1
|
Li J, Roshelli Baker J, Aglago EK, Zhao Z, Jiao L, Freisling H, Hughes DJ, Eriksen AK, Tjønneland A, Severi G, Katzke V, Kaaks R, Schulze MB, Masala G, Pala V, Pasanisi F, Tumino R, Padroni L, Vermeulen RCH, Gram IT, Braaten T, Jakszyn PG, Sánchez MJ, Gómez-Gómez JH, Moreno-Iribas C, Amiano P, Papier K, Weiderpass E, Huybrechts I, Heath AK, Schalkwijk C, Jenab M, Fedirko V. Pre-diagnostic plasma advanced glycation end-products and soluble receptor for advanced glycation end-products and mortality in colorectal cancer patients. Int J Cancer 2024; 155:1982-1995. [PMID: 39057841 DOI: 10.1002/ijc.35114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 07/28/2024]
Abstract
Advanced glycation end-products (AGEs), formed endogenously or obtained exogenously from diet, may contribute to chronic inflammation, intracellular signaling alterations, and pathogenesis of several chronic diseases including colorectal cancer (CRC). However, the role of AGEs in CRC survival is less known. The associations of pre-diagnostic circulating AGEs and their soluble receptor (sRAGE) with CRC-specific and overall mortality were estimated using multivariable-adjusted Cox proportional hazards regression among 1369 CRC cases in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Concentrations of major plasma AGEs, Nε-[carboxy-methyl]lysine (CML), Nε-[carboxy-ethyl]lysine (CEL) and Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1), were measured using ultra-performance liquid chromatography mass-spectrometry. sRAGE was assessed by enzyme-linked immunosorbent assay. Over a mean follow-up period of 96 months, 693 deaths occurred of which 541 were due to CRC. Individual and combined AGEs were not statistically significantly associated with CRC-specific or overall mortality. However, there was a possible interaction by sex for CEL (Pinteraction = .05). Participants with higher sRAGE had a higher risk of dying from CRC (HRQ5vs.Q1 = 1.67, 95% CI: 1.21-2.30, Ptrend = .02) or any cause (HRQ5vs.Q1 = 1.38, 95% CI: 1.05-1.83, Ptrend = .09). These associations tended to be stronger among cases with diabetes (Pinteraction = .03) and pre-diabetes (Pinteraction <.01) before CRC diagnosis. Pre-diagnostic AGEs were not associated with CRC-specific and overall mortality in individuals with CRC. However, a positive association was observed for sRAGE. Our findings may stimulate further research on the role of AGEs and sRAGE in survival among cancer patients with special emphasis on potential effect modifications by sex and diabetes.
Collapse
Affiliation(s)
- Jinze Li
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jacqueline Roshelli Baker
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Elom K Aglago
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Zhiwei Zhao
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Li Jiao
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Anne Kirstine Eriksen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Gianluca Severi
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network, Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Fabrizio Pasanisi
- Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUS, Ragusa, Italy
| | - Lisa Padroni
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, and Center for Cancer Prevention (CPO), Turin, Italy
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Inger T Gram
- Faculty of Health Sciences, Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tonje Braaten
- Faculty of Health Sciences, Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Paula Gabriela Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Maria-José Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jesús-Humberto Gómez-Gómez
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Conchi Moreno-Iribas
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Pilar Amiano
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- BioGipuzkoa (BioDonostia) Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Casper Schalkwijk
- Laboratory of Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, The Netherlands
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Veronika Fedirko
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Yoon T, Ahn SS, Ha JW, Ko E, Song JJ, Park YB, Lee SW. Serum Soluble Receptors for Advanced Glycation End-Products May Predict Mortality in Microscopic Polyangiitis and Granulomatosis with Polyangiitis. Yonsei Med J 2024; 65:651-660. [PMID: 39439169 PMCID: PMC11519131 DOI: 10.3349/ymj.2023.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE This study aimed to investigate whether the serum extracellular newly identified receptor for advanced glycation end products binding protein (EN-RAGE) and the soluble form of RAGE (sRAGE) measured at diagnosis are associated with all-cause mortality in patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA). MATERIALS AND METHODS Serum EN-RAGE and sRAGE were measured in 75 immunosuppressive drug-naïve MPA and GPA patients using an immunoassay, with their clinical and laboratory data reviewed. The optimal cut-off point of EN-RAGE and sRAGE was calculated by finding the threshold with the maximum sum of sensitivity and specificity. In addition, the least absolute shrinkage and selection operator regression was adopted to select variables included in the multivariable Cox proportional hazards (PH) regression model. RESULTS The median age of the patients was 67.0 years, and 34% were male. Neither serum EN-RAGE nor sRAGE at diagnosis was correlated with the Birmingham Vasculitis Activity Score. Furthermore, no correlation was observed between serum EN-RAGE and sRAGE. Deceased patients had significantly lower serum EN-RAGE and higher serum sRAGE at diagnosis compared to surviving patients. Patients with serum EN-RAGE at diagnosis ≤84.37 ng/mL and serum sRAGE at diagnosis ≥1.82 ng/mL showed significantly lower survival probabilities compared to those without. In multivariable Cox PH regression model, only serum sRAGE at diagnosis ≥1.82 ng/mL, rather than serum EN-RAGE at diagnosis ≤84.37 ng/mL, was independently associated with all-cause mortality (hazard ratio 7.094). CONCLUSION This study is the first to demonstrate that serum sRAGE at diagnosis may independently predict all-cause mortality during follow-up in patients with MPA and GPA.
Collapse
Affiliation(s)
- Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Jang Woo Ha
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhee Ko
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Zglejc-Waszak K, Jozwik M, Thoene M, Wojtkiewicz J. Role of Receptor for Advanced Glycation End-Products in Endometrial Cancer: A Review. Cancers (Basel) 2024; 16:3192. [PMID: 39335163 PMCID: PMC11430655 DOI: 10.3390/cancers16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. EC is associated with metabolic disorders that may promote non-enzymatic glycation and activate the receptor for advanced glycation end-products (RAGE) signaling pathways. Thus, we assumed that RAGE and its ligands may contribute to EC. Of particular interest is the interaction between diaphanous-related formin 1 (Diaph1) and RAGE during the progression of human cancers. Diaph1 is engaged in the proper organization of actin cytoskeletal dynamics, which is crucial in cancer invasion, metastasis, angiogenesis, and axonogenesis. However, the detailed molecular role of RAGE in EC remains uncertain. In this review, we discuss epigenetic factors that may play a key role in the RAGE-dependent endometrial pathology. We propose that DNA methylation may regulate the activity of the RAGE pathway in the uterus. The accumulation of negative external factors, such as hyperglycemia, inflammation, and oxidative stress, may interfere with the DNA methylation process. Therefore, further research should take into account the role of epigenetic mechanisms in EC progression.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Anatomy, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Żołnierska 14C Str., 10-561 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
4
|
Zhang J, Liu J, Yin J, Jiang X, Chen L, Zeng X, Guo C. Soluble RAGE attenuates myocardial I/R injury by suppressing interleukin-6. Am J Med Sci 2024:S0002-9629(24)01395-8. [PMID: 39111590 DOI: 10.1016/j.amjms.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Inflammatory responses play a central role in myocardial ischemia/reperfusion (I/R) injury. Previous studies have demonstrated that the receptor for advanced glycation end-products (RAGE) is involved in the pro-inflammatory process of myocardial I/R injury by binding to diverse ligands. Thus, the inhibitory effects of soluble receptor for advanced glycation end-products (sRAGE), a decoy receptor for RAGE, on myocardial I/R injury may be associated with a reduced inflammatory state. METHODS In this study, plasma levels of several inflammatory mediators were measured in patients with acute myocardial infarction (AMI) and I/R-treated cardiomyocyte-specific sRAGE knock-in (sRAGE-CKI) mice. Cardiac function, infarct size, and macrophage phenotypes were examined and documented in mouse hearts. RESULTS We enrolled 38 patients diagnosed with myocardial infarction (AMI) [mean age, 58.81 ± 10.40 years] and 26 control with negative coronary arteriographic findings [mean age, 61.84 ± 8.57 years]. The results showed that sRAGE levels were significantly elevated in the AMI patient group compared with the control group (1905.00 [1462.50, 2332.5] vs 1570.00 [1335.00, 1800.00] pg/mL, p < 0.05), which were negatively correlated with interleukin (IL)-1, IL-6, and IL-8 levels. Cardiac-specific overexpression of sRAGE dramatically improved cardiac function and reduced infarct size during myocardial I/R. Furthermore, sRAGE overexpression decreased the plasma IL-6 levels and pro-inflammatory iNOS+ M1-macrophages, and increased CD206+ M2-macrophages in the mouse hearts. CONCLUSIONS Our findings suggested that sRAGE protects the heart from myocardial I/R injury by inhibiting the infiltration of pro-inflammatory M1-macrophages, and subsequently decreasing IL-6 secretion.
Collapse
Affiliation(s)
- Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China
| | - Jian Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China
| | - Jiming Yin
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, No. 8 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing 100069, PR China
| | - Xue Jiang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China
| | - Lu Chen
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing 100069, PR China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China.
| |
Collapse
|
5
|
Zhou M, Zhang Y, Shi L, Li L, Zhang D, Gong Z, Wu Q. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions - A review. Pharmacol Res 2024; 206:107282. [PMID: 38914383 DOI: 10.1016/j.phrs.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Chronic inflammation is a common foundation for the development of many non-communicable diseases, particularly diabetes, atherosclerosis, and tumors. The activation of the axis involving Advanced Glycation End products (AGEs) and their receptor RAGE is a key promotive factor in the chronic inflammation process, influencing the pathological progression of these diseases. The accumulation of AGEs in the body results from an increase in glycation reactions and oxidative stress, especially pronounced in individuals with diabetes. By binding to RAGE, AGEs activate signaling pathways such as NF-κB, promoting the release of inflammatory factors, exacerbating cell damage and inflammation, and further advancing the formation of atherosclerotic plaques and tumor development. This review will delve into the molecular mechanisms by which the AGEs-RAGE axis activates chronic inflammation in the aforementioned diseases, as well as strategies to inhibit the AGEs-RAGE axis, aiming to slow or halt the progression of chronic inflammation and related diseases. This includes the development of AGEs inhibitors, RAGE antagonists, and interventions targeting upstream and downstream signaling pathways. Additionally, the early detection of AGEs levels and RAGE expression as biomarkers provides new avenues for the prevention and treatment of diabetes, atherosclerosis, and tumors.
Collapse
Affiliation(s)
- Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yuyan Zhang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430068, PR China
| | - Liangchao Li
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Duo Zhang
- Hubei Standardization and Quality Institute, Wuhan,Hubei 430068, PR China
| | - Zihao Gong
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
6
|
Memelink RG, Njemini R, de Bos Kuil MJJ, Wopereis S, de Vogel-van den Bosch J, Schoufour JD, Tieland M, Weijs PJM, Bautmans I. The effect of a combined lifestyle intervention with and without protein drink on inflammation in older adults with obesity and type 2 diabetes. Exp Gerontol 2024; 190:112410. [PMID: 38527636 DOI: 10.1016/j.exger.2024.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Chronic low-grade inflammatory profile (CLIP) is one of the pathways involved in type 2 diabetes (T2D). Currently, there is limited evidence for ameliorating effects of combined lifestyle interventions on CLIP in type 2 diabetes. We investigated whether a 13-week combined lifestyle intervention, using hypocaloric diet and resistance exercise plus high-intensity interval training with or without consumption of a protein drink, affected CLIP in older adults with T2D. METHODS In this post-hoc analysis of the PROBE study 114 adults (≥55 years) with obesity and type 2 (pre-)diabetes had measurements of C-reactive protein (CRP), pro-inflammatory cytokines interleukin (IL)-6, tumor-necrosis-factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1, anti-inflammatory cytokines IL-10, IL-1 receptor antagonist (RA), and soluble tumor-necrosis-factor receptor (sTNFR)1, adipokines leptin and adiponectin, and glycation biomarkers carboxymethyl-lysine (CML) and soluble receptor for advanced glycation end products (sRAGE) from fasting blood samples. A linear mixed model was used to evaluate change in inflammatory biomarkers after lifestyle intervention and effect of the protein drink. Linear regression analysis was performed with parameters of body composition (by dual-energy X-ray absorptiometry) and parameters of insulin resistance (by oral glucose tolerance test). RESULTS There were no significant differences in CLIP responses between the protein and the control groups. For all participants combined, IL-1RA, leptin and adiponectin decreased after 13 weeks (p = 0.002, p < 0.001 and p < 0.001), while ratios TNF-α/IL-10 and TNF-α/IL-1RA increased (p = 0.003 and p = 0.035). CRP increased by 12 % in participants with low to average CLIP (pre 1.91 ± 0.39 mg/L, post 2.13 ± 1.16 mg/L, p = 0.006) and decreased by 36 % in those with high CLIP (pre 5.14 mg/L ± 1.20, post 3.30 ± 2.29 mg/L, p < 0.001). Change in leptin and IL-1RA was positively associated with change in fat mass (β = 0.133, p < 0.001; β = 0.017, p < 0.001) and insulin resistance (β = 0.095, p = 0.024; β = 0.020, p = 0.001). Change in lean mass was not associated with any of the biomarkers. CONCLUSION 13 weeks of combined lifestyle intervention, either with or without protein drink, reduced circulating adipokines and anti-inflammatory cytokine IL-1RA, and increased inflammatory ratios TNF-α/IL-10 and TNF-α/IL-1RA in older adults with obesity and T2D. Effect on CLIP was inversely related to baseline inflammatory status.
Collapse
Affiliation(s)
- Robert G Memelink
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands; Amsterdam Movement Sciences research institute, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Gerontology Department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Rose Njemini
- Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Minse J J de Bos Kuil
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands
| | - Suzan Wopereis
- Research group Microbiology & Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, the Netherlands
| | | | - Josje D Schoufour
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands
| | - Michael Tieland
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands
| | - Peter J M Weijs
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands; Amsterdam Movement Sciences research institute, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Department of Nutrition and Dietetics, Amsterdam University Medical Centers, VU University, 1081 HV Amsterdam, the Netherlands
| | - Ivan Bautmans
- Gerontology Department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Department of Geriatrics, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium; SOMT University of Physiotherapy, 3821 BN Amersfoort, the Netherlands
| |
Collapse
|
7
|
Bridglalsingh S, Archer-Hartmann S, Azadi P, Barbier de La Serre C, Remillard RL, Sunvold GD, Bartges JW. Association of four differently processed diets with plasma and urine advanced glycation end products and serum soluble receptor for advanced glycation end products concentration in healthy dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:735-751. [PMID: 38279966 PMCID: PMC11327896 DOI: 10.1111/jpn.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/29/2024]
Abstract
Advanced glycation end products (AGEs), formed via the Maillard reaction (MR) during processing of foods, have been implicated in inflammatory and degenerative diseases in human beings. Cellular damage is primarily caused by AGE binding with the receptor for AGEs (RAGE) on cell membranes. An isoform of RAGE, soluble RAGE (sRAGE), acts as a decoy receptor binding circulating AGEs preventing cellular activation. Pet food manufacturing involves processing methods similar to human food processing that may increase dietary AGEs (dAGEs). We hypothesized that diet, plasma and urine AGEs, and serum sRAGE concentrations would differ between thermally processed diets. This study examined the association of four differently processed diets: ultra-processed canned wet food (WF); ultra-processed dry food (DF); moderately processed air-dried food (ADF) and minimally processed mildly cooked food (MF) on total plasma levels of the AGEs, carboxymethyllysine (CML), carboxyethyllysine (CEL), methylglyoxal hydroimidazolone-1, glyoxal hydroimidazolone-1, argpyrimidine, urine CML, CEL and lysinoalanine, and serum sRAGE concentration. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used to measure AGEs. sRAGE concentration was measured using a commercial canine-specific enzyme-linked immunosorbent assay kit. Total dAGEs (mg/100 kcal as fed) were higher in WF than in other diets. Plasma total AGEs (nM/50 μL) were significantly higher with WF, with no difference found between DF, ADF, and MF; however, ADF was significantly higher than MF. Urine CML (nmol AGEs/mmol creatinine) was significantly higher with DF than with WF and MF. There were no significant differences in total urine AGEs or serum sRAGE concentration between diets. In conclusion, different methods of processing pet foods are associated with varied quantities of AGEs influencing total plasma AGE concentration in healthy dogs. Serum sRAGE concentration did not vary across diets but differences in total AGE/sRAGE ratio were observed between MF and WF and, ADF and DF.
Collapse
Affiliation(s)
- Siobhan Bridglalsingh
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia, USA
| | - Stephanie Archer-Hartmann
- Analytical Services, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Analytical Services, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | | | - Joseph W Bartges
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Guo W, Luo J, Zhao S, Li L, Xing W, Gao R. The critical role of RAGE in severe influenza infection: A target for control of inflammatory response in the disease. Clin Immunol 2024; 262:110178. [PMID: 38460892 DOI: 10.1016/j.clim.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.
Collapse
Affiliation(s)
- Wenhui Guo
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junhao Luo
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Song Zhao
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Li
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenge Xing
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Rongbao Gao
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
9
|
Yang C, Geng X, Wan G, Song L, Wang Y, Zhou G, Wang J, Pan Z. Transcriptomic and proteomic investigation of the ameliorative effect of total polyphenolic glycoside extract on hepatic fibrosis in Lamiophlomis rotata Kudo via the AGE/RAGE pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117720. [PMID: 38211823 DOI: 10.1016/j.jep.2024.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-β1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.
Collapse
Affiliation(s)
- Congwen Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Xiaoyu Geng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Guoguo Wan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Guoying Zhou
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
| | - Jianwei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.
| |
Collapse
|
10
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
11
|
Fricke-Galindo I, García-Carmona S, Alanis-Ponce J, Pérez-Rubio G, Ramírez-Venegas A, Montiel-Lopez F, Robles-Hernández R, Hernández-Zenteno RDJ, Valencia-Pérez Rea D, Bautista-Becerril B, Ramírez-Díaz ME, Cruz-Vicente F, Martínez-Gómez MDL, Sansores R, Falfán-Valencia R. sRAGE levels are decreased in plasma and sputum of COPD secondary to biomass-burning smoke and tobacco smoking: Differences according to the rs3134940 AGER variant. Heliyon 2024; 10:e28675. [PMID: 38571598 PMCID: PMC10988041 DOI: 10.1016/j.heliyon.2024.e28675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
The receptor for advanced glycation end products (RAGE) and its gene (AGER) have been related to lung injury and inflammatory diseases, including chronic obstructive pulmonary disease (COPD). We aimed to evaluate the association of rs2071288, rs3134940, rs184003, and rs2070600 AGER single-nucleotide variants and the soluble-RAGE plasma and sputum levels with COPD secondary to biomass-burning smoke (BBS) and tobacco smoking. Four groups, including 2189 subjects, were analyzed: COPD secondary to BBS exposure (COPD-BBS, n = 342), BBS-exposed subjects without COPD (BBES, n = 774), tobacco smoking-induced COPD (COPD-TS, n = 434), and smokers without COPD (SWOC, n = 639). Allelic discrimination assays determined the AGER variants. The sRAGE was quantified in plasma (n = 240) and induced-sputum (n = 72) samples from a subgroup of patients using the ELISA technique. In addition, a meta-analysis was performed for the association of rs2070600 with COPD susceptibility. None of the studied genetic variants were found to be associated with COPD-BBS or COPD-TS. A marginal association was observed for the rs3134940 with COPD-BBS (p = 0.066). The results from the meta-analysis, including six case-control studies (n = 4149 subjects), showed a lack of association of rs2070600 with COPD susceptibility (p = 0.681), probably due to interethnic differences. The sRAGE plasma levels were lower in COPD-BBS compared to BBS and in COPD-TS compared to SWOC. The sRAGE levels were also lower in sputum samples from COPD-BBS than BBES. Subjects with rs3134940-TC genotypes exhibit lower sRAGE plasma levels than TT subjects, mainly from the COPD-BBS and SWOC groups. The AGER variants were not associated with COPD-BBS nor COPD-TS, but the sRAGE plasma and sputum levels are related to both COPD-BBS and COPD-TS and are influenced by the rs3134940 variant.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Salvador García-Carmona
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Francisco Montiel-Lopez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Robinson Robles-Hernández
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Rafael de Jesús Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Daniela Valencia-Pérez Rea
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - María Elena Ramírez-Díaz
- Coordinación de Vigilancia Epidemiológica, Jurisdicción 06 Sierra, Tlacolula de Matamoros Oaxaca, Servicios de Salud de Oaxaca, Oaxaca, 70400, Mexico
| | - Filiberto Cruz-Vicente
- Internal Medicine Department, Hospital Civil Aurelio Valdivieso, Servicios de Salud de Oaxaca, Oaxaca, 68050, Mexico
| | | | - Raúl Sansores
- Clínica de Enfermedades Respiratorias, Fundación Médica Sur, Mexico City, 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| |
Collapse
|
12
|
Wei Y, Ren X, Yuan Z, Hong J, Wang T, Chen W, Xu Y, Ding J, Lin J, Jiang W, Zhang P, Wu Q. Trauma diagnostic-related target proteins and their detection techniques. Expert Rev Mol Med 2024; 26:e7. [PMID: 38602081 PMCID: PMC11062145 DOI: 10.1017/erm.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 04/12/2024]
Abstract
Trauma is a significant health issue that not only leads to immediate death in many cases but also causes severe complications, such as sepsis, thrombosis, haemorrhage, acute respiratory distress syndrome and traumatic brain injury, among trauma patients. Target protein identification technology is a vital technique in the field of biomedical research, enabling the study of biomolecular interactions, drug discovery and disease treatment. It plays a crucial role in identifying key protein targets associated with specific diseases or biological processes, facilitating further research, drug design and the development of treatment strategies. The application of target protein technology in biomarker detection enables the timely identification of newly emerging infections and complications in trauma patients, facilitating expeditious medical interventions and leading to reduced post-trauma mortality rates and improved patient prognoses. This review provides an overview of the current applications of target protein identification technology in trauma-related complications and provides a brief overview of the current target protein identification technology, with the aim of reducing post-trauma mortality, improving diagnostic efficiency and prognostic outcomes for patients.
Collapse
Affiliation(s)
- YiLiu Wei
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Xiaohan Ren
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Zhitao Yuan
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jie Hong
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Tao Wang
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Weizhi Chen
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Yuqing Xu
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jinwang Ding
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jun Lin
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Wenqian Jiang
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Peng Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Qiaoyi Wu
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| |
Collapse
|
13
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
14
|
Ozkan B, Altuner Torun Y, Karakukcu C, Celik B. Soluble Receptor for Advanced Glycation End Products (sRAGE) Level and Its Prognostic Significance in Children with Acute Lymphoblastic Leukemia. CHILDREN (BASEL, SWITZERLAND) 2024; 11:176. [PMID: 38397288 PMCID: PMC10887301 DOI: 10.3390/children11020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
Acute lymphoblastic leukemias are the most common malignancies in childhood. Although its etiology is still unclear, it is thought that disorders in oxidative stress metabolism may contribute to leukemogenesis. Advanced glycation end products (AGEs) are formed as a result of the non-enzymatic binding of sugars to biomolecules. Oxidation reactions are triggered through AGE-Receptor (RAGE) interaction, resulting in the formation of reactive oxygen species. These can play crucial roles in cancer pathogenesis and leukemogenesis. It is thought that sRAGE (soluble RAGE) is the end product of glycation and circulates freely in the circulation by binding to RAGE ligands. We investigate novel leukemia biomarkers and focus on soluble RAGE (sRAGE) for acute lymphoblastic leukemia (ALL) diagnosis and prognosis. Thirty children (1-17 years) diagnosed with ALL were included in the study. Patients were divided into standard, medium, and high risk groups according to the Berlin-Frankfurt-Münster (BFM) treatment protocol. Patients were evaluated twice; at the time of diagnosis and at the sixth month of remission. sRAGE and blood parameters were compared with healthy controls (n = 30, 1-17 years). The sRAGE levels in ALL patients at diagnosis (138.7 ± 177.3 pg/mL) were found to be significantly higher than they were during the sixth month of remission (17.6 ± 21.1 pg/mL) and in healthy controls (22.2 ± 23.7 pg/mL). The cut-off value of the sRAGE level for the diagnosis of ALL was found to be 45 pg/mL in ROC analysis (sensitivity: 73.3%, specificity: 86.7%, AUC: 0.681). At the same time, the sRAGE level was found to be significantly higher in T-ALL patients (490.9 ± 236.9 pg/mL) than in B-ALL patients (84.5 ± 82.7 pg/mL). No significant difference was found in terms of the sRAGE level between standard (45.8± 33.1 pg/mL), medium (212 ± 222.1 pg/mL), and high (143.9 ± 111.5 pg/mL) risk group ALL patients classified according to the BFM protocol. Despite the fact that this was a small, single-center study, our findings highlight the potential use of sRAGE as a biomarker for diagnosing ALL and assessing response to treatment.
Collapse
Affiliation(s)
- Busra Ozkan
- Department of Pediatrics, Beylikduzu Public Hospital, Istanbul 34500, Turkey
| | - Yasemin Altuner Torun
- The Faculty of Medicine, Department of Child Hematology and Oncology, Istinye University, Istanbul 34510, Turkey
| | - Cigdem Karakukcu
- The Faculty of Medicine, Department of Biochemistry, Erciyes University, Kayseri 38039, Turkey
| | - Binnaz Celik
- Department of Pediatrics, Kayseri City Education and Research Hospital, Kayseri 38080, Turkey
| |
Collapse
|
15
|
Yang B, Zhang Z, Liu L, Li Z, Lin H. Investigation of the allergenicity alterations of shrimp tropomyosin as glycated by glucose and maltotriose containing advanced glycation end products. Food Funct 2023; 14:10941-10954. [PMID: 38009324 DOI: 10.1039/d3fo04440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Tropomyosin (TM) is the major allergen in shrimp that is known to be the primary trigger for shrimp-induced food allergy. Our previous reports suggest that glycation could reduce the allergenicity of TM and the reduction of allergenicity is largely dependent on the sources of saccharides. This investigation aimed to investigate the glycation of TM by glucose and maltotriose as well as the effects of glycation on the allergenicity of TM. Compared to TM, the IgG-binding capacity and IgE-binding capacity of tropomyosin glycated by glucose (TM-G) was greatly reduced with a longer glycation time, the release of allergic mediators from RBL-2H3 mast cells was reduced in a time-dependent manner, and weaker allergic reactions were induced in BALB/c mice. Conversely, tropomyosin glycated by maltotriose (TM-MTS) exhibited a stronger allergenicity after 48 hours of glycation due to the generation of neoallergens that were derived from the advanced glycation end products (AGEs). In conclusion, glucose could be used to desensitize the shrimp TM-induced food allergy via glycation, which could significantly reduce the allergenicity and alleviate allergic symptoms. This work could provide a novel approach to reduce the allergenicity of shrimp tropomyosin and prevent the shrimp tropomyosin-induced food allergy.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Ziye Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Lichun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Zhenxing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
16
|
Wang S, Baldi BG. Editorial: Reviews in pulmonary medicine 2022. Front Med (Lausanne) 2023; 10:1296581. [PMID: 38111696 PMCID: PMC10726117 DOI: 10.3389/fmed.2023.1296581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Affiliation(s)
- Shuibang Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Bruno Guedes Baldi
- Pulmonary Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
17
|
St. Sauver JL, Weston SA, Atkinson EJ, Mc Gree ME, Mielke MM, White TA, Heeren AA, Olson JE, Rocca WA, Palmer AK, Cummings SR, Fielding RA, Bielinski SJ, LeBrasseur NK. Biomarkers of cellular senescence and risk of death in humans. Aging Cell 2023; 22:e14006. [PMID: 37803875 PMCID: PMC10726868 DOI: 10.1111/acel.14006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
A robust and heterogenous secretory phenotype is a core feature of most senescent cells. In addition to mediators of age-related pathology, components of the senescence associated secretory phenotype (SASP) have been studied as biomarkers of senescent cell burden and, in turn, biological age. Therefore, we hypothesized that circulating concentrations of candidate senescence biomarkers, including chemokines, cytokines, matrix remodeling proteins, and growth factors, could predict mortality in older adults. We assessed associations between plasma levels of 28 SASP proteins and risk of mortality over a median follow-up of 6.3 years in 1923 patients 65 years of age or older with zero or one chronic condition at baseline. Overall, the five senescence biomarkers most strongly associated with an increased risk of death were GDF15, RAGE, VEGFA, PARC, and MMP2, after adjusting for age, sex, race, and the presence of one chronic condition. The combination of biomarkers and clinical and demographic covariates exhibited a significantly higher c-statistic for risk of death (0.79, 95% confidence interval (CI): 0.76-0.82) than the covariates alone (0.70, CI: 0.67-0.74) (p < 0.001). Collectively, these findings lend further support to biomarkers of cellular senescence as informative predictors of clinically important health outcomes in older adults, including death.
Collapse
Affiliation(s)
| | - Susan A. Weston
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | | | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Thomas A. White
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Amanda A. Heeren
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Janet E. Olson
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Walter A. Rocca
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Women's Health Research Center, Mayo ClinicRochesterMinnesotaUSA
| | - Allyson K. Palmer
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of Hospital Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Steven R. Cummings
- Departments of Medicine, Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Research Institute, California Pacific Medical CenterSan FranciscoCaliforniaUSA
| | - Roger A. Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | | | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Paul F. Glenn Center for the Biology of Aging ResearchMayo ClinicRochesterMinnesotaUSA
- Department of Physical Medicine and RehabilitationMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
18
|
Zhao Y, Dhru U, Fleischmann E, Mostafa E, Al-Suqi M, Conaway MR, Krupnick AS, Linden J, Rabin J, Lau CL. Regadenoson Reduces Soluble Receptor for Advanced Glycation End-Products in Lung Recipients. Ann Thorac Surg 2023; 116:1150-1158. [PMID: 36921749 DOI: 10.1016/j.athoracsur.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The selective adenosine A2A receptor (A2AR) agonist regadenoson reduces inflammation due to lung ischemia-reperfusion injury (IRI). The objective of this study was to investigate molecular and cellular mechanisms by which regadenoson reduces IRI in lung transplant recipients. METHODS Fourteen human lung transplant recipients were infused for 12 hours with regadenoson and 7 more served as untreated controls. Plasma levels of high mobility group box 1 and its soluble receptor for advanced glycation end-products (sRAGE) were measured by Luminex. Matrix metalloproteinase (MMP) 2 and 9 were measured by gelatin zymography. Tissue inhibitor of metalloproteinase 1 was measured by mass spectroscopy. A2AR expression on leukocytes was analyzed by flow cytometry. MMP-9-mediated cleavage of RAGE was evaluated using cultured macrophages in vitro. RESULTS Regadenoson treatment during lung transplantation significantly reduced levels of MMP-9 (P < .05), but not MMP-2, and elevated levels of tissue inhibitor of metalloproteinase 1 (P < .05), an endogenous selective inhibitor of MMP-9. Regadenoson infusion significantly reduced plasma levels of sRAGE (P < .05) during lung reperfusion compared with control subjects. A2AR expression was highest on invariant natural killer T cells and higher on monocytes than other circulating immune cells (P < .05). The shedding of RAGE from cultured monocytes/macrophages was increased by MMP-9 stimulation and reduced by an MMP inhibitor or by A2AR agonists, regadenoson or ATL146e. CONCLUSIONS In vivo and in vitro studies suggest that A2AR activation reduces sRAGE in part by inhibiting MMP-9 production by monocytes/macrophages. These results suggest a novel molecular mechanism by which A2AR agonists reduce primary graft dysfunction.
Collapse
Affiliation(s)
- Yunge Zhao
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland
| | - Urmil Dhru
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland
| | - Emily Fleischmann
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland
| | - Ezzat Mostafa
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland
| | - Manal Al-Suqi
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland
| | - Mark R Conaway
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Alexander S Krupnick
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland
| | - Joel Linden
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Joseph Rabin
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland
| | - Christine L Lau
- Thoracic Division, Department of Surgery, University of Maryland Baltimore, Baltimore, Maryland.
| |
Collapse
|
19
|
Sopasi F, Spyropoulou I, Kourti M, Vasileiadis S, Tripsianis G, Galazios G, Koutlaki N. Oxidative stress and female infertility: the role of follicular fluid soluble receptor of advanced glycation end-products (sRAGE) in women with endometriosis. HUM FERTIL 2023; 26:1400-1407. [PMID: 37811816 DOI: 10.1080/14647273.2023.2230360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/16/2023] [Indexed: 10/10/2023]
Abstract
Oxidative Stress (OS) relates to the pathophysiology of endometriosis by activation of the inflammation process in the ovary, abdomen, peritoneum and endometrium. Advanced Glycation end-products (AGEs) cause oxidative damage to the follicles of the ovary. This study aims to investigate the correlation of follicular fluid soluble receptor of AGEs (FF sRAGE) with fertility-related parameters in infertile women with endometriosis. From January 2012 to July 2015 twenty-four women diagnosed with mild to moderate endometriosis aged 28-38 years underwent assisted reproduction. sRAGE levels measured in FF were related to lifestyle factors, sociodemographic characteristics, gynaecological and obstetric parameters, hormonal status and fertilization. sRAGE was inversely associated with BMI (r = -0.503, p = 0.012). No significant association of sRAGE with age (p = 0.714) or alcohol consumption (p = 0.882) was found. Pearson's r correlation coefficient revealed that sRAGE was positively associated with serum AMH (r = 0.518, p = 0.009), FF AMH (r = 0.630, p = 0.001), number of follicles >15mm (r = 0.601, p = 0.002), total number of follicles aspirated (r = 0.698, p < 0.001), total number of MII oocytes obtained, (r = 0.757, p < 0.001) and the number of embryos with good embryo scoring (suitable for ET) (r = 0.522, p = 0.009). It seems that measurement of FF RAGE might be a useful predictive marker for IVF success in infertile women with endometriosis undergoing assisted reproduction.
Collapse
|
20
|
Angioni R, Bonfanti M, Caporale N, Sánchez-Rodríguez R, Munari F, Savino A, Pasqualato S, Buratto D, Pagani I, Bertoldi N, Zanon C, Ferrari P, Ricciardelli E, Putaggio C, Ghezzi S, Elli F, Rotta L, Scardua A, Weber J, Cecatiello V, Iorio F, Zonta F, Cattelan AM, Vicenzi E, Vannini A, Molon B, Villa CE, Viola A, Testa G. RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity. Cell Rep Med 2023; 4:101266. [PMID: 37944530 PMCID: PMC10694673 DOI: 10.1016/j.xcrm.2023.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.
Collapse
Affiliation(s)
- Roberta Angioni
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Matteo Bonfanti
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Nicolò Caporale
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Aurora Savino
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Nicole Bertoldi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Paolo Ferrari
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Cristina Putaggio
- Infectious Disease Unit, Padova University Hospital, 35128 Padova, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesco Elli
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | | | - Janine Weber
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Francesco Iorio
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | | | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Carlo Emanuele Villa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy.
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
21
|
Vega-Cárdenas M, Vargas-Morales JM, Portales-Pérez DP, Gómez-Ojeda A, Luevano-Contreras C, Aradillas-García C. Soluble receptor for advanced glycation end-products (sRAGE) in childhood obesity: association with gene expression of RAGE and cardiometabolic markers. NUTR HOSP 2023; 40:960-966. [PMID: 37732356 DOI: 10.20960/nh.04666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Introduction Introduction: advanced glycation end-products (AGEs) interact with the receptor for AGEs (RAGE). Full-length RAGE is associated with intracellular signal transduction, and soluble-RAGE (sRAGE) lacks the transmembrane and cytoplasmic domains, acting as a competitive inhibitor of AGEs-RAGE binding. sRAGE levels in healthy children are associated with cell surface expression of RAGE. However, the expression of RAGE has not been explored in childhood obesity. Objective: the study aim was to evaluate the sRAGE levels and the gene expression of RAGE in children and its association with cardiometabolic markers. Methods: this is a cross-sectional study with 6-11-year children, 20 with overweight and 20 with obesity. Anthropometric measurements included waist circumference (cm) (WC), neck circumference (NC), weight (kg), fat mass (%), trunk fat (kg), muscular mass (kg), height (cm), and body mass index (BMI) (kg/m2). Blood samples following an overnight fast were collected to measure glucose (mg/dl) and lipid profile with colorimetric methods. sRAGE was determined in serum using the enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription (RT-qPCR) was performed to analyze RAGE transcripts in peripheral blood mononuclear cells isolated by Ficoll®-Hypaque. Results: we found higher RAGE (p = 0.0315) and lower sRAGE (p = 0.0305) levels in the obesity group. sRAGE level showed a negative correlation with RAGE (r = -0.35) and BMI (r = -0.24), and positive with HDL-cholesterol (r = 0.29). Regression analysis suggests that HDL-C and RAGE levels are predictors of sRAGE levels. Conclusions: expression of RAGE is associated with lower sRAGE levels in childhood obesity. Moreover, obese children show higher cardiometabolic risk markers, and a positively associated with sRAGE.
Collapse
Affiliation(s)
- Mariela Vega-Cárdenas
- Centre for Applied Research in Environment and Health (CIACYT). Universidad Autónoma de San Luis Potosí
| | | | | | | | | | - Celia Aradillas-García
- Faculty of Medicine. Universidad Autónoma de San Luis Potosí. Centre for Applied Research in Environment and Health (CIACYT). Universidad Autónoma de San Luis Potosí
| |
Collapse
|
22
|
Al-Hakeim HK, Altufaili MF, Alhaideri AF, Almulla AF, Moustafa SR, Maes M. Increased AGE-RAGE axis stress in methamphetamine abuse and methamphetamine-induced psychosis: Associations with oxidative stress and increased atherogenicity. Addict Biol 2023; 28:e13333. [PMID: 37753569 DOI: 10.1111/adb.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/19/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Methamphetamine (MA)-induced psychosis (MIP) is associated with increased oxidative toxicity (especially lipid peroxidation) and lowered antioxidant defences. Advanced glycation end products (AGEs) cause oxidative stress upon ligand binding to AGE receptors (RAGEs). There is no data on whether MA use may cause AGE-RAGE stress or whether the latter is associated with MIP. This case-control study recruited 60 patients with MA use disorder and 30 normal controls and measured serum levels of oxidative stress toxicity (OSTOX, lipid peroxidation), antioxidant defences (ANTIOX), magnesium, copper, atherogenicity, AGE and soluble RAGE (sRAGE) and computed a composite reflecting AGE-RAGE axis activity. MA dependence and use were associated with elevated levels of AGE, sRAGE, OSTOX/ANTIOX, Castelli Risk Index 1 and atherogenic index of plasma. Increased sRAGE concentrations were strongly correlated with dependence severity and MA dose. Increased AGE-RAGE stress was correlated with OSTOX, OSTOX/ANTIOX and MA-induced intoxication symptoms, psychosis, hostility, excitement and formal thought disorders. The regression on AGE-RAGE, the OSTOX/ANTIOX ratio, decreased magnesium and increased copper explained 54.8% of the variance in MIP symptoms, and these biomarkers mediated the effects of increasing MA concentrations on MIP symptoms. OSTOX/ANTIOX, AGE-RAGE and insufficient magnesium were found to explain 36.0% of the variance in the atherogenicity indices. MA causes intertwined increases in AGE-RAGE axis stress and oxidative damage, which together predict the severity of MIP symptoms and increased atherogenicity.
Collapse
Affiliation(s)
| | | | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Kyung Hee University, Seoul, Dongdaemun-gu, South Korea
| |
Collapse
|
23
|
Pasarin L, Martu MA, Ciurcanu OE, Luca EO, Salceanu M, Anton D, Martu C, Martu S, Esanu IM. Influence of Diabetes Mellitus and Smoking on Pro- and Anti-Inflammatory Cytokine Profiles in Gingival Crevicular Fluid. Diagnostics (Basel) 2023; 13:3051. [PMID: 37835794 PMCID: PMC10572228 DOI: 10.3390/diagnostics13193051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Smoking and diabetes mellitus have been recognized as significant modifying factors of the evolution of periodontitis, being considered at the moment as descriptive factors in the periodontitis grading system. The purpose of this study was to assess the consequence of smoking, type 2 diabetes, and the combination of these two factors on clinical periodontal parameters, on the levels of gingival crevicular fluid (GCF), and also on ratios of pro-inflammatory and anti-inflammatory cytokines by using a commercially available kit-based multiplex fluorescent immunoassay. The study was carried out on 124 volunteers (control (C) group = 29, diabetes mellitus (DM) group = 32, smoking (S) group = 31, and S + DM group = 32). Total mean bleeding on probing was significantly lower in the S and S + DM groups, compared to that of the other groups (p < 0.05). Total amounts of TGF-β, MIP-1α, IL-6, IL-2, and IL-17 were significantly increased in the periodontally healthy sites of diabetes patients (p < 0.05), compared to those of the controls. Systemically healthy smoking patients had higher values of GM-CSF, TGF-β, IL-4, TNF-α, IL-5, and IL-7, while diabetic smoking patients showed higher values of IL-4, TGF-β, and MIP-1α. In smoking and systemically healthy patients, IL-23, IL-7, and IL-12 showed increased concentrations, while concentrations of TGF-β, MIP-1α, IL-2, IL-7, IL-12, IL-17, IL-21, and IL-23 were higher in smoking DM patients. In conclusion, in our study, diabetes mellitus induced a general pro-inflammatory state, while smoking mainly stimulated immunosuppression in the periodontal tissues of periodontitis subjects.
Collapse
Affiliation(s)
- Liliana Pasarin
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Maria-Alexandra Martu
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Oana Elena Ciurcanu
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Elena Odette Luca
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Mihaela Salceanu
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Diana Anton
- Faculty of Medicine and Pharmacy, University Dunarea de Jos Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| | - Cristian Martu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (C.M.); (I.M.E.)
| | - Silvia Martu
- Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (L.P.); (E.O.L.); (M.S.); (S.M.)
| | - Irina Mihaela Esanu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania; (C.M.); (I.M.E.)
| |
Collapse
|
24
|
Noren Hooten N, Mode NA, Allotey S, Ezike N, Zonderman AB, Evans MK. Inflammatory proteins are associated with mortality in a middle-aged diverse cohort. Clin Transl Med 2023; 13:e1412. [PMID: 37743657 PMCID: PMC10518496 DOI: 10.1002/ctm2.1412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Recent data indicate a decline in overall longevity in the United States. Even prior to the COVID-19 pandemic, an increase in midlife mortality rates had been reported. Life expectancy disparities have persisted in the United States for racial and ethnic groups and for individuals living at low socioeconomic status. These continued trends in mortality indicate the importance of examining biomarkers of mortality at midlife in at-risk populations. Circulating levels of cytokines and inflammatory markers reflect systemic chronic inflammation, which is a well-known driver of many age-related diseases. METHODS In this study, we examined the relationship of nine different inflammatory proteins with mortality in a middle-aged socioeconomically diverse cohort of African-American and White men and women (n = 1122; mean age = 47.8 years). RESULTS We found significant differences in inflammatory-related protein serum levels between African-American and White middle-aged adults. E-selectin and fibrinogen were significantly higher in African-American adults. IFN-γ, TNF-α trimer, monocyte chemoattractant protein-1 (MCP-1), soluble receptor for advanced glycation end-products (sRAGE) and P-selectin were significantly higher in White participants compared to African-American participants. Higher levels of E-selectin, MCP-1 and P-selectin were associated with a higher mortality risk. Furthermore, there was a significant interaction between sex and IL-6 with mortality. IL-6 levels were associated with an increased risk of mortality, an association that was significantly greater in women than men. In addition, White participants with high levels of sRAGE had significantly higher survival probability than White participants with low levels of sRAGE, while African-American participants had similar survival probabilities across sRAGE levels. CONCLUSIONS These results suggest that circulating inflammatory markers can be utilized as indicators of midlife mortality risk in a socioeconomically diverse cohort of African-American and White individuals.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Nicolle A. Mode
- Laboratory of Epidemiology and Population Science National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Samuel Allotey
- Laboratory of Epidemiology and Population Science National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Science National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Science National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
25
|
Schwertner K, Gelles K, Leitner J, Steinberger P, Gundacker C, Vrticka R, Hoffmann-Sommergruber K, Ellinger I, Geiselhart S. Human intestine and placenta exhibit tissue-specific expression of RAGE isoforms. Heliyon 2023; 9:e18247. [PMID: 37533998 PMCID: PMC10391957 DOI: 10.1016/j.heliyon.2023.e18247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is encoded by AGER, a gene that is subjected to tissue-specific alternative splicing. Splice variants of RAGE in intestine and placenta are unknown and contradictory data concerning RAGE protein expression in these tissues have been published. As a basis for future functional studies, we examined RAGE expression in small intestine, colon and placentas. PCR cloning revealed that full-length RAGE is the only RAGE transcript isoform expressed in placenta. In the small intestine, the major transcript isoform detected was RAGE_v1 encoding the C-terminally truncated soluble receptor. In the colon, both full-length RAGE as well as several splice variants were identified. Four antibodies were used to study protein expression by immunoblotting and were carefully validated. Appropriate controls were essential to avoid misinterpretation of bands caused by non-specific reactivity of antibodies. Only one of four antibodies tested detected full-length RAGE in placenta, whereas no RAGE-specific band was detected in intestinal tissues despite loading >30-fold more intestinal tissue than the positive control, human lung. RAGE expression levels in the placenta were 100-fold lower compared with human lung when analyzed by ELISA, and no significant differences in RAGE expression were detected between healthy placentas and placentas from women with preeclampsia, gestational diabetes mellitus, or fetal growth restriction. We conclude that healthy placental chorionic tissue expresses low levels of full-length RAGE, whereas expression of the tissue-specific intestinal isoforms is below the limit of detection. Low RAGE expression levels in combination with a lack of antibody validation may explain the conflicting published results on RAGE protein expression in intestine and placenta.
Collapse
Affiliation(s)
- Katharina Schwertner
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Claudia Gundacker
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruben Vrticka
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Garza-Campos A, Prieto-Correa JR, Domínguez-Rosales JA, Hernández-Nazará ZH. Implications of receptor for advanced glycation end products for progression from obesity to diabetes and from diabetes to cancer. World J Diabetes 2023; 14:977-994. [PMID: 37547586 PMCID: PMC10401444 DOI: 10.4239/wjd.v14.i7.977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are chronic pathologies with a high incidence worldwide. They share some pathological mechanisms, including hyperinsulinemia, the production and release of hormones, and hyperglycemia. The above, over time, affects other systems of the human body by causing tissue hypoxia, low-grade inflammation, and oxidative stress, which lay the pathophysiological groundwork for cancer. The leading causes of death globally are T2DM and cancer. Other main alterations of this pathological triad include the accumulation of advanced glycation end products and the release of endogenous alarmins due to cell death (i.e., damage-associated molecular patterns) such as the intracellular proteins high-mobility group box protein 1 and protein S100 that bind to the receptor for advanced glycation products (RAGE) - a multiligand receptor involved in inflammatory and metabolic and neoplastic processes. This review analyzes the latest advanced reports on the role of RAGE in the development of obesity, T2DM, and cancer, with an aim to understand the intracellular signaling mechanisms linked with cancer initiation. This review also explores inflammation, oxidative stress, hypoxia, cellular senescence, RAGE ligands, tumor microenvironment changes, and the “cancer hallmarks” of the leading tumors associated with T2DM. The assimilation of this information could aid in the development of diagnostic and therapeutic approaches to lower the morbidity and mortality associated with these diseases.
Collapse
Affiliation(s)
- Andrea Garza-Campos
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Roberto Prieto-Correa
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Alfredo Domínguez-Rosales
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Zamira Helena Hernández-Nazará
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
27
|
Emami N, Alizadeh A, Maleki-Hajiagha A, Dizavi A, Vesali S, Moini A. Serum and follicular fluid levels of soluble receptor for advanced glycation end-products in women with and without polycystic ovary syndrome. J Ovarian Res 2023; 16:127. [PMID: 37391740 DOI: 10.1186/s13048-023-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are known to associate with the pathogenesis of several chronic diseases via interaction with their corresponding receptor (RAGE). The soluble forms of RAGE (sRAGE) are considered as anti-inflammatory agents by inhibiting the consequent adverse effects of AGE. We aimed at comparing sRAGE levels in the follicular fluid (FF) and serum of women with or without Polycystic Ovary Syndrome (PCOS) who underwent controlled ovarian stimulation for in vitro fertilisation (IVF). METHODS A total of forty-five eligible women (26 non-PCOS (control) and 19 patients with PCOS (case)) were included the study. sRAGEs in FF and blood serum were measured using ELISA kit. RESULTS No statistically significant differences were found in FF and serum sRAGE between case and control groups. Correlation analysis showed a significant and positive relationship between serum levels of sRAGE and FF sRAGE in PCOS (r = 0.639; p = 0.004), in control participants (r = 0.481; p = 0.017), and in total participants (r = 0.552; p = 0.000). Data revealed a statistically significant difference in FF sRAGE concentration among all participants by body mass index (BMI) categories (p = 0.01) and in controls (p = 0.022). Significant differences were found for all the nutrients and AGEs consumption according to Food Frequency Questionnaire in both groups (p = 0.0001). A significant reverse relationship was found between FF levels of sRAGE and AGE in PCOS (r = -0.513; p = 0.025). The concentration of sRAGE in serum and FF is the same in PCOS and control. CONCLUSION The present study revealed for the first time that there are no statistically significant differences between the concentration of serum sRAGE and FF sRAGE among Iranian women with and without PCOS. However, BMI and dietary intake of AGEs have more significant effects on sRAGE concentration in Iranian women. Future studies in developed and developing countries with larger sample sizes are required to determine the long-term consequences of chronic AGE over consumption and the optimal strategies for minimizing AGE-related pathology, specifically in low income and developing countries.
Collapse
Affiliation(s)
- Neda Emami
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- gyn-medicum, Center for Reproductive Medicine, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Arezoo Maleki-Hajiagha
- Department of Anatomy, School of Medicine, Tehran University of Medical Scienes, Tehran, Iran
| | - Alireza Dizavi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Vesali
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, P.O Box: 1653915981, Tehran, Iran.
| |
Collapse
|
28
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07480-x. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
29
|
Deo P, Dhillon VS, Thomas P, Fenech M. Oleic Acid Status Positively Correlates with the Soluble Receptor for Advanced Glycation End-Products (sRAGE) in Healthy Adults Who Are Homozygous for G Allele of RAGE G82S Polymorphism. Cells 2023; 12:1662. [PMID: 37371132 DOI: 10.3390/cells12121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The soluble form of receptor for advanced glycation end products (sRAGE) have been implicated in the prevention of numerous pathologic states, and highlights as an attractive therapeutic target. Because diets rich in monounsaturated fatty acids (MUFA) reduce postprandial oxidative stress and inflammation that is related to better health during aging, we investigated the association between red blood cell (RBC) fatty acids with circulatory AGE biomarkers and further stratified this correlation based on GG and GA + AA genotype. METHODS A total of 172 healthy participants (median age = 53.74 ± 0.61 years) were recruited for the study. RBC fatty acid was analysed using gas chromatography and sRAGE was measured using a commercial ELISA kit. RESULTS The result showed a non-significant correlation between total MUFA with sRAGE however oleic acid (C18:1) exhibited a positive correlation (r = 0.178, p = 0.01) that remained statistically significant (β = 0.178, p = 0.02) after a stepwise multivariate regression analysis after adjusting for age, BMI and gender. In a univariate analysis, a positive significant correlation between C18:1 and sRAGE in GG genotype (r = 0.169, p = 0.02) and a non-significant correlation with GA + AA genotype (r = 0.192, p = 0.21) was evident. When C18:1 was stratified, a significant difference was observed for oleic acid and G82S polymorphism: low C18:1/GA + AA versus high C18:1/GG (p = 0.015) and high C18:1/GA + AA versus high C18:1/GG (p = 0.02). CONCLUSION Our study suggests that increased levels of C18:1 may be a potential therapeutic approach in increasing sRAGE in those with GG genotype and play a role in modulating AGE metabolism.
Collapse
Affiliation(s)
- Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Genome Health Foundation, North Brighton 5048, Australia
| |
Collapse
|
30
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
31
|
Medeiros ML, Oliveira AL, Mello GC, Antunes E. Metformin Counteracts the Deleterious Effects of Methylglyoxal on Ovalbumin-Induced Airway Eosinophilic Inflammation and Remodeling. Int J Mol Sci 2023; 24:ijms24119549. [PMID: 37298498 DOI: 10.3390/ijms24119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Exposure to methylglyoxal (MGO) increases the levels of receptor for advanced glycation end products (RAGE) and reactive-oxygen species (ROS) in mouse airways, exacerbating the inflammatory responses. Metformin scavenges MGO in plasma of diabetic individuals. We investigated if amelioration by metformin of eosinophilic inflammation reflects its ability to inactivate MGO. Male mice received 0.5% MGO for 12 weeks together or not with 2-week treatment with metformin. Inflammatory and remodeling markers were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissues of ovalbumin (OVA)-challenged mice. MGO intake elevated serum MGO levels and MGO immunostaining in airways, which were reduced by metformin. The infiltration of inflammatory cells and eosinophils and levels of IL-4, IL-5 and eotaxin significantly increased in BALF and/or lung sections of MGO-exposed mice, which were reversed by metformin. The increased mucus production and collagen deposition by MGO exposure were also significantly decreased by metformin. In MGO group, the increases of RAGE and ROS levels were fully counteracted by metformin. Superoxide anion (SOD) expression was enhanced by metformin. In conclusion, metformin counteracts OVA-induced airway eosinophilic inflammation and remodeling, and suppresses the RAGE-ROS activation. Metformin may be an option of adjuvant therapy to improve asthma in individuals with high levels of MGO.
Collapse
Affiliation(s)
- Matheus L Medeiros
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Akila L Oliveira
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Glaucia C Mello
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| |
Collapse
|
32
|
Kim T, Kim SJ, Choi H, Shin TR, Sim YS. Diagnostic Utility and Tendency of Bronchial and Serum Soluble Receptor for Advanced Glycation EndProducts (sRAGE) in Lung Cancer. Cancers (Basel) 2023; 15:2819. [PMID: 37345156 DOI: 10.3390/cancers15102819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) may serve as a diagnostic and prognostic biomarker of lung cancer and lung injury. We explored whether the serum and bronchial levels of soluble RAGE (sRAGE) distinguished infectious lung diseases from lung cancer. We collected serum and bronchial washing fluids (BWFs) from patients diagnosed with pneumonia, tuberculosis, or preoperative lung cancer from April 2016 to March 2022. sRAGE levels were measured using an enzyme-linked immunosorbent assay and we drew receiver operating characteristic (1) curves to determine the cut-off values affording the best diagnostic sensitivities. We enrolled 81 patients including 20 with tuberculosis, 30 with pneumonia, and 31 with lung cancer. Of the 81, 61% were males and the median age was 66 years. The median serum level of sRAGE was 822 (678-1168 pg/mL) and did not differ significantly between the three groups. The median bronchial sRAGE level was 167 (83-529 pg/mL) but 231 (108-649 pg/mL) for tuberculosis, 366 (106-706 pg/mL) for pneumonia, and 103 (32-254 pg/mL) for lung cancer patients (p = 0.018). The ROC curve for the bronchial sRAGE values of lung cancer patients revealed that the optimal cut-off was 118.9 pg/mL. This afforded a sensitivity of 76%, a specificity of 58%, and an area under the ROC curve of 0.695 (p = 0.005). The level of bronchial sRAGE differed significantly between patients with lung cancer and other respiratory diseases; that level may serve as an auxiliary diagnostic biomarker.
Collapse
Affiliation(s)
- Taehee Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul 07440, Republic of Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Soo Jung Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul 07440, Republic of Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Hayoung Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul 07440, Republic of Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Tae Rim Shin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul 07440, Republic of Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Yun Su Sim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul 07440, Republic of Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
33
|
Alkan ŞB, Artaç M, Aksoy F, Belviranlı MM, Gürbilek M, Çizmecioğlu HA, Rakıcıoğlu N. Are dietary and serum advanced glycation end-products related to inflammation and oxidation biomarkers in breast cancer patients: a follow-up study. Support Care Cancer 2023; 31:334. [PMID: 37183232 DOI: 10.1007/s00520-023-07772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE This study is aimed at evaluating the relationship between dietary and serum advanced glycation end-products (AGEs) with serum inflammatory and oxidative stress biomarkers in breast cancer (BC). METHODS A sample of BC patients was followed for 12 months (March 2020-January 2022). Three-day food consumption record and serum samples were taken before surgery (T1), before chemotherapy (T2), at the 6th month of chemotherapy (T3), and at the 12th month of chemotherapy (T4). Dietary AGE intake was represented by carboxymethyl lysine (dCML). Serum levels of CML, inflammation, and oxidation biomarkers were determined with biochemical blood tests. The results were compared according to human epidermal growth factor receptor-2 (HER2) status. RESULTS Thirty-two women with BC and 32 age and body mass index-matched healthy women participated. No significant correlation was found between dCML and serum CML, inflammatory or oxidative stress biomarkers at T1, T2, and T4. A weak positive correlation was demonstrated between dCML and serum malondialdehyde levels (rho=0.355, p=0.046) at T3. The serum CML, inflammation, and oxidation biomarker levels of the HER2- group were significantly higher than those of the HER2+ group at T1. CONCLUSION This study suggests that there is limited correlation between dCML and serum inflammation and oxidative stress biomarkers in BC patients. Inflammation and oxidative biomarker levels appear to decline with treatment although dietary and serum AGE levels show not a corresponding significant decline. The HER2- subtype appears to be associated with higher dietary and serum AGEs and higher inflammatory and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Şenay Burçin Alkan
- Department of Nutrition and Dietetics, Nezahat Keleşoğlu Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Artaç
- Department of Medical Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Faruk Aksoy
- Department of General Surgery, Trabzon Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkey
| | - Mehmet Metin Belviranlı
- Department of General Surgery, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Gürbilek
- Department of Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | | | - Neslişah Rakıcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
34
|
Tsirebolos G, Tsoporis JN, Drosatos IA, Izhar S, Gkavogiannakis N, Sakadakis E, Triantafyllis AS, Parker TG, Rallidis LS, Rizos I. Emerging markers of inflammation and oxidative stress as potential predictors of coronary artery disease. Int J Cardiol 2023; 376:127-133. [PMID: 36758863 DOI: 10.1016/j.ijcard.2023.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND AND AIMS The multi-ligand receptor for advanced glycation end products (RAGE) and its ligands AGEs and S100/calgranulin proteins are important mediators of inflammation and oxidative stress whereas the soluble form of RAGE (sRAGE) by acting as a decoy and the antioxidant PARK7/DJ-1 exert antiatherogenic effects. We examined whether sRAGE and its ligands AGEs, S100A8/A9, S100B, S100A12 and DJ-1 are associated with the presence of angiographic coronary artery disease (CAD) in asymptomatic patients with and without diabetes. METHODS AND RESULTS Plasma levels of RAGE ligands, sRAGE and DJ-1 were determined in 50 patients with angiographically proven CAD and in 50 age-matched healthy controls. In the whole cohort, lower levels of sRAGE and higher levels of interleukin-6 (IL-6), the RAGE ligands S100B, S100A12 and the AGEs/sRAGE ratio were associated with CAD. In patients without diabetes (n = 72), lower levels of sRAGE and DJ-1 and higher levels of IL-6 and AGEs/sRAGE ratio were associated with CAD. In multivariable analysis, AGEs/sRAGE ratio was an independent predictor of CAD both in the whole cohort (p = 0.034, OR = 1.247, [95%CI: 1.024, 1.0519]) and in the subgroup of patients without diabetes (p = 0.021, OR = 1.363, 95%CI [1.048, 1.771]) on top of established cardiovascular risk factors. CONCLUSION Alterations in plasma RAGE axis inflammatory mediators are associated with atherosclerosis, and higher levels of AGEs/sRAGE ratio are independently associated with CAD in asymptomatic patients and may act as a novel biomarker for predicting CAD. DJ-1 emerges as promising marker of oxidative stress in CAD patients without diabetes, a finding that deserves further study.
Collapse
Affiliation(s)
- George Tsirebolos
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece; Department of Cardiology, 401 General Military Hospital of Athens, Athens, Greece
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Ontario, Canada.
| | - Ioannis-Alexandros Drosatos
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece; Department of Cardiology, 414 Military Hospital, P.Penteli, Athens, Greece
| | - Shehla Izhar
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Ontario, Canada
| | - Nikolaos Gkavogiannakis
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece; Department of Cardiology, 401 General Military Hospital of Athens, Athens, Greece
| | | | | | - Thomas G Parker
- Department of Cardiology, 414 Military Hospital, P.Penteli, Athens, Greece
| | | | - Ioannis Rizos
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| |
Collapse
|
35
|
Role of Klotho and AGE/RAGE-Wnt/β-Catenin Signalling Pathway on the Development of Cardiac and Renal Fibrosis in Diabetes. Int J Mol Sci 2023; 24:ijms24065241. [PMID: 36982322 PMCID: PMC10049403 DOI: 10.3390/ijms24065241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fibrosis plays an important role in the pathogenesis of long-term diabetic complications and contributes to the development of cardiac and renal dysfunction. The aim of this experimental study, performed in a long-term rat model, which resembles type 1 diabetes mellitus, was to investigate the role of soluble Klotho (sKlotho), advanced glycation end products (AGEs)/receptor for AGEs (RAGE), fibrotic Wnt/β-catenin pathway, and pro-fibrotic pathways in kidney and heart. Diabetes was induced by streptozotocin. Glycaemia was maintained by insulin administration for 24 weeks. Serum and urine sKlotho, AGEs, soluble RAGE (sRAGE) and biochemical markers were studied. The levels of Klotho, RAGEs, ADAM10, markers of fibrosis (collagen deposition, fibronectin, TGF-β1, and Wnt/β-catenin pathway), hypertrophy of the kidney and/or heart were analysed. At the end of study, diabetic rats showed higher levels of urinary sKlotho, AGEs and sRAGE and lower serum sKlotho compared with controls without differences in the renal Klotho expression. A significant positive correlation was found between urinary sKlotho and AGEs and urinary albumin/creatinine ratio (uACR). Fibrosis and RAGE levels were significantly higher in the heart without differences in the kidney of diabetic rats compared to controls. The results also suggest the increase in sKlotho and sRAGE excretion may be due to polyuria in the diabetic rats.
Collapse
|
36
|
Modulating Morphological and Redox/Glycative Alterations in the PCOS Uterus: Effects of Carnitines in PCOS Mice. Biomedicines 2023; 11:biomedicines11020374. [PMID: 36830911 PMCID: PMC9953026 DOI: 10.3390/biomedicines11020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: Polycystic ovarian syndrome (PCOS) is a common and multifactorial disease affecting reproductive-age women. Although PCOS ovarian and metabolic features have received extensive research, uterine dysfunction has been poorly investigated. This research aims to investigate morphological and molecular alterations in the PCOS uterus and search for modulating effects of different carnitine formulations. (2) Methods: CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg L-carnitine (LC) and 0.20 mg acetyl-L-carnitine (ALC) in the presence or absence of 0.08 mg propionyl-L-carnitine (PLC). Uterine horns from the four groups were subjected to histology, immunohistochemistry and immunoblotting analyses to evaluate their morphology, collagen deposition, autophagy and steroidogenesis. Oxidative-/methylglyoxal (MG)-dependent damage was investigated along with the effects on the mitochondria, SIRT1, SOD2, RAGE and GLO1 proteins. (3) Results: The PCOS uterus suffers from tissue and oxidative alterations associated with MG-AGE accumulation. LC-ALC administration alleviated PCOS uterine tissue alterations and molecular damage. The presence of PLC prevented fibrosis and maintained mitochondria content. (4) Conclusions: The present results provide evidence for oxidative and glycative damage as the main factors contributing to PCOS uterine alterations and include the uterus in the spectrum of action of carnitines on the PCOS phenotype.
Collapse
|
37
|
Strohalmová S, Levová K, Kuběna AA, Hoskovec D, Krška Z, Zima T, Kalousová M. Alarmins and Related Molecules in Elective Surgery. Folia Biol (Praha) 2023; 69:50-58. [PMID: 38063001 DOI: 10.14712/fb2023069020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Surgery is associated with alterations of alarmins' and related molecules' levels. The aim of this study was to investigate which biomarkers are most involved in surgery. The studied group consisted of 58 patients with inguinal or umbilical hernia or cholecystolithiasis and 21 healthy controls for compa-rison. We also added seven acute patients with appendicitis, cholecystitis and incarcerated hernia. Serum concentrations of soluble receptor of advanced glycation end-products (sRAGE), extracellular newly identified receptor for advanced glycation end-products binding protein (EN-RAGE), calprotectin, high mobility group box 1 (HMGB1) and interleukin 6 (IL-6) were analysed by ELISA before and after surgery. Preoperative concentrations of calprotectin were significantly decreased while concentrations of sRAGE were significantly increased in patients compared to controls; the concentrations of EN-RAGE and HMGB1 did not differ significantly. IL-6 levels were undetectable in elective patients preoperatively and in controls. Postoperatively, there was a significant increase of EN-RAGE, calprotectin, HMGB1, and IL-6 and a significant decrease of sRAGE compared to preoperative levels. In acute patients, all tested molecules except for sRAGE were significantly increased preoperatively, and sRAGE was significantly decreased. In contrast, after surgery, we could observe a further increase in IL-6; the other biomarkers did not differ significantly. We can conclude that the concentrations of all tested biomarkers are significantly influenced by elective surgery. The postoperative levels of all tested molecules increase except for sRAGE, whose level is significantly decreased after surgery. In acute states, these molecules are already increased, and the influence of surgery is, apart from IL-6, insignificant.
Collapse
Affiliation(s)
- Sabina Strohalmová
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Kateřina Levová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Aleš Antonín Kuběna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Zdeněk Krška
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| |
Collapse
|
38
|
Xiong X, Dou J, Shi J, Ren Y, Wang C, Zhang Y, Cui Y. RAGE inhibition alleviates lipopolysaccharides-induced lung injury via directly suppressing autophagic apoptosis of type II alveolar epithelial cells. Respir Res 2023; 24:24. [PMID: 36691012 PMCID: PMC9872382 DOI: 10.1186/s12931-023-02332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Advanced glycation end product receptor (RAGE) acts as a receptor of pro-inflammatory ligands and is highly expressed in alveolar epithelial cells (AECs). Autophagy in AECs has received much attention recently. However, the roles of autophagy and RAGE in the pathogenesis of acute lung injury remain unclear. Therefore, this study aimed to explore whether RAGE activation signals take part in the dysfunction of alveolar epithelial barrier through autophagic death. METHODS Acute lung injury animal models were established using C57BL/6 and Ager gene knockout (Ager -/- mice) mice in this study. A549 cells and primary type II alveolar epithelial (ATII) cells were treated with siRNA to reduce Ager gene expression. Autophagy was inhibited by 3-methyladenine (3-MA). Lung injury was assessed by histopathological examination. Cell viability was estimated by cell counting kit-8 (CCK-8) assay. The serum and bronchoalveolar lavage fluid (BALF) levels of interleukin (IL)-6, IL-8 and soluble RAGE (sRAGE) were evaluated by Enzyme-linked immunosorbent assay (ELISA). The involvement of RAGE signals, autophagy and apoptosis was assessed using western blots, immunohistochemistry, immunofluorescence, transmission electron microscopy and TUNEL test. RESULTS The expression of RAGE was promoted by lipopolysaccharide (LPS), which was associated with activation of autophagy both in mice lung tissues and A549 cells as well as primary ATII cells. sRAGE in BALF was positively correlated with IL-6 and IL-8 levels. Compared with the wild-type mice, inflammation and apoptosis in lung tissues were alleviated in Ager-/- mice. Persistently activated autophagy contributed to cell apoptosis, whereas the inhibition of autophagy by 3-MA protected lungs from damage. In addition, Ager knockdown inhibited LPS-induced autophagy activation and attenuated lung injury. In vitro, knockdown of RAGE significantly suppressed the activation of LPS-induced autophagy and apoptosis of A549 and primary ATII cells. Furthermore, RAGE activated the downstream STAT3 signaling pathway. CONCLUSION RAGE plays an essential role in the pathogenesis of ATII cells injury. Our results suggested that RAGE inhibition alleviated LPS-induced lung injury by directly suppressing autophagic apoptosis of alveolar epithelial cells.
Collapse
Affiliation(s)
- Xi Xiong
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Jiaying Dou
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Jingyi Shi
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Yuqian Ren
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Chunxia Wang
- grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.415625.10000 0004 0467 3069Clinical Research Unit, Shanghai Children’s Hospital, Shanghai, 200062 China
| | - Yucai Zhang
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Yun Cui
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
39
|
Concentrations of N 6-Carboxymethyllysine (CML), N 6-Carboxyethyllysine (CEL), and Soluble Receptor for Advanced Glycation End-Products (sRAGE) Are Increased in Psoriatic Patients. Biomolecules 2022; 12:biom12121870. [PMID: 36551298 PMCID: PMC9775373 DOI: 10.3390/biom12121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a chronic, recurrent, and often severe skin disease which is frequently associated with metabolic disorders and increased risk of cardiovascular complications. One of the postulated links is an intensified process of advanced protein glycation and/or glycoxidation. Therefore, the aim of the study was to assess concentrations of N6-carboxymethyllysine (CML), N6-carboxyethyllysine (CEL), and soluble form of receptor for advanced glycation end-products (sRAGE) in psoriasis patients at different phases of the disease activity, in comparison to healthy individuals. The study material consisted of sera from psoriasis patients in active phase, in the remission phase, and healthy controls. Concentrations of CML, CEL, and sRAGE were determined using ELISA technique. In the patients with psoriasis (in both phases of the disease), concentrations of CML, CEL and sRAGE were significantly higher than in healthy individuals but they did not correlate with psoriasis area severity index (PASI) values. The remission of the disease was followed by a significant decrease in CML, CEL, and sRAGE concentrations when compared to active patients; however, these concentrations were still significantly higher than in the controls. Our data suggest that psoriasis is accompanied by an intense glycoxidation process and that high sRAGE levels seem to reflect permanent RAGE overstimulation.
Collapse
|
40
|
Genetically Modified Circulating Levels of Advanced Glycation End-Products and Their Soluble Receptor (AGEs-RAGE Axis) with Risk and Mortality of Breast Cancer. Cancers (Basel) 2022; 14:cancers14246124. [PMID: 36551607 PMCID: PMC9776370 DOI: 10.3390/cancers14246124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The interaction of advanced glycation end-products (AGEs) with their receptor (RAGE) elicits oxidative stress and inflammation, which is involved in the development of breast cancer. However, large-scale population-based evidence exploring genetically modified circulating levels of AGEs-RAGE axis with risk and mortality of breast cancer is scarce. We recruited 1051 pairs of age-matched breast cancers and controls and measured plasma AGEs and sRAGE concentrations by enzyme-linked immunosorbent assay (ELISA). Multivariate logistic regression and Cox proportional hazard model were used to calculate the effects of plasma levels and genetic variants of the AGEs-RAGE axis and their combined effects on breast cancer risk and prognosis, respectively. Furthermore, linear regression was performed to assess the modifications in plasma AGEs/sRAGE levels by genetic predisposition. Higher levels of AGEs and AGEs/sRAGE-ratio were associated with an increased risk of breast cancer, but sRAGE levels were negatively associated with breast cancer risk, especially in women <60 years. We also observed a positive association between AGEs and the bad prognosis of breast cancer. Although we did not observe a significant contribution of genetic variants to breast cancer risk, rs2070600 and rs1800624 in the AGER gene were dose-dependently correlated with sRAGE levels. Further, compared to the haplotype CT at the lowest quartile of AGEs, haplotypes TT and TA were prominently associated with breast cancer risk in the highest quartile of AGEs. This study depicted a significant association between circulating levels of AGEs-RAGE axis and breast cancer risk and mortality and revealed the potential of plasma AGEs, especially coupled with AGER polymorphism as biomarkers of breast cancer.
Collapse
|
41
|
Kamel AA, Hashem MK, AbdulKareem ES, Ali AH, Mahmoud EAR, Abd-Elkader AS, Abdellatif H, Abdelbadea A, Abdel-Rady NM, Al Anany MGE, Dahpy MA. Significant Interrelations among Serum Annexin A1, Soluble Receptor for Advanced Glycation End Products (sRAGE) and rs2070600 in Chronic Obstructive Pulmonary Disease. BIOLOGY 2022; 11:biology11121707. [PMID: 36552217 PMCID: PMC9774799 DOI: 10.3390/biology11121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of death and morbidity; it may be accompanied by oxidative stress and inflammation with or without underlying genetic etiology. Finding circulating biomarkers for COPD that can help early diagnosis and predict exacerbation and association with respiratory functions has been challenging. There were 40 healthy participants and 60 COPD patients in this research. The rs2070600 gene variant was examined by PCR-RFLP. Circulating sRAGE and annexin A1 levels were determined by ELISA. GSH and MDA were determined by spectrophotometry. In COPD patients, sRAGE serum levels were substantially lower, but conversely, annexin A1 levels were much greater than in controls. The rs2070600 gene polymorphism's strong association with COPD was demonstrated by genotyping and allelic frequency distribution. The GA genotype was most distributed in COPD, and it was strongly linked to lower serum sRAGE levels. The interrelation between annexin A1, sRAGE, and COPD could be explained through effects on inflammatory mediators' pathways. The rs2070600 gene polymorphism was found to significantly enhance the risk of COPD. Serum sRAGE and annexin A1 may be considered potential diagnostic tools for COPD. Through impacts on GSH and MDA levels that alter the release of inflammatory factors and, therefore, lung damage, it is possible to explain the relationship between annexin A1, sRAGE, and COPD.
Collapse
Affiliation(s)
- Amira A. Kamel
- Department of Medical Biochemistry, and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Maiada K. Hashem
- Chest Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | | | - Amal H. Ali
- Microbiology and Immunology Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | | | - Alaa S. Abd-Elkader
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Hebatallah Abdellatif
- Clinical Pathology Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Alzahra Abdelbadea
- Medical Biochemistry, and Molecular Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Nessren M. Abdel-Rady
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
- Medical Physiology Department, Sphinx University, New-Assiut 71515, Egypt
| | - Mona Gamal E. Al Anany
- Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa A. Dahpy
- Department of Medical Biochemistry, and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Department of Medical Biochemistry and Molecular Biology, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt
- Correspondence:
| |
Collapse
|
42
|
Bangar NS, Gvalani A, Ahmad S, Khan MS, Tupe RS. Understanding the role of glycation in the pathology of various non-communicable diseases along with novel therapeutic strategies. Glycobiology 2022; 32:1068-1088. [PMID: 36074518 DOI: 10.1093/glycob/cwac060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Glycation refers to carbonyl group condensation of the reducing sugar with the free amino group of protein, which forms Amadori products and advanced glycation end products (AGEs). These AGEs alter protein structure and function by configuring a negative charge on the positively charged arginine and lysine residues. Glycation plays a vital role in the pathogenesis of metabolic diseases, brain disorders, aging, and gut microbiome dysregulation with the aid of 3 mechanisms: (i) formation of highly reactive metabolic pathway-derived intermediates, which directly affect protein function in cells, (ii) the interaction of AGEs with its associated receptors to create oxidative stress causing the activation of transcription factor NF-κB, and (iii) production of extracellular AGEs hinders interactions between cellular and matrix molecules affecting vascular and neural genesis. Therapeutic strategies are thus required to inhibit glycation at different steps, such as blocking amino and carbonyl groups, Amadori products, AGEs-RAGE interactions, chelating transition metals, scavenging free radicals, and breaking crosslinks formed by AGEs. The present review focused on explicitly elaborating the impact of glycation-influenced molecular mechanisms in developing and treating noncommunicable diseases.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Armaan Gvalani
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, University of Hail, Hail City 2440, Saudi Arabia
| | - Mohd S Khan
- Department of Biochemistry, Protein Research Chair, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
43
|
Gong H, Chen Y, Chen M, Li J, Zhang H, Yan S, Lv C. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front Med (Lausanne) 2022; 9:1043859. [PMID: 36452899 PMCID: PMC9701739 DOI: 10.3389/fmed.2022.1043859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2023] Open
Abstract
The introduction of the Sepsis 3.0 guidelines in 2016 improved our understanding of sepsis diagnosis and therapy. Personalized treatment strategies and nursing methods for sepsis patients are recommended in the "Save Sepsis Campaign" in 2021. However, mortality in sepsis patients remains high. Patients with sepsis-related acute respiratory distress syndrome account for around 30% of them, with fatality rates ranging from 30 to 40%. Pathological specimens from individuals with sepsis-related ARDS frequently demonstrate widespread alveolar damage, and investigations have revealed that pulmonary epithelial and pulmonary endothelial injury is the underlying cause. As a result, the purpose of this work is to evaluate the mechanism and research progress of pulmonary epithelial and pulmonary endothelial damage in sepsis-related ARDS, which may provide new directions for future research, diagnosis, and therapy.
Collapse
Affiliation(s)
- Huankai Gong
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yao Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meiling Chen
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jiankang Li
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hong Zhang
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- School of Public Health, Hainan Medical University, Haikou, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
44
|
Butcher L, Zaldua JC, Carnicero JA, Hawkins K, Whitley J, Mothukuri R, Evans PA, Morris K, Pillai S, Erusalimsky JD. High levels of soluble RAGE are associated with a greater risk of mortality in COVID-19 patients treated with dexamethasone. Respir Res 2022; 23:303. [PMID: 36335329 PMCID: PMC9637291 DOI: 10.1186/s12931-022-02220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022] Open
Abstract
Blood levels of the soluble receptor for advanced glycation end-products (sRAGE) are acutely elevated during the host inflammatory response to infection and predict mortality in COVID-19. However, the prognostic performance of this biomarker in the context of treatments to reduce inflammation is unclear. In this study we investigated the association between sRAGE and mortality in dexamethasone-treated COVID-19 patients. We studied 89 SARS-CoV-2 positive subjects and 22 controls attending the emergency department of a University Teaching Hospital during the second wave of COVID-19 and measured sRAGE at admission. In positive individuals sRAGE increased with disease severity and correlated with the National Early Warning Score 2 (Pearson’s r = 0.56, p < 0.001). Fourteen out of 72 patients treated with dexamethasone died during 28 days of follow-up. Survival rates were significantly lower in patients with high sRAGE (> 3532 pg/mL) than in those with low sRAGE (p = 0.01). Higher sRAGE levels were associated with an increased risk of death after adjustment for relevant covariates. In contrast, IL-6 did not predict mortality in these patients. These results demonstrate that sRAGE remains an independent predictor of mortality among COVID-19 patients treated with dexamethasone. Determination of sRAGE could be useful for the clinical management of this patient population.
Collapse
|
45
|
Relationship between the Levels of Calprotectin and Soluble Receptor for Advanced Glycation End Products with Abdominal Aortic Aneurysm Diameter: A Preliminary Clinical Trial. J Clin Med 2022; 11:jcm11185448. [PMID: 36143093 PMCID: PMC9501553 DOI: 10.3390/jcm11185448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta greater than 50% of the diameter of a healthy aorta. Previous experimental studies confirm the effect of calprotectin (CAL) on the onset of arterial pathology. It has been suggested that low levels of soluble receptors for advanced glycation end products (RAGEs) increase levels of cytokines that lead to the inhibition of matrix metalloproteinases (MMPs), affecting AAA formation. This study aimed to analyze the correlation of levels of RAGE and CAL with AAA diameter. A group of 32 patients aged 50−75 with diagnosed AAA was enrolled in the study. This group of patients was further divided into three subgroups based on AAA diameter: (1) <4.5 cm, (2) 4.5−5.5 cm, (3) >5.5 cm. Peripheral blood was drawn from all participants on admission to measure the serum CAL and RAGE levels. An enumeration survey was performed three months after AAA surgical treatment. CAL and RAGE plasma levels were measured with the enzyme-linked immunosorbent assay (ELISA). The median CAL levels were 2273.0 ng/mL before and 1217.0 ng/mL after treatment. There was a statistically significant decrease in CAL levels following the surgical treatment (p = 0.003). The correlation analysis between CAL levels and RAGE levels before and after surgical treatment showed no statistically significant correlations. In addition, there were no statistically significant correlations between CAL and RAGE levels with AAA size. In conclusion, CAL levels appear to be a significant marker in patients with AAA. There is an almost twofold decrease in CAL levels after AAA excision.
Collapse
|
46
|
Abstract
Smoking is a well-established risk factor for chronic obstructive pulmonary disease (COPD). Chronic lung inflammation continues even after smoking cessation and leads to COPD progression. To date, anti-inflammatory therapies are ineffective in improving pulmonary function and COPD symptoms, and new molecular targets are urgently needed to deal with this challenge. The receptor for advanced glycation end-products (RAGE) was shown to be relevant in COPD pathogenesis, since it is both a genetic determinant of low lung function and a determinant of COPD susceptibility. Moreover, RAGE is involved in the physiological response to cigarette smoke exposure. Since innate and acquired immunity plays an essential role in the development of chronic inflammation and emphysema in COPD, here we summarized the roles of RAGE and its ligand HMGB1 in COPD immunity.
Collapse
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xuejiao Sun
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
47
|
Ragavi R, Adole PS, Vinod KV, Pillai AA. Altered expression of a disintegrin and metalloproteinase 10 in peripheral blood mononuclear cells in type 2 diabetes mellitus patients with the acute coronary syndrome: a pilot study. Endocrine 2022; 77:461-468. [PMID: 35877008 DOI: 10.1007/s12020-022-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Advanced glycation end products (AGEs) are responsible for the complications in type 2 diabetes mellitus (T2DM) patients by acting via its receptor (RAGE). The soluble form of RAGE (sRAGE) prevents the harmful effects of AGE-RAGE signalling. The sRAGE is produced either by alternate splicing (esRAGE) or proteolytic RAGE cleavage by a disintegrin and metalloproteinase 10 (ADAM10). Hence, the study aimed to compare the expression of ADAM10 in peripheral blood mononuclear cell (PBMC), serum sRAGE and esRAGE levels in T2DM patients with and without acute coronary syndrome (ACS). METHODS Forty-five T2DM patients with ACS and 45 age, gender and duration of DM-matched T2DM patients without ACS were recruited. Serum sRAGE and esRAGE levels were measured by enzyme-linked immunosorbent assay. The expression of ADAM10 in PBMC was determined by quantitative reverse transcription-polymerase chain reaction. RESULTS The expression of ADAM10 in PBMC and serum sRAGE levels were significantly lower in T2DM patients with ACS than in T2DM patients without ACS (p < 0.001). Serum sRAGE levels and expression of ADAM10 in PBMC were positively correlated with each other and negatively correlated with markers of cardiac injury and glycaemic status (p < 0.05). Simple logistic regression showed that the models containing the expression of ADAM10 and serum sRAGE level could predict the ACS risk among T2DM patients. ROC analysis showed that both might be used for ACS diagnosis in T2DM patients. CONCLUSION Reduced expression of ADAM10 in PBMC might be responsible for lower serum sRAGE levels, predisposing T2DM patients to high ACS risk.
Collapse
Affiliation(s)
- Ravindran Ragavi
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India
| | - Prashant Shankarrao Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India.
| | - Kolar Vishwanath Vinod
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India
| | - Ajith Ananthakrishna Pillai
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India
| |
Collapse
|
48
|
Mouanness M, Nava H, Dagher C, Merhi Z. Contribution of Advanced Glycation End Products to PCOS Key Elements: A Narrative Review. Nutrients 2022; 14:nu14173578. [PMID: 36079834 PMCID: PMC9460172 DOI: 10.3390/nu14173578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, data has suggested that dietary advanced glycation end products (AGEs) play an important role in both reproductive and metabolic dysfunctions associated with polycystic ovary syndrome (PCOS). AGEs are highly reactive molecules that are formed by the non-enzymatic glycation process between reducing sugars and proteins, lipids, or nucleic acids. They can be formed endogenously under normal metabolic conditions or under abnormal situations such as diabetes, renal disease, and other inflammatory disorders. Bodily AGEs can also accumulate from exogenous dietary sources particularly when ingested food is cooked and processed under high-temperature conditions, such as frying, baking, or grilling. Women with PCOS have elevated levels of serum AGEs that are associated with insulin resistance and obesity and that leads to a high deposition of AGEs in the ovarian tissue causing anovulation and hyperandrogenism. This review will describe new data relevant to the role of AGEs in several key elements of PCOS phenotype and pathophysiology. Those elements include ovarian dysfunction, hyperandrogenemia, insulin resistance, and obesity. The literature findings to date suggest that targeting AGEs and their cellular actions could represent a novel approach to treating PCOS symptoms.
Collapse
Affiliation(s)
| | - Henry Nava
- Rejuvenating Fertility Center, New York, NY 10019, USA
| | - Christelle Dagher
- Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut P.O. Box 100, Lebanon
| | - Zaher Merhi
- Rejuvenating Fertility Center, New York, NY 10019, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
- Correspondence: ; Tel.: +1-(203)-557-9696
| |
Collapse
|
49
|
Salehi M, Amiri S, Ilghari D, Hasham LFA, Piri H. The Remarkable Roles of the Receptor for Advanced Glycation End Products (RAGE) and Its Soluble Isoforms in COVID-19: The Importance of RAGE Pathway in the Lung Injuries. Indian J Clin Biochem 2022; 38:159-171. [PMID: 35999871 PMCID: PMC9387879 DOI: 10.1007/s12291-022-01081-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
The respiratory symptoms of acute respiratory distress syndrome (ARDS) in the coronavirus disease 2019 (COVID-19) patients is associated with accumulation of pre-inflammatory molecules such as advanced glycation end-products (AGES), calprotectin, high mobility group box family-1 (HMGB1), cytokines, angiotensin converting enzyme 2 (ACE2), and other molecules in the alveolar space of lungs and plasma. The receptor for advanced glycation end products (RAGEs), which is mediated by the mitogen-activated protein kinase (MAPK), plays a critical role in the severity of chronic inflammatory diseases such as diabetes mellitus (DM) and ARDS. The RAGE gene is most expressed in the alveolar epithelial cells (AECs) of the pulmonary system. Several clinical trials are now being conducted to determine the possible association between the levels of soluble isoforms of RAGE (sRAGE and esRAGE) and the severity of the disease in patients with ARDS and acute lung injury (ALI). In the current article, we reviewed the most recent studies on the RAGE/ligands axis and sRAGE/esRAGE levels in acute respiratory illness, with a focus on COVID-19–associated ARDS (CARDS) patients. According to the research conducted so far, sRAGE/esRAGE measurements in patients with CARDS can be used as a powerful chemical indicator among other biomarkers for assessment of early pulmonary involvement. Furthermore, inhibiting RAGE/MAPK and Angiotensin II receptor type 1 (ATR1) in CARDS patients can be a powerful strategy for diminishing cytokine storm and severe respiratory symptoms.
Collapse
Affiliation(s)
- Mitra Salehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Ilghari
- Midland Memorial Hospital, 400 Rosalind Redfern Grover Pkwy, Midland, TX 79701 USA
| | | | - Hossein Piri
- Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
50
|
Zhang X, You Y, Liu Q, Sun X, Chen W, Duan L. Reduced Circulating Soluble Receptor for Advanced Glycation End-products in Chronic Hepatitis B Are Associated with Hepatic Necroinflammation. Inflammation 2022; 45:2559-2569. [PMID: 35790658 DOI: 10.1007/s10753-022-01712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Abstract
The diagnosis and disease management of chronic hepatitis B (CHB) remain challenging due to the elusive assessment of disease severity. Recently, soluble receptor for advanced glycation end-products (sRAGE) has been implicated in the inflammatory-immune response initiated by liver injury. Nonetheless, its natural behavior and clinical importance in CHB remain elusive. One hundred and twenty CHB patients and forty healthy controls (HCs) were enrolled, and the serum sRAGE as well as RAGE expression in biopsy specimens from these subjects was analyzed, and correlation of sRAGE with clinical features as well as its potential predictive value for monitoring the CHB was also evaluated. Reduced serum sRAGE levels and decreased tissular RAGE expression were observed in CHB patients. sRAGE and RAGE were inversely correlated with gradually increased grades of hepatic necroinflammation as well as the routine indicator ALT. Furthermore, receiver operating characteristic (ROC) analysis showed that combination of ALT and sRAGE exerted better predictive power (area under the ROC curve (AUC) of 0.86) for hepatic necroinflammation than that of ALT (AUC of 0.82), sRAGE (AUC of 0.81), or sRAGE-to-ALT ratio (sRAGE/ALT) (AUC of 0.85) alone. More importantly, circulating sRAGE alone exerted valuable predictive power for hepatic moderate-to-severe necroinflammation in CHB patients but with normal ALT (AUC of 0.81) or minimally elevated ALT (AUC of 0.85). In conclusion, reduced serum sRAGE levels may imply an increased severity for necroinflammation, and it may serve as a potential alternative biomarker for monitoring hepatic necroinflammation in CHB.
Collapse
Affiliation(s)
- Xiuyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Yan You
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qiao Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiaoyu Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China.
| |
Collapse
|