1
|
Emanuilov AI, Budnik AF, Masliukov PM. Somatostatin-immunoreactive neurons of the rat gut during the development. Histochem Cell Biol 2024; 162:385-402. [PMID: 39153131 DOI: 10.1007/s00418-024-02322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Somatostatin (SST) is a peptide expressed in the peripheral and central nervous systems, as well as in endocrine and immune cells. The aim of the current study is to determine the percentage of SST immunoreactive (IR) neurons and their colocalization with choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), and glial fibrillary acidic protein (GFAP) in the myenteric plexus (MP) and submucous plexus (SP) of the small intestine (SI) and large intestine (LI) of rats across different age groups from newborn to senescence using immunohistochemistry. In the MP of the SI and LI, the percentage of SST-IR neurons significantly increased during early postnatal development from 12 ± 2.4 (SI) and 13 ± 3.0 (LI) in newborn rats to 23 ± 1.5 (SI) and 18 ± 1.6 (LI) in 20-day-old animals, remaining stable until 60 days of age. The proportion of SST-IR cells then decreased in aged 2-year-old animals to 14 ± 2.0 (SI) and 10 ± 2.6 (LI). In the SP, the percentage of SST-IR neurons significantly rose from 22 ± 3.2 (SI) and 23 ± 1.7 (LI) in newborn rats to 42 ± 4.0 in 20-day-old animals (SI) and 32 ± 4.9 in 30-day-old animals (LI), before declining in aged 2-year-old animals to 21 ± 2.6 (SI) and 28 ± 7.4 (LI). Between birth and 60 days of age, 97-98% of SST-IR neurons in the MP and SP colocalized with ChAT in both plexuses of the SI and LI. The percentage of SST/ChAT neurons decreased in old rats to 85 ± 5.0 (SI) and 90 ± 3.8 (LI) in the MP and 89 ± 3.2 (SI) and 89 ± 1.6 (LI) in the SP. Conversely, in young rats, only a few SST-IR neurons colocalized with nNOS, but this percentage significantly increased in 2-year-old rats. The percentage of SST/NPY-IR neurons exhibited considerable variation throughout postnatal development, with no significant differences across different age groups in both the MP and SP of both intestines. No colocalization of SST with GFAP was observed in any of the studied animals. In conclusion, the expression of SST in enteric neurons increases in young rats and decreases in senescence, accompanied by changes in SST colocalization with ChAT and nNOS.
Collapse
Affiliation(s)
- Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University Named After H.M. Berbekov, Nalchik, Russia
| | - Petr M Masliukov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia.
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000.
| |
Collapse
|
2
|
Chen J, Zhao W, Cao L, Martins RST, Canário AVM. Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish. BMC Biol 2024; 22:163. [PMID: 39075492 PMCID: PMC11288053 DOI: 10.1186/s12915-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Energy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction. A bioinformatic and experimental study suggested co-regulation of the circadian clock, reproductive axis and growth-regulating genes in zebrafish. While loss-of-function of most of the identified co-regulated genes had no effect or only had mild effects on reproduction, no such information existed about the co-regulated somatostatin, well-known for its actions on growth and metabolism. RESULTS We show that somatostatin signalling is pivotal in regulating fecundity and metabolism. Knock-out of zebrafish somatostatin 1.1 (sst1.1) and somatostatin 1.2 (sst1.2) caused a 20-30% increase in embryonic primordial germ cells, and sst1.2-/- adults laid 40% more eggs than their wild-type siblings. The sst1.1-/- and sst1.2-/- mutants had divergent metabolic phenotypes: the former had 25% more pancreatic α-cells, were hyperglycaemic and glucose intolerant, and had increased adipocyte mass; the latter had 25% more pancreatic β-cells, improved glucose clearance and reduced adipocyte mass. CONCLUSIONS We conclude that somatostatin signalling regulates energy metabolism and fecundity through anti-proliferative and modulatory actions on primordial germ cells, pancreatic insulin and glucagon cells and the hypothalamus. The ancient origin of the somatostatin system suggests it could act as a switch linking metabolism and reproduction across vertebrates. The results raise the possibility of applications in human and animal fertility.
Collapse
Affiliation(s)
- Jie Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Wenting Zhao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lei Cao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Rute S T Martins
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Adelino V M Canário
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
3
|
Clark K, Boland JW, Currow DC. Letter to the Editor. A Response to: Palliative Management of Inoperable Malignant Bowel Obstruction: Prospective, Open Label, Phase 2 Study at an NCI Comprehensive Cancer Center. J Pain Symptom Manage 2024; 67:e919-e920. [PMID: 38342475 DOI: 10.1016/j.jpainsymman.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Affiliation(s)
- Katherine Clark
- Palliative Care Network (K.C.), Northern Sydney Local Health District, Sydney, Australia; Northern Clinical School (K.C.), University of Sydney, New South Wales, Australia.
| | - Jason W Boland
- Hull York Medical School (J.W.B.), University of Hull, Hull, United Kingdom
| | - David C Currow
- Faculty of Science, Medicine and Health (D.C.C.), University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
4
|
Clavenzani P, Lattanzio G, Bonaldo A, Parma L, Busti S, Oterhals Å, Romarheim OH, Aspevik T, Gatta PP, Mazzoni M. Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream. Animals (Basel) 2023; 13:3020. [PMID: 37835626 PMCID: PMC10571541 DOI: 10.3390/ani13193020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating "open type" and "closed type" EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream.
Collapse
Affiliation(s)
- Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Serena Busti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Åge Oterhals
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Odd Helge Romarheim
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Tone Aspevik
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| |
Collapse
|
5
|
Masliukov PM, Emanuilov AI, Budnik AF. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken) 2023; 306:2249-2263. [PMID: 35762574 DOI: 10.1002/ar.25015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The sympathetic nervous system inhibits gut motility, secretion, and blood flow in the gut microvasculature and can modulate gastrointestinal inflammation. Sympathetic neurons signal via catecholamines, neuropeptides, and gas mediators. In the current review, we summarize the current understanding of the mature sympathetic innervation of the gastrointestinal tract with a focus mainly on the prevertebral sympathetic ganglia as the main output to the gut. We also highlight recent work regarding the developmental processes of sympathetic innervation. The anatomy, neurochemistry, and connections of the sympathetic prevertebral ganglia with different parts of the gut are considered in adult organisms during prenatal and postnatal development and aging. The processes and mechanisms that control the development of sympathetic neurons, including their migratory pathways, neuronal differentiation, and aging, are reviewed.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| |
Collapse
|
6
|
Di Nardo G, Zenzeri L, Guarino M, Molfino A, Parisi P, Barbara G, Stanghellini V, De Giorgio R. Pharmacological and nutritional therapy of children and adults with chronic intestinal pseudo-obstruction. Expert Rev Gastroenterol Hepatol 2023; 17:325-341. [PMID: 36939480 DOI: 10.1080/17474124.2023.2193887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
INTRODUCTION Chronic intestinal pseudo-obstruction (CIPO) is a rare, heterogeneous and severe form of gastrointestinal dysmotility. AREAS COVERED Pertinent literature on pediatric and adult CIPO management has been assessed via PubMed, Scopus, and EMBASE from inception to June 2022. Prokinetics, aimed at restoring intestinal propulsion (e.g. orthopramides and substituted benzamides, acetyl cholinesterase inhibitors, serotonergic agents and others), have been poorly tested and the available data showed only partial efficacy. Moreover, some prokinetic agents (e.g. orthopramides and substituted benzamides) can cause major side effects. The CIPO-related small intestinal bacterial overgrowth requires treatment preferably via poorly absorbable antibiotics to avoid bacterial resistance. Apart from opioids, which worsen gut motility, analgesics should be considered to manage visceral pain, which might dominate the clinical manifestations. Nutritional support, via modified oral feeding, enteral or parenteral nutrition, is key to halt CIPO-related malnutrition. EXPERT OPINION There have been significant roadblocks preventing the development of CIPO treatment. Nonetheless, the considerable advancement in neurogastroenterology and pharmacological agents cast hopes to test the actual efficacy of new prokinetics via well-designed clinical trials. Adequate dietary strategies and supplementation remain of crucial importance. Taken together, novel pharmacological and nutritional options are expected to provide adequate treatments for these patients.
Collapse
Affiliation(s)
- Giovanni Di Nardo
- NESMOS Department, Faculty of Medicine & Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Letizia Zenzeri
- NESMOS Department, Faculty of Medicine & Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy.,Emergency Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Matteo Guarino
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Alessio Molfino
- Department of Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Pasquale Parisi
- NESMOS Department, Faculty of Medicine & Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanni Barbara
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna; Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Vincenzo Stanghellini
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna; Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Aberrant Methylation of Somatostatin Receptor 2 Gene Is Initiated in Aged Gastric Mucosa Infected with Helicobacter pylori and Consequential Gene Silencing Is Associated with Establishment of Inflammatory Microenvironment In Vitro Study. Cancers (Basel) 2022; 14:cancers14246183. [PMID: 36551669 PMCID: PMC9777158 DOI: 10.3390/cancers14246183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The loss-of-function variants are thought to be associated with inflammation in the stomach. We here aimed to evaluate the extent and role of methylation at the SSTR2 promoter in inflammation and gastric tumor formation. A whole-genome bisulfite sequencing analysis revealed that the SSTR2 promoter was significantly hypermethylated in gastric tumors, dysplasia, and intestinal metaplasia compared to non-tumor tissues from patients with gastric cancer. Using public data, we confirmed SSTR2 promoter methylation in primary gastric tumors and intestinal metaplasia, and even aged gastric mucosae infected with Helicobacter pylori, suggesting that aberrant methylation is initiated in normal gastric mucosa. The loss-of-function of SSTR2 in SNU638 cell-induced cell proliferation in vitro, while stable transfection of SSTR2 in AGS and MKN74 cells inhibited cell proliferation and tumorigenesis in vitro and in vivo. As revealed by a comparison of target genes differentially expressed in these cells with hallmark molecular signatures, inflammation-related pathways were distinctly induced in SSTR2-KO SNU638 cell. By contrast, inflammation-related pathways were inhibited in AGS and MKN74 cells ectopically expressing SSTR2. Collectively, we propose that SSTR2 silencing upon promoter methylation is initiated in aged gastric mucosae infected with H. pylori and promotes the establishment of an inflammatory microenvironment via the intrinsic pathway. These findings provide novel insights into the initiation of gastric carcinogenesis.
Collapse
|
8
|
Balog M, Anderson A, Gurumurthy CB, Quadros RM, Korade Z, Mirnics K. Knock-in mouse models for studying somatostatin and cholecystokinin expressing cells. J Neurosci Methods 2022; 381:109704. [PMID: 36070817 DOI: 10.1016/j.jneumeth.2022.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Somatostatin (SST) and cholecystokinin (CCK) are peptide hormones that regulate the endocrine system, cell proliferation and neurotransmission. NEW METHOD We utilized the novel Easi-CRISPR system to generate two knock-in mouse strains with Cre recombinase in SST- and CCK-expressing cells and validated their utility in the developing and adult brain tissues. RESULTS The full nomenclature for the newly generated strains are C57BL/6-Sstem1(P2A-iCre-T2A-mCherry)Mirn and C57BL/6-Cckem1(iCre-T2A-mCherry-P2A)Mirn. For the Sst locus, a P2A-iCre-T2A-mCherry cassette was inserted immediately upstream of the stop codon (C terminus fusion). For the Cck locus, iCre-P2A-mCherry-T2A cassette was inserted at the start codon (N terminus fusion). Knock-in mice were generated using the Easi-CRISPR method. Developmental and adult SST and CCK expressions were preserved and showed an appropriate expression pattern in both models, with an active fluorescent tag in both animal lines. COMPARISON WITH EXISTING METHODS Knock-in mouse models to study cell types that produce these critically important molecules are limited to date. The knock-in mice we generated can be used as reporters to study development, physiology, or pathophysiology of SST and CCK expressing cells - without interference with native expression of SST and CCK. In addition, they can be used as Cre driver models to conditionally delete floxed genes in SST and CCK expressing cells across various tissues. CONCLUSIONS These two mouse models serve as valuable tools for in vitro and in vivo research studies related to SST and CCK biology across the lifespan and across different tissue types.
Collapse
Affiliation(s)
- Marta Balog
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center Omaha, NE, USA; Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center Omaha, NE, USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center Omaha, NE, USA; Child Health Research Institute, University of Nebraska Medical Center Omaha, NE, USA.
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pediatrics, University of Nebraska Medical Center Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center Omaha, NE, USA; Child Health Research Institute, University of Nebraska Medical Center Omaha, NE, USA.
| |
Collapse
|
9
|
MacNicol JL, Pearson W. Gastrin and Nitric Oxide Production in Cultured Gastric Antral Mucosa Are Altered in Response to a Gastric Digest of a Dietary Supplement. Front Vet Sci 2021; 8:684203. [PMID: 34671658 PMCID: PMC8520902 DOI: 10.3389/fvets.2021.684203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
In vitro organ culture can provide insight into isolated mucosal responses to particular environmental stimuli. The objective of the present study was to investigate the impact of a prolonged culturing time as well as the addition of acidic gastric fluid into the in vitro environment of cultured gastric antral tissue to evaluate how altering the commonly used neutral environment impacted tissue. Furthermore, we aimed to investigate the impact of G's Formula, a dietary supplement for horses, on the secretion of gastrin, interleukin1-beta (IL-1β), and nitric oxide (NO). These biomarkers are of interest due to their effects on gastric motility and mucosal activity. Gastric mucosal tissue explants from porcine stomachs were cultured in the presence of a simulated gastric fluid (BL, n = 14), simulated gastric fluid containing the dietary supplement G's Formula (DF, n = 12), or an equal volume of phosphate buffered saline (CO, n = 14). At 48 and 60 h, 10−5 M carbachol was used to stimulate gastrin secretion. Cell viability was assessed at 72 h using calcein and ethidium-homodimer 1 staining. Media was analyzed for gastrin, IL-1β, and NO at 48, 60, and 72 h. There were no effects of treatment or carbachol stimulation on explant cell viability. Carbachol resulted in a significant increase in gastrin concentration in CO and DF treatments, but not in BL. NO was higher in CO than in BL, and NO increased in the CO and DF treatments but not in BL. In conclusion, the addition of carbachol and gastric digests to culture media did not impact cell viability. The use of an acidic gastric digest (BL) reduced the effect of cholinergic stimulation with carbachol at a concentration of 10−5 M and reduced NO secretion. The addition of the dietary supplement to the gastric digest (DF) appeared to mediate these effects within this model. Further research is required to evaluate the specific effects of this dietary supplement on direct markers of mucosal activity and the functional relevance of these results in vivo.
Collapse
Affiliation(s)
- Jennifer L MacNicol
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Li Y, Li X, Geng C, Guo Y, Wang C. Somatostatin receptor 5 is critical for protecting intestinal barrier function in vivo and in vitro. Mol Cell Endocrinol 2021; 535:111390. [PMID: 34224803 DOI: 10.1016/j.mce.2021.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Somatostatin receptor 5 (SSTR5) is involved in intestinal barrier protection during colitis through modulating tight junction (TJ) proteins, but the mechanisms of SSTR5 in TJ regulation are largely unknown. Therefore, the present study was designed to illuminate how SSTR5 modulated intestinal barrier function and TJ proteins. In this study, activation of SSTR5 by its special agonist L817,818 effectively ameliorated impaired intestinal barrier function in TNF-α-pretreated cells and mice with colitis. Restoration of intestinal barrier function was dependent on upregulation of claudin-4 and ZO-1. Suppression of SSTR5 signaling through specific siRNA or the antagonist BIM23056 markedly exacerbated TNF-α-induced claudin-4 and ZO-1 damage. L817,818 treatment markedly suppressed TNF-α-induced NF-κB p65 phosphorylation, myosin light chain kinase (MLCK) upregulation and myosin light chain (MLC) phosphorylation. Exposure to a NF-κB inhibitor (QNZ) or MLCK inhibitor (ML-7) effectively inhibited compromised claudin-4 and ZO-1 induced by BIM23056/TNF-α. These observations indicate that activation of SSTR5 protects intestinal barrier function by upregulating claudin-4 and ZO-1 expression, which is mediated by NF-κB-MLCK-MLC signaling. Taken together, our findings suggest that SSTR5 might represent a promising target for colitis therapy.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Serra-Campos AO, Abreu-Junior ANG, Nascimento AA, Abidu-Figueiredo M, Lima MSCS, Machado-Santos C. Gastroesophageal tube of the Iguana iguana (Iguanidae): histological description, histochemical and immunohistochemical analysis of 5-HT and SS cells. BRAZ J BIOL 2021; 83:e242086. [PMID: 34161453 DOI: 10.1590/1519-6984.242086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
The work aims were to describe the histological and histochemical structure of the gastroesophageal tube of Iguana iguana and verify the occurrence and distribution of immunoreactive serotonin (5-HT) and somatostatin (SS) cells. Fragments of the gastrointestinal tract (GIT) of five iguanas were which underwent standard histological and immunohistochemistry technique. Immunoreactive cells for 5-HT and SS were quantified using the STEPanizer. The oesophagus has ciliated columnar pseudostratified epithelium with staining Alcian blue (AB) + and goblet cells highly reactive to periodic acid Schiff (PAS). In the cervical oesophagus, the numerical density of 5-HT cells per unit area (QA [5-HT cells]/µm2) was 4.6x10-2 ± 2.0 and celomatic oesophagus presented QA = 4.0x10-2 ± 1.0. The epithelium of the stomach is simple columnar, PAS and AB +. The cranial and middle regions of the stomach presented (QA [5-HT cells]/µm2) = 6.18x10-2 ± 3.2 and the caudal region, QA = 0.6x10-2 ± 0.2. The SS cells were only observed in the caudal stomach, with numerical density (QA [SS cells]/µm2) = 1.4x10-2 ± 0.9 In I. iguana, variation was observed in terms of the distribution of mucus secretions and the pattern of occurrence of serotonin and somatostatin-secreting enteroendocrine cells in the TGI, which possibly will result in an interspecific adaptive response.
Collapse
Affiliation(s)
- A O Serra-Campos
- Universidade Federal Fluminense - UFF, Departamento de Morfologia, Laboratório de Ensino e Pesquisa em Histologia e Embriologia Comparada - LEPHEC, Niterói, RJ, Brasil
| | - A N G Abreu-Junior
- Universidade Federal do Piauí - UFPI, Departamento de Biologia, Laboratório de Herpertologia, Floriano, PI, Brasil
| | - A A Nascimento
- Universidade Federal Rural do Rio de Janeiro - UFRRJ, Instituto de Ciências Biológicas e da Saúde, Programa de Pós-graduação em Biologia Animal, Seropédica, RJ, Brasil
| | - M Abidu-Figueiredo
- Universidade Federal Rural do Rio de Janeiro - UFRRJ, Instituto de Ciências Biológicas e da Saúde, Programa de Pós-graduação em Biologia Animal, Seropédica, RJ, Brasil
| | - M S C S Lima
- Universidade Federal do Piauí - UFPI, Departamento de Biologia, Laboratório de Herpertologia, Floriano, PI, Brasil
| | - C Machado-Santos
- Universidade Federal Fluminense - UFF, Departamento de Morfologia, Laboratório de Ensino e Pesquisa em Histologia e Embriologia Comparada - LEPHEC, Niterói, RJ, Brasil
| |
Collapse
|
12
|
Nunez‐Salces M, Li H, Feinle‐Bisset C, Young RL, Page AJ. The regulation of gastric ghrelin secretion. Acta Physiol (Oxf) 2021; 231:e13588. [PMID: 33249751 DOI: 10.1111/apha.13588] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone with multiple physiological functions, including the stimulation of food intake and adiposity. It is well established that circulating ghrelin levels are closely associated with feeding patterns, rising strongly before a meal and lowering upon food intake. However, the mechanisms underlying the modulation of ghrelin secretion are not fully understood. The purpose of this review is to discuss current knowledge on the circadian oscillation of circulating ghrelin levels, the neural mechanisms stimulating fasting ghrelin levels and peripheral mechanisms modulating postprandial ghrelin levels. Furthermore, the therapeutic potential of targeting the ghrelin pathway is discussed in the context of the treatment of various metabolic disorders, including obesity, type 2 diabetes, diabetic gastroparesis and Prader-Willi syndrome. Moreover, eating disorders including anorexia nervosa, bulimia nervosa and binge-eating disorder are also discussed.
Collapse
Affiliation(s)
- Maria Nunez‐Salces
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Hui Li
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Christine Feinle‐Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
- Intestinal Nutrient Sensing Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Amanda J. Page
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| |
Collapse
|
13
|
Patel M, Tena I, Jha A, Taieb D, Pacak K. Somatostatin Receptors and Analogs in Pheochromocytoma and Paraganglioma: Old Players in a New Precision Medicine World. Front Endocrinol (Lausanne) 2021; 12:625312. [PMID: 33854479 PMCID: PMC8039528 DOI: 10.3389/fendo.2021.625312] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine tumors overexpress somatostatin receptors, which serve as important and unique therapeutic targets for well-differentiated advanced disease. This overexpression is a well-established finding in gastroenteropancreatic neuroendocrine tumors which has guided new medical therapies in the administration of somatostatin analogs, both "cold", particularly octreotide and lanreotide, and "hot" analogs, chelated to radiolabeled isotopes. The binding of these analogs to somatostatin receptors effectively suppresses excess hormone secretion and tumor cell proliferation, leading to stabilization, and in some cases, tumor shrinkage. Radioisotope-labeled somatostatin analogs are utilized for both tumor localization and peptide radionuclide therapy, with 68Ga-DOTATATE and 177Lu-DOTATATE respectively. Benign and malignant pheochromocytomas and paragangliomas also overexpress somatostatin receptors, irrespective of embryological origin. The pattern of somatostatin receptor overexpression is more prominent in succinate dehydrogenase subunit B gene mutation, which is more aggressive than other subgroups of this disease. While the Food and Drug Administration has approved the use of 68Ga-DOTATATE as a radiopharmaceutical for somatostatin receptor imaging, the use of its radiotherapeutic counterpart still needs approval beyond gastroenteropancreatic neuroendocrine tumors. Thus, patients with pheochromocytoma and paraganglioma, especially those with inoperable or metastatic diseases, depend on the clinical trials of somatostatin analogs. The review summarizes the advances in the utilization of somatostatin receptor for diagnostic and therapeutic approaches in the neuroendocrine tumor subset of pheochromocytoma and paraganglioma; we hope to provide a positive perspective in using these receptors as targets for treatment in this rare condition.
Collapse
Affiliation(s)
- Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Scientific Department, Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
- Section of Medical Oncology, Consorcio Hospitalario Provincial of Castellon, Castellon, Spain
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Karel Pacak,
| |
Collapse
|
14
|
Li D, Lv B, Wang D, Xu D, Qin S, Zhang Y, Chen J, Zhang W, Zhang Z, Xu F. Network Pharmacology and Bioactive Equivalence Assessment Integrated Strategy Driven Q-markers Discovery for Da-Cheng-Qi Decoction to Attenuate Intestinal Obstruction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 72:153236. [PMID: 32464544 DOI: 10.1016/j.phymed.2020.153236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Intestinal obstruction (IO) is a kind of acute abdomen with high morbidity and mortality. Patients suffer from poor quality of life and tremendous financial pressure. Da-Cheng-Qi decoction (DCQD), a classical purgation prescription, has clinically been proven to be an effective treatment for IO. PURPOSE Network pharmacology integrated with bioactive equivalence assessment was used to discover the quality marker (Q-marker) of DCQD against IO. METHODS As there is hardly any targets recorded in database, thus the collection of IO targets was conducted by searching those of alternative diseases which have similar pathological symptoms with IO. In order to improve the reliability of the obtained targets, IO metabolomics data was introduced. Active compounds combination (ACC) was focused as potential Q-markers via component-target network analysis and function query from the identified components corresponding to the common targets. Bioequivalence between ACC and DCQD was assessed from the aspects of intestine motility (somatostatin secretion), inflammation (IL-6 secretion) and injury (wound healing assay) in vitro and was further validated in ileus rat model. PPI network analysis of core targets followed by gene pedigree classification and experimental validation confirmed the potential intervention pathway. RESULTS A combination of 11 ingredients, including emodin, physcion, aloe-emodin, rhein, chrysophanol, gallic acid, magnolol, honokiol, naringenin, tangeretin, and nobiletin was finally confirmed bioequivalence with DQCD to some extent and could serve as Q-markers for DCQD to attenuate IO. PI3K/AKT was verified as a possible affected pathway that DCQD exerted the effectiveness against IO. CONCLUSION For the disease with few recorded targets, searching those of alternative diseases which have similar pathological symptoms could be a feasible and effective approach. The proposed network pharmacology integrated bioactive equivalence evaluation paradigm is efficient to discover Q-marker of herbal formulae.
Collapse
Affiliation(s)
- Danting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bo Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Doudou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ying Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Zhang
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
15
|
Effects of Xiangsha Liujunzi decoction drug serum on gastric antrum smooth muscle cells from rats with functional dyspepsia by regulating gastrointestinal hormones. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Feng P, Tian C, Lin X, Jiang D, Shi H, Chen H, Deng S, Zhu C, Li G. Identification, Expression, and Functions of the Somatostatin Gene Family in Spotted Scat ( Scatophagus argus). Genes (Basel) 2020; 11:genes11020194. [PMID: 32059553 PMCID: PMC7073721 DOI: 10.3390/genes11020194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Somatostatins (SSTs) are a family of proteins consisting of structurally diverse polypeptides that play important roles in the growth regulation in vertebrates. In the present study, four somatostatin genes (SST1, SST3, SST5, and SST6) were identified and characterized in the spotted scat (Scatophagus argus). The open reading frames (ORFs) of SST1, SST3, SST5, and SST6 cDNA consist of 372, 384, 321, and 333 bp, respectively, and encode proteins of 123, 127, 106, and 110 amino acids, respectively. Amino acid sequence alignments indicated that all SST genes contained conserved somatostatin signature motifs. Real-time PCR analysis showed that the SST genes were expressed in a tissue specific manner. When liver fragments were cultured in vitro with synthetic peptides (SST1, SST2, or SST6 at 1 μM or 10 μM) for 3 h or 6 h, the expression of insulin-like growth factor 1 and 2 (Igf-1 and Igf-2) in the liver decreased significantly. Treatment with SST5 had no significant effect on Igf-1 and Igf-2 gene expression. This study provides an enhanced understanding of the gene structure and expression patterns of the SST gene family in S. argus. Furthermore, this study provides a foundation for future exploration into the role of SST genes in growth and development.
Collapse
Affiliation(s)
- Peizhe Feng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China
| | - Xinghua Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Dongneng Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China
| | - Hongjuan Shi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China
| | - Siping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (P.F.); (C.T.); (X.L.); (D.J.); (H.S.); (H.C.); (S.D.); (C.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China
- Correspondence: ; Tel.: +86-75-92-383-124; Fax: +86-75-92-382-459
| |
Collapse
|
17
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Elhassan M, Ali A, Blanch A, Kehlet A, Madekurozwa MC. Morphological Responses of the Small Intestine of Broiler Chicks to Dietary Supplementation With a Probiotic, Acidifiers, and Their Combination. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
19
|
Shariff AI, Syed S, Shelby RA, Force J, Clarke JM, D'Alessio D, Corsino L. Novel cancer therapies and their association with diabetes. J Mol Endocrinol 2019; 62:R187-R199. [PMID: 30532995 DOI: 10.1530/jme-18-0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, there has been a shift in the focus of cancer therapy from conventional cytotoxic drugs to therapies more specifically directed to cancer cells. These novel therapies include immunotherapy, targeted therapy and precision medicine, each developed in great part with a goal of limiting collateral destruction of normal tissues, while enhancing tumor destruction. Although this approach is sound in theory, even new, specific therapies have some undesirable, 'off target effects', in great part due to molecular pathways shared by neoplastic and normal cells. One such undesirable effect is hyperglycemia, which results from either the loss of immune tolerance and autoimmune destruction of pancreatic β-cells or dysregulation of the insulin signaling pathway resulting in insulin resistance. These distinct pathogenic mechanisms lead to clinical presentations similar to type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. Both types of diabetes have been reported in patients across clinical trials, and data on the mechanism(s) for developing hyperglycemia, prevalence, prognosis and effect on cancer mortality is still emerging. With the rapidly expanding list of clinical indications for new cancer therapies, it is essential to understand the impact of their adverse effects. In this review, we focus on hyperglycemia and diabetes related to cancer therapies, describe what is known about mechanism(s) leading to dysregulated glucose metabolism and provide a guide to management of complex oncology patients with a new diagnosis of diabetes.
Collapse
Affiliation(s)
- Afreen Idris Shariff
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sohail Syed
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rebecca A Shelby
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeremy Force
- Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeffrey Melson Clarke
- Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David D'Alessio
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Leonor Corsino
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
20
|
Xian Y, Zhao X, Wang C, Kang C, Ding L, Zhu W, Hang S. Phenylalanine and tryptophan stimulate gastrin and somatostatin secretion and H +-K +-ATPase activity in pigs through calcium-sensing receptor. Gen Comp Endocrinol 2018; 267:1-8. [PMID: 29782837 DOI: 10.1016/j.ygcen.2018.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/28/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022]
Abstract
In rodents and humans, aromatic amino acids increase gut hormone secretion and H+-K+-ATPase activity by modulating calcium-sensing receptor (CaSR). However, the role of CaSR and its related signaling molecules in amino acid-induced gut hormone secretion in swine has not been investigated. Here, we examined whether a CaSR-dependent pathway modulated gastrin and somatostatin (SS) secretion and H+-K+-ATPase activity in pigs. Perfusion of pig stomach tissues in the presence of extracellular 80 mM l-phenylalanine (Phe) or 20 mM l-tryptophan (Trp) and a CaSR agonist cinacalcet triggered gastrin and SS secretion and H+-K+-ATPase activity (P < 0.05) and increased CaSR expression (P < 0.05). This effect of Phe and Trp was dependent on Ca2+ (P < 0.05) and was abolished after treatment with NPS 2143, an inhibitor of CaSR, and 2-aminoethyl diphenyl borinate, an inhibitor of CaSR downstream signaling molecule inositol 1,4,5-triphosphate receptor (IP3R). These findings indicate that Phe and Trp induce Ca2+-dependent gastrin and SS secretion and H+-K+-ATPase activity through CaSR and its downstream signaling molecule IP3R.
Collapse
Affiliation(s)
- Yihan Xian
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Xiuying Zhao
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Cuicui Kang
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Liren Ding
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
21
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Wang S, Zhang R, Hou X, Jiang F, Wang J, He Z, Jiang F, Hu C, Jia W. Association between serum somatostatin levels and glucose-lipid metabolism in the Jino ethnic minority and Han Chinese population. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1382-1388. [PMID: 29995197 DOI: 10.1007/s11427-017-9289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 10/28/2022]
Abstract
We aim to investigate the relationship between serum somatostatin (SST) levels and glucose-lipid metabolism at various stages of glucose tolerance in the Jino ethnic minority (n=111) and Han population (n=113) of Yunnan Province, southwest China. Anthropometric parameters and biochemical traits were measured. Serum SST and plasma glucagon levels were tested. Participants were divided into three subgroups: isolated fasting hyperglycemia (IFH), isolated post challenge hyperglycemia (IPH) and normal glucose tolerance (NGT). SST levels were found lower while glucagon levels were significantly higher in the Jino ethnic with IPH (P=0.0026 and P=0.0069, respectively). Fasting glucose and high density lipoprotein-cholesterol (HDL-C) levels were higher (P=0.0055 and P=0.0021, respectively) and fasting insulin levels and homeostasis model assessments β-cell function were lower (P=0.0479 and P=0.0007, respectively) in the Jino population. After adjusting for confounding factors, the serum SST level was associated with glucagon (P<0.0001) in both populations. The SST level was correlated with fasting Cpeptide (P=0.0267) in Jino and HDL-C levels in Han (P=0.0079). Our findings suggest that serum SST levels and plasma glucagon levels may vary in subjects with IPH between two ethnics.
Collapse
Affiliation(s)
- Shiyun Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuhong Hou
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Fusong Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jie Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhen He
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 200233, China.
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
23
|
Ji R, Zhu J, Wang D, Sui QQ, Knight GE, Burnstock G, Yuan H, Xiang Z. Expression of P2X1 receptors in somatostatin-containing cells in mouse gastrointestinal tract and pancreatic islets of both mouse and human. Purinergic Signal 2018; 14:285-298. [PMID: 29974392 DOI: 10.1007/s11302-018-9615-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
With immunohistochemical and Western blot techniques, P2X1 receptors were detected in the whole mouse gastrointestinal tract and pancreatic islets of mouse and human. (1) δ Cells containing somatostatin (SOM) in the stomach corpus, small intestines, distal colon, pancreatic islets of both mouse and human express P2X1 receptors; (2) strong immunofluorescence of P2X1 receptors was detected in smooth muscle fibers and capillary networks of the villus core of mouse intestine; and (3) P2X1 receptor-immunoreactive neurons were also detected widely in both mouse myenteric and submucosal plexuses, all of which express SOM. The present data implies that ATP via P2X1 receptors is involved in SOM release from pancreatic δ cells, enteric neurons, and capillary networks in villi.
Collapse
Affiliation(s)
- Ruihua Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jiao Zhu
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Dan Wang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qian-Qian Sui
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
- Department of Pharmacology, Melbourne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
24
|
Home-Based Transcutaneous Neuromodulation Improved Constipation via Modulating Gastrointestinal Hormones and Bile Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2086163. [PMID: 29853946 PMCID: PMC5949156 DOI: 10.1155/2018/2086163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/20/2018] [Indexed: 02/08/2023]
Abstract
This study aims to investigate the role of transcutaneous neuromodulation (TN) on the regulation of gastrointestinal hormones and bile acids in patients with functional constipation (FC). Twenty FC patients were treated with TN for four weeks. The effects of TN on symptoms were evaluated by questionnaires. Plasma levels of serotonin (5-HT), motilin, somatostatin, and vasoactive intestinal peptide (VIP) were measured by ELISA and 12 individual bile acids assayed by liquid chromatography tandem mass spectrometry. Results were as follows. (1) TN treatment increased the frequency of spontaneous bowel movement, improved the Bristol Stool Score, and reduced Patient Assessment of Constipation Symptom score and Patient Assessment of Constipation Quality of Life score. (2) FC patients showed decreased plasma levels of 5-HT, motilin, and VIP and an increased plasma level of somatostatin (P < 0.05). Four-week TN treatment increased plasma levels of 5-HT and motilin and decreased the plasma level of somatostatin in the FC patients (P < 0.05). (3) Taurocholic deoxycholate, taurocholic acid, and taurocholic lithocholic acid were increased in the FC patients (P < 0.005) but reduced by TN treatment (P < 0.05). This study has suggested that the therapy may improve the symptoms of FC by alleviating the disorders of gastrointestinal hormones and bile acids.
Collapse
|
25
|
Lecomte MJ, Bertolus C, Ramanantsoa N, Saurini F, Callebert J, Sénamaud-Beaufort C, Ringot M, Bourgeois T, Matrot B, Collet C, Nardelli J, Mallet J, Vodjdani G, Gallego J, Launay JM, Berrard S. Acetylcholine Modulates the Hormones of the Growth Hormone/Insulinlike Growth Factor-1 Axis During Development in Mice. Endocrinology 2018; 159:1844-1859. [PMID: 29509880 DOI: 10.1210/en.2017-03175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/23/2018] [Indexed: 12/28/2022]
Abstract
Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.
Collapse
Affiliation(s)
- Marie-José Lecomte
- Univercell-Biosolutions, Centre de Recherche des Cordeliers, Paris, France
| | - Chloé Bertolus
- Département de Chirurgie Maxillo-Faciale, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Nélina Ramanantsoa
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Françoise Saurini
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jacques Callebert
- U942-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Maud Ringot
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Thomas Bourgeois
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Boris Matrot
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Corinne Collet
- U1132-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jeannette Nardelli
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jacques Mallet
- UMRS1127-CNRS, Inserm, Université Pierre et Marie Curie, Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Guilan Vodjdani
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- CNRS, Paris, France
| | - Jorge Gallego
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jean-Marie Launay
- U942-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvie Berrard
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- CNRS, Paris, France
| |
Collapse
|
26
|
Palus K, Bulc M, Czajkowska M, Miciński B, Całka J. Neurochemical characteristics of calbindin-like immunoreactive coeliac-cranial mesenteric ganglion complex (CCMG) neurons supplying the pre-pyloric region of the porcine stomach. Tissue Cell 2018; 50:8-14. [DOI: 10.1016/j.tice.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/29/2023]
|
27
|
Palus K, Bulc M, Całka J. Changes in Somatostatin-Like Immunoreactivity in the Sympathetic Neurons Projecting to the Prepyloric Area of the Porcine Stomach Induced by Selected Pathological Conditions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9037476. [PMID: 29098163 PMCID: PMC5643105 DOI: 10.1155/2017/9037476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/10/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to define changes in the expression of somatostatin (SOM) in the sympathetic perikarya innervating the porcine stomach prepyloric area during acetylsalicylic-acid-induced gastritis (ASA) and experimentally induced hyperacidity (HCL) and following partial stomach resection (RES). On day 1, the stomachs were injected with neuronal retrograde tracer Fast Blue (FB). Animals in the ASA group were given acetylsalicylic acid orally for 21 days. On the 22nd day after FB injection, partial stomach resection was performed in RES animals. On day 23, HCL animals were intragastrically given 5 ml/kg of body weight of a 0.25 M aqueous solution of hydrochloric acid. On day 28, all pigs were euthanized. Then, 14-μm thick cryostat sections of the coeliac-superior mesenteric ganglion (CSMG) complexes were processed for routine double-labelling immunofluorescence. All pathological conditions studied resulted in upregulation of SOM-like (SOM-LI) immunoreactivity (from 14.97 ± 1.57% in control group to 33.72 ± 4.39% in the ASA group, to 39.02 ± 3.65% in the RES group, and to 29.63 ± 0.85% in the HCL group). The present studies showed that altered expression of SOM occurs in sympathetic neurons supplying the prepyloric area of the porcine stomach during adaptation to various pathological insults.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
28
|
Luo D, Qu C, Lin G, Zhang Z, Xie J, Chen H, Liang J, Li C, Wang H, Su Z. Character and laxative activity of polysaccharides isolated from Dendrobium officinale. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
29
|
Wang XX, Ye T, Li M, Li X, Qiang O, Tang CW, Liu R. Effects of octreotide on hepatic glycogenesis in rats with high fat diet‑induced obesity. Mol Med Rep 2017; 16:109-118. [PMID: 28534956 PMCID: PMC5482138 DOI: 10.3892/mmr.2017.6586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 02/27/2017] [Indexed: 02/05/2023] Open
Abstract
Reduced hepatic glycogenesis is one of the most important causes of metabolic abnormalities in non‑alcoholic fatty liver disease. Octreotide, a somatostatin analogue, has been demonstrated to promote weight loss and improve metabolic disorders in mice with high fat diet (HFD)‑induced obesity. However, whether octreotide affects hepatic glycogenesis is unknown. The aim of the present study was to verify the effects of octreotide on hepatic glycogenesis in rats with HFD‑induced obesity. Male Sprague‑Dawley rats were fed a standard diet or a HFD for 24 weeks. Obese rats from the HFD group were further divided into a HFD‑control group and an octreotide‑administered group. Rats in the latter group were injected with octreotide for 8 days. Glucose and insulin tolerance tests were performed, and the area under the curve (AUC) was calculated. Following sacrifice, their body weights and lengths, fasting plasma glucose (FPG), fasting insulin (FINS), serum triglyceride (TG), total cholesterol (TC), free fatty acid (FFA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. In addition, Lee's index and the homeostatic model assessment index were calculated. Hepatic TG, FFA levels and glycogen content were first determined. Hepatic steatosis in the obese rats was assessed based on hematoxylin and eosin and Oil Red O staining. Human hepatoblastoma HepG2 cells were divided into a control group, a palmitate (PA)‑treated group and a PA + octreotide‑treated group. Establishment of the in vitro fatty liver model using HepG2 cells was confirmed by Oil Red O staining. The expression of phosphorylated Akt and glycogen synthase kinase 3β (GSK3β) was detected by western blotting, and glycogen synthase (GS) mRNA levels were detected by reverse transcription‑quantitative polymerase chain reaction. Compared with the control group, the body weight, Lee's index, AUC of the intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test, levels of FPG, FINS, TG, TC, FFA, ALT and AST, and HOMA index values were significantly increased in the obese rats. The body weight, levels of FPG and FINS, and the HOMA index were significantly reduced following octreotide treatment, whereas the decrease in Lee's index, the blood levels of ALT, AST, TC, TG and FFA, and the AUC did not reach statistical significance. Hepatic TG and FFA levels were significantly increased and hepatic glycogen content was significantly decreased in rats with HFD‑induced obesity when compared with those in the control group. Octreotide intervention restored these alterations. The expression levels of phosphorylated Akt and GSK3β protein expression, as well as GS mRNA levels in the HFD group were lower when compared with those in the control group, whereas octreotide treatment reversed these reductions. The in vitro experiments demonstrated that the reduced levels of phosphorylated Akt and GSK3β protein, and GS mRNA in the PA‑treated group were significantly reversed by octreotide treatment. In conclusion, the results indicate that octreotide improved hepatic glycogenesis and decreased FPG concentration in rats with HFD‑induced obesity. These mechanisms may be associated with increased GS activity via the promotion of GSK3β phosphorylation. Therefore, octreotide may be regarded as a novel therapeutic strategy for HFD‑induced obesity and obesity‑associated metabolic disorders.
Collapse
Affiliation(s)
- Xiao-Xia Wang
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ting Ye
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mao Li
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xian Li
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ou Qiang
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
30
|
Maasz G, Schmidt J, Avar P, Mark L. Automated SPE and nanoLC–MS analysis of somatostatin. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1315722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gabor Maasz
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecology, Tihany, Hungary
| | - Janos Schmidt
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - Peter Avar
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - Laszlo Mark
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary
- Imaging Center for Life and Material Sciences, University of Pecs, Pecs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pecs, Pecs, Hungary
| |
Collapse
|
31
|
Luo D, Qu C, Zhang Z, Xie J, Xu L, Yang H, Li C, Lin G, Wang H, Su Z. Granularity and Laxative Effect of Ultrafine Powder of Dendrobium officinale. J Med Food 2017; 20:180-188. [DOI: 10.1089/jmf.2016.3827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- DanDan Luo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Qu
- Guangdong Province Forestry Science and Technology Extension Station, Guangzhou, China
| | - ZhenBiao Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JianHui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - LieQiang Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - HongMei Yang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - CaiLan Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - GuoSheng Lin
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - HongFeng Wang
- Guangdong Provincial Key Laboratory of Bio-Control for the Forest Disease and Pest, Guangzhou, China
- Biotechnology Division, Guangdong Academy of Forestry, Guangzhou, China
| | - ZiRen Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
32
|
Klek S, Forbes A, Gabe S, Holst M, Wanten G, Irtun Ø, Damink SO, Panisic-Sekeljic M, Pelaez RB, Pironi L, Blaser AR, Rasmussen HH, Schneider SM, Thibault R, Visschers RG, Shaffer J. Management of acute intestinal failure: A position paper from the European Society for Clinical Nutrition and Metabolism (ESPEN) Special Interest Group. Clin Nutr 2016; 35:1209-1218. [DOI: 10.1016/j.clnu.2016.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/22/2023]
|
33
|
Sitjà-Bobadilla A, Estensoro I, Pérez-Sánchez J. Immunity to gastrointestinal microparasites of fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:187-201. [PMID: 26828391 DOI: 10.1016/j.dci.2016.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Fish intestinal parasites cause direct mortalities and also morbidity, poor growth, higher susceptibility to opportunistic pathogens and lower resistance to stress. This review is focused on microscopic parasites (Protozoa and Metazoa) that invade the gastrointestinal tract of fish. Intracellular parasites (mainly Microsporidia and Apicomplexa) evoke almost no host immune reaction while they are concealed in the cytoplasmic and nuclear compartments, and can even use fish cells (macrophages) as Trojan horses to spread in the host. Inflammatory reaction only appears when the parasite bursts infected cells. Immunity against extracellular parasites is depicted for the myxozoans Ceratonova shasta and Enteromyxum spp. The cellular and humoral innate responses and the production of antibodies are crucial for resolving some of these myxozoonoses, but an excessive inflammatory reaction (concerted by cytokines) can become a fatal pathophysiological consequence. The local immune response plays a key role, with numerous genes more strongly regulated in the intestine than at lymphohaematopoietic organs.
Collapse
Affiliation(s)
- Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain.
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
34
|
Yarman S, Yalın GY, Dogansen SC, Canbaz B, Tanrıkulu S, Akyuz F. Double benefit of long-acting somatostatin analogs in a patient with coexistence of acromegaly and ulcerative colitis. J Clin Pharm Ther 2016; 41:559-62. [DOI: 10.1111/jcpt.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- S. Yarman
- Department of Internal Medicine; Division of Endocrinology and Metabolic Diseases; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - G. Y. Yalın
- Department of Internal Medicine; Division of Endocrinology and Metabolic Diseases; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - S. C. Dogansen
- Department of Internal Medicine; Division of Endocrinology and Metabolic Diseases; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - B. Canbaz
- Department of Internal Medicine; Division of Endocrinology and Metabolic Diseases; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - S. Tanrıkulu
- Department of Internal Medicine; Division of Endocrinology and Metabolic Diseases; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - F. Akyuz
- Department of Internal Medicine, Division of Gastroenterohepatology; Istanbul Faculty of Medicine; Istanbul University; Istanbul Turkey
| |
Collapse
|
35
|
Vitali E, Cambiaghi V, Zerbi A, Carnaghi C, Colombo P, Peverelli E, Spada A, Mantovani G, Lania AG. Filamin-A is required to mediate SST2 effects in pancreatic neuroendocrine tumours. Endocr Relat Cancer 2016; 23:181-90. [PMID: 26733502 DOI: 10.1530/erc-15-0358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Somatostatin receptor type 2 (SST2) is the main pharmacological target of somatostatin (SS) analogues widely used in patients with pancreatic neuroendocrine tumours (P-NETs), this treatment being ineffective in a subset of patients. Since it has been demonstrated that Filamin A (FLNA) is involved in mediating GPCR expression, membrane anchoring and signalling, we investigated the role of this cytoskeleton protein in SST2 expression and signalling, angiogenesis, cell adhesion and cell migration in human P-NETs and in QGP1 cell line. We demonstrated that FLNA silencing was not able to affect SST2 expression in P-NET cells in basal conditions. Conversely, a significant reduction in SST2 expression (-43 ± 21%, P < 0.05 vs untreated cells) was observed in FLNA silenced QGP1 cells after long term SST2 activation with BIM23120. Moreover, the inhibitory effect of BIM23120 on cyclin D1 expression (-46 ± 18%, P < 0.05 vs untreated cells), P-ERK1/2 levels (-42 ± 14%; P < 0.05 vs untreated cells), cAMP accumulation (-24 ± 3%, P < 0.05 vs untreated cells), VEGF expression (-31 ± 5%, P < 0.01 vs untreated cells) and in vitro release (-40 ± 24%, P < 0.05 vs untreated cells) was completely lost after FLNA silencing. Interestingly, BIM23120 promoted cell adhesion (+86 ± 45%, P < 0.05 vs untreated cells) and inhibited cell migration (-24 ± 2%, P < 0.00001 vs untreated cells) in P-NETs cells and these effects were abolished in FLNA silenced cells. In conclusion, we demonstrated that FLNA plays a crucial role in SST2 expression and signalling, angiogenesis, cell adhesion and cell migration in P-NETs and in QGP1 cell line, suggesting a possible role of FLNA in determining the different responsiveness to SS analogues observed in P-NET patients.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Valeria Cambiaghi
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alessandro Zerbi
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Carlo Carnaghi
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Piergiuseppe Colombo
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Erika Peverelli
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Anna Spada
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giovanna Mantovani
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Andrea G Lania
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
36
|
Farrell SR, Rankin DR, Brecha NC, Barnes S. Somatostatin receptor subtype 4 modulates L-type calcium channels via Gβγ and PKC signaling in rat retinal ganglion cells. Channels (Austin) 2015; 8:519-27. [PMID: 25483286 DOI: 10.4161/19336950.2014.967623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Somatostatin subtype-4 receptors (sst4) inhibit L-type calcium channel currents (ICa) in retinal ganglion cells (RGCs). Here we identify the signaling pathways involved in sst4 stimulation leading to suppression of ICa in RGCs. Whole cell patch clamp recordings were made on isolated immunopanned RGCs using barium as a charge carrier to isolate ICa. Application of the selective sst4 agonist, L-803 (10 nM), reduced ICa by 41.2%. Pretreatment of cells with pertussis toxin (Gi/o inhibitor) did not prevent the action of L-803, which reduced ICa by 34.7%. To determine the involvement of Gβγ subunits after sst4 activation, depolarizing pre-pulse facilitation paradigms were used to remove voltage-dependent inhibition of calcium channels. Pre-pulse facilitation did not reverse the inhibitory effects of L-803 on ICa (8.4 vs. 8.8% reductions, ctrl vs. L-803); however, pharmacologic inhibition of Gβγ reduced ICa suppression by L-803 (23.0%, P < 0.05). Inhibition of PKC (GF109203X; GFX) showed a concentration-dependent effect in preventing the action of L-803 on ICa (1 μM GFX, 34.3%; 5 μM GFX, 14.6%, P < 0.05). When both PKC and Gβγ were inhibited, the effects of L-803 on ICa were blocked (1.8%, P < 0.05). These results suggest that sst4 stimulation modulates RGC calcium channels via Gβγ and PKC activation. Since reducing intracellular Ca(2+) is known to be neuroprotective in RGCs, modulating these sst4 signaling pathways may provide insights to the discovery of unique therapeutic targets to reduce intracellular Ca(2+) levels in RGCs.
Collapse
Affiliation(s)
- Spring R Farrell
- a Department of Physiology & Biophysics ; Dalhousie University ; Halifax , NS , Canada
| | | | | | | |
Collapse
|
37
|
Wang S, Zhao Y, Zhang J, Huang X, Wang Y, Xu X, Zheng B, Zhou X, Tian H, Liu L, Mei Q. Antidiarrheal effect of Alpinia oxyphylla Miq. (Zingiberaceae) in experimental mice and its possible mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:182-190. [PMID: 25861952 DOI: 10.1016/j.jep.2015.03.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/12/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fructus Alpinia oxyphylla Miq. (AOM) has been used for treating diarrhea with spleen deficiency and gastralgia for thousands of years. A number of traditional Chinese medicine formulae provide AOM as an alternative herbal treatment for diarrhea, but the scientific basis for this usage has not been well defined. AIM OF THE STUDY In this study, we tried to investigate the antidiarrheal activity and possible mechanisms of Fructus AOM, aiming to enrich our understanding to the scientific meanings and theoretical significance of Fructus AOM in clinical practice. MATERIALS AND METHODS The fructus of AOM collected from Hainan province in China were macerated in the 95% ethanol to obtain the crude 95% ethanol extract, followed by subjected to chromatographic separation over a Diaion HP20 column to obtain 90% and 50% ethanol eluted fractions. The activities of the crude extract and fractions on castor oil induced acute diarrhea, rhubarb induced chronic diarrhea, gastrointestinal transit (GIT) in mice, and contractions of isolated guinea-pig ileum were evaluated. Additionally, nitric oxide (NO), gastrointestinal peptides gastrin (GAS), motilin (MTL) and somatostatin (SS) levels that related to gastrointestinal motilities were detected to demonstrate the potential mechanisms. Ultimately, LC-MS/MS method was utilized to ensure the chemical consistency. RESULTS The 95% ethanol extract and 90% ethanol eluted fraction significantly delayed the onset time and decreased the wet faeces proportion compared with control group in the castor oil induced acute diarrhea mice. In terms of further evaluation of antidiarrheal activity, the 95% ethanol extract and 90% ethanol elution displayed significant inhibition of the intestinal propulsion at the two highest oral doses of 20 g crude drug/kg and 1g/kg. Moreover the 95% ethanol extract (10 and 20 g crude drug/kg) and 90% ethanol elution (0.5 and 1g/kg) could significantly inhibit the GIT, which was partially attributed to the increase in NO and SS levels, and the decreased MTL. In vitro spontaneous contractions of the isolated guinea pig ileum induced by carbachol, neostigmine and histamine were attenuated by both the extract and elution. Phytochemical analysis of 95% ethanol extract and its fractions identified the presence of diphenylheptanes, sesquiterpenes, and flavones as the major components. CONCLUSIONS Our in vivo and in vitro data could partly support and justify the traditional usage of Fructus AOM on the treatment of diarrhea in traditional medicine.
Collapse
Affiliation(s)
- Sheng Wang
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| | - Yang Zhao
- Vascular Biology Program, Centenary Institute, The University of Sydney, Shanghai 2042, NSW, Australia.
| | - Junqing Zhang
- Hainan Provincial Key Laboratory of Research and Development of Tropical Medicinal Plants, Hainan Medical University, Haikou 571199, China.
| | - Xiaoxing Huang
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| | - Yifei Wang
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| | - Xiaotao Xu
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| | - Bin Zheng
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| | - Xue Zhou
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| | - Huajie Tian
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| | - Li Liu
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| | - Qibing Mei
- China State Institute of Pharmaceutical Industry, Shanghai 200040, China; State Key Laboratory of New Drug & Pharmaceutial Process, Shanghai Institute of Pharmaceutial Industry, Shanghai 200437, China.
| |
Collapse
|
38
|
Ruan M, Yu B, Xu L, Zhang L, Long J, Shen X. Attenuation of stress-induced gastrointestinal motility disorder by gentiopicroside, from Gentiana macrophylla Pall. Fitoterapia 2015; 103:265-76. [PMID: 25936770 DOI: 10.1016/j.fitote.2015.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/22/2015] [Accepted: 04/26/2015] [Indexed: 01/22/2023]
Abstract
AIM The current study was designed to explore the mechanism of the prokinetic activity of Gentiopicroside (Ge), from Gentiana macrophylla Pall which is widely used to strengthen gastric motility in clinic. METHODS Gastrointestinal motility disorder rats were induced by stress stimulation and the rats were treated with Ge. The functions of gastric emptying and intestinal propelling were measured after blood was obtained to assay the levels of plasmatic motilin (MTL), vasoactive intestinal peptide (VIP), somatostatin (SST), gastrin (GAS), neurotensin (NT) and substance of P (SP). The expressions of MTL receptor (MTLR), VIP receptor 2 (VIPR2) and SST receptor 2 (SSTR2) were measured also. In addition, an isolated guinea pig ileum was applied to evaluate the influences of Ge on M-R, H1-R, 5-HT4-R and D-R in vitro. RESULTS Ge increased gastric emptying and intestinal propelling obviously. It also decreased the level of SST and increased GAS in plasma significantly. Moreover, it promoted the expressions of MTLR in gastric antrum, duodenum, jejunum and ileum, and restrained the expression of VIPR2 in duodenum. Piboserod and loratadine had no obvious restrain to Ge' exciting ileum effect and Ge also didn't affect dopamine paralyzing ileum. However, Ge failed to improve the hypofunction of guinea pigs ileums pre-treated with atropine sulfate. CONCLUSION The mechanisms of Ge' prokinetic effect were associated with modulating the levels of SST and GAS in plasma, raising the expressions of MTLR in gastric antrum, duodenum, ileum and jejunum, reducing the expression of VIPR2 in duodenum and activating M-R.
Collapse
Affiliation(s)
- Ming Ruan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China
| | - Bin Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Li Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jun Long
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | | |
Collapse
|
39
|
Leiszter K, Sipos F, Galamb O, Krenács T, Veres G, Wichmann B, Fűri I, Kalmár A, Patai ÁV, Tóth K, Valcz G, Tulassay Z, Molnár B. Promoter hypermethylation-related reduced somatostatin production promotes uncontrolled cell proliferation in colorectal cancer. PLoS One 2015; 10:e0118332. [PMID: 25723531 PMCID: PMC4344335 DOI: 10.1371/journal.pone.0118332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/13/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Somatostatin (SST) has anti-proliferative and pro-apoptotic effects. Our aims were to analyze and compare the SST expression during normal aging and colorectal carcinogenesis at mRNA and protein levels. Furthermore, we tested the methylation status of SST in biopsy samples, and the cell growth inhibitory effect of the SST analogue octreotide in human colorectal adenocarcinoma cell line. METHODS Colonic samples were collected from healthy children (n1 = 6), healthy adults (n2 = 41) and colorectal cancer patients (CRCs) (n3 = 34) for SST mRNA expression analysis, using HGU133 Plus2.0 microarrays. Results were validated both on original (n1 = 6; n2 = 6; n3 = 6) and independent samples ((n1 = 6; n2 = 6; n3 = 6) by real-time PCR. SST expressing cells were detected by immunohistochemistry on colonic biopsy samples (n1 = 14; n2 = 20; n3 = 23). The effect of octreotide on cell growth was tested on Caco-2 cell line. SST methylation percentage in biopsy samples (n1 = 5; n2 = 5; n3 = 9) was defined using methylation-sensitive restriction enzyme digestion. RESULTS In case of normal aging SST mRNA expression did not alter, but decreased in cancer (p < 0.05). The ratio of SST immunoreactive cells was significantly higher in children (0.70% ± 0.79%) compared to CRC (0% ± 0%) (p < 0.05). Octreotide significantly increased the proportion of apoptotic Caco-2 cells. SST showed significantly higher methylation level in tumor samples (30.2% ± 11.6%) compared to healthy young individuals (3.5% ± 1.9%) (p < 0.05). CONCLUSIONS In cancerous colonic mucosa the reduced SST production may contribute to the uncontrolled cell proliferation. Our observation that in colon cancer cells octreotide significantly enhanced cell death and attenuated cell proliferation suggests that SST may act as a regulator of epithelial cell kinetics. The inhibition of SST expression in CRC can be epigenetically regulated by promoter hypermethylation.
Collapse
Affiliation(s)
- Katalin Leiszter
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Orsolya Galamb
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Veres
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Barna Wichmann
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Fűri
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexandra Kalmár
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Árpád V. Patai
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Tóth
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Valcz
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - Béla Molnár
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
40
|
Liu AL, Li YF, Qi W, Ma XL, Yu KX, Huang B, Liao M, Li F, Pan J, Song MX. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses. Virus Genes 2015; 50:189-99. [PMID: 25557928 PMCID: PMC4381041 DOI: 10.1007/s11262-014-1151-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/01/2014] [Indexed: 01/02/2023]
Abstract
H5N1 and H9N2 viruses are important causes of avian influenza in China. H5N1 is typically associated with severe to fatal disease in poultry, while H9N2 is usually associated with mild disease. Differences in viral virulence prompted us to investigate whether innate immune responses would be differentially regulated following infection by H5N1 and H9N2 viruses. To address this hypothesis, expression of a panel of innate immune-related genes including IFN-α, IFN-β, Mx1, OASL, ISG12, IFIT5, IRF7, USP18, SST, and KHSRP in immortal DF-1 cells following H5N1 and H9N2 infection was analyzed and compared by real-time quantitative RT-PCR. Cells infected by either virus overall exhibited a similar expression profile for four ISGs (Mx1, OASL, ISG12, and IFIT5), IFN-α, IFN-β, and SST gene. However, two immune-regulatory genes (IRF7 and KHSRP) were not responsive to highly pathogenic H5N1 infection but were strongly up-regulated in DF-1 cells infected with low pathogenic H9N2 infection. The subtype-dependent host response observed in this study offers new insights into the potential roles of IRF7 and KHSRP in control and modulation of the replication and virulence of different subtypes or strains of avian influenza A virus.
Collapse
Affiliation(s)
- Ai-ling Liu
- The Key Laboratory of Animal Resistance Biology of Shandong, College of Life Sciences, Shandong Normal University, 88, East Culture Road, Jinan, 250014 Shandong China
| | - Yu-feng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, 483, Wushan Road, Guangzhou, 510642 Guangdong China
| | - Xiu-li Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Ke-xiang Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, 483, Wushan Road, Guangzhou, 510642 Guangdong China
| | - Feng Li
- Department of Veterinary and Biomedical Sciences and Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007 USA
| | - Jie Pan
- The Key Laboratory of Animal Resistance Biology of Shandong, College of Life Sciences, Shandong Normal University, 88, East Culture Road, Jinan, 250014 Shandong China
| | - Min-xun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| |
Collapse
|
41
|
Mulak A, Larauche M, Biraud M, Million M, Rivier J, Taché Y. Selective agonists of somatostatin receptor subtype 1 or 2 injected peripherally induce antihyperalgesic effect in two models of visceral hypersensitivity in mice. Peptides 2015; 63:71-80. [PMID: 25451334 PMCID: PMC4385413 DOI: 10.1016/j.peptides.2014.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/08/2023]
Abstract
Somatostatin interacts with five G-protein-coupled receptor (sst1-5). Octreotide, a stable sst2≫3≥5 agonist, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1-5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (four sets of three CRD, each at 55mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between two sets of graded CRD (15, 30, 45, and 60mmHg, three times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60mmHg CRD, respectively. ODT8-SST (10μg) and the sst2 agonist, S-346-011 (3 and 10μg) prevented mechanically induced visceral hypersensitivity in the three sets of CRD, the sst1 agonist (10μg) blocked only the 2nd set and showed a trend at 3μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization.
Collapse
Affiliation(s)
- Agata Mulak
- Department of Medicine, CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress, Digestive Diseases Division at the University of California Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | - Muriel Larauche
- Department of Medicine, CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress, Digestive Diseases Division at the University of California Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Mandy Biraud
- Department of Medicine, CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress, Digestive Diseases Division at the University of California Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Mulugeta Million
- Department of Medicine, CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress, Digestive Diseases Division at the University of California Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jean Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA, USA
| | - Yvette Taché
- Department of Medicine, CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress, Digestive Diseases Division at the University of California Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Thompson GL, Canals M, Poole DP. Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity. Front Pharmacol 2014; 5:262. [PMID: 25506328 PMCID: PMC4246669 DOI: 10.3389/fphar.2014.00262] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/12/2014] [Indexed: 01/27/2023] Open
Abstract
This review focuses on the existence and function of multiple endogenous agonists of the somatostatin and opioid receptors with an emphasis on their expression in the gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular or intracellular endopeptidases. In other examples, endogenous peptide agonists for the same G protein-coupled receptors can be products of distinct genes but contain high sequence homology. This apparent biological redundancy has recently been challenged by the realization that different ligands may engender distinct receptor conformations linked to different intracellular signaling profiles and, as such the existence of distinct ligands may underlie mechanisms to finely tune physiological responses. We propose that further characterization of signaling pathways activated by these endogenous ligands will provide invaluable insight into the mechanisms governing biased agonism. Moreover, these ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects. Finally we will discuss the limitations of this area of research and we will highlight the difficulties that need to be addressed when examining endogenous bias in tissues and in animals.
Collapse
Affiliation(s)
- Georgina L Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia
| | - Meritxell Canals
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
43
|
Song W, Chen JH, Zhang XH, Xu JB, He YL, Cai SR, Han FH, Chen CQ. Effect of somatostatin in advanced gastric cancer after D2 radical gastrectomy. World J Gastroenterol 2014; 20:14927-14933. [PMID: 25356053 PMCID: PMC4209556 DOI: 10.3748/wjg.v20.i40.14927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/15/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of somatostatin in patients with advanced gastric cancer who received D2 lymphadenectomy and vagina vasorum dissection.
METHODS: Using a prospective, single-blind, placebo-controlled design, patients with advanced gastric cancer were randomized into a study group (n = 61) and a control group (n = 59). Patients in the study group were given somatostatin for 5-7 d starting 6 h after the operation, and patients in the control group were given normal saline. Preoperative and nonoperative complications in the perioperative period, as well as different types of postoperative drainage in the two groups were compared.
RESULTS: There was no significant difference between the study group and the control group for preoperative clinicopathological indicators. We found no significant difference between the two groups for the overall incidence of complications, but a lower percentage of peritoneal effusion was observed in the treatment group (1.6% vs 10.2%, P < 0.05). There were no significant differences between the two groups in the incidence of postoperative pancreatic dysfunction and chylous fistula. However, there were significant differences in the amylase concentration in drainage fluid, volume and duration of drainage, volume and duration of chylous fistula and peritoneal drainage, and volume and duration of gastric tube drainage. The study group did not show any increase in mean hospitalization cost and the cost reduced when the postoperative complications occurred.
CONCLUSION: Postoperative somatostatin reduces volume and duration of surgical drainage and related complications. Somatostatin may improve safety of gastric cancer surgery, reducing postoperative complications and promoting recovery.
Collapse
|
44
|
Losada AP, Bermúdez R, Faílde LD, Di Giancamillo A, Domeneghini C, Quiroga MI. Effects of Enteromyxum scophthalmi experimental infection on the neuroendocrine system of turbot, Scophthalmus maximus (L.). FISH & SHELLFISH IMMUNOLOGY 2014; 40:577-583. [PMID: 25134847 DOI: 10.1016/j.fsi.2014.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/29/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Enteromyxum scophthalmi is an intestinal myxosporean parasite responsible for serious outbreaks in turbot Scophthalmus maximus (L.) culture, in North-western Spain. The disease affects the digestive tract, provokes severe catarrhal enteritis, emaciation and high rates of mortality. The digestive parasitization triggers a response with the coordinate participation of immune and neuroendocrine systems through the action of peptides released by enteroendocrine cells and present in nervous elements, acting as neuro-immune modulators. The present study was designed to assess the response of the turbot neuroendocrine system against E. scophthalmi infection. Immunohistochemical tests were applied to sections of the gastrointestinal tract of uninfected and E. scophthalmi-infected turbot to characterize the presence of bombesin (BOM), glucagon (GLUC), somatostatin (SOM), leu-enkephalin (LEU) and met-enkephalin (MET). The occurrence of E. scophthalmi in the turbot gastrointestinal tract increased the number of enteroendocrine cells immunoreactive to SOM, LEU and MET. On the other hand, BOM and GLUC immunoreactive cells were less numerous in the gastrointestinal tract of the parasitized turbot. Scarce immunoreactivity to BOM, GLUC and SOM was observed in nerve fibres and neurons of the myenteric plexus of control and infected fish. The results indicate that E. scophthalmi infection in turbot induced changes in the neuroendocrine system, with the diminution of the anorexigenic peptides BOM and GLUC; the increase of enkephalins, related to pro-inflammatory processes; and the increase of SOM, which may cause inhibitory effects on the immune response, constituting a compensatory mechanism to the exacerbated response observed in E. scophthalmi-infected turbot.
Collapse
Affiliation(s)
- A P Losada
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - R Bermúdez
- Department of Anatomy and Animal Production, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain
| | - L D Faílde
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain
| | - A Di Giancamillo
- Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - C Domeneghini
- Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - M I Quiroga
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
45
|
The clinical significance of somatostatin in pancreatic diseases. ANNALES D'ENDOCRINOLOGIE 2014; 75:232-40. [DOI: 10.1016/j.ando.2014.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/28/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022]
|
46
|
Herzig KH. Regulatory Peptides--past, present and future. REGULATORY PEPTIDES 2014; 188:iv. [PMID: 24560295 DOI: 10.1016/s0167-0115(14)00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 06/03/2023]
Affiliation(s)
- Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Medical Center Oulu and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
47
|
Herszényi L, Mihály E, Tulassay Z. [Somatostatin and the digestive system. Clinical experiences]. Orv Hetil 2013; 154:1535-40. [PMID: 24058098 DOI: 10.1556/oh.2013.29721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effect of somatostatin on the gastrointestinal tract is complex; it inhibits the release of gastrointestinal hormones, the exocrine function of the stomach, pancreas and bile, decreases motility and influences absorption as well. Based on these diverse effects there was an increased expectation towards the success of somatostatin therapy in various gastrointestinal disorders. The preconditions for somatostatin treatment was created by the development of long acting somatostatin analogues (octreotide, lanreotide). During the last twenty-five years large trials clarified the role of somatostatin analogues in the treatment of various gastrointestinal diseases. This study summarizes shortly these results. Somatostatin analogue treatment could be effective in various pathological conditions of the gastrointestinal tract, however, this therapeutic modality became a part of the clinical routine only in neuroendocrine tumours and adjuvant treatment of oesophageal variceal bleeding and pancreatic fistulas.
Collapse
Affiliation(s)
- László Herszényi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi u. 46. 1088
| | | | | |
Collapse
|
48
|
Reubi JC, Schonbrunn A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci 2013; 34:676-88. [PMID: 24183675 DOI: 10.1016/j.tips.2013.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/08/2023]
Abstract
Somatostatin analogs for the diagnosis and therapy of neuroendocrine tumors (NETs) have been used in clinical applications for more than two decades. Five somatostatin receptor subtypes have been identified and molecular mechanisms of somatostatin receptor signaling and regulation have been elucidated. These advances increased understanding of the biological role of each somatostatin receptor subtype, their distribution in NETs, as well as agonist-specific regulation of receptor signaling, internalization, and phosphorylation, particularly for the sst2 receptor subtype, which is the primary target of current somatostatin analog therapy for NETs. Various hypotheses exist to explain differences in patient responsiveness to somatostatin analog inhibition of tumor secretion and growth as well as differences in the development of tumor resistance to therapy. In addition, we now have a better understanding of the action of both first generation (octreotide, lanreotide, Octreoscan) and second generation (pasireotide) FDA-approved somatostatin analogs, including the biased agonistic character of some agonists. The increased understanding of somatostatin receptor pharmacology provides new opportunities to design more sophisticated assays to aid the future development of somatostatin analogs with increased efficacy.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
49
|
Gastrointestinal viral load and enteroendocrine cell number are associated with altered survival in HIV-1 infected individuals. PLoS One 2013; 8:e75967. [PMID: 24146801 PMCID: PMC3797816 DOI: 10.1371/journal.pone.0075967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/18/2013] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects and destroys cells of the immune system leading to an overt immune deficiency known as HIV acquired immunodeficiency syndrome (HIV/AIDS). The gut associated lymphoid tissue is one of the major lymphoid tissues targeted by HIV-1, and is considered a reservoir for HIV-1 replication and of major importance in CD4+ T-cell depletion. In addition to immunodeficiency, HIV-1 infection also directly causes gastrointestinal (GI) dysfunction, also known as HIV enteropathy. This enteropathy can manifest itself as many pathological changes in the GI tract. The objective of this study was to determine the association of gut HIV-1 infection markers with long-term survival in a cohort of men who have sex with men (MSM) enrolled pre-HAART (Highly Active Antiretroviral Therapy). We examined survival over 15-years in a cohort of 42 HIV-infected cases: In addition to CD4+ T cell counts and HIV-1 plasma viral load, multiple gut compartment (duodenum and colon) biopsies were taken by endoscopy every 6 months during the initial 3-year period. HIV-1 was cultured from tissues and phenotyped and viral loads in the gut tissues were determined. Moreover, the tissues were subjected to an extensive assessment of enteroendocrine cell distribution and pathology. The collected data was used for survival analyses, which showed that patients with higher gut tissue viral load levels had a significantly worse survival prognosis. Moreover, lower numbers of serotonin (duodenum) and somatostatin (duodenum and colon) immunoreactive cell counts in the gut tissues of patients was associated with significant lower survival prognosis. Our study, suggested that HIV-1 pathogenesis and survival prognosis is associated with altered enteroendocrine cell numbers, which could point to a potential role for enteroendocrine function in HIV infection and pathogenesis.
Collapse
|
50
|
An immunohistochemical study of somatostatin in the stomach and the small intestine of the African ostrich (Struthio camelus). Tissue Cell 2013; 45:363-6. [PMID: 23928218 DOI: 10.1016/j.tice.2013.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/07/2013] [Accepted: 06/28/2013] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to clarify the distribution and relative frequencies of somatostatin (SST)-producing cells in the stomach and the small intestine of the ostrich by using immunohistochemistry. The results indicated that somatostatin-immunoreactive (SST-IR) cells were distributed in mucosal layers of the proventriculus, duodenum, jejunum and ileum. However, no immunoreactivity was observed in the gizzard. SST-IR cells were found at the lower part of glandular lobule in the proventriculus, which were oval and round generally. SST-IR cells were present in the mucous membrane of entire small intestine of the ostrich. SST-IR cells had round and spherical shapes (closed-type cells), or spindle and pyriform shapes (open-type cells) in the small intestine. SST-positive cells were localized preferentially in the proventriculus of the 60-day-old ostrich. These results indicated that SST might be involved in functional and developmental regulation of gastrointestinal tract of the ostrich.
Collapse
|