causes of acute lung injury (ALI), but the underlying molecular mechanism has not been fully elucidated. Previous studies have shown that microRNAs (miRs) are involved in regulating autophagy in several diseases. This study aimed to determine the role of miR-223 in excessive autophagic activity in alveolar epithelial cells and the underlying mechanism to identify a novel therapeutic targets for the development of new drugs to treat acute respiratory distress syndrome (ARDS). METHODS A549 cells were treated with lipopolysaccharide (LPS) to establish an ALI in vitro model. The expression of miR-223 and its role of miR-223 in regulating oxidative stress and autophagy in the LPS-treated A549 cells, were examined using RT-PCR, flow cytometry and ELISA. A luciferase reporter assay was performed to verify the interaction between miR-223 and the high-mobility group box 2 (HMGB2) protein. RESULTS The results showed that the LPS treatment downregulated miR-223 expression in alveolar epithelial cells. We further proved that miR-223 directly targeted the 3-untranslated region of the HMGB2 gene and the downregulation of miR-223 increased HMGB2 protein level, which activated the JNK signalling pathway and thus induced oxidative stress and autophagy in LPS-treated alveolar epithelial cells. Knockdown of HMGB2 protein deactivated the JNK signalling pathway and inhibited autophagy and oxidative stress in alveolar epithelial cells. CONCLUSIONS The results of this study suggest that miR-223 regulates oxidative stress and autophagy in alveolar epithelial cells by targeting HMGB2 via the JNK signalling pathway.
Collapse
Affiliation(s)
- Hao-Yu Tan
- Department of Cardio-vascular Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Bei Qing
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Xian-Mei Luo
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Heng-Xing Liang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China.
| |
Collapse
|
33
|
Ouyang X, Becker E, Bone NB, Johnson MS, Craver J, Zong WX, Darley-Usmar VM, Zmijewski JW, Zhang J. ZKSCAN3 in severe bacterial lung infection and sepsis-induced immunosuppression. J Transl Med 2021; 101:1467-1474. [PMID: 34504306 PMCID: PMC8868012 DOI: 10.1038/s41374-021-00660-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
The mortality rates among patients who initially survive sepsis are, in part, associated with a high risk of secondary lung infections and respiratory failure. Given that phagolysosomes are important for intracellular killing of pathogenic microbes, we investigated how severe lung infections associated with post-sepsis immunosuppression affect phagolysosome biogenesis. In mice with P. aeruginosa-induced pneumonia, we found a depletion of both phagosomes and lysosomes, as evidenced by decreased amounts of microtubule associated protein light chain 3-II (LC3-II) and lysosomal-associated membrane protein (LAMP1). We also found a loss of transcription factor E3 (TFE3) and transcription factor EB (TFEB), which are important activators for transcription of genes encoding autophagy and lysosomal proteins. These events were associated with increased expression of ZKSCAN3, a repressor for transcription of genes encoding autophagy and lysosomal proteins. Zkscan3-/- mice had increased expression of genes involved in the autophagy-lysosomal pathway along with enhanced killing of P. aeruginosa in the lungs, as compared to wild-type mice. These findings highlight the involvement of ZKSCAN3 in response to severe lung infection, including susceptibility to secondary bacterial infections due to immunosuppression.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eugene Becker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathaniel B Bone
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michelle S Johnson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason Craver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaroslaw W Zmijewski
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Pan P, Chen J, Liu X, Fan J, Zhang D, Zhao W, Xie L, Su L. FUNDC1 Regulates Autophagy by Inhibiting ROS-NLRP3 Signaling to Avoid Apoptosis in the Lung in a Lipopolysaccharide-Induced Mouse Model. Shock 2021; 56:773-781. [PMID: 34238903 DOI: 10.1097/shk.0000000000001835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The incidence and mortality of acute respiratory distress syndrome (ARDS) are high, but the relevant mechanism for this disorder remains unclear. Autophagy plays an important role in the development of ARDS. The mitochondrial outer membrane protein FUNDC1 is involved in hypoxia-mediated mitochondrial autophagy, which may contribute to ARDS development. This study explored whether FUNDC1 regulates autophagy by inhibiting ROS-NLRP3 signaling to avoid apoptosis in the lung in a lipopolysaccharide-induced mouse model. In this study, FUNDC1 knockout mice were constructed, and a lipopolysaccharide-induced mouse model was generated. HE staining of pathological sections from the lung, wet/dry lung measurements, myeloperoxidase concentration/neutrophil counts in BALF and survival time of mice were examined to determine the effect of modeling. The release of cytokines (TNF-α, IL-1β, IL-6, and IL-10) in response to LPS in the BALF and plasma was assessed using ELISA. The effects of oxidative stress (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase) in lung tissue in response to LPS were detected by biochemical analysis. Oxidative stress damage was validated by iNOS staining, and apoptosis was assessed by TUNEL staining after LPS. Finally, the expression of autophagy-associated proteins and inflammasome-associated proteins in lung tissue after LPS intervention was analyzed by western blot. We found that wild-type control, FUNDC1 knockout control, lipopolysaccharide-induced wild-type, and FUNDC1 knockout mouse models were used to investigate whether FUNDC1-mediated autophagy is involved in lung injury and its possible molecular mechanisms. Compared with the normal control group, lung tissue FUNDC1 and LC3 II increased and p62/SQSTM1 decreased after LPS intervention, and increased ROS levels led to a decrease in corresponding antioxidant enzymes along with an increased inflammatory response and apoptosis. Levels of autophagy in lipopolysaccharide-induced mice deficient in FUNDC1 were significantly decreased, but the expression of ROS and inflammatory factors in lung tissue was more severe than in lipopolysaccharide-induced wild-type mice, and the survival rate was significantly decreased. Western blot analysis showed that autophagy was significantly inhibited in the FUNDC1 KO+LPS group, and there was a significant increase in NLRP3, caspase-1, IL-1β, and ASC compared with the lipopolysaccharide-induced wild-type group. In summary, lipopolysaccharide-induced wild-type mice exhibit ROS-dependent activation of autophagy, and knocking out FUNDC1 promotes inflammasome activation and exacerbates lung injury.
Collapse
Affiliation(s)
- Pan Pan
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jie Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xudong Liu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junping Fan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Zhang
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiguo Zhao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Hu Y, He T, Zhu J, Wang X, Tong J, Li Z, Dong J. The Link between Circadian Clock Genes and Autophagy in Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2021; 2021:2689600. [PMID: 34733115 PMCID: PMC8560276 DOI: 10.1155/2021/2689600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a progressive respiratory disease, is characterized by the alveolar epithelium injury and persistent airway inflammation. It is documented that oscillation and dysregulated expression of circadian clock genes, like Bmal1, Per1, and Per2, involved in COPD pathogenies, including chronic inflammation and imbalanced autophagy level, and targeting the associations of circadian rhythm and autophagy is promising strategies in the management and treatment of COPD. Herein, we reviewed the mechanisms of the circadian clock and the unbalance of the autophagic level in COPD, as well as the link between the two, so as to provide further theoretical bases for the study on the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yuedi Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
| | - Tiantian He
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
| | - Xiaole Wang
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
| | - Jiabing Tong
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei City, Anhui Province, China
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei City, Anhui Province, China
| | - Jingcheng Dong
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Inhibiting miR-129-5p alleviates inflammation and modulates autophagy by targeting ATG14 in fungal keratitis. Exp Eye Res 2021; 211:108731. [PMID: 34411602 DOI: 10.1016/j.exer.2021.108731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023]
Abstract
To investigate the role of miR-129-5p in inflammation and autophagy in fungal keratitis, we established a keratitis mouse model infected with Fusarium solani (F. solani) and conducted experiments on corneal stromal cells infected with F. solani. The expression of miR-129-5p was detected via quantitative real-time polymerase chain reaction (PCR). The miR-129-5p antagomir was used to transfect cells and mice to study the regulatory role of miR-129-5p in autophagy and inflammation after fungal infection. The expression of Beclin1 and LC3B and colocalization of LC3B with lysosomes were detected via Western blotting and immunofluorescence. CCK-8 was used to determine the viability of corneal stromal cells. The expression of IL-1β were detected by ELISA. Bioinformatics software was used to predict the potential targets of miR-129-5p, which were verified by a luciferase reporter gene assay. RT-PCR showed that miR-129-5p expression in mouse corneas was significantly increased after infection with F. solani. Subconjunctival injection of the miR-129-5p antagomir significantly enhanced the proteins Beclin-1 and LC3B. At the same time, inhibiting miR-129-5p expression could reduce the inflammatory response in FK and significantly increase the viability of corneal stromal cells infected with F. solan. Moreover, the dual luciferase reporter assay indicated that Atg14 was a direct target of miR-129-5p. Our study shows that miR-129-5p is a novel small molecule that regulates autophagy by targeting Atg14, indicating that it may be a proinflammatory and therapeutic target for fungal keratitis.
Collapse
|
37
|
Zhang A, Yang J, Ma C, Li F, Luo H. Development and Validation of a Robust Ferroptosis-Related Prognostic Signature in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:616271. [PMID: 34249899 PMCID: PMC8264775 DOI: 10.3389/fcell.2021.616271] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Ferroptosis is a newly recognized process of cell death, which is different from other forms of cell death in morphology, biochemistry, and genetics, and has played a vital role in cancer biology. This study aimed to identify a ferroptosis-related gene signature associated with LUAD prognosis. Methods Dataset TCGA-LUAD which came from the TCGA portal was taken as the training cohort. GSE72094 and GSE68465 from the GEO database were treated as validation cohorts. Two hundred fifty-nine ferroptosis-related genes were retrieved from the FerrDb database. In the training cohort, Kaplan–Meier and univariate Cox analyses were conducted for preliminary screening of ferroptosis-related genes with potential prognostic capacity. These genes then entered into the LASSO Cox regression model, constructing a gene signature. The latter was then evaluated in the training and validation cohorts via Kaplan–Meier, Cox, and ROC analyses. In addition, the correlations between risk score and autophagy were examined by Pearson correlation coefficient. The analyses of GSEA and immune infiltrating were performed for better studying the function annotation of the gene signature and the character of each kind of immune cells played in the tumor microenvironment. Results A 15-gene signature was found from the training cohort and validated by Kaplan–Meier and Cox regression analyses, revealing its independent prognosis value in LUAD. Moreover, the ROC analysis was conducted, confirming a strong predictive ability that this signature owned for LUAD prognosis. One hundred fifty-one of 222 (68.01%) autophagy-related genes were discovered significantly correlated with risk scores. Analyses of GSEA and immune infiltration exhibited in detail the specific pathways that associate with the 15-gene signature and identified the crucial roles of resting mast cells and resting dendritic cells owned in the prognosis of the 15-gene signature. Conclusion In this present study, a novel ferroptosis-related 15-gene signature (RELA, ACSL3, YWHAE, EIF2S1, CISD1, DDIT4, RRM2, PANX1, TLR4, ARNTL, LPIN1, HERPUD1, NCOA4, PEBP1, and GLS2) was built. It could accurately predict the prognosis of LUAD and was related to resting mast cells and resting dendritic cells, which provide potential for the personalized outcome prediction and the development of new therapies in LUAD population.
Collapse
Affiliation(s)
- Anran Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Jinpo Yang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chao Ma
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Feng Li
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Surgery, Competence Center of Thoracic Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
38
|
Sharma AK. Translational autoregulation of RF2 protein in E. coli through programmed frameshifting. Phys Rev E 2021; 103:062412. [PMID: 34271674 DOI: 10.1103/physreve.103.062412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2021] [Indexed: 11/07/2022]
Abstract
Various feedback mechanisms regulate the expression of different genes to ensure the required protein levels inside a cell. In this paper, we develop a kinetic model for one such mechanism that autoregulates RF2 protein synthesis in E. coli through programmed frameshifting. The model finds that the programmed frameshifting autoregulates RF2 protein synthesis by two independent mechanisms. First, it increases the rate of RF2 synthesis from each mRNA transcript at low RF2 concentration. Second, programmed frameshifting can dramatically increase the lifetime of RF2 transcripts when RF2 protein levels are lower than a threshold. This sharp increase in mRNA lifetime is caused by a first-order phase transition from a low to a high ribosome density on an RF2 transcript. The high ribosome density prevents the transcript's degradation by shielding it from nucleases, which increases its average lifetime and hence RF2 protein levels. Our study identifies this quality control mechanism that regulates the cellular protein levels by breaking the hierarchy of processes involved in gene expression.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu 181221, India
| |
Collapse
|
39
|
Cui W, Dang Q, Chen C, Yuan W, Sun Z. Roles of circRNAs on tumor autophagy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:918-929. [PMID: 33614240 PMCID: PMC7868924 DOI: 10.1016/j.omtn.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a type of special noncoding RNA. circRNAs are highly stable and are found mainly in the cytoplasm. Most circRNAs are conserved and usually exhibit tissue specificity and timing specificity. In addition to the regulation mode of competitive endogenous RNA (ceRNA), circRNAs can also bind to RNA-binding proteins (RBPs), regulate alternative splicing, encode proteins or polypeptides, and regulate the expression of parent genes affecting biological pathways in which coded proteins are involved. Autophagy is an important cellular mechanism that plays an essential role in normal cell physiological processes and in diseases, especially tumors. Studies reported that circRNAs have an important effect on autophagic processes. What are the detailed biological functions and mechanisms of circRNAs in autophagy? In this article, we summarize the relationship between circRNAs and autophagy and the regulatory function and mechanism (especially as microRNA [miRNA] sponges and binding to RBPs) of circRNAs in autophagy. In addition, we discuss the dysregulation and functional and clinical applications of autophagy-associated circRNAs in a variety of diseases. Autophagy-associated circRNAs have the potential to be essential biomarkers of diagnosis and treatment and to be beneficial to the research and development of targeted drugs for tumor or non-tumor diseases.
Collapse
Affiliation(s)
- Wenming Cui
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Corresponding author: Weitang Yuan, Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
- Corresponding author: Zhenqiang Sun, Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
40
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
41
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
42
|
Moreno Fernández-Ayala DJ, Navas P, López-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol 2020; 142:111147. [PMID: 33171276 PMCID: PMC7648491 DOI: 10.1016/j.exger.2020.111147] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.
Collapse
Affiliation(s)
- Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
43
|
Ramakrishnan RK, Bajbouj K, Hachim MY, Mogas AK, Mahboub B, Olivenstein R, Hamoudi R, Halwani R, Hamid Q. Enhanced mitophagy in bronchial fibroblasts from severe asthmatic patients. PLoS One 2020; 15:e0242695. [PMID: 33253229 PMCID: PMC7704010 DOI: 10.1371/journal.pone.0242695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sub-epithelial fibrosis is a characteristic feature of airway remodeling in asthma which correlates with disease severity. Current asthma medications are ineffective in treating fibrosis. In this study, we aimed to investigate the mitochondrial phenotype in fibroblasts isolated from airway biopsies of non-asthmatic and severe asthmatic subjects by examining mitophagy as a mechanism contributing to fibroblast persistence and thereby, fibrosis in severe asthma. Methods Bioinformatics analysis of publicly available transcriptomic data was performed to identify the top enriched pathways in asthmatic fibroblasts. Endogenous expression of mitophagy markers in severe asthmatic and non-asthmatic fibroblasts was determined using qRT-PCR, western blot and immunofluorescence. Mitophagy flux was examined by using lysosomal protease inhibitors, E64d and pepstatin A. Mitochondrial membrane potential and metabolic activity were also evaluated using JC-1 assay and MTT assay, respectively. Results Bioinformatics analysis revealed the enrichment of Pink/Parkin-mediated mitophagy in asthmatic fibroblasts compared to healthy controls. In severe asthmatic fibroblasts, the differential expression of mitophagy genes, PINK1 and PRKN, was accompanied by the accumulation of PINK1, Parkin and other mitophagy proteins at baseline. The further accumulation of endogenous LC3BII, p62 and PINK1 in the presence of E64d and pepstatin A in severe asthmatic fibroblasts reinforced their enhanced mitophagy flux. Significantly reduced mitochondrial membrane potential and metabolic activity were also demonstrated at baseline confirming the impairment in mitochondrial function in severe asthmatic fibroblasts. Interestingly, these fibroblasts displayed neither an apoptotic nor senescent phenotype but a pro-fibrotic phenotype with an adaptive survival mechanism triggered by increased AMPKα phosphorylation and mitochondrial biogenesis. Conclusions Our results demonstrated a role for mitophagy in the pathogenesis of severe asthma where the enhanced turnover of damaged mitochondria may contribute to fibrosis in severe asthma by promoting the persistence and pro-fibrotic phenotype of fibroblasts.
Collapse
Affiliation(s)
- Rakhee K. Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | - Andrea K. Mogas
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Bassam Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Rifat Hamoudi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
44
|
Lv X, Li K, Hu Z. Autophagy and Others Respiratory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:585-597. [PMID: 32671777 DOI: 10.1007/978-981-15-4272-5_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Besides COPD, pulmonary fibrosis, and asthma, autophagy also participates in the development of many other respiratory diseases. Cystic fibrosis is an innate lung disease. Unlike idiopathic pulmonary fibrosis, cystic fibrosis has unique pathogenesis. Autophagy is an essential biological mechanism for the removal of misfolded proteins and damaged organelles in cells. Abnormal autophagy activity is involved in the pathogenesis of cystic fibrosis. Various studies have demonstrated that abnormalities or impaired autophagy are associated with cardiovascular diseases including pulmonary vascular disease. Autophagy plays a key role in maintaining normal vascular biological functions and vascular cell tissue homeostasis, and also plays an important role in the pathogenesis of various vascular diseases. For example, recent studies have found that autophagy participates in the occurrence and development of pulmonary hypertension. In addition, autophagy plays a central role in both innate and adaptive immune responses in immune cells or other cells with immune function. Thus, autophagy is the important cellular biological mechanism which causes cell fighting against pathogenic microorganisms including viruses, bacteria, and parasites. In this chapter, we discuss the work related to autophagy and other lung diseases.
Collapse
Affiliation(s)
- Xiaoxi Lv
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuowei Hu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
45
|
Activation of AMP-Activated Protein Kinase by A769662 Ameliorates Sepsis-Induced Acute Lung Injury in Adult Mice. Shock 2020; 52:540-549. [PMID: 30562237 DOI: 10.1097/shk.0000000000001303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A serious consequence of sepsis is acute lung injury, whose severity is particularly impacted by the age of the patient. AMP-activated protein kinase (AMPK) is a crucial regulator of cellular metabolism, which controls mitochondrial biogenesis and autophagy. Here, we investigated the effect of pharmacological activation of AMPK with A769662 on lung injury by using a model that would preferably mimic the clinical condition of adult patients. Male C57BL/6 retired breeder mice (7-9 months old) were subjected to sepsis by cecal ligation and puncture (CLP). Mice received vehicle or A769662 (10 mg/kg) intraperitoneally at 1 h after CLP. At 6 h after CLP, vehicle-treated mice exhibited severe lung injury and elevation of plasma pro-inflammatory cytokines when compared with control mice. At molecular analysis, lung injury was associated with downregulation of AMPKα1/α2 catalytic subunits and reduced phosphorylation of AMPKβ1 regulatory subunit. Treatment with A769662 ameliorated lung architecture, reduced bacterial load in lung and blood, and attenuated plasma levels of interleukin-6. This protective effect was associated with nuclear phosphorylation of AMPKα1/α2 and AMPKβ1, increased nuclear expression of peroxisome proliferator-activated receptor γ co-activator-α and increased autophagy, as evaluated by the light-chain (LC)3B-I and LC3B-II content, without changes in sirtuin-1 cellular dynamics. Treatment with A769662 alone or in combination with the antimicrobial agent imipenem (25 mg/kg) increased survival rate (29% and 51%, respectively) when compared with vehicle treatment (10%) at 7 days after CLP. These data suggest that pharmacological activation of AMPK might be a beneficial approach for the treatment of sepsis in adult population.
Collapse
|
46
|
Abdulrahman N, Siveen KS, Joseph JM, Osman A, Yalcin HC, Hasan A, Uddin S, Mraiche F. Inhibition of p90 ribosomal S6 kinase potentiates cisplatin activity in A549 human lung adenocarcinoma cells. J Pharm Pharmacol 2020; 72:1536-1545. [PMID: 32667058 DOI: 10.1111/jphp.13335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Cisplatin is a standard treatment approach against lung adenocarcinoma. Resistance to cisplatin and the toxic side effects of cisplatin continue to remain a challenge. Combining drugs with different mechanisms is being investigated as a means to overcome these challenges. In ovarian cancer cells, the knockdown of RSK2 increased the sensitivity of cisplatin. RSK is a downstream mediator of the MAPK pathway that is responsible for cell survival, proliferation and migration. METHODS Our study examined the effect of cisplatin, BI-D1870 (RSK inhibitor) or their combination on cell migration, apoptosis, autophagy and cell cycle in A549 human lung adenocarcinoma cells. KEY FINDINGS The combination of cisplatin and BI-D1870 potentiated the antimigration rate, the activation of caspases-3 and was associated with a significant decrease in RSK1 and ERK expression when compared to cisplatin alone. The combination of cisplatin and BI-D1870 also resulted in the inhibition of LC3 II to LC3 I expression when compared to BI-D1870. The combination of cisplatin and BI-D1870 increased the number of cells in the G2/M-phase when compared to cisplatin alone. CONCLUSIONS These findings suggest that combining cisplatin with agents that target the RSK mediated cell survival pathway, may potentiate the cisplatin effect in lung adenocarcinoma.
Collapse
Affiliation(s)
- Nabeel Abdulrahman
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Aisha Osman
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar.,Biomedical Sciences Program, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar.,Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
47
|
Yang P, Song R, Li N, Sun K, Shi F, Liu H, Shen F, Jiang S, Zhang L, Jin Y. Silica dust exposure induces autophagy in alveolar macrophages through switching Beclin1 affinity from Bcl-2 to PIK3C3. ENVIRONMENTAL TOXICOLOGY 2020; 35:758-767. [PMID: 32061152 DOI: 10.1002/tox.22910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Increased deposition of silica dust in pulmonary interstitial tissues leads to silicosis, in which autophagy plays a defensive role in silica dust-associated stress response and cell death. Our previous studies revealed that silica dust exposure contributed to autophagy in pulmonary macrophages in vivo, while the specific regulatory mechanism is still unclear. This study aimed to figure out the regulatory mechanism as well as the role of autophagy in the pathogenesis of experimental silicosis. We used 3-methyladenine (3-MA) and ABT-737 to suppress the expression of phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) and B cell leukemia/lymphoma 2 (Bcl-2), two critical initiators of autophagy, and detected and evaluated the autophagy in NR8383 cells with or without silica dust exposure. We found that exposure of silica dust increased autophagy in NR8383 cells and elevated the expression of Beclin1 and PIK3C3, but it reduced the expression of Bcl-2. The relationship among Beclin1, PIK3C3, and Bcl-2 were then investigated using immunoprecipitation analysis, and we found that suppression of PIK3C3 and/or Bcl-2 using 3-MA and/or ABT-737 could alter the autophagy induced by silica dust in NR8383 cells, and the complexes of Beclin1/PIK3C3 and Beclin1/Bcl-2 were both downregulated, which may be that inhibition of PIK3C3 and Bcl-2 altered the affinity of Beclin1 with PIK3C3 and Bcl-2 and lead to the silence of PIK3C3 signaling. These findings indicate that silica dust exposure induces autophagy via changing the connectivity of Beclin1 from Bcl-2 to PIK3C3.
Collapse
Affiliation(s)
- Pan Yang
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Ruirui Song
- Health Education Department, Center for Disease Control and Prevention, Tianjin, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Kun Sun
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Fan Shi
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Fuhai Shen
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Shandong University, Jinan, China
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Hebei, China
| |
Collapse
|
48
|
Upadhyay A, Sinha RA, Kumar A, Godbole MM. Time-restricted feeding ameliorates maternal high-fat diet-induced fetal lung injury. Exp Mol Pathol 2020; 114:104413. [PMID: 32151561 DOI: 10.1016/j.yexmp.2020.104413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 11/18/2022]
Abstract
Maternal inflammation ensuing from high-fat diet (HFD) intake during pregnancy is related to spontaneous preterm birth and respiratory impairment among premature infants. Recently, a circadian aligned dietary intervention referred to as Time-restricted feeding (TRF) has been reported to have beneficial metabolic effects. This study aimed to assess the effects of maternal TRF on fetal lung injury caused by maternal HFD intake. Female Wistar rats were kept on following three dietary regimens; Ad libitum normal chow diet (NCD-AL), Ad libitum HFD (HFD-AL) and Time-restricted fed HFD (HFD-TRF) from 5 months before mating and continued through pregnancy. Fetal lung samples were collected on the embryonic day 18.5, and apoptotic and inflammatory markers were assessed using TUNEL assay, western blotting, and qRT-PCR. Our results showed that TRF considerably prevented maternal HFD-induced apoptosis in fetal lung tissue that corroborated with a reduction in caspase activation and increased levels of anti-apoptotic BCL2 family proteins together with a lower level of ER-stress and autophagy markers including ATF6, CHOP and LC3-II. Besides, fetal lungs from HFD-TRF dams exhibited reduced expression of inflammatory genes that correlated with reduction and apoptotic injury throughout fetal development. Our results thus put forth TRF as a unique non-pharmacological approach to boost perinatal health beneath metabolic stress.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Madan M Godbole
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
49
|
Wu YF, Li ZY, Dong LL, Li WJ, Wu YP, Wang J, Chen HP, Liu HW, Li M, Jin CL, Huang HQ, Ying SM, Li W, Shen HH, Chen ZH. Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation. Autophagy 2020; 16:435-450. [PMID: 31203721 PMCID: PMC6999647 DOI: 10.1080/15548627.2019.1628536] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Particulate matter (PM) is able to induce airway epithelial injury, while the detailed mechanisms remain unclear. Here we demonstrated that PM exposure inactivated MTOR (mechanistic target of rapamycin kinase), enhanced macroautophagy/autophagy, and impaired lysosomal activity in HBE (human bronchial epithelial) cells and in mouse airway epithelium. Genetic or pharmaceutical inhibition of MTOR significantly enhanced, while inhibition of autophagy attenuated, PM-induced IL6 expression in HBE cells. Consistently, club-cell-specific deletion of Mtor aggravated, whereas loss of Atg5 in bronchial epithelium reduced, PM-induced airway inflammation. Interestingly, the augmented inflammatory responses caused by MTOR deficiency were markedly attenuated by blockage of downstream autophagy both in vitro and in vivo. Mechanistically, the dysregulation of MTOR-autophagy signaling was partially dependent on activation of upstream TSC2, and interacted with the TLR4-MYD88 to orchestrate the downstream NFKB activity and to regulate the production of inflammatory cytokines in airway epithelium. Moreover, inhibition of autophagy reduced the expression of EPS15 and the subsequent endocytosis of PM. Taken together, the present study provides a mechanistic explanation for how airway epithelium localized MTOR-autophagy axis regulates PM-induced airway injury, suggesting that activation of MTOR and/or suppression of autophagy in local airway might be effective therapeutic strategies for PM-related airway disorders.Abbreviations: ACTB: actin beta; AKT: AKT serine/threonine kinase; ALI: air liquid interface; AP2: adaptor related protein complex 2; ATG: autophagy related; BALF: bronchoalveolar lavage fluid; COPD: chronic obstructive pulmonary disease; CXCL: C-X-C motif chemokine ligand; DOX: doxycycline; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EPS15: epidermal growth factor receptor pathway substrate 15; HBE: human bronchial epithelial; H&E: hematoxylin & eosin; IKK: IKB kinase; IL: interleukin; LAMP2: lysosomal-associated membrane protein 2; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTEC: mouse tracheal epithelial cells; MTOR: mechanistic target of rapamycin kinase; MYD88: MYD88 innate immune signal transduction adaptor; NFKB: nuclear factor of kappa B; NFKBIA: NFKB inhibitor alpha; PM: particulate matter; PtdIns3K: phosphatidylinositol 3-kinase; Rapa: rapamycin; RELA: RELA proto-oncogene, NFKB subunit; SCGB1A1: secretoglobin family 1A member 1; siRNA: small interfering RNAs; SQSTM1: sequestosome 1; TEM: transmission electronic microscopy; TLR4: toll like receptor 4; TSC2: TSC complex subunit 2.
Collapse
Affiliation(s)
- Yin-Fang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhou-Yang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ling-Ling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei-Jie Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Ping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai-Pin Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui-Wen Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ci-Liang Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua-Qiong Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Song-Min Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua-Hao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- State Key Lab of Respiratory Disease, Key cite of National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Zhang Y, Ma X, Jiang D, Chen J, Jia H, Wu Z, Kim IH, Yang Y. Glycine Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Regulating NLRP3 Inflammasome and NRF2 Signaling. Nutrients 2020; 12:nu12030611. [PMID: 32110933 PMCID: PMC7146254 DOI: 10.3390/nu12030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Glycine supplementation has been reported to alleviate lipopolysaccharide (LPS)-induced lung injury in mice. However, the underlying mechanisms responsible for this beneficial effect remain unknown. In the present study, male C57BL/6 mice were treated with aerosolized glycine (1000 mg in 5 mL of 0.9% saline) or vehicle (0.9% saline) once daily for 7 continuous days, and then were exposed to aerosolized LPS (5 mg in 5 mL of 0.9% saline) for 30 min to induce lung injury. Sera and lung tissues were collected 24 h post LPS challenge. Results showed that glycine pretreatment attenuated LPS-induced decreases of mucin at both protein and mRNA levels, reduced LPS-triggered upregulation of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interferons, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukins. Further study showed that glycine-reduced LPS challenge resulted in the upregulation of nuclear factor κB (NF-κB), nucleotide binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. In addition, LPS exposure led to the downregulation of NRF2 and downstream targets, which were significantly improved by glycine administration in the lung tissues. Our findings indicated that glycine pretreatment prevented LPS-induced lung injury by regulating both NLRP3 inflammasome and NRF2 signaling.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Da Jiang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan 330-714, Korea;
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
- Correspondence: ; Tel.: +86-10-62734655
| |
Collapse
|