1
|
Faiad W, Soukkarieh C, Hanano A. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces multigenerational testicular toxicity and biosynthetic disorder of testosterone in BALB/C mice: Transcriptional, histopathological and hormonal determinants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115233. [PMID: 37421896 DOI: 10.1016/j.ecoenv.2023.115233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent environmental contaminant, is an endocrine disrupter with a proven reproductive toxicity in mammals. However, its effects on male fertility across generations are still elusive. The current work evaluates the toxicity of dioxin on male reproductive system in two separate groups of BALB/C mice; a group of pubertal males directly exposed to TCDD (referred to as DEmG), and a group of indirectly exposed males (referred to as IDEmG) comprises of F1, F2 and F3 males born from TCDD-exposed pregnant females. Both groups were exposed to 25 μg TCDD/kg body weight for a week. Our data show that males of TCDD-DEmG exhibited significant alterations in the expression of certain genes involved in the detoxification of TCDD and the biosynthesis of testosterone. This was accompanied with testicular pathological symptoms, including a sloughing in the germinal epithelium and a congestion of blood vessels in interstitial tissue with the presence of multinuclear cells into seminiferous tubule, with a 4-fold decline in the level of serum testosterone and reduced sperm count. Otherwise, the male reproductive toxicity across F1, F2 and F3 generations from TCDD-IDEmG was mainly characterized by: i) a reduce in body and testis weight. ii) a decrease in gene expression of steriodogenesis enzyme, e.g., AhR, CYP1A1, CYP11A1, COX1, COX2, LOX5 and LOX12. iii) a remarked and similar testicular histopathology that found for DEmG, iv) a serious decline in serum testosterone. v) a decreased male-to-female ratio. vi) a low sperm count with increasing abnormalities. Thus, pubertal or maternal exposure to TCDD provokes multigenerational male reproductive toxicity in mice, ultimately affecting the spermatogenesis and suggesting that the hormonal alternation and sperm abnormality are the most marked effects of the indirect exposure of mammalian male to TCDD.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
2
|
Faiad W, Soukkarieh C, Murphy DJ, Hanano A. Effects of dioxins on animal spermatogenesis: A state-of-the-art review. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1009090. [PMID: 36339774 PMCID: PMC9634422 DOI: 10.3389/frph.2022.1009090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The male reproductive system is especially affected by dioxins, a group of persistent environmental pollutants, resulting in irreversible abnormalities including effects on sexual function and fertility in adult males and possibly on the development of male offspring. The reproductive toxicity caused by dioxins is mostly mediated by an aryl hydrocarbon receptor (AhR). In animals, spermatogenesis is a highly sensitive and dynamic process that includes proliferation and maturation of germ cells. Spermatogenesis is subject to multiple endogenous and exogenous regulatory factors, including a wide range of environmental toxicants such as dioxins. This review discusses the toxicological effects of dioxins on spermatogenesis and their relevance to male infertility. After a detailed categorization of the environmental contaminants affecting the spermatogenesis, the exposure pathways and bioavailability of dioxins in animals was briefly reviewed. The effects of dioxins on spermatogenesis are then outlined in detail. The endocrine-disrupting effects of dioxins in animals and humans are discussed with a particular focus on their effects on the expression of spermatogenesis-related genes. Finally, the impacts of dioxins on the ratio of X and Y chromosomes, the status of serum sex hormones, the quality and fertility of sperm, and the transgenerational effects of dioxins on male reproduction are reviewed.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J. Murphy
- School of Applied Sciences, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria,Correspondence: Abdulsamie Hanano
| |
Collapse
|
3
|
Eskenazi B, Ames J, Rauch S, Signorini S, Brambilla P, Mocarelli P, Siracusa C, Holland N, Warner M. Dioxin exposure associated with fecundability and infertility in mothers and daughters of Seveso, Italy. Hum Reprod 2021; 36:794-807. [PMID: 33367671 PMCID: PMC7891815 DOI: 10.1093/humrep/deaa324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/23/2020] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is there an association between 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure and fecundability and infertility among Seveso women and their daughters? SUMMARY ANSWER TCDD exposure is associated with a decrease in fecundability and increased risk of infertility in women, as well as their daughters. WHAT IS KNOWN ALREADY In animal studies, maternal exposure to TCDD is associated with decreased fertility in offspring. Effects of TCDD are mediated by activation of the aryl hydrocarbon receptor (AHR) pathway. STUDY DESIGN, SIZE, DURATION The Seveso Women's Health Study (SWHS) has followed 981 women exposed to TCDD in a 1976 accident since 1996. In 2014, we initiated the Seveso Second Generation Study to follow-up their children. PARTICIPANTS/MATERIALS, SETTING, METHODS We obtained information on pregnancy history including time of trying to conceive from SWHS women and their daughters who were 18 years or older. We considered TCDD exposure as initial 1976 serum TCDD concentration and estimated TCDD at pregnancy. We examined relationships of TCDD exposure with time to pregnancy (TTP, the monthly probability of conception within the first 12 months of trying) and infertility (≥12 months of trying to conceive). We also assessed contributions of polymorphisms in the AHR pathway via genetic risk score. MAIN RESULTS AND THE ROLE OF CHANCE Among SWHS women (n = 446), median TTP was 3 months and 18% reported taking ≥12 months to conceive. Initial 1976 TCDD (log10) was associated with longer TTP (adjusted fecundability odds ratio = 0.82; 95% CI 0.68-0.98) and increased risk of infertility (adjusted relative risk = 1.35; 95% CI 1.01-1.79). TCDD at pregnancy yielded similar associations. Among SWHS daughters (n = 66), median TTP was 2 months and 11% reported taking ≥12 months to conceive. Daughters showed similar, but non-significant, associations with maternal TCDD exposure. LIMITATIONS, REASONS FOR CAUTION A limitation of this study is time to pregnancy was reported retrospectively, although previous studies have found women are able to recall time to conception with a high degree of accuracy many years after the fact. The number of SWHS daughters who had a live birth was small and we were unable to examine fecundability of SWHS sons. WIDER IMPLICATIONS OF THE FINDINGS Consistent with previous findings in animal studies, our study found that TCDD exposure may be associated with decreased fertility in Seveso mothers and potentially in their daughters exposed in utero. There may be susceptible genetic subgroups. The literature has largely considered the genetics of the AHR pathway in the context of male fertility but not female fertility, despite strong biological plausibility. These findings should be replicated in larger populations and of different ancestry. Future studies in Seveso should examine the sons and the grandchildren of exposed mothers given the animal literature suggesting potential heritable epigenetic effects. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grant numbers F06 TW02075-01 from the National Institutes of Health, R01 ES07171 and 2P30-ESO01896-17 from the National Institute of Environmental Health Sciences, R82471 from the U.S. Environmental Protection Agency and #2896 from Regione Lombardia and Fondazione Lombardia Ambiente, Milan, Italy. J.A. was supported by F31ES026488 from the National Institutes of Health. The authors declare they have no actual or potential competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Jennifer Ames
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Stephen Rauch
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Stefano Signorini
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy
| | - Paolo Mocarelli
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy
| | - Claudia Siracusa
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy
| | - Nina Holland
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Marcella Warner
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Ames J, Warner M, Mocarelli P, Brambilla P, Signorini S, Siracusa C, Huen K, Holland N, Eskenazi B. AHR gene-dioxin interactions and birthweight in the Seveso Second Generation Health Study. Int J Epidemiol 2018; 47:1992-2004. [PMID: 30124847 PMCID: PMC6280946 DOI: 10.1093/ije/dyy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Background 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is proposed to interfere with fetal growth via altered activity of the aryl hydrocarbon receptor (protein: AHR; gene: AHR) pathway which regulates diverse biological and developmental processes including xenobiotic metabolism. Genetic variation in AHR is an important driver of susceptibility to low birthweight in children exposed to prenatal smoking, but less is known about these genetic interactions with TCDD, AHR's most potent xenobiotic ligand. Methods The Seveso Women's Health Study (SWHS), initiated in 1996, is a cohort of 981 Italian women exposed to TCDD from an industrial explosion in July 1976. We measured TCDD concentrations in maternal serum collected close to the time of the accident. In 2008 and 2014, we followed up the SWHS cohort and collected data on birth outcomes of SWHS women with post-accident pregnancies. We genotyped 19 single nucleotide polymorphisms (SNPs) in AHR among the 574 SWHS mothers. Results Among 901 singleton births, neither SNPs nor TCDD exposure alone were significantly associated with birthweight. However, we found six individual SNPs in AHR which adversely modified the association between maternal TCDD and birthweight, implicating gene-environment interaction. We saw an even stronger susceptibility to TCDD due to interaction when we examined the joint contribution of these SNPs in a risk allele score. These SNPs were all located in noncoding regions of AHR, particularly in proximity to the promoter. Conclusions This is the first study to demonstrate that genetic variation across the maternal AHR gene may shape fetal susceptibilities to TCDD exposure.
Collapse
Affiliation(s)
- Jennifer Ames
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Marcella Warner
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Paolo Mocarelli
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Stefano Signorini
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Claudia Siracusa
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Karen Huen
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
5
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
6
|
Ames J, Warner M, Brambilla P, Mocarelli P, Satariano WA, Eskenazi B. Neurocognitive and physical functioning in the Seveso Women's Health Study. ENVIRONMENTAL RESEARCH 2018; 162:55-62. [PMID: 29287180 PMCID: PMC5811349 DOI: 10.1016/j.envres.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is neurotoxic in animals but few studies have investigated its effects on the human brain. Related dioxin-like compounds have been linked to poorer cognitive and motor function in older adults, with effects more pronounced in women, perhaps due to the loss of neuro-protective estrogen in menopause. On 10 July 1976, a chemical explosion in Seveso, Italy, resulted in one of the highest known residential exposures to TCDD. In 1996, we initiated the Seveso Women's Health Study, a retrospective cohort study of the health of the women who were newborn to 40 years old in 1976. Here, we investigate whether TCDD exposure is associated with physical functioning and working memory more than 20 years later. Individual TCDD concentration (ppt) was measured in archived serum collected soon after the explosion. In 1996 and 2008, we measured physical functioning (n=154) and working memory (n=459), respectively. We examined associations between serum TCDD and motor and cognitive outcomes with multivariate linear regression and semi-parametric estimators. A 10-fold increase in serum TCDD was not associated with walking speed (adjusted β=0.0006ft/s, 95% Confidence Interval (CI): -0.13, 0.13), upper body mobility (adjusted β=-0.06, 95% CI: -0.36, 0.23), or manual dexterity (adjusted β=0.34, 95% CI: -0.65, 1.33). We observed an inverted U-shaped association in grip strength, with poorer strength in the lowest and highest TCDD exposure levels. There was no association between TCDD and the Wechsler digit and spatial span tests. Neither menopause status at assessment nor developmental timing of exposure modified associations between TCDD and working memory. Our findings, in one of the only studies of TCDD's effects on neuropsychological and physical functioning in women, do not indicate an adverse effect on these domains, with the exception of a U-shaped relationship with grip strength. Given the limited assessment and relative youth of the women at this follow-up, future work examining additional neuropsychological outcomes is warranted.
Collapse
Affiliation(s)
- Jennifer Ames
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Marcella Warner
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy
| | - Paolo Mocarelli
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy
| | | | - Brenda Eskenazi
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
You YA, Mohamed EA, Rahman MS, Kwon WS, Song WH, Ryu BY, Pang MG. 2,3,7,8-Tetrachlorodibenzo-p-dioxin can alter the sex ratio of embryos with decreased viability of Y spermatozoa in mice. Reprod Toxicol 2018; 77:130-136. [PMID: 29505796 DOI: 10.1016/j.reprotox.2018.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a reproductive and developmental toxicant that can alter the sex ratio of offspring (proportion of male offspring). We hypothesized that the alteration of sex ratio is associated with sex chromosome ratio of live spermatozoa affected by exposure to TCDD. After exposure to TCDD we analyzed simultaneously sperm sex chromosome constitution and viability, and evaluated sperm sex chromosome ratio association with embryo sex ratio in mice. Short-term exposure to TCDD affects the decreased sperm motility and viability, and the increased acrosome reaction. Interestingly, Y spermatozoa survived shorter than X spermatozoa at high concentrations of TCDD. Moreover, the decreased sex ratio of embryos was associated with the short lifespan of Y spermatozoa. Our results suggest that TCDD may affect the fertility of Y spermatozoa more than X spermatozoa. Further studies are needed to compare the difference of fertilizing capability between X and Y spermatozoa by the effect of TCDD.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Elsayed A Mohamed
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Won-Hee Song
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| |
Collapse
|
8
|
Mínguez-Alarcón L, Sergeyev O, Burns JS, Williams PL, Lee MM, Korrick SA, Smigulina L, Revich B, Hauser R. A Longitudinal Study of Peripubertal Serum Organochlorine Concentrations and Semen Parameters in Young Men: The Russian Children's Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:460-466. [PMID: 27713107 PMCID: PMC5332179 DOI: 10.1289/ehp25] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/25/2016] [Accepted: 08/20/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Exposures to endocrine-disrupting chemicals during critical phases of testicular development may be related to poorer semen parameters. However, few studies have assessed the association between childhood organochlorine (OC) exposure and adult semen parameters. OBJECTIVE We examined whether peripubertal serum OC concentrations are associated with semen parameters among young Russian men. METHODS From 2003 through 2005, 516 boys were enrolled at age 8-9 years and followed for up to 10 years. Serum OCs were measured in the enrollment samples using high-resolution mass spectrometry. At 18-19 years, 133 young men provided 1 or 2 semen samples (256 samples) collected approximately 1 week apart, which were analyzed for volume, sperm concentration, and motility. Unadjusted and adjusted linear mixed models were used to examine the associations of quartiles of lipid-standardized concentrations of dioxins [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated dibenzo-p-dioxins (PCDDs)], furans, polychlorinated biphenyls (PCBs), and corresponding toxic equivalents (TEQs) with semen parameters. RESULTS The median (range) for TCDD was 2.9 (0.4-12.1) pg/g lipid and PCDD TEQ was 8.7 (1.0-36.0) pg TEQ/g lipid. Higher quartiles of TCDD and PCDD TEQs were associated with lower sperm concentration, total sperm count, and total motile sperm count (p-trends ≤ 0.05). The highest quartile of peripubertal serum TCDD concentrations was associated with a decrease (95% CI) of 40% (18, 66%), 29% (3, 64%), and 30% (2, 70%) in sperm concentration, total sperm count, and total motile sperm count, respectively, compared with the lowest quartile. Similar associations were observed for serum PCDD TEQs with semen parameters. Serum PCBs, furans, and total TEQs were not associated with semen parameters. CONCLUSION Higher peripubertal serum TCDD concentrations and PCDD TEQs were associated with poorer semen parameters. Citation: Mínguez-Alarcón L, Sergeyev O, Burns JS, Williams PL, Lee MM, Korrick SA, Smigulina L, Revich B, Hauser R. 2017. A longitudinal study of peripubertal serum organochlorine concentrations and semen parameters in young men: the Russian Children's Study. Environ Health Perspect 125:460-466; http://dx.doi.org/10.1289/EHP25.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Oleg Sergeyev
- Department of Genomics and Human Genetics Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Chapaevsk Medical Association, Chapaevsk, Samara Region, Russia
| | - Jane S. Burns
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Paige L. Williams
- Department of Biostatistics, and
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mary M. Lee
- Pediatric Endocrine Division, Departments of Pediatrics and Cell & Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Susan A. Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Boris Revich
- Institute for Forecasting, Russian Academy of Sciences, Moscow, Russia
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
9
|
‘t Mannetje A, Eng A, Walls C, Dryson E, Kogevinas M, Brooks C, McLean D, Cheng S, Smith AH, Pearce N. Sex ratio of the offspring of New Zealand phenoxy herbicide producers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Occup Environ Med 2016; 74:24-29. [DOI: 10.1136/oemed-2016-103771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 11/04/2022]
|
10
|
Abstract
Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Public Health, Division of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, Massachusetts, USA.
| |
Collapse
|
11
|
Acute effects of TCDD administration: special emphasis on testicular and sperm mitochondrial function. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60091-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2076] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sönmez M, Türk G, Çeribaşı AO, Sakin F, Ateşşahin A. Attenuating effect of lycopene and ellagic acid on 2,3,7,8-tetrachlorodibenzo-p-dioxin–induced spermiotoxicity and testicular apoptosis. Drug Chem Toxicol 2011; 34:347-56. [DOI: 10.3109/01480545.2011.557382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Mathur PP, D'Cruz SC. The effect of environmental contaminants on testicular function. Asian J Androl 2011; 13:585-91. [PMID: 21706039 DOI: 10.1038/aja.2011.40] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Male reproductive health has deteriorated considerably in the last few decades. Nutritional, socioeconomic, lifestyle and environmental factors (among others) have been attributed to compromising male reproductive health. In recent years, a large volume of evidence has accumulated that suggests that the trend of decreasing male fertility (in terms of sperm count, quality and other changes in male reproductive health) might be due to exposure to environmental toxicants. These environmental contaminants can mimic natural oestrogens and target testicular spermatogenesis, steroidogenesis, and the function of both Sertoli and Leydig cells. Most environmental toxicants have been shown to induce reactive oxygen species, thereby causing a state of oxidative stress in various compartments of the testes. However, the molecular mechanism(s) of action of the environmental toxicants on the testis have yet to be elucidated. This review discusses the effects of some of the more commonly used environmental contaminants on testicular function through the induction of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Premendu Prakash Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India.
| | | |
Collapse
|
15
|
Gu A, Ji G, Long Y, Zhou Y, Shi X, Song L, Wang X. Assessment of an Association between an Aryl Hydrocarbon Receptor Gene (AHR) Polymorphism and Risk of Male Infertility. Toxicol Sci 2011; 122:415-21. [DOI: 10.1093/toxsci/kfr137] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Mocarelli P, Gerthoux PM, Needham LL, Patterson DG, Limonta G, Falbo R, Signorini S, Bertona M, Crespi C, Sarto C, Scott PK, Turner WE, Brambilla P. Perinatal exposure to low doses of dioxin can permanently impair human semen quality. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:713-8. [PMID: 21262597 PMCID: PMC3094426 DOI: 10.1289/ehp.1002134] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 12/13/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND In recent decades, young men in some industrialized areas have reportedly experienced a decrease in semen quality. OBJECTIVE We examined effects of perinatal dioxin exposure on sperm quality and reproductive hormones. METHODS We investigated sperm quality and hormone concentrations in 39 sons (mean age, 22.5 years) born between 1977 and 1984 to mothers exposed to dioxin after the accident in Seveso, Italy (1976), and 58 comparisons (mean age, 24.6 years) born to mothers exposed only to background dioxin. Maternal dioxin levels at conception were extrapolated from the concentrations measured in 1976 serum samples. RESULTS The 21 breast-fed sons whose exposed mothers had a median serum dioxin concentration as low as 19 ppt at conception had lower sperm concentration (36.3 vs. 86.3 million/mL; p = 0.002), total count (116.9 vs. 231.1; p = 0.02), progressive motility (35.8 vs. 44.2%; p = 0.03), and total motile count (38.7 vs. 98 million; p = 0.01) than did the 36 breast-fed comparisons. The 18 formula-fed exposed and the 22 formula-fed and 36 breast-fed comparisons (maternal dioxin background 10 ppt at conception) had no sperm-related differences. Follicle-stimulating hormone was higher in the breast-fed exposed group than in the breast-fed comparisons (4.1 vs. 2.63 IU/L; p = 0.03) or the formula-fed exposed (4.1 vs. 2.6 IU/L; p = 0.04), and inhibin B was lower (breast-fed exposed group, 70.2; breast-fed comparisons, 101.8 pg/mL, p = 0.01; formula-fed exposed, 99.9 pg/mL, p = 0.02). CONCLUSIONS In utero and lactational exposure of children to relatively low dioxin doses can permanently reduce sperm quality.
Collapse
Affiliation(s)
- Paolo Mocarelli
- University Department of Laboratory Medicine, Hospital of Desio, Monza Brianza, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Olivero-Verbel J, Cabarcas-Montalvo M, Ortega-Zúñiga C. Theoretical targets for TCDD: a bioinformatics approach. CHEMOSPHERE 2010; 80:1160-1166. [PMID: 20605043 DOI: 10.1016/j.chemosphere.2010.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 05/19/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
Dioxins are a group of highly toxic molecules that exert their toxicity through the activation of the aryl hydrocarbon receptor (AhR). The most important agonist of the AhR, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic compound. Although most of the effects related to TCDD exposure have been linked to the activation of AhR, the objective of this work was to use a bioinformatics approach to identify possible new targets for TCDD. The Target Fishing Docking (TarFisDock) Server was used to find target proteins for TCDD. This virtual screening allowed the identification of binding sites with high affinity for TCDD in diverse proteins, such as metallopeptidases 8 and 3, oxidosqualene cyclase, and myeloperoxidase. Some of these proteins are well known for their biochemical role in some pathological effects of dioxin exposure, including endometriosis, diabetes, inflammation and liver damage. These results suggest that TCDD could also be interacting with cellular targets though AhR-independent pathways.
Collapse
Affiliation(s)
- Jesús Olivero-Verbel
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| | | | | |
Collapse
|