1
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
2
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
3
|
Kolbert Z, Barroso JB, Boscari A, Corpas FJ, Gupta KJ, Hancock JT, Lindermayr C, Palma JM, Petřivalský M, Wendehenne D, Loake GJ. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. THE NEW PHYTOLOGIST 2024; 244:786-797. [PMID: 39223868 DOI: 10.1111/nph.20085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (S-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root-shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its in planta signalling role, NO and related species may act as ex planta signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, H6726, Szeged, Hungary
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, University of Jaén, Campus Universitario 'Las Lagunillas' s/n, E-23071, Jaén, Spain
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d'Azur, CNRS 7254, 400 route des Chappes, BP 167, 06903, Sophia Antipolis, France
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | | | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Christian Lindermayr
- Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Munich/Neuherberg, Germany
| | - José Manuel Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - David Wendehenne
- Agroécologie, INRAE, Institut Agro Dijon, Univiversité de Bourgogne, 21000, Dijon, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
4
|
Krasuska U, Wal A, Staszek P, Ciacka K, Gniazdowska A. Do Reactive Oxygen and Nitrogen Species Have a Similar Effect on Digestive Processes in Carnivorous Nepenthes Plants and Humans? BIOLOGY 2023; 12:1356. [PMID: 37887066 PMCID: PMC10604543 DOI: 10.3390/biology12101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Carnivorous plants attract animals, trap and kill them, and absorb nutrients from the digested bodies. This unusual (for autotrophs) type of nutrient acquisition evolved through the conversion of photosynthetically active leaves into specialised organs commonly called traps. The genus Nepenthes (pitcher plants) consists of approximately 169 species belonging to the group of carnivorous plants. Pitcher plants are characterised by specialised passive traps filled with a digestive fluid. The digestion that occurs inside the traps of carnivorous plants depends on the activities of many enzymes. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) also participate in the digestive process, but their action is poorly recognised. ROS and RNS, named together as RONS, exhibit concentration-dependent bimodal functions (toxic or signalling). They act as antimicrobial agents, participate in protein modification, and are components of signal transduction cascades. In the human stomach, ROS are considered as the cause of different diseases. RNS have multifaceted functions in the gastrointestinal tract, with both positive and negative impacts on digestion. This review describes the documented and potential impacts of RONS on the digestion in pitcher plant traps, which may be considered as an external stomach.
Collapse
Affiliation(s)
| | - Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (U.K.); (P.S.); (K.C.); (A.G.)
| | | | | | | |
Collapse
|
5
|
Aranda-Caño L, Valderrama R, Chaki M, Begara-Morales JC, Melguizo M, Barroso JB. Nitrated Fatty-Acids Distribution in Storage Biomolecules during Arabidopsis thaliana Development. Antioxidants (Basel) 2022; 11:antiox11101869. [PMID: 36290592 PMCID: PMC9598412 DOI: 10.3390/antiox11101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The non-enzymatic interaction of polyunsaturated fatty acids with nitric oxide (NO) and derived species results in the formation of nitrated fatty acids (NO2-FAs). These signaling molecules can release NO, reversibly esterify with complex lipids, and modulate protein function through the post-translational modification called nitroalkylation. To date, NO2-FAs act as signaling molecules during plant development in plant systems and are involved in defense responses against abiotic stress conditions. In this work, the previously unknown storage biomolecules of NO2-FAs in Arabidopsis thaliana were identified. In addition, the distribution of NO2-FAs in storage biomolecules during plant development was determined, with phytosterol esters (SE) and TAGs being reservoir biomolecules in seeds, which were replaced by phospholipids and proteins in the vegetative, generative, and senescence stages. The detected esterified NO2-FAs were nitro-linolenic acid (NO2-Ln), nitro-oleic acid (NO2-OA), and nitro-linoleic acid (NO2-LA). The last two were detected for the first time in Arabidopsis. The levels of the three NO2-FAs that were esterified in both lipid and protein storage biomolecules showed a decreasing pattern throughout Arabidopsis development. Esterification of NO2-FAs in phospholipids and proteins highlights their involvement in both biomembrane dynamics and signaling processes, respectively, during Arabidopsis plant development.
Collapse
Affiliation(s)
- Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Juan C. Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Melguizo
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Juan B. Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
- Correspondence:
| |
Collapse
|
6
|
Nitrooleic acid inhibits macrophage activation induced by lipopolysaccharide from Prevotella intermedia. Nutr Res 2022; 106:35-46. [DOI: 10.1016/j.nutres.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
|
7
|
Mahjoubi Y, Rzigui T, Kharbech O, Mohamed SN, Abaza L, Chaoui A, Nouairi I, Djebali W. Exogenous nitric oxide alleviates manganese toxicity in bean plants by modulating photosynthesis in relation to leaf lipid composition. PROTOPLASMA 2022; 259:949-964. [PMID: 34651236 DOI: 10.1007/s00709-021-01713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) is a signaling molecule controlling several steps of plant development and defense process under stress conditions. NO-induced alleviation of manganese (Mn) toxicity was investigated on bean plants submitted for 28 days to 500 µM MnCl2. Manganese excess decreased plant dry weight and elongation and increased levels of reactive oxygen species and lipid peroxidation leading to up-regulation of superoxide dismutase, catalase, and ascorbate peroxidase activities. The inhibitory effects of Mn on plant growth were associated to reduction of light-saturated carbon assimilation (Amax), stomatal conductance (gs), and transpiration (E). By contrast, Mn induced significant increase in the apparent quantum yield (ɸ) and light compensation point (LCP). Interestingly, intracellular CO2 (Ci) remains stable under Mn stress. Concomitantly, leaf membrane lipids have drastically reduced under high Mn concentration. After Mn exposition, leaf fatty acids exhibited a significant loss of linolenic acid, accompanied by an accumulation of palmitoleic, stearic, and linoleic acids leading to alteration of lipid desaturation. NO supply reversed Mn toxicity as evidenced by enhancement of growth biomass and recovery of Amax, E, ɸ, and LCP. Similarly, NO addition has positive effects on leaf lipid content and composition leading to restoration of lipid unsaturation. The modulation of fatty acid composition can be a way to reduce leaf membrane damages and maintain optimal photosynthesis and plant growth. Despite the absence of enough evidences in how NO is involved in lipid and photosynthesis recovery under Mn stress conditions, it is assumed that NO beneficial effects are attributable to NO/Mn cross-talk.
Collapse
Affiliation(s)
- Yethreb Mahjoubi
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Touhami Rzigui
- Silvopastoral Institute of Tabarka, University of Jendouba, Jendouba, Tunisia
| | - Oussama Kharbech
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Salma Nait Mohamed
- Laboratoire de Biotechnologie de l'Olivier, Borj-Cedria Technoparck, 95, 2050, Hammam-Lif, Tunisia
| | - Leila Abaza
- Laboratoire de Biotechnologie de l'Olivier, Borj-Cedria Technoparck, 95, 2050, Hammam-Lif, Tunisia
| | - Abdelilah Chaoui
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Issam Nouairi
- Laboratory of Legumes, Biotechnology Center of Borj-Cedria, B.P. 901, 2050, Hammam-Lif, Tunisia
| | - Wahbi Djebali
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia.
| |
Collapse
|
8
|
Neves B, Pérez-Sala D, Ferreira HB, Guerra IM, Moreira AS, Domingues P, Domingues MR, Melo T. Understanding the nitrolipidome: From chemistry to mass spectrometry and biological significance of modified complex lipids. Prog Lipid Res 2022; 87:101176. [DOI: 10.1016/j.plipres.2022.101176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
9
|
Hussain A, Shah F, Ali F, Yun BW. Role of Nitric Oxide in Plant Senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:851631. [PMID: 35463429 PMCID: PMC9022112 DOI: 10.3389/fpls.2022.851631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 05/27/2023]
Abstract
In plants senescence is the final stage of plant growth and development that ultimately leads to death. Plants experience age-related as well as stress-induced developmental ageing. Senescence involves significant changes at the transcriptional, post-translational and metabolomic levels. Furthermore, phytohormones also play a critical role in the programmed senescence of plants. Nitric oxide (NO) is a gaseous signalling molecule that regulates a plethora of physiological processes in plants. Its role in the control of ageing and senescence has just started to be elucidated. Here, we review the role of NO in the regulation of programmed cell death, seed ageing, fruit ripening and senescence. We also discuss the role of NO in the modulation of phytohormones during senescence and the significance of NO-ROS cross-talk during programmed cell death and senescence.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Tian J, Tian L, Chen M, Chen Y, Wei A. Low Temperature Affects Fatty Acids Profiling and Key Synthesis Genes Expression Patterns in Zanthoxylum bungeanum Maxim. Int J Mol Sci 2022; 23:ijms23042319. [PMID: 35216434 PMCID: PMC8876529 DOI: 10.3390/ijms23042319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Zanthoxylum bungeanum is one of the most important medicinal and edible homologous plants because of its potential health benefits and unique flavors. The chemical components in compositions and contents vary with plant genotype variations and various environmental stress conditions. Fatty acids participate in various important metabolic pathways in organisms to resist biotic and abiotic stresses. To determine the variations in metabolic profiling and genotypes, the fatty acid profiling and key differential genes under low temperature stress in two Z. bungeanum varieties, cold-tolerant (FG) and sensitive (FX), were investigated. Twelve main fatty acids were found in two Z. bungeanum varieties under cold stress. Results showed that the contents of total fatty acids and unsaturated fatty acids in FG were higher than those in FX, which made FG more resistant to low temperature. Based on the result of orthogonal partial least squares discriminant analysis, palmitic acid, isostearic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FG under cold stress, while isomyristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FX. Furthermore, fatty acid synthesis pathway genes fatty acyl-ACP thioesterase A (FATA), Delta (8)-fatty-acid desaturase 2 (SLD2), protein ECERIFERUM 3 (CER3), fatty acid desaturase 3 (FAD3) and fatty acid desaturase 5 (FAD5) played key roles in FG, and SLD2, FAD5, 3-oxoacyl-[acyl-carrier-protein] synthase I (KAS I), fatty acyl-ACP thioesterase B (FATB) and acetyl-CoA carboxylase (ACC) were the key genes responding to low temperature in FX. The variation and strategies of fatty acids in two varieties of Z. bungeanum were revealed at the metabolic and molecular level. This work provides a reference for the study of chemical components in plant stress resistance.
Collapse
Affiliation(s)
- Jieyun Tian
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.T.); (L.T.); (M.C.); (Y.C.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Xianyang 712100, China
| | - Lu Tian
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.T.); (L.T.); (M.C.); (Y.C.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Xianyang 712100, China
| | - Ming Chen
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.T.); (L.T.); (M.C.); (Y.C.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Xianyang 712100, China
| | - Yabing Chen
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.T.); (L.T.); (M.C.); (Y.C.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Xianyang 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.T.); (L.T.); (M.C.); (Y.C.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Xianyang 712100, China
- Correspondence: ; Tel.: +86-029-8708-2211
| |
Collapse
|
11
|
Ciacka K, Tyminski M, Gniazdowska A, Krasuska U. Nitric Oxide as a Remedy against Oxidative Damages in Apple Seeds Undergoing Accelerated Ageing. Antioxidants (Basel) 2021; 11:antiox11010070. [PMID: 35052574 PMCID: PMC8772863 DOI: 10.3390/antiox11010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/02/2022] Open
Abstract
Seed ageing is associated with a high concentration of reactive oxygen species (ROS). Apple (Malus domestica Borkh.) seeds belong to the orthodox type. Due to a deep dormancy, they may be stored in dry condition at 5 °C for a long time, without viability loss. In the laboratory, artificial ageing of apple seeds is performed by imbibition in wet sand at warm temperature (33 °C). The aim of the work was to study nitric oxide (NO) as a seed vigour preservation agent. Embryos isolated from apple seeds subjected to accelerated ageing for 7, 14, 21 or 40 days were fumigated with NO. Embryo quality was estimated by TTC and MDA tests. ROS level was confirmed by NBT staining. We analysed the alteration in transcript levels of CAT, SOD and POX. NO fumigation of embryos of seeds aged for 21 days stimulated germination and increased ROS level which correlated to the elevated expression of RBOH. The increased total antioxidant capacity after NO fumigation was accompanied by the increased transcript levels of genes encoding enzymatic antioxidants, that could protect against ROS overaccumulation. Moreover, post-aged NO application diminished the nitro-oxidative modification of RNA, proving NO action as a remedy in oxidative remodelling after seeds ageing.
Collapse
|
12
|
Di Fino L, Arruebarrena Di Palma A, Perk EA, García-Mata C, Schopfer FJ, Laxalt AM. Nitro-fatty acids: electrophilic signaling molecules in plant physiology. PLANTA 2021; 254:120. [PMID: 34773515 PMCID: PMC10704571 DOI: 10.1007/s00425-021-03777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION Nitro fatty acids (NO2-FA)have relevant physiological roles as signaling molecules in biotic and abiotic stress, growth, and development, but the mechanism of action remains controversial. The two main mechanisms involving nitric oxide release and thiol modification are discussed. Fatty acids (FAs) are major components of membranes and contribute to cellular energetic demands. Besides, FAs are precursors of signaling molecules, including oxylipins and other oxidized fatty acids derived from the activity of lipoxygenases. In addition, non-canonical modified fatty acids, such as nitro-fatty acids (NO2-FAs), are formed in animals and plants. The synthesis NO2-FAs involves a nitration reaction between unsaturated fatty acids and reactive nitrogen species (RNS). This review will focus on recent findings showing that, in plants, NO2-FAs such as nitro-linolenic acid (NO2-Ln) and nitro-oleic acid (NO2-OA) have relevant physiological roles as signaling molecules in biotic and abiotic stress, growth, and development. Moreover, since there is controversy on mechanisms of action of NO2-FAs as signaling molecules, we will provide evidence showing why this aspect needs further evaluation.
Collapse
Affiliation(s)
- Luciano Di Fino
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Andrés Arruebarrena Di Palma
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Enzo A Perk
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
13
|
Coordinated Role of Nitric Oxide, Ethylene, Nitrogen, and Sulfur in Plant Salt Stress Tolerance. STRESSES 2021. [DOI: 10.3390/stresses1030014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salt stress significantly contributes to major losses in agricultural productivity worldwide. The sustainable approach for salinity-accrued toxicity has been explored. The use of plant growth regulators/phytohormones, mineral nutrients and other signaling molecules is one of the major approaches for reversing salt-induced toxicity in plants. Application of the signaling molecules such as nitric oxide (NO) and ethylene (ETH) and major mineral nutrient such as nitrogen (N) and sulfur (S) play significant roles in combatting the major consequences of salt stress impacts in plants. However, the literature available on gaseous signaling molecules (NO/ETH) or/and mineral nutrients (N/S) stands alone, and major insights into the role of NO or/and ETH along with N and S in plant-tolerance to salt remained unclear. Thus, this review aimed to (a) briefly overview salt stress and highlight salt-induced toxicity, (b) appraise the literature reporting potential mechanisms underlying the role of gaseous signaling molecules and mineral nutrient in salt stress tolerance, and (c) discuss NO and ETH along with N and S in relation to salt stress tolerance. In addition, significant issues that have still to be investigated in this context have been mentioned.
Collapse
|
14
|
Romero-Puertas MC, Terrón-Camero LC, Peláez-Vico MÁ, Molina-Moya E, Sandalio LM. An update on redox signals in plant responses to biotic and abiotic stress crosstalk: insights from cadmium and fungal pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5857-5875. [PMID: 34111283 PMCID: PMC8355756 DOI: 10.1093/jxb/erab271] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 05/09/2023]
Abstract
Complex signalling pathways are involved in plant protection against single and combined stresses. Plants are able to coordinate genome-wide transcriptional reprogramming and display a unique programme of transcriptional responses to a combination of stresses that differs from the response to single stresses. However, a significant overlap between pathways and some defence genes in the form of shared and general stress-responsive genes appears to be commonly involved in responses to multiple biotic and abiotic stresses. Reactive oxygen and nitrogen species, as well as redox signals, are key molecules involved at the crossroads of the perception of different stress factors and the regulation of both specific and general plant responses to biotic and abiotic stresses. In this review, we focus on crosstalk between plant responses to biotic and abiotic stresses, in addition to possible plant protection against pathogens caused by previous abiotic stress. Bioinformatic analyses of transcriptome data from cadmium- and fungal pathogen-treated plants focusing on redox gene ontology categories were carried out to gain a better understanding of common plant responses to abiotic and biotic stresses. The role of reactive oxygen and nitrogen species in the complex network involved in plant responses to changes in their environment is also discussed.
Collapse
Affiliation(s)
- María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Laura C Terrón-Camero
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), Granada, Spain
| | - M Ángeles Peláez-Vico
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estacion Experimental del Zaidin (EEZ), Consejo Superior de Investigaciones Cientificas (CSIC), Apartado 419, 18080 Granada, Spain
| |
Collapse
|
15
|
Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X. Molecular functions of nitric oxide and its potential applications in horticultural crops. HORTICULTURE RESEARCH 2021; 8:71. [PMID: 33790257 PMCID: PMC8012625 DOI: 10.1038/s41438-021-00500-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) regulates plant growth, enhances nutrient uptake, and activates disease and stress tolerance mechanisms in most plants, making NO a potential tool for use in improving the yield and quality of horticultural crop species. Although the use of NO in horticulture is still in its infancy, research on NO in model plant species has provided an abundance of valuable information on horticultural crop species. Emerging evidence implies that the bioactivity of NO can occur through many potential mechanisms but occurs mainly through S-nitrosation, the covalent and reversible attachment of NO to cysteine thiol. In this context, NO signaling specifically affects crop development, immunity, and environmental interactions. Moreover, NO can act as a fumigant against a wide range of postharvest diseases and pests. However, for effective use of NO in horticulture, both understanding and exploring the biological significance and potential mechanisms of NO in horticultural crop species are critical. This review provides a picture of our current understanding of how NO is synthesized and transduced in plants, and particular attention is given to the significance of NO in breaking seed dormancy, balancing root growth and development, enhancing nutrient acquisition, mediating stress responses, and guaranteeing food safety for horticultural production.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuxue Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lijuan Liu
- Interdisciplinary Research Academy, Zhejiang Shuren University, 310015, Hangzhou, China
| | - Xiaoxia Liu
- Zhejiang Provincial Cultivated Land Quality and Fertilizer Administration Station, Hangzhou, China
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
16
|
Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:848-863. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
17
|
Begara-Morales JC, Mata-Pérez C, Padilla MN, Chaki M, Valderrama R, Aranda-Caño L, Barroso JB. Role of electrophilic nitrated fatty acids during development and response to abiotic stress processes in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:917-927. [PMID: 33161434 DOI: 10.1093/jxb/eraa517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Nitro-fatty acids are generated from the interaction of unsaturated fatty acids and nitric oxide (NO)-derived molecules. The endogenous occurrence and modulation throughout plant development of nitro-linolenic acid (NO2-Ln) and nitro-oleic acid (NO2-OA) suggest a key role for these molecules in initial development stages. In addition, NO2-Ln content increases significantly in stress situations and induces the expression of genes mainly related to abiotic stress, such as genes encoding members of the heat shock response family and antioxidant enzymes. The promoter regions of NO2-Ln-induced genes are also involved mainly in stress responses. These findings confirm that NO2-Ln is involved in plant defense processes against abiotic stress conditions via induction of the chaperone network and antioxidant systems. NO2-Ln signaling capacity lies mainly in its electrophilic nature and allows it to mediate a reversible post-translational modification called nitroalkylation, which is capable of modulating protein function. NO2-Ln is a NO donor that may be involved in NO signaling events and is able to generate S-nitrosoglutathione, the major reservoir of NO in cells and a key player in NO-mediated abiotic stress responses. This review describes the current state of the art regarding the essential role of nitro-fatty acids as signaling mediators in development and abiotic stress processes.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Maria N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| |
Collapse
|
18
|
Kolbert Z, Szőllősi R, Feigl G, Kónya Z, Rónavári A. Nitric oxide signalling in plant nanobiology: current status and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:928-940. [PMID: 33053152 DOI: 10.1093/jxb/eraa470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/10/2020] [Indexed: 05/25/2023]
Abstract
Plant nanobiology as a novel research field provides a scientific basis for the agricultural use of nanoparticles (NPs). Plants respond to the presence of nanomaterials by synthesizing signal molecules, such as the multifunctional gaseous nitric oxide (NO). Several reports have described the effects of different nanomaterials (primarily chitosan NPs, metal oxide NPs, and carbon nanotubes) on endogenous NO synthesis and signalling in different plant species. Other works have demonstrated the ameliorating effect of exogenous NO donor (primarily sodium nitroprusside) treatments on NP-induced stress. NO-releasing NPs are preferred alternatives to chemical NO donors, and evaluating their effects on plants has recently begun. Previous studies clearly indicate that endogenous NO production in the presence of nanomaterials or NO levels increased by exogenous treatments (NO-releasing NPs or chemical NO donors) exerts growth-promoting and stress-ameliorating effects in plants. Furthermore, an NP-based nanosensor for NO detection in plants has been developed, providing a new and excellent perspective for basic research and also for the evaluation of plants' health status in agriculture.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Réka Szőllősi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
19
|
Lindermayr C, Oracz K, Cuypers A, Schnitzler JP, Durner J. Editorial: Highlights of POG 2019 - Plant Oxygen Group Conference. FRONTIERS IN PLANT SCIENCE 2021; 12:639262. [PMID: 33597966 PMCID: PMC7882510 DOI: 10.3389/fpls.2021.639262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Krystyna Oracz
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ann Cuypers
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| |
Collapse
|
20
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020; 324:211-219. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Nitric oxide (NO) is a short-life and free radical molecule involved in a wide range of cellular, physiological and stressful processes in higher plants. In recent years it has been observed that exogenous NO application can palliate adverse damages against abiotic and biotic stresses. Conversely, there is accumulating information indicating that endogenous NO participates significantly in the mechanism of modulation of the ripening in climacteric and non-climacteric fruits. Even more, when NO is exogenously applied, it can mediate beneficial effects during ripening and postharvest storage being one of the main effects the increase of antioxidant systems. Consequently, NO could be a promising biotechnological tool to improve crops through ameliorating nutritional indexes and to alleviate damages during fruit ripening and postharvest management. Thus, this approach should be complementary to previous strategies to allow preserving the quality and healthiness of fruits with a view of enhancing their added value. The present mini-review aims to provide an overview of NO biochemistry in plants and updated information on the relevance of NO in fruit ripening and postharvest stages with a view to its biotechnological applications.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
21
|
Jahnová J, Činčalová L, Sedlářová M, Jedelská T, Sekaninová J, Mieslerová B, Luhová L, Barroso JB, Petřivalský M. Differential modulation of S-nitrosoglutathione reductase and reactive nitrogen species in wild and cultivated tomato genotypes during development and powdery mildew infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:297-310. [PMID: 32795911 DOI: 10.1016/j.plaphy.2020.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/03/2023]
Abstract
Nitric oxide plays an important role in the pathogenesis of Pseudoidium neolycopersici, the causative agent of tomato powdery mildew. S-nitrosoglutathione reductase, the key enzyme of S-nitrosothiol homeostasis, was investigated during plant development and following infection in three genotypes of Solanum spp. differing in their resistance to P. neolycopersici. Levels and localization of reactive nitrogen species (RNS) including NO, S-nitrosoglutathione (GSNO) and peroxynitrite were studied together with protein nitration and the activity of nitrate reductase (NR). GSNOR expression profiles and enzyme activities were modulated during plant development and important differences among Solanum spp. genotypes were observed, accompanied by modulation of NO, GSNO, peroxynitrite and nitrated proteins levels. GSNOR was down-regulated in infected plants, with exception of resistant S. habrochaites early after inoculation. Modulations of GSNOR activities in response to pathogen infection were found also on the systemic level in leaves above and below the inoculation site. Infection strongly increased NR activity and gene expression in resistant S. habrochaites in contrast to susceptible S. lycopersicum. Obtained data confirm the key role of GSNOR and modulations of RNS during plant development under normal conditions and point to their involvement in molecular mechanisms of tomato responses to biotrophic pathogens on local and systemic levels.
Collapse
Affiliation(s)
- Jana Jahnová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Sekaninová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Barbora Mieslerová
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
22
|
Nitro-Oleic Acid in Seeds and Differently Developed Seedlings of Brassica napus L. PLANTS 2020; 9:plants9030406. [PMID: 32214020 PMCID: PMC7154869 DOI: 10.3390/plants9030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Similar to animals, it has recently been proven that nitro-fatty acids such as nitro-linolenic acid and nitro-oleic acid (NO2-OA) have relevant physiological roles as signalling molecules also in plants. Although NO2-OA is of great therapeutic importance, its presence in plants as a free fatty acid has not been observed so far. Since Brassica napus (oilseed rape) is a crop with high oleic acid content, the abundance of NO2-OA in its tissues can be assumed. Therefore, we quantified NO2-OA in B. napus seeds and differently developed seedlings. In all samples, NO2-OA was detectable at nanomolar concentrations. The seeds showed the highest NO2-OA content, which decreased during germination. In contrast, nitric oxide (•NO) levels increased in the early stages of germination and seedling growth. Exogenous NO2-OA treatment (100 µM, 24 h) of Brassica seeds resulted in significantly increased •NO level and induced germination capacity compared to untreated seeds. The results of in vitro approaches (4-Amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) fluorescence, •NO-sensitive electrode) supported the •NO liberating capacity of NO2-OA. We observed for the first time that Brassica seeds and seedlings contain free NO2-OA which may be involved in germination as an •NO donor as suggested both by the results of exogenous NO2-OA treatment of seeds and in vitro approaches. Due to their high NO2-OA content, Brassica sprouts can be considered as a good source of dietary NO2-OA intake.
Collapse
|
23
|
Abstract
Often in redox biology experiments there is a need to add compounds which impinge on the redox of the cellular environment cell. Such compounds may include reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), reactive nitrogen species such as nitric oxide (NO), hydrogen sulfide (H2S), or even hydrogen gas (H2). It is not always easy or obvious how such compounds should be used. Gases may be supplied and used in the gaseous form, but this is often not convenient. Alternative methods may involve donor molecules that release into solution the relevant compound, but the actual compound released needs to be considered, along with the kinetics of that release and the by-products that might be remain. Therefore, the method of delivery of redox active compounds needs to have careful consideration before more complex experiments are undertaken. This chapter covers some of the more common methods employed and discusses some of the pros and cons of such methods.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK.
| |
Collapse
|
24
|
Arruebarrena Di Palma A, Di Fino LM, Salvatore SR, D'Ambrosio JM, García-Mata C, Schopfer FJ, Laxalt AM. Nitro-oleic acid triggers ROS production via NADPH oxidase activation in plants: A pharmacological approach. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153128. [PMID: 32065921 PMCID: PMC7153499 DOI: 10.1016/j.jplph.2020.153128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/27/2019] [Accepted: 01/21/2020] [Indexed: 05/05/2023]
Abstract
Nitrated fatty acids (NO2-FAs) are important signaling molecules in mammals. NO2-FAs are formed by the addition reaction of nitric oxide- and nitrite-derived nitrogen dioxide with unsaturated fatty acid double bonds. The study of NO2-FAs in plant systems constitutes an interesting and emerging area. The presence of NO2-FA has been reported in olives, peas, rice and Arabidopsis. To gain a better understanding of the role of NO2-FA on plant physiology, we analyzed the effects of exogenous application of nitro-oleic acid (NO2-OA). In tomato cell suspensions we found that NO2-OA induced reactive oxygen species (ROS) production in a dose-dependent manner via activation of NADPH oxidases, a mechanism that requires calcium entry from the extracellular compartment and protein kinase activation. In tomato and Arabidopsis leaves, NO2-OA treatments induced two waves of ROS production, resembling plant defense responses. Arabidopsis NADPH oxidase mutants showed that NADPH isoform D (RBOHD) was required for NO2-OA-induced ROS production. In addition, on Arabidopsis isolated epidermis, NO2-OA induced stomatal closure via RBOHD and F. Altogether, these results indicate that NO2-OA triggers NADPH oxidase activation revealing a new signaling role in plants.
Collapse
Affiliation(s)
- Andrés Arruebarrena Di Palma
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Luciano M Di Fino
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Sonia R Salvatore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Martín D'Ambrosio
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Francisco J Schopfer
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
25
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
26
|
Arnaiz A, Rosa-Diaz I, Romero-Puertas MC, Sandalio LM, Diaz I. Nitric Oxide, an Essential Intermediate in the Plant-Herbivore Interaction. FRONTIERS IN PLANT SCIENCE 2020; 11:620086. [PMID: 33488661 PMCID: PMC7819962 DOI: 10.3389/fpls.2020.620086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/24/2020] [Indexed: 05/02/2023]
Abstract
Reactive nitrogen species (RNS), mainly nitric oxide (NO), are highly reactive molecules with a prominent role in plant response to numerous stresses including herbivores, although the information is still very limited. This perspective article compiles the current progress in determining the NO function, as either a signal molecule, a metabolic intermediate, or a toxic oxidative product, as well as the contribution of molecules associated with NO metabolic pathway in the generation of plant defenses against phytophagous arthropods, in particular to insects and acari.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Irene Rosa-Diaz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Maria C. Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Luisa M. Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Isabel Diaz,
| |
Collapse
|
27
|
He M, Ding NZ. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:562785. [PMID: 33013981 PMCID: PMC7500430 DOI: 10.3389/fpls.2020.562785] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 05/21/2023]
Abstract
Land plants are exposed to not only biotic stresses such as pathogen infection and herbivore wounding, but abiotic stresses such as cold, heat, drought, and salt. Elaborate strategies have been developed to avoid or abide the adverse effects, with unsaturated fatty acids (UFAs) emerging as general defenders. In higher plants, the most common UFAs are three 18-carbon species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds act as ingredients and modulators of cellular membranes in glycerolipids, reserve of carbon and energy in triacylglycerol, stocks of extracellular barrier constituents (e.g., cutin and suberin), precursors of various bioactive molecules (e.g., jasmonates and nitroalkenes), and regulators of stress signaling. Nevertheless, they are also potential inducers of oxidative stress. In this review, we will present an overview of these roles and then shed light on genetic engineering of FA synthetic genes for improving plant/crop stress tolerance.
Collapse
|
28
|
León J, Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. PLANT, CELL & ENVIRONMENT 2020; 43. [PMID: 31323702 DOI: 10.1111/pce.13617] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 05/17/2023]
Abstract
After 30 years of intensive work, nitric oxide (NO) has just started to be characterized as a relevant regulatory molecule on plant development and responses to stress. Its reactivity as a free radical determines its mode of action as an inducer of posttranslational modifications of key target proteins through cysteine S-nitrosylation and tyrosine nitration. Many of the NO-triggered regulatory actions are exerted in tight coordination with phytohormone signaling. This review not only summarizes and updates the information accumulated on how NO is synthesized, sensed, and transduced in plants but also makes emphasis on controversies, deficiencies, and misconceptions that are hampering our present knowledge on the biology of NO in plants. The development of noninvasive accurate tools for the endogenous NO quantitation as well as the implementation of genetic approaches that overcome misleading pharmacological experiments will be critical for getting significant advances in better knowledge of NO homeostasis and regulatory actions in plants.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| |
Collapse
|
29
|
Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Chaki M, Aranda-Caño L, Moreno-González D, Molina-Díaz A, Barroso JB. Endogenous Biosynthesis of S-Nitrosoglutathione From Nitro-Fatty Acids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:962. [PMID: 32714353 PMCID: PMC7340149 DOI: 10.3389/fpls.2020.00962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 05/05/2023]
Abstract
Nitro-fatty acids (NO2-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO2-FAs trigger an antioxidant and a defence response against stressful situations. Among the properties of NO2-FAs highlight the ability to release NO therefore modulating specific protein targets through post-translational modifications (NO-PTMs). Thus, based on the capacity of NO2-FAs to act as physiological NO donors and using high-accuracy mass-spectrometric approaches, herein, we show that endogenous nitro-linolenic acid (NO2-Ln) can modulate S-nitrosoglutathione (GSNO) biosynthesis in Arabidopsis. The incubation of NO2-Ln with GSH was analyzed by LC-MS/MS and the in vitro synthesis of GSNO was noted. The in vivo confirmation of this behavior was carried out by incubating Arabidopsis plants with 15N-labeled NO2-Ln throughout the roots, and 15N-labeled GSNO (GS15NO) was detected in the leaves. With the aim to go in depth in the relation of NO2-FA and GSNO in plants, Arabidopsis alkenal reductase mutants (aer mutants) which modulate NO2-FAs levels were used. Our results constitute the first evidence of the modulation of a key NO biological reservoir in plants (GSNO) by these novel NO2-FAs, increasing knowledge about S-nitrosothiols and GSNO-signaling pathways in plants.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - María N. Padilla
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Juan C. Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Lorena Aranda-Caño
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - David Moreno-González
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan B. Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- *Correspondence: Juan B. Barroso,
| |
Collapse
|
30
|
Spickett CM. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front Endocrinol (Lausanne) 2020; 11:602771. [PMID: 33408694 PMCID: PMC7779974 DOI: 10.3389/fendo.2020.602771] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
While often regarded as a subset of metabolomics, lipidomics can better be considered as a field in its own right. While the total number of lipid species in biology may not exceed the number of metabolites, they can be modified chemically and biochemically leading to an enormous diversity of derivatives, many of which retain the lipophilic properties of lipids and thus expand the lipidome greatly. Oxidative modification by radical oxygen species, either enzymatically or chemically, is one of the major mechanisms involved, although attack by non-radical oxidants also occurs. The modified lipids typically contain more oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a succinct overview of the types of species formed, the reactive compounds involved and the specific molecular sites that they react with, and the biochemical or chemical mechanisms involved. In many cases, these modifications reduce the stability of the lipid, and breakdown products are formed, which themselves have interesting properties such as the ability to react with other biomolecules. Publications on the biological effects of modified lipids are growing rapidly, supporting the concept that some of these biomolecules have potential signaling and regulatory effects. The question therefore arises whether modified lipids represent an "epilipidome", analogous to the epigenetic modifications that can control gene expression.
Collapse
|
31
|
Ciacka K, Krasuska U, Staszek P, Wal A, Zak J, Gniazdowska A. Effect of Nitrogen Reactive Compounds on Aging in Seed. FRONTIERS IN PLANT SCIENCE 2020; 11:1011. [PMID: 32733516 PMCID: PMC7360797 DOI: 10.3389/fpls.2020.01011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/19/2020] [Indexed: 05/07/2023]
Abstract
Reactive nitrogen species (RNS) are universal compounds that are constantly present in plant cells. RNS function depends on their actual level (the "nitrosative door" concept), duration of plant exposure to RNS and the context of the exposure. RNS are involved in the nitration of nucleic acids and fatty acids, posttranslational protein modifications (nitration and S-nitrosylation), and modulation of reactive oxygen species metabolism. RNS are regulatory molecules of various physiological processes in plants, including seed formation, maturation, dormancy and germination. The free radical theory of aging, well documented for animals, indicated that RNS participate in the regulation of the life span. Some data point to RNS contribution in preservation of seed vigor and/or regulation of seed longevity. Seed aging is a problem for biologists and agriculture, which could be solved by application of RNS, as a factor that may potentially expand seed vitality resulting in increased germination rate. The review is focused on RNS, particularly nitric oxide contribution to regulation of seed aging.
Collapse
|
32
|
A forty year journey: The generation and roles of NO in plants. Nitric Oxide 2019; 93:53-70. [DOI: 10.1016/j.niox.2019.09.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
|
33
|
Wood I, Trostchansky A, Xu Y, Qian S, Radi R, Rubbo H. Free radical-dependent inhibition of prostaglandin endoperoxide H Synthase-2 by nitro-arachidonic acid. Free Radic Biol Med 2019; 144:176-182. [PMID: 30922958 DOI: 10.1016/j.freeradbiomed.2019.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
Prostaglandin endoperoxide H synthase (PGHS) is a heme-enzyme responsible for the conversion of arachidonic acid (AA) to prostaglandin H2 (PGH2). PGHS have both oxygenase (COX) and peroxidase (POX) activities and is present in two isoforms (PGHS-1 and -2) expressed in different tissues and cell conditions. It has been reported that PGHS activity is inhibited by the nitrated form of AA, nitro-arachidonic acid (NO2AA), which in turn could be synthesized by PGHS under nitro-oxidative conditions. Specifically, NO2AA inhibits COX in PGHS-1 as well as POX in both PGHS-1 and -2, in a dose and time-dependent manner. NO2AA inhibition involves lowering the binding stability and displacing the heme group from the active site. However, the complete mechanism remains to be understood. This review describes the interactions of PGHS with NO2AA, focusing on mechanisms of inhibition and nitration. In addition, using a novel approach combining EPR-spin trapping and mass spectrometry, we described possible intermediates formed during PGHS-2 catalysis and inhibition. This literature revision as well as the results presented here strongly suggest a free radical-dependent inhibitory mechanism of PGHS-2 by NO2AA. This is of relevance towards understanding the underlying mechanism of inhibition of PGHS by NO2AA and its anti-inflammatory potential.
Collapse
Affiliation(s)
- Irene Wood
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Yi Xu
- College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Steven Qian
- College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay.
| |
Collapse
|
34
|
Palma JM, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas FJ. Nitric oxide in the physiology and quality of fleshy fruits. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4405-4417. [PMID: 31359063 DOI: 10.1093/jxb/erz350] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/18/2019] [Indexed: 05/21/2023]
Abstract
Fruits are unique to flowering plants and confer a selective advantage as they facilitate seed maturation and dispersal. In fleshy fruits, development and ripening are associated with numerous structural, biochemical, and physiological changes, including modifications in the general appearance, texture, flavor, and aroma, which ultimately convert the immature fruit into a considerably more attractive and palatable structure for seed dispersal by animals. Treatment with exogenous nitric oxide (NO) delays fruit ripening, prevents chilling damage, promotes disease resistance, and enhances the nutritional value. The ripening process is influenced by NO, which operates antagonistically to ethylene, but it also interacts with other regulatory molecules such as abscisic acid, auxin, jasmonic acid, salicylic acid, melatonin, and hydrogen sulfide. NO content progressively declines during fruit ripening, with concomitant increases in protein nitration and nitrosation, two post-translational modifications that are promoted by reactive nitrogen species. Dissecting the intimate interactions of NO with other ripening-associated factors, including reactive oxygen species, antioxidants, and the aforementioned phytohormones, remains a challenging subject of research. In this context, integrative 'omics' and gene-editing approaches may provide additional knowledge of the impact of NO in the regulatory processes involved in controlling physiology and quality traits in both climacteric and non-climacteric fruits.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Luciano Freschi
- Laboratório de Fisiologia do Desenvolvimento Vegetal, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Rodríguez-Ruiz
- Laboratório de Fisiologia do Desenvolvimento Vegetal, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
35
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J. A physiological perspective on targets of nitration in NO-based signaling networks in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4379-4389. [PMID: 31340379 DOI: 10.1093/jxb/erz300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 07/10/2019] [Indexed: 05/17/2023]
Abstract
Although peroxynitrite (ONOO-) has been well documented as a nitrating cognate of nitric oxide (NO) in plant cells, modifications of proteins, fatty acids, and nucleotides by nitration are relatively under-explored topics in plant NO research. As a result, they are seen mainly as hallmarks of redox processes or as markers of nitro-oxidative stress under unfavorable conditions, similar to those observed in human and other animal systems. Protein tyrosine nitration is the best-known nitrative modification in the plant system and can be promoted by the action of both ONOO- and related NO-derived oxidants within the cell environment. Recent progress in 'omics' and modeling tools have provided novel biochemical insights into the physiological and pathophysiological fate of nitrated proteins. The nitration process can be specifically involved in various cell regulatory mechanisms that control redox signaling via nitrated cGMP or nitrated fatty acids. In addition, there is evidence to suggest that nitrative modifications of nucleotides embedded in DNA and RNA can be considered as smart switches of gene expression that fine-tune adaptive cellular responses to stress. This review highlights recent advances in our understanding of the potential implications of biotargets in the regulation of intracellular traffic and plant biological processes.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego, Poznan, Poland
| | | |
Collapse
|
36
|
Zatloukalova M, Mojovic M, Pavicevic A, Kabelac M, Freeman BA, Pekarova M, Vacek J. Redox properties and human serum albumin binding of nitro-oleic acid. Redox Biol 2019; 24:101213. [PMID: 31170679 PMCID: PMC6554544 DOI: 10.1016/j.redox.2019.101213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
Nitro-fatty acids modulate inflammatory and metabolic stress responses, thus displaying potential as new drug candidates. Herein, we evaluate the redox behavior of nitro-oleic acid (NO2-OA) and its ability to bind to the fatty acid transporter human serum albumin (HSA). The nitro group of NO2-OA underwent electrochemical reduction at -0.75 V at pH 7.4 in an aqueous milieu. Based on observations of the R-NO2 reduction process, the stability and reactivity of NO2-OA was measured in comparison to oleic acid (OA) as the negative control. These electrochemically-based results were reinforced by computational quantum mechanical modeling. DFT calculations indicated that both the C9-NO2 and C10-NO2 positional isomers of NO2-OA occurred in two conformers with different internal angles (69° and 110°) between the methyl- and carboxylate termini. Both NO2-OA positional isomers have LUMO energies of around -0.7 eV, affirming the electrophilic properties of fatty acid nitroalkenes. In addition, the binding of NO2-OA and OA with HSA revealed a molar ratio of ~7:1 [NO2-OA]:[HSA]. These binding experiments were performed using both an electrocatalytic approach and electron paramagnetic resonance (EPR) spectroscopy using 16-doxyl stearic acid. Using a Fe(DTCS)2 spin-trap, EPR studies also showed that the release of the nitro moiety of NO2-OA resulted in the formation of nitric oxide radical. Finally, the interaction of NO2-OA with HSA was monitored via Tyr and Trp residue electro-oxidation. The results indicate that not only non-covalent binding but also NO2-OA-HSA adduction mechanisms should be taken into consideration. This study of the redox properties of NO2-OA is applicable to the characterization of other electrophilic mediators of biological and pharmacological relevance.
Collapse
Affiliation(s)
- Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Milos Mojovic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Aleksandra Pavicevic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Martin Kabelac
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice 370 05, Czech Republic
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15261, USA
| | - Michaela Pekarova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno 612 65, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc 775 15, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno 612 65, Czech Republic.
| |
Collapse
|
37
|
Aranda-Caño L, Sánchez-Calvo B, Begara-Morales JC, Chaki M, Mata-Pérez C, Padilla MN, Valderrama R, Barroso JB. Post-Translational Modification of Proteins Mediated by Nitro-Fatty Acids in Plants: Nitroalkylation. PLANTS 2019; 8:plants8040082. [PMID: 30934982 PMCID: PMC6524050 DOI: 10.3390/plants8040082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022]
Abstract
Nitrate fatty acids (NO₂-FAs) are considered reactive lipid species derived from the non-enzymatic oxidation of polyunsaturated fatty acids by nitric oxide (NO) and related species. Nitrate fatty acids are powerful biological electrophiles which can react with biological nucleophiles such as glutathione and certain protein⁻amino acid residues. The adduction of NO₂-FAs to protein targets generates a reversible post-translational modification called nitroalkylation. In different animal and human systems, NO₂-FAs, such as nitro-oleic acid (NO₂-OA) and conjugated nitro-linoleic acid (NO₂-cLA), have cytoprotective and anti-inflammatory influences in a broad spectrum of pathologies by modulating various intracellular pathways. However, little knowledge on these molecules in the plant kingdom exists. The presence of NO₂-OA and NO₂-cLA in olives and extra-virgin olive oil and nitro-linolenic acid (NO₂-Ln) in Arabidopsis thaliana has recently been detected. Specifically, NO₂-Ln acts as a signaling molecule during seed and plant progression and beneath abiotic stress events. It can also release NO and modulate the expression of genes associated with antioxidant responses. Nevertheless, the repercussions of nitroalkylation on plant proteins are still poorly known. In this review, we demonstrate the existence of endogenous nitroalkylation and its effect on the in vitro activity of the antioxidant protein ascorbate peroxidase.
Collapse
Affiliation(s)
- Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Alché JDD. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol 2019; 23:101136. [PMID: 30772285 PMCID: PMC6859586 DOI: 10.1016/j.redox.2019.101136] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
Polyunsaturated fatty acids present in plant membranes react with reactive oxygen species through so-called lipid oxidation events. They generate great diversity of highly-reactive lipid-derived chemical species, which may be further degraded enzymatically or non-enzymatically originating new components like Reactive Carbonyl Species (RCS). Such RCS are able to selectively react with proteins frequently producing loss of function through lipoxidation reactions. Although a basal concentration of lipoxidation products exists in plants (likely involved in signaling), their concentration and variability growth exponentially when plants are subjected to biotic/abiotic stresses. Such conditions typically increase the presence of ROS and the expression of antioxidant enzymes, together with RCS and also metabolites resulting from their reaction with proteins (advanced lipoxidation endproducts, ALE), in those plants susceptible to stress. On the contrary, plants designed as resistant may or may not display enhanced levels of ROS and antioxidant enzymes, whereas levels of lipid oxidation markers as malondialdehyde (MDA) are typically reduced. Great efforts have been made in order to develop methods to identify and quantify RCS, ALE, and other adducts with high sensitivity. Many of these methods are applied to the analysis of plant physiology and stress resistance, although their use has been extended to the control of the processing and conservation parameters of foodstuffs derived from plants. These foods may accumulate either lipid oxidation/lipoxidation products, or antioxidants like polyphenols, which are sometimes critical for their organoleptic properties, nutritional value, and health-promoting or detrimental characteristics. Future directions of research on different topics involving these chemical changes are also discussed. Lipid (per)oxidation occurs in plants as a signaling mechanism and after stress. Electrophylic mediators are widely used to assess plant physiology. Few lypoxidation targets have been identified in plants, mainly related to stress. Lipoxidation frequently inactivates or highly affects enzyme activity in plants. Lipid oxidation/lipoxidation affect the quality and healthy properties of plant foods.
Collapse
Affiliation(s)
- Juan de Dios Alché
- Plant Reproductive Biology Laboratory. Estación Experimental del Zaidín. Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
39
|
Melo T, Montero-Bullón JF, Domingues P, Domingues MR. Discovery of bioactive nitrated lipids and nitro-lipid-protein adducts using mass spectrometry-based approaches. Redox Biol 2019; 23:101106. [PMID: 30718106 PMCID: PMC6859590 DOI: 10.1016/j.redox.2019.101106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Nitro-fatty acids (NO2-FA) undergo reversible Michael adduction reactions with cysteine and histidine residues leading to the post-translational modification (PTM) of proteins. This electrophilic character of NO2-FA is strictly related to their biological roles. The NO2-FA-induced PTM of signaling proteins can lead to modifications in protein structure, function, and subcellular localization. The nitro lipid-protein adducts trigger a series of downstream signaling events that culminates with anti-inflammatory, anti-hypertensive, and cytoprotective effects mediated by NO2-FA. These lipoxidation adducts have been detected and characterized both in model systems and in biological samples by using mass spectrometry (MS)-based approaches. These MS approaches allow to unequivocally identify the adduct together with the targeted residue of modification. The identification of the modified proteins allows inferring on the possible impact of the NO2-FA-induced modification. This review will focus on MS-based approaches as valuable tools to identify NO2-FA-protein adducts and to unveil the biological effect of this lipoxidation adducts.
Collapse
Affiliation(s)
- Tânia Melo
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Javier-Fernando Montero-Bullón
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Pedro Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
40
|
From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC. Molecules 2018; 23:molecules23123287. [PMID: 30545001 PMCID: PMC6321594 DOI: 10.3390/molecules23123287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic molybdenum (Mo) enzymes contain in their active site a Mo Cofactor (Moco), which is formed by a tricyclic pyranopterin with a dithiolene chelating the Mo atom. Here, the eukaryotic Moco biosynthetic pathway and the eukaryotic Moco enzymes are overviewed, including nitrate reductase (NR), sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and the last one discovered, the moonlighting enzyme mitochondrial Amidoxime Reducing Component (mARC). The mARC enzymes catalyze the reduction of hydroxylated compounds, mostly N-hydroxylated (NHC), but as well of nitrite to nitric oxide, a second messenger. mARC shows a broad spectrum of NHC as substrates, some are prodrugs containing an amidoxime structure, some are mutagens, such as 6-hydroxylaminepurine and some others, which most probably will be discovered soon. Interestingly, all known mARC need the reducing power supplied by different partners. For the NHC reduction, mARC uses cytochrome b5 and cytochrome b5 reductase, however for the nitrite reduction, plant mARC uses NR. Despite the functional importance of mARC enzymatic reactions, the structural mechanism of its Moco-mediated catalysis is starting to be revealed. We propose and compare the mARC catalytic mechanism of nitrite versus NHC reduction. By using the recently resolved structure of a prokaryotic MOSC enzyme, from the mARC protein family, we have modeled an in silico three-dimensional structure of a eukaryotic homologue.
Collapse
|
41
|
Kováčik J, Dresler S, Micalizzi G, Babula P, Hladký J, Mondello L. Nitric oxide affects cadmium-induced changes in the lichen Ramalina farinacea. Nitric Oxide 2018; 83:11-18. [PMID: 30529156 DOI: 10.1016/j.niox.2018.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/27/2022]
Abstract
Metabolic responses of epiphytic lichen Ramalina farinacea to cadmium (Cd) and/or nitric oxide (NO) scavenger (cPTIO) were studied. Accumulation of Cd and other metallic nutrients was not affected by cPTIO while total and absorbed amounts differed. Cd-induced NO formation was suppressed by cPTIO but ROS signal was synergistically enhanced, confirming that NO is essential to keep ROS under control. This excessive ROS generation could be a reason for depleted amount of all fatty acids, including SFAs, MUFAs and PUFAs. Total content of fatty acids reached 3.89 mg/g DW in control with linoleic (40%), palmitic (24%), oleic (12.8%) and stearic (8%) acids as major compounds: interestingly, shift in relative ratio of saturated (from 40 to 35% of total FAs) versus polyunsaturated fatty acids (from 42 to 48% of total FAs) was observed. Glutathione was suppressed by all treatments but Krebs acids were almost unaffected by cPTIO, indicating no regulatory role of NO in their accumulation. On the contrary, Cd-induced elevation in NO signal was related to increase in ascorbate and proline content while cPTIO suppressed it, indicating a tight relation between NO and these metabolites. Data are compared also with algae and vascular plants to show similarities between various life lineages.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic.
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Giuseppe Micalizzi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata, viale Annunziata, 98168, Messina, Italy
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Juraj Hladký
- Faculty of Education, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata, viale Annunziata, 98168, Messina, Italy; Chromaleont s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata, Viale Annunziata, 98168, Messina, Italy; Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128, Rome, Italy
| |
Collapse
|
42
|
Su YH, Wu SS, Hu CH. Release of nitric oxide from nitrated fatty acids: Insights from computational chemistry. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yi-Hsin Su
- Department of Chemistry; National Changhua University of Education; Changhua Taiwan
| | - Shih-Sheng Wu
- Department of Chemistry; National Changhua University of Education; Changhua Taiwan
| | - Ching-Han Hu
- Department of Chemistry; National Changhua University of Education; Changhua Taiwan
| |
Collapse
|
43
|
Drzeżdżon J, Jacewicz D, Chmurzyński L. The impact of environmental contamination on the generation of reactive oxygen and nitrogen species - Consequences for plants and humans. ENVIRONMENT INTERNATIONAL 2018; 119:133-151. [PMID: 29957355 DOI: 10.1016/j.envint.2018.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 05/23/2023]
Abstract
Environmental contaminants, such as heavy metals, nanomaterials, and pesticides, induce the formation of reactive oxygen and nitrogen species (RONS). Plants interact closely with the atmosphere, water, and soil, and consequently RONS intensely affect their biochemistry. For the past 30 years researchers have thoroughly examined the role of RONS in plant organisms and oxidative modifications to cellular components. Hydrogen peroxide, superoxide anion, nitrogen(II) oxide, and hydroxyl radicals have been found to take part in many metabolic pathways. In this review the various aspects of the oxidative stress induced by environmental contamination are described based on an analysis of literature. The review reinforces the contention that RONS play a dual role, that is, both a deleterious and a beneficial one, in plants. Environmental contamination affects human health, also, and so we have additionally described the impact of RONS on the coupled human - environment system.
Collapse
Affiliation(s)
- Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
44
|
Corpas FJ, Freschi L, Rodríguez-Ruiz M, Mioto PT, González-Gordo S, Palma JM. Nitro-oxidative metabolism during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3449-3463. [PMID: 29304200 DOI: 10.1093/jxb/erx453] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/03/2017] [Indexed: 05/21/2023]
Abstract
Pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.), which belong to the Solanaceae family, are among the most cultivated and consumed fleshy fruits worldwide and constitute excellent sources of many essential nutrients, such as vitamins A, C, and E, calcium, and carotenoids. While fruit ripening is a highly regulated and complex process, tomato and pepper have been classified as climacteric and non-climacteric fruits, respectively. These fruits differ greatly in shape, color composition, flavor, and several other features which undergo drastic changes during the ripening process. Such ripening-related metabolic and developmental changes require extensive alterations in many cellular and biochemical processes, which ultimately leads to fully ripe fruits with nutritional and organoleptic features that are attractive to both natural dispersers and human consumers. Recent data show that reactive oxygen and nitrogen species (ROS/RNS) are involved in fruit ripening, during which molecules, such as hydrogen peroxide (H2O2), NADPH, nitric oxide (NO), peroxynitrite (ONOO-), and S-nitrosothiols (SNOs), interact to regulate protein functions through post-translational modifications. In light of these recent discoveries, this review provides an update on the nitro-oxidative metabolism during the ripening of two of the most economically important fruits, discusses the signaling roles played by ROS/RNS in controlling this complex physiological process, and highlights the potential biotechnological applications of these substances to promote further improvements in fruit ripening regulation and nutritional quality. In addition, we suggest that the term 'nitro-oxidative eustress' with regard to fruit ripening would be more appropriate than nitro-oxidative stress, which ultimately favors the consolidation of the plant species.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Paulo T Mioto
- Department of Botany, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n, Florianópolis, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
45
|
Umbreen S, Lubega J, Cui B, Pan Q, Jiang J, Loake GJ. Specificity in nitric oxide signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3439-3448. [PMID: 29767796 DOI: 10.1093/jxb/ery184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/07/2018] [Indexed: 05/20/2023]
Abstract
Reactive nitrogen species (RNS) and their cognate redox signalling networks pervade almost all facets of plant growth, development, immunity, and environmental interactions. The emerging evidence implies that specificity in redox signalling is achieved by a multilayered molecular framework. This encompasses the production of redox cues in the locale of the given protein target and protein tertiary structures that convey the appropriate local chemical environment to support redox-based, post-translational modifications (PTMs). Nascent nitrosylases have also recently emerged that mediate the formation of redox-based PTMs. Reversal of these redox-based PTMs, rather than their formation, is also a major contributor of signalling specificity. In this context, the activities of S-nitrosoglutathione (GSNO) reductase and thioredoxin h5 (Trxh5) are a key feature. Redox signalling specificity is also conveyed by the unique chemistries of individual RNS which is overlaid on the structural constraints imposed by tertiary protein structure in gating access to given redox switches. Finally, the interactions between RNS and ROS (reactive oxygen species) can also indirectly establish signalling specificity through shaping the formation of appropriate redox cues. It is anticipated that some of these insights might function as primers to initiate their future translation into agricultural, horticultural, and industrial biological applications.
Collapse
Affiliation(s)
- Saima Umbreen
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Jibril Lubega
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Beimi Cui
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, Xuzhou, PR China
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, PR China
| | - Qiaona Pan
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, Xuzhou, PR China
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, PR China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, Xuzhou, PR China
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, PR China
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, PR China
| |
Collapse
|
46
|
Astier J, Gross I, Durner J. Nitric oxide production in plants: an update. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3401-3411. [PMID: 29240949 DOI: 10.1093/jxb/erx420] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule in plant physiology. However, its production in photosynthetic organisms remains partially unresolved. The best characterized NO production route involves the reduction of nitrite to NO via different non-enzymatic or enzymatic mechanisms. Nitrate reductases (NRs), the mitochondrial electron transport chain, and the new complex between NR and NOFNiR (nitric oxide-forming nitrite reductase) described in Chlamydomonas reinhardtii are the main enzymatic systems that perform this reductive NO production in plants. Apart from this reductive route, several reports acknowledge the possible existence of an oxidative NO production in an arginine-dependent pathway, similar to the nitric oxide synthase (NOS) activity present in animals. However, no NOS homologs have been found in the genome of embryophytes and, despite an increasing amount of evidence attesting to the existence of NOS-like activity in plants, the involved proteins remain to be identified. Here we review NO production in plants with emphasis on the presentation and discussion of recent data obtained in this field.
Collapse
Affiliation(s)
| | - Inonge Gross
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology Neuherberg, Germany
| | - Jörg Durner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology Neuherberg, Germany
| |
Collapse
|
47
|
Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Chaki M, Barroso JB. Biological properties of nitro-fatty acids in plants. Nitric Oxide 2018; 78:S1089-8603(17)30286-0. [PMID: 29601928 DOI: 10.1016/j.niox.2018.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Nitro-fatty acids (NO2-FAs) are formed from the reaction between nitrogen dioxide (NO2) and mono and polyunsaturated fatty acids. Knowledge concerning NO2-FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO2-FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation. Recently, based on the potential of these NO-derived molecules in the animal field, the endogenous occurrence of nitrated-derivatives of linolenic acid (NO2-Ln) was assessed in plant species. Moreover and through RNA-seq technology, it was shown that NO2-Ln can induce a large set of heat-shock proteins (HSPs) and different antioxidant systems suggesting this molecule may launch antioxidant and defence responses in plants. Furthermore, the capacity of this nitro-fatty acid to release NO has also been demonstrated. In view of this background, here we offer an overview on the biological properties described for NO2-FAs in plants and the potential of these molecules to be considered new key intermediaries of NO metabolism in the plant field.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain.
| |
Collapse
|
48
|
Corpas FJ, Barroso JB. Peroxisomal plant metabolism - an update on nitric oxide, Ca 2+ and the NADPH recycling network. J Cell Sci 2018; 131:jcs.202978. [PMID: 28775155 DOI: 10.1242/jcs.202978] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant peroxisomes are recognized organelles that - with their capacity to generate greater amounts of H2O2 than other subcellular compartments - have a remarkable oxidative metabolism. However, over the last 15 years, new information has shown that plant peroxisomes contain other important molecules and enzymes, including nitric oxide (NO), peroxynitrite, a NADPH-recycling system, Ca2+ and lipid-derived signals, such as jasmonic acid (JA) and nitro-fatty acid (NO2-FA). This highlights the potential for complex interactions within the peroxisomal nitro-oxidative metabolism, which also affects the status of the cell and consequently its physiological processes. In this review, we provide an update on the peroxisomal interactions between all these molecules. Particular emphasis will be placed on the generation of the free-radical NO, which requires the presence of Ca2+, calmodulin and NADPH redox power. Peroxisomes possess several NADPH regeneration mechanisms, such as those mediated by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) proteins, which are involved in the oxidative phase of the pentose phosphate pathway, as well as that mediated by NADP-isocitrate dehydrogenase (ICDH). The generated NADPH is also an essential cofactor across other peroxisomal pathways, including the antioxidant ascorbate-glutathione cycle and unsaturated fatty acid β-oxidation, the latter being a source of powerful signaling molecules such as JA and NO2-FA.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| |
Collapse
|
49
|
Corpas FJ, Del Río LA, Palma JM. A Role for RNS in the Communication of Plant Peroxisomes with Other Cell Organelles? Subcell Biochem 2018; 89:473-493. [PMID: 30378037 DOI: 10.1007/978-981-13-2233-4_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant peroxisomes are organelles with a very active participation in the cellular regulation of the metabolism of reactive oxygen species (ROS). However, during the last two decades peroxisomes have been shown to be also a relevant source of nitric oxide (NO) and other related molecules designated as reactive nitrogen species (RNS). ROS and RNS have been mainly associated to nitro-oxidative processes; however, some members of these two families of molecules such as H2O2, NO or S-nitrosoglutathione (GSNO) are also involved in the mechanism of signaling processes mainly through post-translational modifications. Peroxisomes interact metabolically with other cell compartments such as chloroplasts, mitochondria or oil bodies in different pathways including photorespiration, glyoxylate cycle or β-oxidation, but peroxisomes are also involved in the biosynthesis of phytohormones including auxins and jasmonic acid (JA). This review will provide a comprehensive overview of peroxisomal RNS metabolism with special emphasis in the identified protein targets of RNS inside and outside these organelles. Moreover, the potential interconnectivity between peroxisomes and other plant organelles, such as mitochondria or chloroplasts, which could have a regulatory function will be explored, with special emphasis on photorespiration.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
50
|
Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Corpas FJ, Barroso JB. Nitro-Fatty Acid Detection in Plants by High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Methods Mol Biol 2018; 1747:231-239. [PMID: 29600463 DOI: 10.1007/978-1-4939-7695-9_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last few years, the role of nitric oxide (NO) and NO-related molecules has attracted attention in the field of plant systems. In this sense, the ability of NO to mediate several posttranslational modifications (NO-PTM) in different biomolecules, such as protein tyrosine nitration or S-nitrosylation, has shown the involvement of these reactive nitrogen species in a wide range of functions in plant physiology such as the antioxidant response or the involvement in processes such as germination, growth, development, or senescence. However, growing interest has focused on the interaction of these NO-derived molecules with unsaturated fatty acids, yielding nitro-fatty acids (NO2-FAs). It has recently been shown that these molecules are involved in key signaling pathways in animal systems through the implementation of antioxidant and anti-inflammatory responses. Nevertheless, this interaction has been poorly studied in plant systems. Very recently, the endogenous presence of NO2-FAs in the model plant Arabidopsis thaliana has been demonstrated as well as the significant involvement of nitro-linolenic acid (NO2-Ln) in the defence response against several abiotic and oxidative stress conditions. In this respect, the detection of NO2-FAs in plant systems can be a useful tool to determine the importance of these molecules in the regulation of different biochemical pathways. Using high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry (LC-MS/MS), the methods described in this chapter enable the determination of the NO2-FA content in a pM range as well as the characterization of these nitrated derivatives of unsaturated fatty acids in plant tissues.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food, and Agriculture, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain.
| |
Collapse
|