1
|
Lin L, Zhong S, Zhou Y, Xia J, Deng S, Jiang T, Jiang A, Huang Z, Wang J. Dapagliflozin improves the dysfunction of human umbilical vein endothelial cells (HUVECs) by downregulating high glucose/high fat-induced autophagy through inhibiting SGLT-2. J Diabetes Complications 2025; 39:108907. [PMID: 39580877 DOI: 10.1016/j.jdiacomp.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE To investigate the effect of Dapagliflozin (Da) on the disorders of human umbilical vein endothelial cells (HUVECs) induced by high glucose and high fat (HG/HF). METHODS Immunohistochemistry and immunofluorescence were used to detect the SGLT-2 expression in thoracic aortic tissues. After transfected with overexpressed plasmid SLC5A2, autophagy and cell functions of HUVECs were detected with the treatment of autophagy inhibitor 3-MA (5 mM). HUVECs were exposed to mannitol (MAN), glucose/palmitate (Hg/PA), and Hg/PA/Da for 24 h, and the proliferation of HUVECs was detected by CCK-8. The protein expression levels, endothelial cell functions (cell proliferation, migration, tubular formation, apoptosis, and autophagy) in endothelial cells were evaluated. RESULTS The SGLT-2 expression was found in atherosclerotic human thoracic aorta tissues and HG/PA induced HUVECs (P < 0.05). After the overexpression of SGLT-2 in HUVECs, the proliferation, migration and tubule formation ability of HUVECs were inhibited, and autophagy and apoptosis were increased, which were reversed by 3-MA (P < 0.05). After the addition of Sodium-glucose co-transporters 2 inhibitor, Dapagliflozin, the proliferation of HUVECs, the tubule formation, autophagy, apoptosis and migration ability of cells inhibited by HG/PA were significantly improved (P < 0.05). Moreover, the increased protein expression levels of autophagy and apoptosis in HG/PA induced HUVECs were also decreased by the treatment of Dapagliflozin (P < 0.05). CONCLUSIONS Dapagliflozin can improve the dysfunction of high glucose/high fat-induced human umbilical vein endothelial cells by downregulate autophagy through inhibiting SGLT-2.
Collapse
Affiliation(s)
- Lijiahui Lin
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China; Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, Hunan 415000, China
| | - Siyu Zhong
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China
| | - Ying Zhou
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China
| | - Jie Xia
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China
| | - Shanshan Deng
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China
| | - Tao Jiang
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China
| | - Aihua Jiang
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China.
| | - Zhimei Huang
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China
| | - Jianping Wang
- Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Mao A, Li Z, Shi X, Zhang K, Kan H, Geng L, He D. Complement Factor C1q Mediates Vascular Endothelial Dysfunction in STZ-Induced Diabetic Mice. Diabetes 2024; 73:1527-1536. [PMID: 38869460 DOI: 10.2337/db23-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Diabetes is a significant global public health issue with implications for vascular endothelial cells (ECs) dysfunction and the subsequent development and advancement of diabetes complications. This study aims to compare the cellular and molecular properties of the aorta in normal and streptozotocin (STZ)-induced diabetic mice, with a focus on elucidating potential mechanism underlying EC dysfunction. Here, we performed a single-cell RNA sequencing survey of 32,573 cells from the aorta of normal and STZ-induced diabetic mice. We found a compendium of 10 distinct cell types, mainly ECs, smooth muscle cells, fibroblast, pericyte, immune cells, and stromal cells. As the diabetes condition progressed, we observed a subpopulation of aortic ECs that exhibited significantly elevated expression of complement (C) molecule C1qa compared with their healthy counterparts. This increased expression of C1qa was found to induce reactive oxygen species (ROS) production, facilitate EC migration and increased permeability, and impair the vasodilation within the aortic segment of mice. Furthermore, AAV-Tie2-shRNA-C1qa was administered into diabetic mice by tail vein injection, showing that inhibition of C1qa in the endothelium led to a reduction in ROS production, decreased vascular permeability, and improved vasodilation. Collectively, these findings highlight the crucial involvement of C1qa in endothelial dysfunction associated with diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zicheng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoming Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Kan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongxu He
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
4
|
Zhu W, Yang G, Chen N, Zhang W, Gao Q, Li T, Yuan N, Jin H. CTRP13 alleviates palmitic acid-induced inflammation, oxidative stress, apoptosis and endothelial cell dysfunction in HUVECs. Tissue Cell 2024; 86:102232. [PMID: 37976900 DOI: 10.1016/j.tice.2023.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
C1q/tumor necrosis factor-related protein 13 (CTRP13) has been reported to participate in cardiovascular diseases. However, the role and molecular mechanism of CTRP13 in obesity-induced endothelial cell damage is still unclear. In palmitic acid (PA)-induced human umbilical vein endothelial cells (HUVECs), qRT-PCR and western blot were used to examine CTRP13 expression. CCK-8 and TUNEL assays were adopted to assess cell viability and apoptosis, respectively. ROS level and MDA content were evaluated by their commercial kits and inflammatory cytokines were measured using ELISA. Endothelial cell dysfunction was evaluated by detecting NO production and eNOS expression, and tube formation assay was performed to assess angiogenesis. AMPK pathway-related proteins were detected by western blot. The results showed that CTRP13 was downregulated in PA-induced HUVECs. CTRP13 overexpression reduced PA-induced cell viability loss and oxidative stress in HUVECs. Moreover, CTRP13 overexpression suppressed PA-induced inflammation and apoptosis, improved angiogenesis ability, and alleviated endothelial cell dysfunction in HUVECs. In addition, CTRP13 overexpression activated AMPK pathway and regulated the expressions of downstream NOX1/p38 and KLF2. Furthermore, compound C countervailed the impacts of CTRP13 overexpression on cell viability, oxidative stress, inflammation, apoptosis and endothelial function in PA-induced HUVECs. To sum up, CTRP13 overexpression may alleviate PA-induced endothelial cell damage.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China.
| | - Guojun Yang
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Naijun Chen
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Wenjun Zhang
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Qian Gao
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Tingting Li
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Nan Yuan
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Huawei Jin
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
5
|
Shen J, San W, Zheng Y, Zhang S, Cao D, Chen Y, Meng G. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother 2023; 168:115802. [PMID: 37918258 DOI: 10.1016/j.biopha.2023.115802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease caused by disorders of insulin secretion and utilization. Long-term hyperglycemia, insulin resistance, and disorders of glucose and lipid metabolism cause vascular endothelial cell damage. Endothelial dysfunction is a key feature of diabetic vascular complications such as diabetic nephropathy, retinopathy, neuropathy, and atherosclerosis. Importantly, cell death is thought to be a key factor contributing to vascular endothelial injury. Morphologically, cell death can be divided into three forms: type I apoptosis, type II autophagy, and type III necrosis. According to the difference in function, cell death can be divided into accidental cell death (ACD) and regulated cell death (RCD). RCD is a controlled process involving numerous proteins and precise signaling cascades. Multiple subroutines covered by RCD may be involved in diabetic endothelial dysfunction, including apoptosis, autophagy, necroptosis, pyroptosis, entosis, ferroptosis, ferroautophagy, parthanatos, netotic cell death, lysosome-dependent cell death, alkaliptosis, oxeiptosis, cuproptosis, and PANoptosis. This article briefly reviews the mechanism and significance of cell death associated with diabetic endothelial dysfunction, which will help deepen the understanding of diabetic endothelial cell death and provide new therapeutic ideas.
Collapse
Affiliation(s)
- Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Danyi Cao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
6
|
Guo S, Mao X, Liu J. Multi-faceted roles of C1q/TNF-related proteins family in atherosclerosis. Front Immunol 2023; 14:1253433. [PMID: 37901246 PMCID: PMC10611500 DOI: 10.3389/fimmu.2023.1253433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose of review C1q/TNF-related proteins (CTRPs) are involved in the modulation of the development and prognosis of atherosclerosis (AS). Here, we summarizes the pathophysiological roles of individual members of the CTRP superfamily in the development of AS. Currently, there is no specific efficacious treatment for AS-related diseases, therefore it is urgent to develop novel therapeutic strategies aiming to target key molecules involved in AS. Recent findings Recently, mounting studies verified the critical roles of the CTRP family, including CTRP1-7, CTRP9 and CTRP11-15, in the development and progression of AS by influencing inflammatory response, modulating glucose and lipid metabolism, regulating endothelial functions and the proliferation of vascular smooth muscle cells (VSMCs). Conclusions CTRP family regulate different pathophysiology stages of AS. CTRP3, CTRP9, CTRP12, CTRP13 and CTRP15 play a clear protective role in AS, while CTRP5 and CTRP7 play a pro-atherosclerotic role in AS. The remarkable progress in our understanding of CTRPs' role in AS will provide an attractive therapeutic target for AS.
Collapse
Affiliation(s)
- Shuren Guo
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Liu
- College of Life Science and Technology, Xinjiang University, Xinjiang, China
| |
Collapse
|
7
|
Wang J, Zhao J, Meng Z, Guo R, Yang R, Liu C, Gao J, Xie Y, Jiao X, Fang H, Zhao J, Wang Y, Cao J. ATP protects anti-PD-1/radiation-induced cardiac dysfunction by inhibiting anti-PD-1 exacerbated cardiomyocyte apoptosis, and improving autophagic flux. Heliyon 2023; 9:e20660. [PMID: 37842574 PMCID: PMC10570000 DOI: 10.1016/j.heliyon.2023.e20660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
The synergy between radiotherapy and immunotherapy in treating thoracic cancers presents a potent therapeutic advantage, yet it also carries potential risks. The extent and nature of cumulative cardiac toxicity remain uncertain, prompting the need to discern its mechanisms and devise effective mitigation strategies. Radiation alone or in combination with an anti- Programmed cell death protein1 (PD-1) antibody significantly reduced cardiac function in C57BL/6J mice, and this pathologic effect was aggravated by anti-PD-1 (anti-PD-1 + radiation). To examine the cellular mechanism that causes the detrimental effect of anti-PD-1 upon cardiac function after radiation, AC16 human cardiomyocytes were used to study cardiac apoptosis and cardiac autophagy. Radiation-induced cardiomyocyte apoptosis was significantly promoted by anti-PD-1 treatment, while anti-PD-1 combined radiation administration blocked the cardiac autophagic flux. Adenosine 5'-triphosphate (ATP) (a molecule that promotes lysosomal acidification) not only improved autophagic flux in AC16 human cardiomyocytes, but also attenuated apoptosis induced by radiation and anti-PD-1 treatment. Finally, ATP administration in vivo significantly reduced radiation-induced and anti-PD-1-exacerbated cardiac dysfunction. We demonstrated for the first time that anti-PD-1 can aggravate radiation-induced cardiac dysfunction via promoting cardiomyocyte apoptosis without affecting radiation-arrested autophagic flux. ATP enhanced cardiomyocyte autophagic flux and inhibited apoptosis, improving cardiac function in anti-PD-1/radiation combination-treated animals.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Department of Thoracic Radiotherapy, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Jing Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhijun Meng
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rui Guo
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ruihong Yang
- Department of Thoracic Radiotherapy, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Caihong Liu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jia Gao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yaoli Xie
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiangying Jiao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Heping Fang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Jimin Cao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
8
|
Song R, Hu W, Cheng R, Zhao Y, Qin W, Li X, Zhu Y, Gan L, Liu J. Association Between Circulating Levels of C1q/TNF-Related Protein-9 and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. J Clin Endocrinol Metab 2023; 108:2728-2738. [PMID: 37029975 PMCID: PMC10505529 DOI: 10.1210/clinem/dgad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
CONTEXT According to growing research, C1q/TNF-Related Protein-9 (CTRP9) appears to be linked to type 2 diabetes mellitus (T2DM). But the literature on circulating levels of CTRP9 in patients with T2DM has been contradictory. OBJECTIVE This is a systematic review and meta-analysis to reassess the circulating level of CTRP9 in patients with T2DM, with and without complications. METHODS Relevant studies published until October 31, 2021, were identified from the PubMed, Embase, Web of Science, Cochrane Library, WanFang, CNKI, VIP, and CBM databases. Participants with age ≥18 years with clinically diagnosed T2DM were included. Sex and diabetes complications were not restricted. The data were extracted by 2 reviewers independently using a standard data collection form. RESULTS Analysis demonstrated significantly lower circulating levels of CTRP9 in patients with T2DM than in patients without diabetes (standardized mean difference [SMD] = -1.36; 95% CI -1.78 to -0.93; P < .001), I2 = 97.5%, P < .001). Furthermore, the circulating level of CTRP9 in patients with T2DM-related complications was lower than that in patients with T2DM without complications, regardless of macrovascular complications or microvascular complications (SMD = -1.062; 95% CI -1.466 to -0.658; P < .001, I2 = 91.3%, P < .001). Subgroup analyses revealed that factors such as body mass index, T2DM duration, and fasting blood glucose were the sources of heterogeneity (P = .047, P = .034, and P = .07, respectively). CONCLUSION The present systematic review and meta-analysis found CTRP9 levels were lower in T2DM patients with or without complications. However, since this was a meta-analysis of most observational studies, these findings still need to be verified by further studies with a large sample size.
Collapse
Affiliation(s)
- Rui Song
- The Second Clinical Medical College of Shanxi Medical University, Taiyuan 030000, China
| | - Weiting Hu
- The Second Clinical Medical College of Shanxi Medical University, Taiyuan 030000, China
| | - Rui Cheng
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yibo Zhao
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Weiwei Qin
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Xing Li
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yikun Zhu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Lu Gan
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
9
|
Meng Z, Liang B, Wu Y, Liu C, Wang H, Du Y, Gan L, Gao E, Lau WB, Christopher TA, Lopez BL, Koch WJ, Ma X, Zhao F, Wang Y, Zhao J. Hypoadiponectinemia-induced upregulation of microRNA449b downregulating Nrf-1 aggravates cardiac ischemia-reperfusion injury in diabetic mice. J Mol Cell Cardiol 2023; 182:1-14. [PMID: 37437402 PMCID: PMC10566306 DOI: 10.1016/j.yjmcc.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Diabetes enhances myocardial ischemic/reperfusion (MI/R) injury via an incompletely understood mechanism. Adiponectin (APN) is a cardioprotective adipokine suppressed by diabetes. However, how hypoadiponectinemia exacerbates cardiac injury remains incompletely understood. Dysregulation of miRNAs plays a significant role in disease development. However, whether hypoadiponectinemia alters cardiac miRNA profile, contributing to diabetic heart injury, remains unclear. Methods and Results: Wild-type (WT) and APN knockout (APN-KO) mice were subjected to MI/R. A cardiac microRNA profile was determined. Among 23 miRNAs increased in APN-KO mice following MI/R, miR-449b was most significantly upregulated (3.98-fold over WT mice). Administrating miR-449b mimic increased apoptosis, enlarged infarct size, and impaired cardiac function in WT mice. In contrast, anti-miR-449b decreased apoptosis, reduced infarct size, and improved cardiac function in APN-KO mice. Bioinformatic analysis predicted 73 miR-449b targeting genes, and GO analysis revealed oxidative stress as the top pathway regulated by these genes. Venn analysis followed by luciferase assay identified Nrf-1 and Ucp3 as the two most important miR-449b targets. In vivo administration of anti-miR-449b in APN-KO mice attenuated MI/R-stimulated superoxide overproduction. In vitro experiments demonstrated that high glucose/high lipid and simulated ischemia/reperfusion upregulated miR-449b and inhibited Nrf-1 and Ucp3 expression. These pathological effects were attenuated by anti-miR-449b or Nrf-1 overexpression. In a final attempt to validate our finding in a clinically relevant model, high-fat diet (HFD)-induced diabetic mice were subjected to MI/R and treated with anti-miR-449b or APN. Diabetes significantly increased miR-449b expression and downregulated Nrf-1 and Ucp3 expression. Administration of anti-miR-449b or APN preserved cardiac Nrf-1 expression, reduced cardiac oxidative stress, decreased apoptosis and infarct size, and improved cardiac function. Conclusion: We demonstrated for the first time that hypoadiponectinemia upregulates miR-449b and suppresses Nrf-1/Ucp3 expression, promoting oxidative stress and exacerbating MI/R injury in this population. Dysregulated APN/miR-449b/oxidative stress pathway is a potential therapeutic target against diabetic MI/R injury.
Collapse
Affiliation(s)
- Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Bin Liang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Yalin Wu
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, United States of America
| | - Caihong Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Han Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Yunhui Du
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, United States of America
| | - Wayne B Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Theodore A Christopher
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Walter J Koch
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, United States of America
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Fujie Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, United States of America
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America; Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, United States of America.
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, United States of America.
| |
Collapse
|
10
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Meng Z, Zhang Z, Zhao J, Liu C, Yao P, Zhang L, Xie D, Lau WB, Tsukuda J, Christopher TA, Lopez B, Zhu D, Liu D, Zhang JR, Gao E, Ischiropoulos H, Koch W, Ma X, Wang Y. Nitrative Modification of Caveolin-3: A Novel Mechanism of Cardiac Insulin Resistance and a Potential Therapeutic Target Against Ischemic Heart Failure in Prediabetic Animals. Circulation 2023; 147:1162-1179. [PMID: 36883479 PMCID: PMC10085855 DOI: 10.1161/circulationaha.122.063073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Myocardial insulin resistance is a hallmark of diabetic cardiac injury. However, the underlying molecular mechanisms remain unclear. Recent studies demonstrate that the diabetic heart is resistant to other cardioprotective interventions, including adiponectin and preconditioning. The "universal" resistance to multiple therapeutic interventions suggests impairment of the requisite molecule(s) involved in broad prosurvival signaling cascades. Cav (Caveolin) is a scaffolding protein coordinating transmembrane signaling transduction. However, the role of Cav3 in diabetic impairment of cardiac protective signaling and diabetic ischemic heart failure is unknown. METHODS Wild-type and gene-manipulated mice were fed a normal diet or high-fat diet for 2 to 12 weeks and subjected to myocardial ischemia and reperfusion. Insulin cardioprotection was determined. RESULTS Compared with the normal diet group, the cardioprotective effect of insulin was significantly blunted as early as 4 weeks of high-fat diet feeding (prediabetes), a time point where expression levels of insulin-signaling molecules remained unchanged. However, Cav3/insulin receptor-β complex formation was significantly reduced. Among multiple posttranslational modifications altering protein/protein interaction, Cav3 (not insulin receptor-β) tyrosine nitration is prominent in the prediabetic heart. Treatment of cardiomyocytes with 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride reduced the signalsome complex and blocked insulin transmembrane signaling. Mass spectrometry identified Tyr73 as the Cav3 nitration site. Phenylalanine substitution of Tyr73 (Cav3Y73F) abolished 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride-induced Cav3 nitration, restored Cav3/insulin receptor-β complex, and rescued insulin transmembrane signaling. It is most important that adeno-associated virus 9-mediated cardiomyocyte-specific Cav3Y73F reexpression blocked high-fat diet-induced Cav3 nitration, preserved Cav3 signalsome integrity, restored transmembrane signaling, and rescued insulin-protective action against ischemic heart failure. Last, diabetic nitrative modification of Cav3 at Tyr73 also reduced Cav3/AdipoR1 complex formation and blocked adiponectin cardioprotective signaling. CONCLUSIONS Nitration of Cav3 at Tyr73 and resultant signal complex dissociation results in cardiac insulin/adiponectin resistance in the prediabetic heart, contributing to ischemic heart failure progression. Early interventions preserving Cav3-centered signalsome integrity is an effective novel strategy against diabetic exacerbation of ischemic heart failure.
Collapse
Affiliation(s)
- Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jianli Zhao
- Department of Biomedical Engineering, the University of Alabama at Birmingham, AL 35005
| | - Caihong Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ling Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jumpei Tsukuda
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Bernard Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - John Ry Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Harry Ischiropoulos
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Walter Koch
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Biomedical Engineering, the University of Alabama at Birmingham, AL 35005
| |
Collapse
|
12
|
Zhang H, Zhang-Sun ZY, Xue CX, Li XY, Ren J, Jiang YT, Liu T, Yao HR, Zhang J, Gou TT, Tian Y, Lei WR, Yang Y. CTRP family in diseases associated with inflammation and metabolism: molecular mechanisms and clinical implication. Acta Pharmacol Sin 2023; 44:710-725. [PMID: 36207402 PMCID: PMC10042840 DOI: 10.1038/s41401-022-00991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/27/2022] [Indexed: 11/08/2022] Open
Abstract
C1q/tumor necrosis factor (TNF) related proteins (CTRPs) is a newly discovered adipokine family with conservative structure and ubiquitous distribution and is secreted by adipose tissues. Recently, CTRPs have attracted increasing attention due to the its wide-ranging effects upon inflammation and metabolism. To-date, 15 members of CTRPs (CTRP1-15) with the characteristic C1q domain have been characterized. Earlier in-depth phenotypic analyses of mouse models of CTRPs deficiency have also unveiled ample function of CTRPs in inflammation and metabolism. This review focuses on the rise of CTRPs, with a special emphasis on the latest discoveries with regards to the effects of the CTRP family on inflammation and metabolism as well as related diseases. We first introduced the structure of characteristic domain and polymerization of CTRPs to reveal its pleiotropic biological functions. Next, intimate association of CTRP family with inflammation and metabolism, as well as the involvement of CTRPs as nodes in complex molecular networks, were elaborated. With expanding membership of CTRP family, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zi-Yin Zhang-Sun
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Cheng-Xu Xue
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xi-Yang Li
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yu-Ting Jiang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Hai-Rong Yao
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tian-Tian Gou
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Wang-Rui Lei
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
13
|
Zhu R, Ouyang Y, Chen Y, Zhang L, Nie J, Farag MA, Capanoglu E, Zhao C. The therapeutic potential for senescence-associated diabetes of green alga Enteromorpha prolifera polysaccharide. Int J Biol Macromol 2023; 232:123465. [PMID: 36720326 DOI: 10.1016/j.ijbiomac.2023.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
DEAE-52 and Sephadex G-100 columns were used to isolate Enteromorpha prolifera polysaccharide (EPP), which contains α-L-Rhap-(1 → 4)-α-L-Arap-(1 → 2)-α-L-Rhap-(1 → 3)-β-D-Galp-(1 → structural fragment, along with α-L-Rhap-(1 → and →2)-α-L-Rhap-(1 → 3)-β-D-GlcpA-(1 → side bonds that connect to →3,6)-β-D-Galp-(1→. The anti-ageing and hypoglycemic activities of EPP were assessed using an ageing diabetic mice model, and the revealed that EPP could improve glucose metabolism-associated parameters and inhibit the expression of ageing associated genes, including p16INK4a, p38 MAPK, NOX-1, VEGF, and AGER, thus preventing liver damage. Moreover, gut microbiota profiling revealed that EPP significantly increased the abundances of o_Lactobacillaceae, c_Bacilli, f_Lactobacillaceae, g_Lactobacillus, and p_Firmicutes, showing that EPP has a probiotic effect on enhancing the beneficial microbiota in ageing diabetic mice. In summary, EPP might serve as a potential bioactive compound to alleviate hyperglycaemia and ageing in diabetic in mice and further clinical studies are required to verify these effects.
Collapse
Affiliation(s)
- Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yuezhen Ouyang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yihan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lizhu Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianping Nie
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
14
|
Liu Y, Wei C, Ding Z, Xing E, Zhao Z, Shi F, Tian Y, Zhang Y, Fan W, Sun L. Role of serum C1q/TNF-related protein family levels in patients with acute coronary syndrome. Front Cardiovasc Med 2022; 9:967918. [PMID: 36061536 PMCID: PMC9437344 DOI: 10.3389/fcvm.2022.967918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Background The C1q/TNF-related protein (CTRP) family affects inflammation regulation, energy metabolism, and insulin signaling. However, their role in acute coronary syndrome (ACS) development is unclear. In this cross-sectional study, we aimed to investigate the association between CTRP family and ACS. Methods We enrolled 289 consecutive inpatients with suspected ACS. Serum CTRP family, tumor necrosis factor-α (TNF-α), and adiponectin (ADP) levels were assessed using enzyme-linked immunosorbent assay (ELISA). Multivariate logistic regression and subgroup analyses were used to assess risk factors for ACS. Spearman's tests were used to analyze correlations between CTRP family and continuous variables. Results Serum CTRP family levels differed significantly between ACS and Control groups (p < 0.05). After adjusting for confounding factors, CTRP family were independently associated with ACS (p < 0.05). The association between serum CTRP family levels and ACS was stable in various subgroups according to sex, age, diabetes mellitus, and dyslipidemia status (p for interaction > 0.05). Increasing tertiles of serum CTRP1 levels, significantly increased ACS risks, which decreased gradually with increasing CTRP2, CTRP12, and CTRP13 tertiles (p for trend < 0.05). Additionally, serum CTRP1, CTRP2, CTRP13, and CTRP15 levels were weakly correlated with the severity of coronary artery stenosis. Conclusion CTRP1 and CTRP5 were identified as independent ACS risk factors, whereas CTRP2, CTRP3, CTRP9, CTRP12, CTRP13, and CTRP15 were independent protective factors for ACS. CTRP family, especially CTRP1 and CTRP3 could be novel potential clinical biomarkers of ACS.
Collapse
Affiliation(s)
- Yixiang Liu
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Chen Wei
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Zhenjiang Ding
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Enhong Xing
- Central Laboratory, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Zhuoyan Zhao
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Fei Shi
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Yanan Tian
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Ying Zhang
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Wenjun Fan
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Lixian Sun
- Department of Cardiology, Chengde Medical University Affiliated Hospital, Chengde, China
- *Correspondence: Lixian Sun
| |
Collapse
|
15
|
Liu J, Li X, Wang X, Peng L, Song G, He J. Angiotensin(1-7) Improves Islet Function in Diabetes Through Reducing JNK/Caspase-3 Signaling. Horm Metab Res 2022; 54:250-258. [PMID: 35413746 DOI: 10.1055/a-1796-9286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The aim of this study is to investigate whether Angiotensin (1-7), the physiological antagonist of Angiotensin II (AngII), has antidiabetic activity and the possible mechanism. Male Wistar rats were randomly divided into 3 groups: control group fed the normal diet, DM group fed high-fat diet and injected with STZ, and Angiotensin (1-7) group receiving injection of STZ followed by Angiotensin (1-7) treatment. Serum Ang II, fasting blood glucose, insulin, HOMA-IR, and HOMA-beta were determined in control, diabetes and Angiotensin (1-7) groups. The increased AngII and insulin resistance in diabetes group were accompanied by changes in islet histopathology. However, Angiotensin (1-7) improved the islet function and histopathology in diabetes without affecting the level of AngII. Western blot confirmed that Angiotensin (1-7) decreased the cleaved caspase 3 levels in pancreas of DM. The increased expression of JNK, Bax, and Bcl2 genes under diabetic conditions were partially reversed after Angiotensin (1-7) administration in pancreas. Immunofluorescence analysis showed that p-JNK was markedly increased in islet of DM rats, which was markedly alleviated after Angiotensin (1-7) treatment. Furthermore, Angiotensin (1-7) reversed high glucose(HG) induced mitochondrial apoptosis augments. Finally, Angiotensin (1-7) attenuated the apoptosis of INS-1 cells through reducing JNK activation in diabetes, which was blocked by anisomycin (a potent agonist of JNK). Our findings provide supporting evidence that Angiotensin (1-7) improved the islet beta-cells apoptosis by JNK-mediated mitochondrial dysfunction, which might be a novel target for the treatment and prevention of beta-cells dysfunction in DM.
Collapse
Affiliation(s)
- Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xing Li
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Wang
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lina Peng
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoning Song
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Junhua He
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Yan Z, Cao X, Wang C, Liu S, Li Y, Lu G, Yan W, Guo R, Zhao D, Cao J, Xu Y. C1q/tumor necrosis factor-related protein-3 improves microvascular endothelial function in diabetes through the AMPK/eNOS/NO· signaling pathway. Biochem Pharmacol 2022; 195:114745. [PMID: 34454930 DOI: 10.1016/j.bcp.2021.114745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
The repair of vascular endothelial cell dysfunction is an encouraging approach for the treatment of vascular complications associated with diabetes. It has been demonstrated that members of C1q/tumor necrosis factor-related protein (CTRP) family may improve endothelial function. Nevertheless, the protective properties of CTRPs in diabetic microvascular complications continue to be mostly unknown. Here, we demonstrate that the C1q-like globular domain of CTRP3, CTRP5, and CTRP9 (gCTRP3, 5, 9) exerted a vasorelaxant effect on the microvasculature, of which gCTRP3 was the most powerful one. In a murine model of type 2 diabetes mellitus, serum gCTRP3 level and endothelial function decreased markedly compared with controls. Two weeks of gCTRP3 treatment (0.5 μg/g/d) enhanced endothelium-dependent relaxation in microvessels, increased nitric oxide (NO·) production, and reduced retinal vascular leakage. In addition, Western blotting in human retinal microvascular endothelial cells indicated that gCTRP3 triggered AMP-activated protein kinase-α (AMPKα), hence increasing the endothelial NO synthase (eNOS) level and NO· production. In addition, incubation with gCTRP3 in vitro ameliorated the endothelial dysfunction induced by high glucose in the branch of the mesenteric artery. Blockade of either eNOS or AMPKα completely abolished the effects of gCTRP3 described above. Taken together, we demonstrate for the first time that gCTRP3 improves impaired vasodilatation of microvasculature in diabetes by ameliorating endothelial cell function through the AMPK/eNOS/NO· signaling pathway. This finding may suggest an effective intervention against diabetes-associated microvascular complications.
Collapse
Affiliation(s)
- Zheyi Yan
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Xiaoming Cao
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Chunfang Wang
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanjie Li
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gan Lu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Laboratory of Emergency Medicine, Department of Emergency Medicine, Sichuan University West China Hospital, Chengdu, China
| | - Wenjun Yan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Department of Cardiology, Xijing Hospital, Xian, China
| | - Rui Guo
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Morphology Laboratory, Shanxi Medical University, Taiyuan, China
| | - Dajun Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Department of Cardiac Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
17
|
Zhu D, Zhang X, Wang F, Ye Q, Yang C, Liu D. Irisin rescues diabetic cardiac microvascular injury via ERK1/2/Nrf2/HO-1 mediated inhibition of oxidative stress. Diabetes Res Clin Pract 2022; 183:109170. [PMID: 34863716 DOI: 10.1016/j.diabres.2021.109170] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023]
Abstract
AIMS Cardiac microvascular dysfunction is a common feature across cardiovascular complications in diabetes, while effective therapy remains elusive. This study was designed to evaluate the effect of irisin on cardiac microvascular injury in type 2 diabetes mellitus (T2DM). METHODS T2DM was induced in C57BL/6J mice. A cohort diabetic mice received a 12-week treatment of irisin. Cardiac function and microvessel density were evaluated. Whether irisin directly regulates cardiac microvascular endothelial cells (CMECs) function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms. RESULTS Irisin improved cardiac function in diabetic mice, and increased microvessel density. In vitro study revealed that irisin promoted CMECs proliferation and reduced high glucose and high lipid (HGHL)-induced apoptosis. Mechanistically, irisin increased mRNA and protein levels of heme oxygenase 1 (HO-1), superoxide dismutase 1 and superoxide dismutase 2, among which HO-1 ranked top. Irisin stimulated the phosphorylation of extracellular regulated protein kinases (ERK) 1/2 and nuclear factor erythroid-derived 2-like 2 (Nrf2) nuclear translocation, while U0126 (the inhibitor of ERK1/2) inhibited irisin-induced Nrf2 nuclear translocation and HO-1 expression. Nrf2 siRNA inhibited irisin's antioxidative effects. CONCLUSION Irisin could rescue cardiac microvessels against oxidative stress and apoptosis in diabetes via ERK1/2/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Di Zhu
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Xiaotian Zhang
- Hospital of Troop 75600, 3002 Fuqiang Road, Shenzhen 518048, China
| | - Fenglin Wang
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Qiao Ye
- Clinical Medicine Laboratory, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Caizhe Yang
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China.
| | - Demin Liu
- Department of Cardiology, Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050010, China.
| |
Collapse
|
18
|
Gao Z, Zhang C, Feng Z, Liu Z, Yang Y, Yang K, Chen L, Yao R. C1q inhibits differentiation of oligodendrocyte progenitor cells via Wnt/β-catenin signaling activation in a cuprizone-induced mouse model of multiple sclerosis. Exp Neurol 2021; 348:113947. [PMID: 34902359 DOI: 10.1016/j.expneurol.2021.113947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system demyelinating disease of autoimmune originate. Complement C1q, a complex glycoprotein, mediates a variety of immunoregulatory functions considered important in the prevention of autoimmunity. Although we found that the increased serum C1q level was highly associated with the Fazekas scores and T2 lesion volume of MS patients, the effect and mechanism of C1q on demyelination remains unclear. Cluster analysis and protein array results showed that serum Wnt receptors Frizzled-6 and LRP-6 levels in MS patients were both increased, we proposed that C1q may be involved in demyelination via Wnt signaling. The increased C1q protein levels in the serum and brain tissue were confirmed in a cuprizone (CPZ)-induced demyelination mice model. Moreover, CPZ treatment induced significant increase of LRP-6 and Frizzled-6 protein in mice corpus callosum. LRP-6 extra-cellular domain (LRP-6-ECD) level in the serum and cerebrospinal fluid (CSF) of CPZ mice also significantly increased. Knockdown of the subunit C1s of C1 not only substantially attenuated demyelination, promoted M2 microglia polarization and improved neurological function, but inhibited β-catenin expression and its nuclear translocation in oligodendrocyte progenitor cells (OPCs). In vitro, C1s silence reversed the increased level of LRP-6-ECD in the medium and β-catenin expression in OPCs induced by C1q treatment. Meanwhile, inhibition of C1s also markedly lowered the number of EDU positive OPCs, but enhanced the number of CNPase positive oligodendrocyte and the protein of MBP. The present study indicated that C1q was involved in demyelination in response to CPZ in mice by preventing OPC from differentiating into mature oligodendrocyte via Wnt/β-catenin signaling activation.
Collapse
Affiliation(s)
- Zixuan Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Zhaowei Feng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ziqi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Yaru Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Kexin Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Lei Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China.
| |
Collapse
|
19
|
C1q tumor necrosis factor-related protein 1: a promising therapeutic target for atherosclerosis. J Cardiovasc Pharmacol 2021; 79:273-280. [PMID: 34840267 DOI: 10.1097/fjc.0000000000001186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Atherosclerosis serves as the pathological basis of most cardiovascular and cerebrovascular diseases. C1q tumor necrosis factor-related protein (CTRP1) is a 35-kDa glycoprotein synthesized by various tissues and cells, such as adipose tissue and macrophages. As an adiponectin paralog, CTRP1 signals through adiponectin receptor 1 (AdipoR1) and participates in a variety of pathophysiological processes. Circulating CTRP1 levels are significantly increased in patients with coronary artery disease. Importantly, CTRP1 was shown to accelerate the development of atherosclerosis by promoting vascular inflammation, macrophage foam cell formation and endothelial barrier dysfunction. This review focused on recent advances regarding the role of CTRP1 in atherogenesis with an emphasis on its potential as a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases.
Collapse
|
20
|
Meng Z, Liang H, Zhao J, Gao J, Liu C, Ma X, Liu J, Liang B, Jiao X, Cao J, Wang Y. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci 2021; 284:119935. [PMID: 34508760 DOI: 10.1016/j.lfs.2021.119935] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Atherosclerotic vascular disease remains the principal cause of death and disability among patients with type 2 diabetes. Unfortunately, the problem is not adequately resolved by therapeutic strategies with currently available drugs or approaches that solely focus on optimal glycemic control. To identify the key contributors and better understand the mechanism of diabetic atherosclerotic vascular disease, we aimed to elucidate the key genetic characteristics and pathological pathways in atherosclerotic vascular disease through nonbiased bioinformatics analysis and subsequent experimental demonstration and exploration in diabetic atherosclerotic vascular disease. METHODS AND RESULTS Sixty-eight upregulated and 23 downregulated genes were identified from the analysis of gene expression profiles (GSE30169 and GSE6584). A comprehensive bioinformatic assay further identified that ferroptosis, a new type of programmed cell death and HMOX1 (a gene that encodes heme oxygenase), were vital factors in atherosclerotic vascular disease. We further demonstrated that diabetes significantly increased ferroptosis and HMOX1 levels compared to normal controls. Importantly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated diabetic atherosclerosis, suggesting the causative role of ferroptosis in diabetic atherosclerosis development. At the cellular level, Fer-1 ameliorated high glucose high lipid-induced lipid peroxidation and downregulated ROS production. More importantly, HMOX1 knockdown attenuated Fe2+ overload, reduced iron content and ROS, and alleviated lipid peroxidation, which led to a reduction in ferroptosis in diabetic human endothelial cells. CONCLUSIONS We demonstrated that HMOX1 upregulation is responsible for the increased ferroptosis in diabetic atherosclerosis development, suggesting that HMOX1 may serve as a potential therapeutic or drug development target for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Zhijun Meng
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China; Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Hongping Liang
- Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Jia Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Caihong Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Jing Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Liang
- Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiangying Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jimin Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
21
|
Liu L, Huang S, Xu M, Gong Y, Li D, Wan C, Wu H, Tang Q. Isoquercitrin protects HUVECs against high glucose‑induced apoptosis through regulating p53 proteasomal degradation. Int J Mol Med 2021; 48:122. [PMID: 33982778 PMCID: PMC8121554 DOI: 10.3892/ijmm.2021.4955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
High glucose (HG)-induced endothelial apoptosis serves an important role in the vascular dysfunction associated with diabetes mellitus (DM). It has been reported that isoquercitrin (IQC), a flavonoid glucoside, possesses an anti-DM effect, but the mechanism requires further investigation. The present study investigated the effect of IQC against HG-induced apoptosis in human umbilical vein endothelial cells (HUVECs) and explored its molecular mechanism. HUVECs were treated with 5 or 30 mM glucose for 48 h. Endothelial cell viability was monitored using the Cell Counting Kit-8 assay. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was observed by TUNEL staining and flow cytometry. Western blotting was used for the analysis of apoptosis-associated proteins Bax, Bcl-2, cleaved (C)-caspase3, total-caspase3, p53 and phosphorylated p53. Reverse transcription-quantitative PCR was used to analyze the mRNA expression levels of Bax, Bcl-2 and p53. Immunofluorescence staining was utilized to detect the expression levels and distribution of p53 and ubiquitin specific peptidase 10 (USP10) in HUVECs. The results revealed that IQC significantly attenuated HG-induced endothelial apoptosis, as shown by decreased apoptotic cells observed by TUNEL, JC-1 staining and flow cytometry. Moreover, under HG stress, IQC treatment markedly inhibited the increased expression levels of the pro-apoptotic proteins p53, Bax and C-caspase3, and increased the expression levels of the anti-apoptotic protein Bcl-2 in HUVECs. However, the anti-apoptotic effect of IQC against HG was partially blunted by increasing p53 protein levels in vitro. IQC influenced the mRNA expression levels of Bax and Bcl-2 in response to HG, but it did not affect the transcription of p53. Notably, IQC inhibited the HG-induced phosphorylation of p53 at Ser15 and the nuclear transport of USP10, destabilizing p53 and increasing the proteasomal degradation of the p53 protein. The current findings revealed that IQC exerted a protective effect against the HG-induced apoptosis of endothelial cells by regulating the proteasomal degradation of the p53 protein, suggesting that IQC may be used as a novel therapeutic compound to ameliorate DM-induced vascular complications.
Collapse
Affiliation(s)
- Libo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sihui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Gong
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunxia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
22
|
C1q Complement/Tumor Necrosis Factor-Associated Proteins in Cardiovascular Disease and COVID-19. Proteomes 2021; 9:proteomes9010012. [PMID: 33804408 PMCID: PMC7931048 DOI: 10.3390/proteomes9010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
With continually improving treatment strategies and patient care, the overall mortality of cardiovascular disease (CVD) has been significantly reduced. However, this success is a double-edged sword, as many patients who survive cardiovascular complications will progress towards a chronic disorder over time. A family of adiponectin paralogs designated as C1q complement/tumor necrosis factor (TNF)-associated proteins (CTRPs) has been found to play a role in the development of CVD. CTRPs, which are comprised of 15 members, CTRP1 to CTRP15, are secreted from different organs/tissues and exhibit diverse functions, have attracted increasing attention because of their roles in maintaining inner homeostasis by regulating metabolism, inflammation, and immune surveillance. In particular, studies indicate that CTRPs participate in the progression of CVD, influencing its prognosis. This review aims to improve understanding of the role of CTRPs in the cardiovascular system by analyzing current knowledge. In particular, we examine the association of CTRPs with endothelial cell dysfunction, inflammation, and diabetes, which are the basis for development of CVD. Additionally, the recently emerged novel coronavirus (COVID-19), officially known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has been found to trigger severe cardiovascular injury in some patients, and evidence indicates that the mortality of COVID-19 is much higher in patients with CVD than without CVD. Understanding the relationship of CTRPs and the SARS-CoV-2-related damage to the cardiovascular system, as well as the potential mechanisms, will achieve a profound insight into a therapeutic strategy to effectively control CVD and reduce the mortality rate.
Collapse
|
23
|
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Birmingham Veterans Affairs Medical Center, USA; Research Department, Birmingham Veterans Affairs Medical Center, USA
| | - Christopher G Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cellular Biology and Anatomy, LSU Health Shreveport, USA.
| |
Collapse
|