1
|
Sakali AK, Bargiota A, Bjekic-Macut J, Macut D, Mastorakos G, Papagianni M. Environmental factors affecting female fertility. Endocrine 2024; 86:58-69. [PMID: 38954374 DOI: 10.1007/s12020-024-03940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Over the recent years, scientific community has increased its interest on solving problems of female fertility pathology. Many factors acting separately or in combination affect significantly the reproductive life of a woman. This review summarizes current evidence regarding the direct and/or indirect action of environmental factors and endocrine disrupting chemicals (EDCs; i.e. heavy metals, plasticizers, parabens, industrial chemicals, pesticides, or medications, by-products, anti-bacterial agents, perfluorochemicals) upon assisted and non-assisted female fertility, extracted from in vivo and in vitro animal and human published data. Transgenerational effects which could have been caused epigenetically by the action of EDCs have been raised. METHODS This narrative review englobes and describes data from in vitro and in vivo animal and human studies with regard to the action of environmental factors, which include EDCs, on female fertility following the questions for narrative reviews of the SANRA (a scale for the quality assessment of narrative review articles). The identification of the studies was done: through the PubMed Central and the PubMed of the MEDLINE, the Google Scholar database and the Cochrane Library database until December 2023 combining appropriate keywords ("specific environmental factors" including "EDCs" AND "specific negative fertility outcomes"); by manual scanning of references from selected articles and reviews focusing on these subjects. It includes references to EDCs-induced transgenerational effects. RESULTS From the reported evidence emerge negative or positive associations between specific environmental factors or EDCs and infertility outcomes such as infertility indices, disrupted maturation of the oocytes, anovulation, deranged transportation of the embryo and failure of implantation. CONCLUSION The revealed adverse outcomes related to female fertility could be attributed to exposure to specific environmental factors such as temperature, climate, radiation, air pollutants, nutrition, toxic substances and EDCs. The recognition of fertility hazards related to the environment will permit the limitation of exposure to them, will improve female fertility and protect the health potential of future generations.
Collapse
Affiliation(s)
- Anastasia-Konstantina Sakali
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, School of Medicine, University of Thessaly, Larissa, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, School of Medicine, University of Thessaly, Larissa, Greece
| | - Jelica Bjekic-Macut
- Department of Endocrinology, University Medical Center Bežanijska kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece.
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
2
|
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné MN, Picard-Hagen N, Flores-Sanabria MJ, Jammes H, Philippat C, Couturier-Tarrade A. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates. TOXICS 2024; 12:710. [PMID: 39453131 PMCID: PMC11511413 DOI: 10.3390/toxics12100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Maria-José Flores-Sanabria
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
3
|
Chaichian S, Khodabandehloo F, Haghighi L, Govahi A, Mehdizadeh M, Ajdary M, Varma RS. Toxicological Impact of Bisphenol A on Females' Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod Sci 2024; 31:1781-1799. [PMID: 38532232 DOI: 10.1007/s43032-024-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
4
|
Lee JS, Lee JS, Kim HS. Toxic effects of triclosan in aquatic organisms: A review focusing on single and combined exposure of environmental conditions and pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170902. [PMID: 38354791 DOI: 10.1016/j.scitotenv.2024.170902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Triclosan (TCS) is an antibacterial agent commonly used in personal care products. Due to its widespread use and improper disposal, it is also a pervasive contaminant, particularly in aquatic environments. When released into water bodies, TCS can induce deleterious effects on developmental and physiological aspects of aquatic organisms and also interact with environmental stressors such as weather, metals, pharmaceuticals, and microplastics. Multiple studies have described the adverse effects of TCS on aquatic organisms, but few have reported on the interactions between TCS and other environmental conditions and pollutants. Because aquatic environments include a mix of contaminants and natural factors can correlate with contaminants, it is important to understand the toxicological outcomes of combinations of substances. Due to its lipophilic characteristics, TCS can interact with a wide range of substances and environmental stressors in aquatic environments. Here, we identify a need for caution when using TCS by describing not only the effects of exposure to TCS alone on aquatic organisms but also how toxicity changes when it acts in combination with multiple environmental stressors.
Collapse
Affiliation(s)
- Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Zhuang J, Chen Q, Xu L, Chen X. Effects of chronic triclosan exposure on nephrotoxicity and gut microbiota dysbiosis in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115866. [PMID: 38199221 DOI: 10.1016/j.ecoenv.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Triclosan (TCS), a broad-spectrum, lipophilic, and antibacterial agent, has been commonly used in cosmetics, medical devices, and household products. The toxicity of TCS has recently become a research hotspot. Emerging evidence has shown that TCS can easily migrate to humans and animals and cause adverse effects on various target organs. However, the effects of TCS exposure on nephrotoxicity and underlying mechanisms remain unknown. The aim of the present study was to explore TCS-induced nephrotoxicity. Therefore, we establish a mouse model based on adult male mice to explore the effects of 10-week TCS exposure (50 mg/kg) on kidney. After mice were sacrificed, their blood, feces, and renal tissues were harvested for further analysis. We found that TCS treatment dramatically caused kidney structural damage, and increased blood urea nitrogen (BUN) and creatinine (Cr) expression levels, which indicated renal dysfunction. In addition, TCS exposure increased the malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and total cholesterol (TCHO) expression levels, which indicated oxidative stress and lipid metabolism changes. The RNA sequencing (RNA-seq) of kidney tissue identified 221 differentially expressed genes (DEGs) enriched in 50 pathways, including drug metabolism-other enzymes, oxidative phosphorylation, glutathione metabolism, and inflammatory mediator regulation of TRP channels signaling pathways. The full-length 16S rRNA gene sequencing results showed that TCS exposure altered the community of gut microbiota, which was closely related to renal function damage. The above findings provide new insights into the mechanism of TCS-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jingshen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Ebrahimi A, Ebrahimpour K, Mohammadi F, Moazeni M. Ecotoxicological and human health risk assessment of triclosan antibacterial agent from municipal wastewater treatment plants. JOURNAL OF WATER AND HEALTH 2024; 22:36-51. [PMID: 38295071 PMCID: wh_2023_070 DOI: 10.2166/wh.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In this study, the occurrence and environmental risks related to triclosan (TCS) in the two wastewater treatment plants (WWTPs) were investigated in Isfahan, Iran. Influent and effluent samples were collected and analyzed by dispersive liquid-liquid microextraction (DLLME)-GC-MS method with derivatization. Moreover, the risk of TCS exposure was conducted for aquatic organisms (algae, crustaceans, and fishes) and humans (males and females). TCS mean concentrations in influent and effluent of WWTPs were in the range of 3.70-52.99 and 0.83-1.09 μg/L, respectively. There were also no differences in the quantity of TCS and physicochemical parameters among the two WWTPs. The mean risk quotient (RQ) for TCS was higher than 1 (in algae) with dilution factors (DFs) equal to 1 in WWTP1. Moreover, the RQ value was higher than 1 for humans based on the reference dose of MDH (RFDMDH) in WWTP1. Furthermore, TCS concentration in wastewater effluent was the influential factor in varying the risk of TCS exposure. The results of the present study showed the risk of TCS exposure from the discharge of effluent of WWTP1 was higher than WWTP2. Moreover, the results of this study may be suitable for promoting WWTP processes to completely remove micropollutants.
Collapse
Affiliation(s)
- Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran E-mail: ;
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Moazeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Luan YL, Ou YQ, Liu XQ, Lin S, Guo Y. Triclosan in paired-maternal and cord blood, and their relationships with congenital heart disease of baby. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159205. [PMID: 36202352 DOI: 10.1016/j.scitotenv.2022.159205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Prenatal triclosan (TCS) exposure has been reported to be associated with various birth outcomes and thyroid function, while the study of TCS exposure for congenital heart disease (CHD) patients is limited. In the present study, paired mother-fetus blood samples from CHD and healthy participants were collected to measure TCS exposure levels, and then check their relationship. Coupled with the concentrations of thyroid function biomarkers [free thyroxine (FT4), free triiodothyronine (FT3), thyroid-stimulating hormone (TSH), and thyroid antibodies (TgAb)] in maternal blood, we aimed to investigate whether the hormone-disrupting properties of TCS will affect its association with CHD. Our results indicated that the maternal TCS concentrations in the CHD group (median 0.31 ng/mL) were significantly lower than those in the control group (0.48 ng/mL, Mann Whitney U test, p = 0.01). Higher interquartile of TCS levels in maternal blood was associated with decrease odds of CHD (adjusted OR = 0.61, 95%CI: 0.41-0.91, p = 0.02). Maternal blood TCS higher than the cut-off value (25th quantile, 0.17 ng/mL) was significantly negatively associated with CHD risk (adjusted OR = 0.24, 95%CI: 0.09-0.62, p < 0.01). Besides, none of the thyroid biomarkers were significantly associated with maternal TCS exposure. However, maternal FT4 concentrations were positively correlated with TCS transplacental transfer rate and cord blood TCS levels (general linear regression, both p < 0.01). The results of molecular docking and dynamics simulation suggested that these correlations might be related to the transthyretin, a thyroid hormone-binding protein involved in the placental thyroid hormone transport system. Overall, our findings indicated that at normal exposure levels, the increase of maternal blood TCS concentration may have an inverse association with CHD, which merits further investigation.
Collapse
Affiliation(s)
- Yu-Ling Luan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan-Qiu Ou
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510632, China.
| | - Xiao-Qing Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510632, China
| | - Shao Lin
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, University Place, Rensselaer, NY 12144, United States
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology 2023; 484:153413. [PMID: 36581016 DOI: 10.1016/j.tox.2022.153413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.
Collapse
|
9
|
Marques AC, Mariana M, Cairrao E. Triclosan and Its Consequences on the Reproductive, Cardiovascular and Thyroid Levels. Int J Mol Sci 2022; 23:ijms231911427. [PMID: 36232730 PMCID: PMC9570035 DOI: 10.3390/ijms231911427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Hygiene is essential to avoid diseases, and this is thanks to daily cleaning and disinfection habits. Currently, there are numerous commercial products containing antimicrobial agents, and although they are efficient in disinfecting, it is still not known the effect of the constant use of these products on human health. In fact, a massive use of disinfectants has been observed due to COVID-19, but the possible adverse effects are not yet known. Triclosan is one of the antimicrobial agents used in cosmetic products, toothpaste, and disinfectants. This compound is an endocrine disruptor, which means it can interfere with hormonal function, with its estrogenic and androgenic activity having already been stated. Even if the use of triclosan is well-regulated, with the maximum allowed concentration in the European Union of 0.3% (m/m), its effects on human health are still uncertain. Studies in animals and humans suggest the possibility of harmful health outcomes, particularly for the reproductive system, and in a less extent for the cardiovascular and thyroid functions. Thus, the purpose of this review was to analyse the possible implications of the massive use of triclosan, mainly on the reproductive and cardiovascular systems and on the thyroid function, both in animals and humans.
Collapse
Affiliation(s)
- Ana C. Marques
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Melissa Mariana
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-049
| |
Collapse
|
10
|
Beroukhim G, Kayani J, Taylor HS, Pal L. Implications of triclosan for female fertility: results from the National Health and Nutrition Examination Survey, 2013-2016. F S Rep 2022; 3:204-210. [PMID: 36212563 PMCID: PMC9532887 DOI: 10.1016/j.xfre.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
Abstract
Objective To examine and further characterize the association between urinary levels of triclosan (TCS), a ubiquitous putative endocrine-disrupting chemical, and the risk of infertility. Design A retrospective cross-sectional study using the Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey. Setting Not applicable. Patients Female participants in the United States who completed the reproductive health questionnaire and provided urine samples for TCS level measurement from 2013 to 2016. Interventions None. Main Outcome Measures Rates of presumed infertility based on participants' affirmative response to survey question RHQ074 ("Have you ever attempted to become pregnant over a period of at least a year without becoming pregnant?"). Results A total of 11.7% of the overall female and 12.5% of the eligible study population met the criterion for presumed infertility. Creatinine-adjusted urinary TCS levels were significantly higher among those meeting the criterion for infertility compared with the levels among those who did not. On multivariable-adjusted analyses, individuals with undetectable levels of urinary TCS were 35% less likely to meet the specified infertility criterion compared with those with detectable TCS levels. The magnitude of association between TCS levels and infertility was strongest when comparing the lowest and highest quartiles. The directionality and magnitude of the relationship between TCS levels and infertility were maintained on age-restricted and weighted analyses; however, the associations did not retain statistical significance. Conclusions In a nationally representative sample of women in the United States, an association between TCS exposure and inability to conceive over a period of 1 year is suggested by our analysis of the National Health and Nutrition Examination Survey data. The data infer a dose-response relationship.
Collapse
Affiliation(s)
- Gabriela Beroukhim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Reprint requests: Gabriela Beroukhim, M.D., Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar Street, FMB 329H, Yale School of Medicine, New Haven, Connecticut 06510.
| | | | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Lubna Pal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Dong G, Sun R, Zhang R, Qin Y, Lu C, Wang X, Xia Y, Du G. Pre-implantation triclosan exposure alters uterine receptivity through affecting tight junction protein†. Biol Reprod 2022; 107:349-357. [PMID: 35554491 DOI: 10.1093/biolre/ioac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Triclosan (TCS) is a broad-spectrum antibacterial agent and widely exists in environmental media and organisms. TCS exposure was reported to have adverse effects on reproduction including embryo implantation disorder. During the embryo implantation window, it is vital that the endometrium develops into a receptive state under the influence of ovarian hormones. However, the effect of TCS on embryo implantation and endometrial receptivity remains unclear. In current study, we found decreased embryo implantation rate, serum estrogen (E2) and progesterone (P4) levels in mice exposed to TCS from gestation day (GD) 0.5 to 5.5. Through RNA-seq, we identified nearly 800 differentially expressed genes (DEGs), which were enriched in pathways including uterus development, inflammatory response and immune system process. Among those enriched pathways, the tight junction pathway is essential for the establishment of receptive state of endometrium. Then, genes involved in tight junction pathway including Cldn7, Cldn10 and Crb3 were validated by RT-qPCR and the results were consistent with the RNA-seq. Through immunofluorescence staining and western blotting, we confirmed that the tight junction protein levels of CLDN7 and CRB3 were increased. All these findings suggest that pre-implantation TCS exposure reduces the rate of embryo implantation through up-regulating the expression of tight junction genes and affecting the receptivity of endometrium. Our data could be used to determine the sensitive time frame for TCS exposure and offer new strategy to prevent implantation failure.
Collapse
Affiliation(s)
- Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Baijiahu Community Health Service Center, Moling Street, Jiangning District, Nanjing 211102, China
| | - Rundong Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
12
|
Liu X, Tu M, Wang S, Wang Y, Wang J, Hou Y, Zheng X, Yan Z. Research on freshwater water quality criteria, sediment quality criteria and ecological risk assessment of triclosan in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151616. [PMID: 34774937 DOI: 10.1016/j.scitotenv.2021.151616] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent commonly used in pharmaceuticals and personal care products (PPCPs). The widespread use of TCS makes it frequently detected in various environmental mediums. In view of the high detection frequency of TCS in the aquatic environment and sediments, and its toxic effects on aquatic species, it is critical and necessary to derive Chinese TCS water quality criteria (WQC) and sediment quality criteria (SQC) for protecting Chinese aquatic organisms, and perform the ecological risk assessment. In fact, former research had derived the WQC of TCS mainly based on acute and chronic toxicity data. As an endocrine disrupting chemical (EDC), TCS poses adverse effects on the growth, development and reproduction of aquatic organisms at much lower concentration. Considering nonlethal endpoints are sensitive endpoints for EDCs, TCS long-term water quality criteria (LWQC) was derived based on reproduction and growth related endpoints. In this work, the acute toxicity data of 19 aquatic organisms and the chronic toxicity data of 15 aquatic organisms were obtained through collection and screening. The best fitting model of species sensitivity distribution (SSD) models including Normal, Log-Normal, Logistic and Log-Logistic of toxicity data was selected to derive WQC. The short-term and long-term WQC of TCS for Chinese aquatic organisms were 6.22 μg/L and 0.25 μg/L, respectively. Furthermore, through the phase-equilibrium partitioning method, SQC was derived based on WQC. SQC-low (SQC-L) and SQC-high (SQCH) were 0.13 mg/kg and 3.26 mg/kg, respectively. Moreover, the exposure concentration (EPC) data of TCS in Chinese rivers and sediments were collected. And through the hazard quotient (HQ) method and the joint probability curve (JPC) method we found that there were certain TCS ecological risks in Chinese rivers and sediments. Our work will provide a valuable reference for protecting aquatic organisms and minimizing TCS ecological risk in China.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengchen Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yizhe Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jing Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yin Hou
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
13
|
Zhang P, Zheng L, Duan Y, Gao Y, Gao H, Mao D, Luo Y. Gut microbiota exaggerates triclosan-induced liver injury via gut-liver axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126707. [PMID: 34315018 DOI: 10.1016/j.jhazmat.2021.126707] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/26/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is an antimicrobial ingredient that has been widely incorporated in consumer products. TCS can cause hepatic damage by disturbing lipid metabolism, which is often accompanied with gut microbiota dysbiosis. However, the effects of gut microbiota on the TCS-induced liver injury are still unknown. Therefore, we constructed a mouse model based on five-week-old male C57BL/6 mice to investigate the effects of dietary TCS exposure (40 ppm) on liver injury. We found that TCS treatment for 4 weeks dramatically disturbed gut microbiota homeostasis, resulting in overproduction of lipopolysaccharides (LPS) and deficiency of secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid (LCA). In addition, TCS considerably increased intestinal permeability by reducing mucus excretion and expression of tight junction proteins (ZO-1, occludin and claudin 4), which facilitated translocation of LPS. The LPS accumulation in blood contributed to liver injury by triggering the inflammatory response via TLR4 pathway. In summary, this study provides novel insights into the underlying mechanisms of TCS-associated liver injury induced by gut microbiota via the gut-liver axis, and contributes to better interpretation of the health impact of the environmentally emerging contaminant TCS.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environmental Sciences and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Liyang Zheng
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yitao Duan
- College of Environmental Sciences and Engineering, Nankai University, Tianjin 300350, China
| | - Yuting Gao
- College of Environmental Sciences and Engineering, Nankai University, Tianjin 300350, China
| | - Huihui Gao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yi Luo
- College of Environmental Sciences and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China.
| |
Collapse
|
14
|
Du Y, Wang B, Cai Z, Zhang H, Wang B, Liang W, Zhou G, Ouyang F, Wang W. The triclosan-induced shift from aerobic to anaerobic metabolism link to increased steroidogenesis in human ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112389. [PMID: 34082246 DOI: 10.1016/j.ecoenv.2021.112389] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) is an endocrine-disrupting chemical (EDC), which is used ubiquitously as an antimicrobial ingredient in healthcare products and causes contamination in the environment such as air, water, and biosolid-amended soil. Exposure to TCS may increase the risk of reproduction diseases and health issues. Several groups, including ours, have proved that TCS increased the biosynthesis of steroid hormones in different types of steroidogenic cells. However, the precise mechanism of toxic action of TCS on increased steroidogenesis at a molecular level remains to be elucidated. In this study, we try to address the mode of action that TCS affects energy metabolism with increased steroidogenesis. We evaluated the adverse effects of TCS on energy metabolism and steroidogenesis in human ovarian granulosa cells. The goal is to elucidate how increased steroidogenesis can occur with a shortage of adenosine triphosphate (ATP) whereas mitochondria-based energy metabolism is impaired. Our results demonstrated TCS increased estradiol and progesterone levels with upregulated steroidogenesis gene expression at concentrations ranging from 0 to 10 µM. Besides, glucose consumption, lactate level, and pyruvate kinase transcription were increased. Interestingly, the lactate level was attenuated with increased steroidogenesis, suggesting that pyruvate fate was shifted away from the formation of lactate towards steroidogenesis. Our study is gathering evidence suggesting a mode of action that TCS changes energy metabolism by predominating glucose flow towards the biosynthesis of steroid hormones. To the best of our knowledge, this is the first report that TCS presents such toxic action in disrupting hormone homeostasis.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Bin Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bo Wang
- Department of Reproductive Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Fengxiu Ouyang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China.
| |
Collapse
|
15
|
Raj S, Singh SS, Singh SP, Singh P. Evaluation of Triclosan-induced reproductive impairments in the accessory reproductive organs and sperm indices in the mice. Acta Histochem 2021; 123:151744. [PMID: 34166923 DOI: 10.1016/j.acthis.2021.151744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/23/2023]
Abstract
Highly effective antimicrobial properties of triclosan (TCS) make its use as a widely used preservative in different types of consumer products. TCS is reported as an emerging endocrine disruptor causing reproductive impairments in the males as well as in the females. The present study describes the adverse effects of various doses of TCS (40, 80, 160 and 320 mg/kg BW/day, for 42 consecutive days) on the weights and histopathology of the epididymis and seminal vesicle, sperm indices (motility, viability, count and morphology), concentrations of epididymal sialic acid and seminal vesicular fructose, along with TCS accumulated in these accessory reproductive organs of the laboratory mouse. TCS induced significant reductions in the weights of the epididymis and seminal vesicle along with noticeable histopathological alterations in these organs. TCS caused significant reductions in the count, percentage of motile and viable spermatozoa while a significant increase in the percentage of abnormal spermatozoa in the epididymis. Concentrations of epididymal sialic acid and seminal vesicular fructose declined significantly in the treated mice. A significant increase was noticed in the concentration of TCS, accumulated in the epididymis and seminal vesicle following TCS exposure at a high dose (320 mg/kg BW/day). The results thus suggest that the accessory sex organs are also affected deleteriously following TCS exposure, leading to impairment in the male reproductive health.
Collapse
|
16
|
Effects of Endocrine-Disrupting Chemicals on Endometrial Receptivity and Embryo Implantation: A Systematic Review of 34 Mouse Model Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136840. [PMID: 34202247 PMCID: PMC8297133 DOI: 10.3390/ijerph18136840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023]
Abstract
Several available studies have already analyzed the systemic effects of endocrine-disrupting chemicals (EDCs) on fertile woman and neonatal outcomes, but little is still known in humans about the precise mechanisms of interference of these compounds with the endometrial receptivity. There is consistent evidence that continuous and prolonged exposure to EDCs is a risk factor for reduced fertility and fecundity in women. Preliminary studies on mammalian models provide robust evidence about this issue and could help gynecologists worldwide to prevent long term injury caused by EDCs on human fertility. In this systematic review, we aimed to systematically summarize all available data about EDC effects on blastocyst endometrial implantation. We performed a systematic review using PubMed®/MEDLINE® to summarize all in vivo studies, carried out on mice models, analyzing the molecular consequences of the prolonged exposure of EDC on the implantation process. 34 studies carried out on mouse models were included. Primary effects of EDC were a reduction of the number of implantation sites and pregnancy rates, particularly after BPA and phthalate exposure. Furthermore, the endometrial expression of estrogen (ER) and progesterone receptors (PR), as well as their activation pathways, is compromised after EDC exposure. Finally, the expression of the primary endometrial markers of receptivity (such as MUC1, HOXA10, Inn and E-cadherin) after EDC contact was analyzed. In conclusion EDC deeply affect blastocyst implantation in mouse model. Several players of the implantation mechanism are strongly influenced by the exposure to different categories of EDC.
Collapse
|
17
|
Radwan P, Wielgomas B, Radwan M, Krasiński R, Klimowska A, Zajdel R, Kaleta D, Jurewicz J. Triclosan exposure and in vitro fertilization treatment outcomes in women undergoing in vitro fertilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12993-12999. [PMID: 33097990 PMCID: PMC7921062 DOI: 10.1007/s11356-020-11287-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) is a widespread environmental endocrine-disrupting chemical. Animal and in vitro studies suggested that triclosan may affect homesostasis of sex and thyroid hormones and impact on reproduction. Due to limited data derived from human epidemiological studies, this study was performed to examine the association between urinary concentration of triclosan and in vitro reproductive outcomes (methaphase II (MII) oocyte yield, top quality embryo, fertilization rate, implantation rate, and clinical pregnancy) among women from infertility clinic. The study participants were enrolled in an Infertility Center in Poland. A total of 450 women aged 25-45 (n = 674 IVF cycles) provided urine samples. The urinary concentrations of triclosan were evaluated using validated gas chromatography ion-tap mass spectrometry method. Clinical outcomes of IVF treatment were abstracted from patients electronic chart records. Triclosan was detected in urine of 82% of women with geometric mean 2.56 ± 6.13 ng/mL. Urinary concentrations of triclosan were associated with decrease implantation rate (p = 0.03). There were no association between other examined IVF outcomes: MII oocytes, embryo quality, fertilization rate, and exposure to triclosan. As this is one of the first study on this topic, studies among larger and more diverse population are needed to confirm the results.
Collapse
Affiliation(s)
- Paweł Radwan
- Department of Gynecology and Reproduction, "Gameta" , 7 Cybernetyki St, 02-677, Warsaw, Poland.
- Department of Gynecology and Reproduction, "Gameta" Kielce-Regional Science-Technology Centre, 45 Podzamcze St Chęciny, 26-060, Kielce, Poland.
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St, Gdańsk, Poland
| | - Michał Radwan
- Department of Gynecology and Reproduction, "Gameta" Hospital, 34/36 Rudzka St, 95-030, Rzgów, Poland
- Faculty of Health Sciences, Mazovian State University in Plock, 2 Dabrowskiego Sq, 09-402, Plock, Poland
| | - Rafał Krasiński
- Department of Gynecology and Reproduction, "Gameta" Hospital, 34/36 Rudzka St, 95-030, Rzgów, Poland
| | - Anna Klimowska
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St, Gdańsk, Poland
| | - Radosław Zajdel
- Chair of Business and Informatics, University of Łódź, 3/5 POW St., 90-255, Łódź, Poland
| | - Dorota Kaleta
- Department of Hygiene and Epidemiology, Medical University of Lodz, Zeligowskiego 7/9 St, 90-752, Łódź, Poland
| | - Joanna Jurewicz
- Department of Hygiene and Epidemiology, Medical University of Lodz, Zeligowskiego 7/9 St, 90-752, Łódź, Poland
| |
Collapse
|
18
|
Pollock T, Arbuckle TE, Guth M, Bouchard MF, St-Amand A. Associations among urinary triclosan and bisphenol A concentrations and serum sex steroid hormone measures in the Canadian and U.S. Populations. ENVIRONMENT INTERNATIONAL 2021; 146:106229. [PMID: 33161203 DOI: 10.1016/j.envint.2020.106229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Exposure to triclosan, an antimicrobial agent, and bisphenol A (BPA), the monomer of polycarbonate plastics, is widespread. Endocrine-disrupting impacts of these chemicals have been demonstrated in in vitro studies, rodent toxicology studies, and some human observational studies. Here we compared urinary concentrations of triclosan and BPA in the Canadian and U.S. populations using nationally-representative data from the 2012-2015 Canadian Health Measures Survey (CHMS) and the 2013-2016 National Health and Nutrition Examination Survey (NHANES). We then examined the cross-sectional associations of urinary triclosan or BPA with serum sex steroid hormones, including estradiol (E2), progesterone (P4), and testosterone (T), using multivariable regression. We observed differences in creatinine-standardized chemical concentrations between countries; urinary triclosan was higher in Canadian females aged 12-19 years, while BPA was higher in U.S. females aged 20-49 years. We also found significant associations among urinary chemicals and serum E2 and T, but not P4. Increasing triclosan was associated with higher levels of E2 in 6-11-year-old girls, but with lower levels of E2 and T in adolescent boys aged 12-19 years. Increasing BPA was associated with lower levels of E2 in 6-11-year-old boys and in adolescents aged 12-19 years of either sex. We observed a U-shaped association between urinary triclosan and E2 in male adults aged 50-79 years; no associations between BPA and hormones were detected in adults. These results, in accordance with the in vitro and animal literature, suggest that triclosan and BPA exposures may be cross-sectionally associated with altered reproductive hormone levels, especially in children and adolescents. Further research and prospective studies are necessary to elucidate country-specific differences in chemical exposures and the potential public health significance of these findings.
Collapse
Affiliation(s)
- Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Margot Guth
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal & Research Centre of the Sainte-Justine University Hospital, Montréal, Québec, Canada
| | - Maryse F Bouchard
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal & Research Centre of the Sainte-Justine University Hospital, Montréal, Québec, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
20
|
Shen J, Kang Q, Mao Y, Yuan M, Le F, Yang X, Xu X, Jin F. Urinary bisphenol A concentration is correlated with poorer oocyte retrieval and embryo implantation outcomes in patients with tubal factor infertility undergoing in vitro fertilisation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109816. [PMID: 31648075 DOI: 10.1016/j.ecoenv.2019.109816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is a substance ubiquitously present in the environment, and its toxicity on reproductive function has been well characterised in animal models. However, it is still controversy about the effects of BPA exposure on human female reproduction. Therefore, in the present study, the associations of urinary BPA concentration with the outcomes of in vitro fertilisation (IVF) and embryo transfer from fresh and frozen cycles were analysed in the same cohort. 351 women who underwent IVF treatment from September 2013 to October 2016, at the Centre of Reproductive Medicine in the Women's Hospital School of Medicine at Zhejiang University were recruited. Single-spot urine samples were collected on the day of oocyte retrieval to detect BPA using solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry. A multivariable generalised linear mixed model was used to evaluate the association between the urinary BPA concentration and IVF outcomes. After adjustment for age, body mass index, baseline follicle-stimulating hormone level, baseline oestradiol level, and antral follicle count, a significant decrease in the number of retrieved oocytes and in the rates of clinical pregnancy and implantation was observed in the patients with a high urinary BPA concentration. We concluded that BPA exposure exert negative effects on oocyte retrieval and embryo implantation in women undergoing IVF.
Collapse
Affiliation(s)
- Juan Shen
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Mu Yuan
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xinyun Yang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
21
|
Triclosan exposure and ovarian reserve. Reprod Toxicol 2019; 89:168-172. [PMID: 31377340 DOI: 10.1016/j.reprotox.2019.07.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022]
Abstract
The objective of the current analysis was to investigate the associations of urinary triclosan concentrations with parameters of ovarian reserve. Five hundred eleven female aged 25-39 years who attended the infertility clinic for diagnostic purposes were recruited. Urinary concentrations of triclosan were measured by a validated gas chromatograohy ion-tap mass spectrometry method. Parameters of ovarian reserve were: antral follicle count (AFC), anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH) and estradiol (E2) levels. Urinary concentrations of triclosan decrease antral follicle count. There were no statistically significant associations between other parameters of ovarian reserve (estradiol, FSH and AMH levels) and triclosan concentrations. Triclosan exposure may negatively affect antral follicle count, a marker of ovarian reserve. As the data on triclosan exposure and ovarian reserve are scarce additional study is needed to confirm the results.
Collapse
|
22
|
Flöter VL, Bauersachs S, Fürst RW, Krebs S, Blum H, Reichenbach M, Ulbrich SE. Exposure of pregnant sows to low doses of estradiol-17β impacts on the transcriptome of the endometrium and the female preimplantation embryos†. Biol Reprod 2019; 100:624-640. [PMID: 30260370 DOI: 10.1093/biolre/ioy206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/30/2018] [Accepted: 09/25/2018] [Indexed: 11/14/2022] Open
Abstract
Maternal exposure to estrogens can induce long-term adverse effects in the offspring. The epigenetic programming may start as early as the period of preimplantation development. We analyzed the effects of gestational estradiol-17β (E2) exposure with two distinct low doses, corresponding to the acceptable daily intake "ADI" and close to the no-observed-effect level "NOEL", and a high dose (0.05, 10, and 1000 μg E2/kg body weight daily, respectively). The E2 doses were orally applied to sows from insemination until sampling at day 10 of pregnancy and compared to carrier-treated controls leading to a significant increase in E2 in plasma, bile and selected somatic tissues including the endometrium in the high-dose group. Conjugated and unconjugated E2 metabolites were as well elevated in the NOEL group. Although RNA-sequencing revealed a dose-dependent effect of 14, 17, and 27 differentially expressed genes (DEG) in the endometrium, single embryos were much more affected with 982 DEG in female blastocysts of the high-dose group, while none were present in the corresponding male embryos. Moreover, the NOEL treatment caused 62 and 3 DEG in female and male embryos, respectively. Thus, we detected a perturbed sex-specific gene expression profile leading to a leveling of the transcriptome profiles of female and male embryos. The preimplantation period therefore demonstrates a vulnerable time window for estrogen exposure, potentially constituting the cause for lasting consequences. The molecular fingerprint of low-dose estrogen exposure on developing embryos warrants a careful revisit of effect level thresholds.
Collapse
Affiliation(s)
- Veronika L Flöter
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.,Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Stefan Bauersachs
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Rainer W Fürst
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Myriam Reichenbach
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.,Physiology Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
23
|
Matuszczak E, Komarowska MD, Debek W, Hermanowicz A. The Impact of Bisphenol A on Fertility, Reproductive System, and Development: A Review of the Literature. Int J Endocrinol 2019; 2019:4068717. [PMID: 31093279 PMCID: PMC6481157 DOI: 10.1155/2019/4068717] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022] Open
Abstract
Bisphenol A (BPA) has been used since the 1950s, in food packaging, industrial materials, dental sealants, and personal hygiene products. Everyone is exposed to BPA through skin, inhalation, and digestive system. BPA disrupts endocrine pathways, because it has weak estrogenic, antiandrogenic, and antithyroid activities. Despite the rapid metabolism, BPA can accumulate in different tissues. Many researchers proved the impact of BPA on human development, metabolism, and finally reproductive system. There is increasing evidence that BPA has impact on human fertility and is responsible for the reproductive pathologies, e.g., testicular dysgenesis syndrome, cryptorchidism, cancers, and decreased fertility in male and follicle loss in female.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | | | - Wojciech Debek
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| |
Collapse
|
24
|
Exposure of pregnant mice to triclosan causes hyperphagic obesity of offspring via the hypermethylation of proopiomelanocortin promoter. Arch Toxicol 2018; 93:547-558. [PMID: 30377736 DOI: 10.1007/s00204-018-2338-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Triclosan (TCS), as a broad spectrum antibacterial agent, is commonly utilized in personal care and household products. Maternal urinary TCS level has been associated with changes in birth weight of infants. We in the present study investigated whether exposure of mice to 8 mg/kg TCS from gestational day (GD) 6 to GD14 alters prenatal and postnatal growth and development, and metabolic phenotypes in male and female offspring (TCS-offspring). Compared with control offspring, body weight in postnatal day (PND) 1 male or female TCS-offspring was reduced, but body weight gain was faster within postnatal 5 days. PND30 and PND60 TCS-offspring showed overweight with increases in visceral fat and adipocyte size. PND60 TCS-offspring displayed delayed glucose clearance and insulin resistance. PND30 TCS-offspring showed an increase in food intake without the changes in the oxygen consumption and respiratory exchange ratio (RER). The expression levels of proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH) and single-minded 1 (SIM1) in hypothalamus arcuate nucleus (ARC) and paraventricular nucleus (PVN), respectively, were significantly reduced in PND30 TCS-offspring compared to controls. The hypermethylation of CpG sites at the POMC promoter was observed in PND30 TCS-offspring, while the concentration of serum leptin was elevated and the level of STAT3 phosphorylation in ARC had no significant difference from control. This study demonstrates that TCS exposure during early/mid-gestation through the hypermethylation of the POMC promoter reduces the expression of anorexigenic neuropeptides to cause the postnatal hyperphagic obesity, leading to metabolic syndrome in adulthood.
Collapse
|
25
|
Li X, Wang Y, Wei P, Shi D, Wen S, Wu F, Liu L, Ye N, Zhou H. Bisphenol A affects trophoblast invasion by inhibiting CXCL8 expression in decidual stromal cells. Mol Cell Endocrinol 2018; 470:38-47. [PMID: 28736254 DOI: 10.1016/j.mce.2017.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA), an environmental endocrine-disrupting organic chemical, has been positively associated with the rate of implantation failure of in vitro fertilization. However, the underlying mechanisms remain unclear. To reveal the impact and the underlying mechanism of BPA on the crosstalk between trophoblast and decidual stromal cells (DSCs), we determined whether BPA was able to affect trophoblast invasion in vitro. We found that BPA significantly inhibited CXCL8 expression in DSCs, which hindered trophoblast invasion, and activated the phosphorylation of ERK in DSCs. U0126, an inhibitor of ERK activation, remarkably rescued trophoblast invasion and the inhibition of CXCL8 expression caused by BPA treatment. Moreover, the nuclear estrogen receptor antagonist ICI 182,780 and transmembrane G protein-coupled receptor GPR30 (membrane estrogen receptor) antagonist G15 significantly blocked the phosphorylation of ERK and reversed the reduction of trophoblast invasion. In brief, BPA activated ERK through nuclear and membrane estrogen receptors and inhibited CXCL8 expression in DSCs, thereby affecting their regulation of trophoblast invasion.
Collapse
Affiliation(s)
- Xiaoqian Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yina Wang
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Pu Wei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Fengjiao Wu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Ninghe Ye
- Nanjing Maternity and Children Care Hospital, Nanjing, 210029, China
| | - Hong Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
26
|
Yuan M, Hu M, Lou Y, Wang Q, Mao L, Zhan Q, Jin F. Environmentally relevant levels of bisphenol A affect uterine decidualization and embryo implantation through the estrogen receptor/serum and glucocorticoid-regulated kinase 1/epithelial sodium ion channel α-subunit pathway in a mouse model. Fertil Steril 2018; 109:735-744.e1. [PMID: 29605410 DOI: 10.1016/j.fertnstert.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate whether bisphenol A (BPA) exposure is associated with uterine decidualization and embryo implantation failure in mice. DESIGN Experimental animal study and in vitro study. SETTING University-based infertility center. ANIMAL(S) ICR mice. INTERVENTION(S) Mice treated with different doses of BPA; Ishikawa cells cultured in medium of different concentrations of BPA. MAIN OUTCOME MEASURE(S) Embryo implantation sites, uterine weight, quantitative real-time reverse transcriptase-polymerase chain reaction, Western blot analysis, hematoxylin and eosin staining, and immunohistochemical, cell proliferation, and statistical analyses. RESULT(S) In the experiment of mouse model, administration of 1-100 μg/kg/day of BPA by gavage led to reduction of the number of embryo implantation sites in a dose-dependent manner; 100 μg/kg/day of BPA statistically significantly reduced the number of implantation sites compared with the control group. The uterine weight change (the wet weight of the decidualized uterine horn divided by the wet weight of the undecidualized uterine horn of the mouse) in groups exposed to BPA (100-10,000 μg/kg/day) were statistically significantly lower compared with the control group. Immunohistochemical analysis demonstrated that administration of 100, 1,000, or 10,000 μg/kg/day of BPA by gavage statistically significantly down-regulated the expression of epithelial Na+ channel α-subunit (ENaCα) in the luminal epithelial cells and desmin in decidual cells of the oil-induced decidualized uterine horns. Administration of 100 μg/kg/day BPA on embryo days 0.5-3.5 by gavage statistically significantly decreased the level of uterine serum and glucocorticoid-regulated kinase 1 (SGK1) protein expression on embryo days 4 and 6. After treatment with 0.001, 0.01, 0.1, or 1.0 μg/mL of BPA for 48 hours, the SGK1, ENaCα, and phospho-SGK1 protein expression of Ishikawa cells was down-regulated, and the effect of BPA on SGK1 could be abrogated by fulvestrant. CONCLUSION(S) Our study provides the first indication that BPA exposure at levels as low as 100 μg/kg/day can impair embryo implantation in mice and BPA can affect decidualization of the uterus in mouse model. Our results suggest that BPA can down-regulate SGK1 and ENaCα protein expression through estrogen receptors in Ishikawa cells.
Collapse
Affiliation(s)
- Mu Yuan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, People's Republic of China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qitao Zhan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Women's Reproductive Health Laboratory of Zhejiang Province, Key Laboratory of Reproductive Genetics, National Ministry of Education, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
27
|
Wang C, Chen L, Zhao S, Hu Y, Zhou Y, Gao Y, Wang W, Zhang J, Tian Y. Impacts of prenatal triclosan exposure on fetal reproductive hormones and its potential mechanism. ENVIRONMENT INTERNATIONAL 2018; 111:279-286. [PMID: 29150338 DOI: 10.1016/j.envint.2017.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Triclosan (TCS) has been widely detected in pregnant women. The reproductive endocrine-disrupting effects of TCS have been observed in humans and animals. Little is known about the potential impact of prenatal TCS exposure on fetal reproductive development as well as its potential mechanism. OBJECTIVES We investigated the potential effect of prenatal TCS exposure on fetal reproductive hormones in cord blood and its potential mechanism in relation to placental steroidogenic enzymes. METHODS Urinary TCS was detected among 537 healthy pregnant women from a prospective cohort in China. Four reproductive hormones in cord blood, namely E2 (n=430), T (n=424), LH (n=428) and FSH (n=373), and three steroidogenic enzymes in placenta, namely P450arom (n=233), 3β-HSD (n=227) and 17β-HSD (n=222), were measured. RESULTS Prenatal TCS exposure was associated with increased testosterone concentrations in cord blood in a dose-dependent manner. Infants with prenatal TCS levels >0.6μg/L had, on average, a 0.23ng/mL (95% CI: 0.05, 0.45, p=0.02) higher testosterone concentrations in cord blood compared to those with prenatal TCS levels <0.1μg/L. Of note, prenatal TCS exposure was associated with increased testosterone and decreased E2 concentrations in cord blood among male infants. Adverse associations were found between the prenatal TCS exposure and concentrations of three placental steroidogenic enzymes. 3β-HSD and P450arom demonstrated mediating effects in the association between prenatal TCS exposure and testosterone concentrations in cord blood. CONCLUSIONS Our findings suggested potential impacts of prenatal TCS exposure on reproductive hormones in cord blood mediated by steroidogenic enzymes, and male infants were more vulnerable.
Collapse
Affiliation(s)
- Caifeng Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Nursing, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limei Chen
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shasha Zhao
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Hu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Zhou
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiye Wang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Pollock T, Weaver RE, Ghasemi R, deCatanzaro D. A mixture of five endocrine-disrupting chemicals modulates concentrations of bisphenol A and estradiol in mice. CHEMOSPHERE 2018; 193:321-328. [PMID: 29145094 DOI: 10.1016/j.chemosphere.2017.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Most people in developed countries are exposed to multiple endocrine-disrupting synthetic chemicals. We previously showed that a single dose of triclosan, tetrabromobisphenol A (TBBPA), butyl paraben, propyl paraben, or di(2-ethylhexyl) phthalate elevated concentrations of bisphenol A (BPA) in mice. Here we investigated whether concurrent exposure to lower doses of these five chemicals could modulate concentrations of bisphenol A (BPA) or the natural estrogen, 17β-estradiol (E2). CF1 mice were injected subcutaneously with 0.1 or 0.5 mg of one chemical, or a 0.5 mg mixture containing 0.1 mg of each of all five chemicals, then given dietary 50 μg kg-114C-BPA. The mixture elevated 14C-BPA concentrations in the lungs, muscle, uterus, ovaries, kidney, and blood serum of female mice. When administered alone, triclosan and TBBPA elevated 14C-BPA concentrations in the uterus, ovaries, and blood serum. In another experiment, CF1 mice were injected subcutaneously with the 0.5 mg mixture containing 0.1 mg of all five chemicals, then E2 was measured in urine 2-12 h later. The mixture elevated E2 at 8 h after injection in female mice. No treatments significantly altered concentrations of 14C-BPA or E2 in male mice. These data show that these endocrine-disrupting chemicals interact in vivo, magnifying one another's effects, consistent with inhibition of enzymes that are critical for estrogen metabolism. These findings highlight the importance of considering exposure to multiple chemicals when assessing health outcomes and determining regulatory exposure limits.
Collapse
Affiliation(s)
- Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Rachel E Weaver
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Ramtin Ghasemi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Craig ZR, Ziv-Gal A. Pretty Good or Pretty Bad? The Ovary and Chemicals in Personal Care Products. Toxicol Sci 2017; 162:349-360. [DOI: 10.1093/toxsci/kfx285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Zelieann R Craig
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Ayelet Ziv-Gal
- College of Health/School of Health Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
30
|
Hua R, Zhou Y, Wu B, Huang Z, Zhu Y, Song Y, Yu Y, Li H, Quan S. Urinary triclosan concentrations and early outcomes of in vitro fertilization-embryo transfer. Reproduction 2017; 153:319-325. [PMID: 28073982 DOI: 10.1530/rep-16-0501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Triclosan (TCS) exists ubiquitously in the environment. Several in vitro and in vivo studies have demonstrated that TCS exerts endocrine disruptive effects on reproduction, but data from human populations are limited and conflicting. The objective of our study was to investigate whether high urinary TCS concentration is adversely associated with early reproductive outcomes in women undergoing in vitro fertilization-embryo transfer (IVF-ET). This prospective cohort study was conducted from September 2015 to June 2016, including 156 infertile women undergoing their first IVF-ET cycle. Two spot urine samples were collected prior to oocyte retrieval for TCS detection using solid-phase extraction (SPE) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Linear regression model and binary logistic regression model were used to evaluate the association between urinary TCS concentrations and IVF outcomes. The intake of aquaculture food may have positive influences on urinary TCS concentrations. After adjustment for age, body mass index (BMI), baseline follicle-stimulating hormone (FSH), antral follicle count (AFC) and smoking status, a significant decrease of top quality embryo formation and implantation rate was observed in patients with urinary TCS concentration greater than or equal to the median level (0.045 μmol/mol Cr). We concluded that TCS exposure may exert negative effects during early stages of human reproduction.
Collapse
Affiliation(s)
- Rui Hua
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Zhou
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wu
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongwei Huang
- Department of Obstetrics and GynaecologyYong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yongtong Zhu
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yali Song
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanhong Yu
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Li
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Song Quan
- Department of Obstetrics and GynaecologyNanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Pollock T, Mantella L, Reali V, deCatanzaro D. Influence of Tetrabromobisphenol A, with or without Concurrent Triclosan, upon Bisphenol A and Estradiol Concentrations in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087014. [PMID: 28886593 PMCID: PMC5783675 DOI: 10.1289/ehp1329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Humans are commonly exposed to multiple environmental chemicals, including tetrabromobisphenol A (TBBPA; a flame retardant), triclosan (an antimicrobial agent), and bisphenol A (BPA; polycarbonate plastics). These chemicals are readily absorbed and may interact with each other. OBJECTIVES We sought to determine whether TBBPA, given alone or in combination with triclosan, can modulate the concentrations of BPA and 17β-estradiol (E2). METHODS Female and male CF-1 mice were each given a subcutaneous injection of 0-27mg TBBPA, with or without concurrent 0.33mg triclosan, followed by dietary administration of 50μg/kg body weight 14C-BPA. Radioactivity was measured in blood serum and tissues through liquid scintillation counting. In subsequent experiments, female and male CF-1 mice were each given a subcutaneous injection of 0 or 1mg TBBPA and E2 was measured in urine 2-12 h after injection. RESULTS Doses as low as 1mg TBBPA significantly elevated 14C-BPA concentrations in the uterus and ovaries of females; in the testes, epididymides, vesicular-coagulating glands, and preputial glands of males; and in blood serum, heart, lungs, and kidneys of both sexes; urinary E2 concentrations were also elevated. Lower doses of TBBPA or triclosan that had no effects on their own elevated 14C-BPA concentrations when the two substances were given concurrently. CONCLUSION These data indicate that TBBPA, triclosan, and BPA interact in vivo, consistent with evidence that TBBPA and triclosan inhibit enzymes that are critical for BPA and E2 metabolism. https://doi.org/10.1289/EHP1329.
Collapse
Affiliation(s)
- Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario, Canada
| | - Leanna Mantella
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario, Canada
| | - Vanessa Reali
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Halden RU, Lindeman AE, Aiello AE, Andrews D, Arnold WA, Fair P, Fuoco RE, Geer LA, Johnson PI, Lohmann R, McNeill K, Sacks VP, Schettler T, Weber R, Zoeller RT, Blum A. The Florence Statement on Triclosan and Triclocarban. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:064501. [PMID: 28632490 PMCID: PMC5644973 DOI: 10.1289/ehp1788] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 05/20/2023]
Abstract
The Florence Statement on Triclosan and Triclocarban documents a consensus of more than 200 scientists and medical professionals on the hazards of and lack of demonstrated benefit from common uses of triclosan and triclocarban. These chemicals may be used in thousands of personal care and consumer products as well as in building materials. Based on extensive peer-reviewed research, this statement concludes that triclosan and triclocarban are environmentally persistent endocrine disruptors that bioaccumulate in and are toxic to aquatic and other organisms. Evidence of other hazards to humans and ecosystems from triclosan and triclocarban is presented along with recommendations intended to prevent future harm from triclosan, triclocarban, and antimicrobial substances with similar properties and effects. Because antimicrobials can have unintended adverse health and environmental impacts, they should only be used when they provide an evidence-based health benefit. Greater transparency is needed in product formulations, and before an antimicrobial is incorporated into a product, the long-term health and ecological impacts should be evaluated. https://doi.org/10.1289/EHP1788.
Collapse
Affiliation(s)
- Rolf U Halden
- Biodesign Center for Environmental Security, Arizona State University , Tempe, Arizona, USA
| | | | - Allison E Aiello
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina , Chapel Hill, North Carolina, USA
| | - David Andrews
- Environmental Working Group, Washington, District of Columbia, USA
| | - William A Arnold
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota , Minneapolis, Minnesota, USA
| | - Patricia Fair
- Medical University of South Carolina , Department of Public Health Sciences, Charleston, South Carolina, USA
| | - Rebecca E Fuoco
- Health Research Communication Strategies , Los Angeles, California, USA
| | - Laura A Geer
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health , Brooklyn, New York, USA
| | - Paula I Johnson
- California Safe Cosmetics Program, California Department of Public Health , Richmond, California, USA
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography , Narragansett, Rhode Island, USA
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich, Zurich, Switzerland
| | | | - Ted Schettler
- Science and Environmental Health Network, Ames, Iowa, USA
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - R Thomas Zoeller
- University of Massachusetts Amherst , Amherst, Massachusetts, USA
| | - Arlene Blum
- Department of Chemistry, University of California at Berkeley , Berkeley, California, USA
| |
Collapse
|
33
|
Tomza-Marciniak A, Stępkowska P, Kuba J, Pilarczyk B. Effect of bisphenol A on reproductive processes: A review of in vitro, in vivo and epidemiological studies. J Appl Toxicol 2017; 38:51-80. [PMID: 28608465 DOI: 10.1002/jat.3480] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/23/2022]
Abstract
As bisphenol A (BPA) is characterized by a pronounced influence on human hormonal regulation, particular attention has been aimed at understanding its role in reproductive processes in males and females, as well as on fetal development. Owing to the increasing number of alarming reports on the negative consequences of the presence of BPA in human surroundings, more and more studies are being undertaken to clarify the negative effects of BPA on human reproductive processes. The aim of this work was to collect and summarize data on the influence of BPA exposure on reproductive health. Based on an analysis of selected publications it was stated that there is strong proof confirming that BPA is an ovarian, uterine and prostate toxicant at a level below the lowest observed adverse effect level (50 mg kg-1 bodyweight) as well as a level below the proposed safe level (4 μg kg-1 bodyweight). It seems there is also reliable evidence in relation to the negative effect of BPA on sperm quality and motility. Limited evidence also pertains to the case of the potential of BPA to affect polycystic ovary syndrome occurrence. Although in epidemiological studies this disease was common, in studies on animal models such results were still not confirmed. No unambiguous results of epidemiological studies and with animal models were obtained in relation to the evaluation of associations between BPA and implantation failure in women, evaluation of associations between BPA and sexual dysfunction in men, and impact of BPA on birth rate, birth weight and length of gestation. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Agnieszka Tomza-Marciniak
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Paulina Stępkowska
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Jarosław Kuba
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Bogumiła Pilarczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| |
Collapse
|
34
|
Mínguez-Alarcón L, Christou G, Messerlian C, Williams PL, Carignan CC, Souter I, Ford JB, Calafat AM, Hauser R. Urinary triclosan concentrations and diminished ovarian reserve among women undergoing treatment in a fertility clinic. Fertil Steril 2017; 108:312-319. [PMID: 28583664 DOI: 10.1016/j.fertnstert.2017.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the association between urinary triclosan concentrations and antral follicle count (AFC), a well-accepted marker of ovarian reserve, among women from a fertility center. DESIGN Prospective cohort study. SETTING Hospital fertility center. PATIENT(S) A total of 109 women. INTERVENTION(S) Urinary triclosan concentrations quantified by online solid phase extraction-high performance liquid chromatography-isotope dilution tandem mass spectrometry. MAIN OUTCOME MEASURE(S) AFC through transvaginal ultrasonography on the third day of an unstimulated menstrual cycle or on the third day of a progesterone withdrawal bleed. RESULT(S) The geometric mean of the specific gravity-adjusted urinary triclosan concentrations for the 225 samples provided by the 109 women was 13.0 μg/L (95% confidence interval [CI], 8.9, 19.1). Women had median (with interquartile range) AFC of 13 (8, 18). The specific gravity-adjusted urinary triclosan concentrations were inversely associated with AFC (-4%; 95% CI, -7%, -1%). Women with triclosan concentrations above the median had lower AFC compared with those whose triclosan concentrations were equal to or below the median, with an adjusted difference of -3.2 (95% CI, -3.9, -1.6) among those with a body mass index <25 kg/m2 and -1.8 (95% CI, -3.2, -0.3) among those who were <35 years old. CONCLUSION(S) Specific gravity-adjusted urinary triclosan concentrations were inversely associated with AFC in women seeking care at a fertility center. This association was modified by age and body mass index, with the younger and leaner women showing larger decreases in AFC.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.
| | - Georgios Christou
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Paige L Williams
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Courtney C Carignan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Irene Souter
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
35
|
Butyl paraben and propyl paraben modulate bisphenol A and estradiol concentrations in female and male mice. Toxicol Appl Pharmacol 2017; 325:18-24. [DOI: 10.1016/j.taap.2017.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 01/22/2023]
|
36
|
Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol 2017; 233:R109-R129. [PMID: 28356401 PMCID: PMC5479690 DOI: 10.1530/joe-17-0023] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/29/2017] [Indexed: 01/10/2023]
Abstract
Endocrine disrupting chemicals are ubiquitous chemicals that exhibit endocrine disrupting properties in both humans and animals. Female reproduction is an important process, which is regulated by hormones and is susceptible to the effects of exposure to endocrine disrupting chemicals. Disruptions in female reproductive functions by endocrine disrupting chemicals may result in subfertility, infertility, improper hormone production, estrous and menstrual cycle abnormalities, anovulation, and early reproductive senescence. This review summarizes the effects of a variety of synthetic endocrine disrupting chemicals on fertility during adult life. The chemicals covered in this review are pesticides (organochlorines, organophosphates, carbamates, pyrethroids, and triazines), heavy metals (arsenic, lead, and mercury), diethylstilbesterol, plasticizer alternatives (di-(2-ethylhexyl) phthalate and bisphenol A alternatives), 2,3,7,8-tetrachlorodibenzo-p-dioxin, nonylphenol, polychlorinated biphenyls, triclosan, and parabens. This review focuses on the hypothalamus, pituitary, ovary, and uterus because together they regulate normal female fertility and the onset of reproductive senescence. The literature shows that several endocrine disrupting chemicals have endocrine disrupting abilities in females during adult life, causing fertility abnormalities in both humans and animals.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Changqing Zhou
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Catheryne Chiang
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sharada Mahalingam
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Emily Brehm
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
37
|
Borman ED, Vecchi N, Pollock T, deCatanzaro D. Diethylhexyl phthalate magnifies deposition of 14 C-bisphenol A in reproductive tissues of mice. J Appl Toxicol 2017; 37:1225-1231. [PMID: 28555957 DOI: 10.1002/jat.3484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 01/06/2023]
Abstract
Endocrine disrupting chemicals are found in diverse common products, including cosmetics, food packaging, thermal receipt paper and plastic containers. This exposes most people in developed countries through ingestion, skin absorption and inhalation. Two ubiquitous endocrine disrupting chemicals, bisphenol A (BPA) and diethylhexyl phthalate (DEHP) can interact in disrupting blastocyst implantation in inseminated females. We hypothesized that DEHP might increase the bioavailability of BPA in tissues by competing for metabolic enzymes. We injected 0, 3, 9 or 18 mg DEHP into female and male mice and allowed 30 min for the chemical to circulate before giving them a food supplement containing 50 μg kg-1 14 C-BPA. Animals were dissected 1 h following 14 C-BPA administration and various tissue samples were acquired. Samples were solubilized and radioactivity was measured via liquid scintillation counting. In cycling females, DEHP increased BPA deposition in the muscle, uterus, ovaries and blood serum relative to controls. In peri-implantation females, DEHP increased deposition of BPA in the uterus, ovaries and serum relative to controls. In males, DEHP doses increased BPA deposition in serum and epididymis relative to controls. These results are consistent with the hypothesis that DEHP competes with BPA for conjugating enzymes such as UDP-glucuronosyltransferase, thereby magnifying the presence of BPA in estrogen-binding reproductive tissues. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Evan D Borman
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Nicholas Vecchi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
38
|
Cao X, Hua X, Wang X, Chen L. Exposure of pregnant mice to triclosan impairs placental development and nutrient transport. Sci Rep 2017; 7:44803. [PMID: 28322267 PMCID: PMC5359620 DOI: 10.1038/srep44803] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
Triclosan (TCS) is associated with spontaneous abortions and fetal growth restriction. Here, we showed that when pregnant mice were treated with 8 mg/kg TCS (8-TCS mice) on gestational days (GD) 6–18 fetal body weights were lower than controls. Placental weights and volumes were reduced in 8-TCS mice. The placental proliferative cells and expression of PCNA and Cyclin D3 on GD13 were remarkably decreased in 8-TCS mice. The decreases in activities and expression of placental System A amino acid or glucose transporters on GD14 and GD17 were observed in 8-TCS mice. Levels of serum thyroxine (T4) and triiodothyronine (T3) were lower in 8-TCS mice than those in controls. Declines of placental Akt, mTOR and P70S6K phosphorylation in 8-TCS mice were corrected by L-thyroxinein (T4). Treating 8-TCS mice with T4 rescued the placental cell proliferation and recovered the activity and expression of amino acid and glucose transporters, which were sensitive to mTOR inhibition by rapamycin. Furthermore, the replacement of T4 could rescue the decrease in fetal body weight, which was blocked by rapamycin. These findings indicate that TCS-induced hypothyroxinemia in gestation mice through reducing Akt-mTOR signaling may impair placental development and nutrient transfer leading to decreases in fetal body weight.
Collapse
Affiliation(s)
- Xinyuan Cao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Hua
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
39
|
Borman ED, Foster WG, deCatanzaro D. Concurrent administration of diethylhexyl phthalate reduces the threshold dose at which bisphenol A disrupts blastocyst implantation and cadherins in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:105-111. [PMID: 27984777 DOI: 10.1016/j.etap.2016.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Many people are repeatedly exposed to both bisphenol A (BPA) and diethylhexyl phthalate (DEHP), but there has been little research concerning their effects in combination. Both can disrupt blastocyst implantation in inseminated females, albeit at high doses. We exposed mice on gestation days (GD) 1-4 to combinations of BPA and DEHP in doses below the threshold necessary to disrupt implantation on their own. On GD 6, there were fewer normally-developed implantation sites and more underdeveloped implantation sites in females given the combined subthreshold doses. Uterine epithelial cadherin (e-cadherin), a protein that assists in blastocyst adhesion to the uterine epithelium, was significantly reduced by these combined doses, but not by the individual doses. A similar trend was seen in integrin αvβ3, another uterine adhesion molecule. Cadherin-11 was disrupted by BPA but not DEHP. These data are consistent with competition of BPA and DEHP for conjugating enzymes.
Collapse
Affiliation(s)
- Evan D Borman
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Warren G Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
40
|
Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:447-469. [PMID: 29182464 PMCID: PMC6126357 DOI: 10.1080/10937404.2017.1399306] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triclosan (TCS) is an antimicrobial used so ubiquitously that 75% of the US population is likely exposed to this compound via consumer goods and personal care products. In September 2016, TCS was banned from soap products following the risk assessment by the US Food and Drug Administration (FDA). However, TCS still remains, at high concentrations, in other personal care products such as toothpaste, mouthwash, hand sanitizer, and surgical soaps. TCS is readily absorbed into human skin and oral mucosa and found in various human tissues and fluids. The aim of this review was to describe TCS exposure routes and levels as well as metabolism and transformation processes. The burgeoning literature on human health effects associated with TCS exposure, such as reproductive problems, was also summarized.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Julie A. Gosse
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| |
Collapse
|
41
|
Wei L, Qiao P, Shi Y, Ruan Y, Yin J, Wu Q, Shao B. Triclosan/triclocarban levels in maternal and umbilical blood samples and their association with fetal malformation. Clin Chim Acta 2016; 466:133-137. [PMID: 28025031 DOI: 10.1016/j.cca.2016.12.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Triclosan (TCS) and triclocarban (TCC) are widely used as antimicrobial compounds in consumer products. TCS and TCC are frequently found in waste water and sewage. In this study, we investigate the potential impact of exposure to triclosan (TCS) and triclocarban (TCC) on fetal abnormalities. We measured TCS and TCC levels in maternal and umbilical cord blood samples from 39 pregnant women diagnosed with fetal or post-birth abnormalities at Beijing Obstetrics and Gynecology Hospital. 52 pregnant women who gave birth to healthy neonates during the same period of time were included as controls. Applying ultra-performance liquid chromatography-tandem mass spectrometry, TCS and TCC concentrations were measured in maternal and fetal sera. Significantly increased levels of TCS were detected in maternal sera from mothers with abnormal births. Similar levels of TCS or TCC were found in maternal and cord sera in control group. The concentrations of TCS or TCC in maternal sera correlated with those in umbilical cord sera (r=0.649, P<0.01). These observations suggest that maternal blood test could be a useful assay for detecting fetal exposure to TCS and TCC, and high exposure to TCS may be potentially associated with increased risk for fetal malformations.
Collapse
Affiliation(s)
- Ling Wei
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Pengyun Qiao
- Clinical Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Ying Shi
- Xiangheyuan Supervision Station, The Institute of Inspection and Supervision, National Health and Family Planning Commission in Chaoyang District of Beijing, China
| | - Yan Ruan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
42
|
Pollock T, Greville LJ, Tang B, deCatanzaro D. Triclosan elevates estradiol levels in serum and tissues of cycling and peri-implantation female mice. Reprod Toxicol 2016; 65:394-401. [PMID: 27638325 DOI: 10.1016/j.reprotox.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/17/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Abstract
Triclosan, an antimicrobial agent added to personal care products, can modulate estrogenic actions. We investigated whether triclosan affects concentrations of exogenous and endogenous estradiol. Female mice were given injections of triclosan followed by 1μCi tritium-labeled estradiol. Mice given daily 2-mg triclosan doses (57.9mg/kg/dose) showed significantly elevated radioactivity in tissues and serum compared to controls. A single dose of 1 or 2mg triclosan increased radioactivity in the uterus in both cycling and peri-implantation females. We also measured natural urinary estradiol at 2-12h following triclosan injection. Unconjugated estradiol was significantly elevated for several hours following 1 or 2mg of triclosan. These data are consistent with evidence that triclosan inhibits sulfonation of estrogens by interacting with sulfotransferases, preventing metabolism of these steroids into biologically inactive forms. Elevation of estrogen concentrations by triclosan is potentially relevant to anti-reproductive and carcinogenic actions of excessive estrogen activity.
Collapse
Affiliation(s)
- Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Lucas J Greville
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Brandon Tang
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
43
|
Ziv-Gal A, Flaws JA. Evidence for bisphenol A-induced female infertility: a review (2007-2016). Fertil Steril 2016; 106:827-56. [PMID: 27417731 DOI: 10.1016/j.fertnstert.2016.06.027] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022]
Abstract
We summarized the scientific literature published from 2007 to 2016 on the potential effects of bisphenol A (BPA) on female fertility. We focused on overall fertility outcomes (e.g., ability to become pregnant, number of offspring), organs that are important for female reproduction (i.e., oviduct, uterus, ovary, hypothalamus, and pituitary), and reproductive-related processes (i.e., estrous cyclicity, implantation, and hormonal secretion). The reviewed literature indicates that BPA may be associated with infertility in women. Potential explanations for this association can be generated from experimental studies. Specifically, BPA may alter overall female reproductive capacity by affecting the morphology and function of the oviduct, uterus, ovary, and hypothalamus-pituitary-ovarian axis in animal models. In addition, BPA may disrupt estrous cyclicity and implantation. Nevertheless, further studies are needed to better understand the exact mechanisms of action and to detect potential reproductive toxicity at earlier stages.
Collapse
Affiliation(s)
- Ayelet Ziv-Gal
- School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | - Jodi A Flaws
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
44
|
Feng Y, Zhang P, Zhang Z, Shi J, Jiao Z, Shao B. Endocrine Disrupting Effects of Triclosan on the Placenta in Pregnant Rats. PLoS One 2016; 11:e0154758. [PMID: 27149376 PMCID: PMC4858197 DOI: 10.1371/journal.pone.0154758] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/19/2016] [Indexed: 01/17/2023] Open
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent that is frequently used in pharmaceuticals and personal care products. Reports have shown that TCS is a potential endocrine disruptor; however, the potential effects of TCS on placental endocrine function are unclear. The aim of this study was to investigate the endocrine disrupting effects of TCS on the placenta in pregnant rats. Pregnant rats from gestational day (GD) 6 to GD 20 were treated with 0, 30, 100, 300 and 600 mg/kg/d TCS followed by analysis of various biochemical parameters. Of the seven tissues examined, the greatest bioaccumulation of TCS was observed in the placenta. Reduction of gravid uterine weight and the occurrence of abortion were observed in the 600 mg/kg/d TCS-exposed group. Moreover, hormone detection demonstrated that the serum levels of progesterone (P), estradiol (E2), testosterone (T), human chorionic gonadotropin (hCG) and prolactin (PRL) were decreased in groups exposed to higher doses of TCS. Real-time quantitative reverse transcriptase-polymerase chain reaction (Q-RT-PCR) analysis revealed a significant increase in mRNA levels for placental steroid metabolism enzymes, including UDP-glucuronosyltransferase 1A1 (UGT1A1), estrogen sulfotransferase 1E1 (SULT1E1), steroid 5α-reductase 1 (SRD5A1) and steroid 5α-reductase 2 (SRD5A2). Furthermore, the transcriptional expression levels of progesterone receptor (PR), estrogen receptor (ERα) and androgen receptor (AR) were up-regulated. Taken together, these data demonstrated that the placenta was a target tissue of TCS and that TCS induced inhibition of circulating steroid hormone production might be related to the altered expression of hormone metabolism enzyme genes in the placenta. This hormone disruption might subsequently affect fetal development and growth.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Pin Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Jiachen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Zhihao Jiao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
45
|
Chavarro JE, Mínguez-Alarcón L, Chiu YH, Gaskins AJ, Souter I, Williams PL, Calafat AM, Hauser R. Soy Intake Modifies the Relation Between Urinary Bisphenol A Concentrations and Pregnancy Outcomes Among Women Undergoing Assisted Reproduction. J Clin Endocrinol Metab 2016; 101:1082-90. [PMID: 26815879 PMCID: PMC4803173 DOI: 10.1210/jc.2015-3473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Experimental data in rodents suggest that the adverse reproductive health effects of bisphenol A (BPA) can be modified by intake of soy phytoestrogens. Whether the same is true in humans is not known. OBJECTIVE The purpose of this study was to evaluate whether soy consumption modifies the relation between urinary BPA levels and infertility treatment outcomes among women undergoing assisted reproduction. SETTING The study was conducted in a fertility center in a teaching hospital. DESIGN We evaluated 239 women enrolled between 2007 and 2012 in the Environment and Reproductive Health (EARTH) Study, a prospective cohort study, who underwent 347 in vitro fertilization (IVF) cycles. Participants completed a baseline questionnaire and provided up to 2 urine samples in each treatment cycle before oocyte retrieval. IVF outcomes were abstracted from electronic medical records. We used generalized linear mixed models with interaction terms to evaluate whether the association between urinary BPA concentrations and IVF outcomes was modified by soy intake. MAIN OUTCOME MEASURE Live birth rates per initiated treatment cycle were measured. RESULTS Soy food consumption modified the association of urinary BPA concentration with live birth rates (P for interaction = .01). Among women who did not consume soy foods, the adjusted live birth rates per initiated cycle in increasing quartiles of cycle-specific urinary BPA concentrations were 54%, 35%, 31%, and 17% (P for trend = .03). The corresponding live birth rates among women reporting pretreatment consumption of soy foods were 38%, 42%, 47%, and 49% (P for trend = 0.35). A similar pattern was found for implantation (P for interaction = .02) and clinical pregnancy rates (P for interaction = .03) per initiated cycle, where urinary BPA was inversely related to these outcomes among women not consuming soy foods but unrelated to them among soy consumers. CONCLUSION Soy food intake may protect against the adverse reproductive effects of BPA. As these findings represent the first report suggesting a potential interaction between soy and BPA in humans, they should be further evaluated in other populations.
Collapse
Affiliation(s)
- Jorge E Chavarro
- Department of Nutrition (J.E.C., Y.-H.C., A.J.G.), Department of Epidemiology (J.E.C., A.J.G., R.H.), Department of Environmental Health (L.M.-A., R.H.), and Department of Biostatistics (P.L.W.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Channing Division of Network Medicine (J.E.C.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Vincent Obstetrics and Gynecology (I.S., R.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; and National Center for Environmental Health (A.M.C.), Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Lidia Mínguez-Alarcón
- Department of Nutrition (J.E.C., Y.-H.C., A.J.G.), Department of Epidemiology (J.E.C., A.J.G., R.H.), Department of Environmental Health (L.M.-A., R.H.), and Department of Biostatistics (P.L.W.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Channing Division of Network Medicine (J.E.C.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Vincent Obstetrics and Gynecology (I.S., R.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; and National Center for Environmental Health (A.M.C.), Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Yu-Han Chiu
- Department of Nutrition (J.E.C., Y.-H.C., A.J.G.), Department of Epidemiology (J.E.C., A.J.G., R.H.), Department of Environmental Health (L.M.-A., R.H.), and Department of Biostatistics (P.L.W.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Channing Division of Network Medicine (J.E.C.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Vincent Obstetrics and Gynecology (I.S., R.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; and National Center for Environmental Health (A.M.C.), Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Audrey J Gaskins
- Department of Nutrition (J.E.C., Y.-H.C., A.J.G.), Department of Epidemiology (J.E.C., A.J.G., R.H.), Department of Environmental Health (L.M.-A., R.H.), and Department of Biostatistics (P.L.W.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Channing Division of Network Medicine (J.E.C.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Vincent Obstetrics and Gynecology (I.S., R.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; and National Center for Environmental Health (A.M.C.), Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Irene Souter
- Department of Nutrition (J.E.C., Y.-H.C., A.J.G.), Department of Epidemiology (J.E.C., A.J.G., R.H.), Department of Environmental Health (L.M.-A., R.H.), and Department of Biostatistics (P.L.W.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Channing Division of Network Medicine (J.E.C.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Vincent Obstetrics and Gynecology (I.S., R.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; and National Center for Environmental Health (A.M.C.), Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Paige L Williams
- Department of Nutrition (J.E.C., Y.-H.C., A.J.G.), Department of Epidemiology (J.E.C., A.J.G., R.H.), Department of Environmental Health (L.M.-A., R.H.), and Department of Biostatistics (P.L.W.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Channing Division of Network Medicine (J.E.C.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Vincent Obstetrics and Gynecology (I.S., R.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; and National Center for Environmental Health (A.M.C.), Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Antonia M Calafat
- Department of Nutrition (J.E.C., Y.-H.C., A.J.G.), Department of Epidemiology (J.E.C., A.J.G., R.H.), Department of Environmental Health (L.M.-A., R.H.), and Department of Biostatistics (P.L.W.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Channing Division of Network Medicine (J.E.C.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Vincent Obstetrics and Gynecology (I.S., R.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; and National Center for Environmental Health (A.M.C.), Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Russ Hauser
- Department of Nutrition (J.E.C., Y.-H.C., A.J.G.), Department of Epidemiology (J.E.C., A.J.G., R.H.), Department of Environmental Health (L.M.-A., R.H.), and Department of Biostatistics (P.L.W.), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; Channing Division of Network Medicine (J.E.C.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; Vincent Obstetrics and Gynecology (I.S., R.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; and National Center for Environmental Health (A.M.C.), Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | | |
Collapse
|
46
|
Bloom MS, Micu R, Neamtiu I. Female Infertility and “Emerging” Organic Pollutants of Concern. CURR EPIDEMIOL REP 2016. [DOI: 10.1007/s40471-016-0060-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Wang CF, Tian Y. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:195-201. [PMID: 26184583 DOI: 10.1016/j.envpol.2015.07.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 05/24/2023]
Abstract
Triclosan has been used as a broad-spectrum antibacterial agent for over 40 years worldwide. Increasing reports indicate frequent detection and broad exposure to triclosan in the natural environment and the human body. Current laboratory studies in various species provide strong evidence for its disrupting effects on the endocrine system, especially reproductive hormones. Multiple modes of action have been suggested, including disrupting hormone metabolism, displacing hormones from hormone receptors and disrupting steroidogenic enzyme activity. Although epidemiological studies on its effects in humans are mostly negative but conflicting, which is typical of much of the early evidence on the toxicity of EDCs, overall, the evidence suggests that triclosan is an EDC. This article reviews human exposure to triclosan, describes the current evidence regarding its reproductive endocrine-disrupting effects, and discusses potential mechanisms to provide insights for further study on its endocrine-disrupting effects in humans.
Collapse
Affiliation(s)
- Cai-Feng Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China; School of Nursing, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Preimplantation Exposure to Bisphenol A and Triclosan May Lead to Implantation Failure in Humans. BIOMED RESEARCH INTERNATIONAL 2015; 2015:184845. [PMID: 26357649 PMCID: PMC4556842 DOI: 10.1155/2015/184845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/21/2015] [Accepted: 06/25/2015] [Indexed: 12/13/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that have the capacity to interfere with normal endocrine systems. Two EDCs, bisphenol A (BPA) and triclosan (TCS), are mass-produced and widespread. They both have estrogenic properties and similar chemical structures and pharmacokinetic features and have been detected in human fluids and tissues. Clinical evidence has suggested a positive association between BPA exposure and implantation failure in IVF patients. Studies in mouse models have suggested that preimplantation exposure to BPA and TCS can lead to implantation failure. This paper reviews the relationship between preimplantation exposure to BPA and TCS and implantation failure and discusses the remaining problems and possible solutions.
Collapse
|
49
|
Mínguez-Alarcón L, Gaskins AJ, Chiu YH, Williams PL, Ehrlich S, Chavarro JE, Petrozza JC, Ford JB, Calafat AM, Hauser R. Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic. Hum Reprod 2015. [PMID: 26209788 DOI: 10.1093/humrep/dev183] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Are urinary BPA concentrations associated with in vitro fertilization (IVF) outcomes among women attending an academic fertility center? SUMMARY ANSWER Urinary BPA concentrations were not associated with adverse reproductive and pregnancy outcomes among women from a fertility clinic. WHAT IS KNOWN ALREADY Bisphenol A (BPA), an endocrine disruptor, is detected in the urine of most Americans. Although animal studies have demonstrated that BPA reduces female fertility through effects on the ovarian follicle and uterus, data from human populations are scarce and equivocal. STUDY DESIGN, SIZE AND DURATION This prospective cohort study between 2004 and 2012 at the Massachusetts General Hospital Fertility Center included 256 women (n = 375 IVF cycles) who provided up to two urine samples prior to oocyte retrieval (total N = 673). PARTICIPANTS/MATERIALS, SETTINGS, METHODS Study participants were women enrolled in the Environment and Reproductive Health (EARTH) Study. Intermediate and clinical end-points of IVF treatments were abstracted from electronic medical records. We used generalized linear mixed models with random intercepts to evaluate the association between urinary BPA concentrations and IVF outcomes adjusted by age, race, body mass index, smoking status and infertility diagnosis. MAIN RESULTS AND THE ROLE OF CHANCE The specific gravity-adjusted geometric mean of BPA was 1.87 µg/l, which is comparable to that for female participants in the National Health and Nutrition Examination Survey, 2011-2012. Urinary BPA concentrations were not associated with endometrial wall thickness, peak estradiol levels, proportion of high quality embryos or fertilization rates. Furthermore, there were no associations between urinary BPA concentrations and implantation, clinical pregnancy or live birth rates per initiated cycle or per embryo transfer. Although we did not find any associations between urinary BPA concentrations and IVF outcomes, the relation between BPA and endometrial wall thickness was modified by age. Younger women (<37 years old) had thicker endometrial thickness across increasing quartiles of urinary BPA concentrations, while older women (≥37 years old) had thinner endometrial thickness across increasing quartiles of urinary BPA concentrations. LIMITATIONS, REASONS FOR CAUTION Limitations to this study include a possible misclassification of BPA exposure and difficulties in extrapolating the findings to the general population. WIDER IMPLICATIONS OF THE FINDINGS Data on the relation between urinary BPA concentrations and reproductive outcomes remain scarce and additional research is needed to clarify its role in human reproduction. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH grants R01ES022955, R01ES009718 and R01ES000002 from the National Institute of Environmental Health Sciences (NIEHS) and grant T32DK00770316 from the National Institute of Child Health and Human Development (NICHD). None of the authors has any conflicts of interest to declare. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Audrey J Gaskins
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu-Han Chiu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shelley Ehrlich
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John C Petrozza
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
50
|
Borman ED, Foster WG, Greenacre MKE, Muir CC, deCatanzaro D. Stress lowers the threshold dose at which bisphenol A disrupts blastocyst implantation, in conjunction with decreased uterine closure and e-cadherin. Chem Biol Interact 2015; 237:87-95. [PMID: 26026914 DOI: 10.1016/j.cbi.2015.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 01/07/2023]
Abstract
Exposure to stress can disrupt blastocyst implantation in inseminated female mice, and evidence implicates elevation of the female's estrogen:progesterone ratio. Exposure to the xenoestrogen, bisphenol A (BPA) can also disrupt implantation. Undisturbed control female CF-1 mice were compared to other females that were exposed to predators (rats) across a wire-mesh grid during gestation days (GD) 1-4, a procedure that elevates corticosterone but does not on its own disrupt implantation in this genetic strain. They were concurrently exposed to varied doses of BPA that on their own were below the threshold dose sufficient to disrupt implantation. On GD 6, we measured the number of intrauterine implantation sites and extracted their uteri, which subsequently were stained and analyzed for uterine luminal area and epithelial cadherin (e-cadherin), a molecule that causes uterine closure and adhesion of blastocysts to the uterine epithelium. The combination of rat-exposure stress and BPA significantly disrupted implantation and increased uterine luminal area, whereas either manipulation on its own did not. E-cadherin was significantly reduced by exposure to BPA, positively correlated with the number of implantation sites, and inversely correlated with luminal area. BPA exposure was also associated with nonmonotonic perturbation of urinary corticosterone concentrations and increased urinary estradiol concentrations on GD 6. These data are consistent with a potential summation of stress-induced estrogen and xenoestrogen activity.
Collapse
Affiliation(s)
- Evan D Borman
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Warren G Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Matthew K E Greenacre
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Cameron C Muir
- Department of Psychology, Centre for Neuroscience, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|