1
|
Guan P, Yu H, Wang S, Sun J, Chai X, Sun X, Qi X, Zhang R, Jiao Y, Li Z, Kim IH, Feng X, Liu X. Dietary rutin alleviated the damage by cold stress on inflammation reaction, tight junction protein and intestinal microbial flora in the mice intestine. J Nutr Biochem 2024; 130:109658. [PMID: 38663564 DOI: 10.1016/j.jnutbio.2024.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024]
Abstract
Low temperature is a common stress source for the poultry industry in the north of China. However, the low energy consuming and economical way to reduce the negative effects from cold stress is still limited. Therefore, the aim of this study was to investigate the effect of rutin on intestinal barrier in mice under low temperature. The cold stress model was established at 4°C for 3 h each day and the experiment lasted for 21 days. Forty Balb/c mice were randomly divided into four treatments: CON, normal temperature with the basal diet; RUT, normal temperature with the basal diet +150 mg/kg body weight (BW) of rutin; CS, mice under cold stress with basal diet; CR, 150 mg/kg of BW rutin under cold stress. Rutin supplementation significantly increased the ileum villus-to-crypt ratio compared with these non-supplemented treatments. Rutin attenuated the hypothermia induced morphological damage in the ileum. In addition, rutin improved the antioxidant capacity of mice under cold stress. Rutin supplementation significantly increased the trypsin activity and inhibited the lipase in cold stressed mice. Rutin supplementation significantly inhibited the production of inflammatory factors induced by cold stress. Rutin induced the inhibition of TLR4 and NF-кB, thereby reducing the expression of inflammation-related genes. In addition, rutin improved the reduction of the intestinal claudin-1 and occludin expression in those mice in the cold stress (P < .05) and improved the intestinal ZO-1 expression in cold stressed mice. Finally, rutin alleviated the dysregulation of intestinal microflora in the mice under cold stress.
Collapse
Affiliation(s)
- Peiyue Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hao Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shenao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xuehong Chai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xue Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xueyan Qi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ruoshi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yihan Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhongqiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Anseodong, South Korea
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| | - Xiao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Guo Y, Hu M, Peng H, Zhang Y, Kuang R, Han Z, Wang D, Liao Y, Ma R, Xu Z, Sun J, Shen Y, Zhao C, Ma H, Liu D, Zhao S, Zhao Y. Epigenomic features associated with body temperature stabilize tissues during cold exposure in cold-resistant pigs. J Genet Genomics 2024:S1673-8527(24)00159-0. [PMID: 38969257 DOI: 10.1016/j.jgg.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Cold stress in low-temperature environments can trigger changes in gene expression, but epigenomics regulation of temperature stability in vital tissues, including the fat and diencephalon, is still unclear. Here, we explore the cold-induced changes in epigenomic features in the diencephalon and fat tissues of two cold-resistant Chinese pig breeds, Min and Enshi black (ES) pigs, utilizing H3K27ac CUT&Tag, RNA-seq, and selective signature analysis. Our results show significant alterations in H3K27ac modifications in the diencephalon of Min pigs and the fat of ES pigs after cold exposure. Dramatic changes in H3K27ac modifications in the diencephalon of Min pig are primarily associated with genes involved in energy metabolism and hormone regulation, whereas those in the fat of ES pig are primarily associated with immunity-related genes. Moreover, transcription factors PRDM1 and HSF1, which show evidence of selection, are enriched in genomic regions presenting cold-responsive alterations in H3K27ac modification in the Min pig diencephalon and ES pig fat, respectively. Our results indicate the diversity of epigenomic response mechanisms to cold exposure between Min and ES pigs, providing unique epigenetic resources for studies of low-temperature adaptation in large mammals.
Collapse
Affiliation(s)
- Yaping Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Mingyang Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China; Yazhouwan National Laboratory, Sanya, 572000 Hainan, China
| | - Hao Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Yan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Renzhuo Kuang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Zheyu Han
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Daoyuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Yinlong Liao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China; Yazhouwan National Laboratory, Sanya, 572000 Hainan, China
| | - Ruixian Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Zhixiang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Jiahao Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Yu Shen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China; Yazhouwan National Laboratory, Sanya, 572000 Hainan, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 Heilongjiang, China.
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 Heilongjiang, China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China; Yazhouwan National Laboratory, Sanya, 572000 Hainan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| | - Yunxia Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 Hubei, China; Yazhouwan National Laboratory, Sanya, 572000 Hainan, China.
| |
Collapse
|
3
|
Su D, Song Y, Li D, Yang S, Zhan S, Zhong T, Guo J, Cao J, Li L, Zhang H, Wang L. Cold exposure affects glucose metabolism, lipid droplet deposition and mitophagy in skeletal muscle of newborn goats. Domest Anim Endocrinol 2024; 88:106847. [PMID: 38479188 DOI: 10.1016/j.domaniend.2024.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024]
Abstract
Cold exposure is a common stressor for newborn goats. Skeletal muscle plays an important role in maintaining whole-body homeostasis of glucose and lipid metabolism. However, the molecular mechanisms underlying regulation of skeletal muscle of newborn goats by cold exposure remains unclear. In this study, we found a significant increase (P < 0.01) in serum glucagon levels after 24 h of cold exposure (COLD, 6°C), while glucose and insulin concentrations were significantly decreased (P < 0.01) compared to room temperature (RT, 25°C). Additionally, we found that cold exposure reduced glycogen content (P < 0.01) in skeletal muscle. Pathway enrichment analysis revealed that cold exposure activated skeletal muscle glucose metabolism pathways (including insulin resistance and the insulin signaling pathway) and mitophagy-related pathways. Cold exposure up-regulated the expression of genes involved in fatty acid and triglyceride synthesis, promoting skeletal muscle lipid deposition. Notably, cold exposure induced mitophagy in skeletal muscle.
Collapse
Affiliation(s)
- Duo Su
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulong Song
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Die Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shizhong Yang
- Institute of Liangshan Agricultural Science Research, Xichang 615042, China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Gao J, Mang Q, Liu Y, Sun Y, Xu G. Integrated mRNA and miRNA analysis reveals the regulatory network of oxidative stress and inflammation in Coilia nasus brains during air exposure and salinity mitigation. BMC Genomics 2024; 25:446. [PMID: 38714962 PMCID: PMC11075292 DOI: 10.1186/s12864-024-10327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Qi Mang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Yuqian Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
5
|
Bi Y, Wei H, Chai Y, Wang H, Xue Q, Li J. Intermittent mild cold acclimation ameliorates intestinal inflammation and immune dysfunction in acute cold-stressed broilers by regulating the TLR4/MyD88/NF-κB pathway. Poult Sci 2024; 103:103637. [PMID: 38518665 PMCID: PMC10978541 DOI: 10.1016/j.psj.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024] Open
Abstract
To investigate the potential protective effect of prior cold stimulation on broiler intestine induced by acute cold stress (ACS). A total of 384 one-day-old broilers were divided into control (CON), ACS, cold stimulation Ⅰ (CS3+ACS), and cold stimulation Ⅱ (CS9+ACS) groups. Broilers in CON and ACS groups were reared normally, and birds in CS3+ACS and CS9+ACS groups were reared at 3℃ and 9℃ below CON group for 5 h, respectively, on alternate days from d 15 to 35. Broilers in ACS, CS3+ACS, and CS9+ACS groups were subjected to 10℃ for 24 h on d 43. Eventually, small intestine tissues were collected for histopathological observation and indexes detection. The results showed that intestinal tissues in all ACS-broilers exhibited inflammatory cell infiltrates, microvilli disruption, reduced villus length in jejunum and increased crypt depth in jejunum and ileum. Whereas these phenomena were relatively light in CS3+ACS group. Compared to CON group, mRNA expression of the TLR4/MyD88/NF-κB pathway-related genes (TLR4, MyD88, NF-κBp65, COX-2, iNOS, PTGEs, TNF-α), Th1/Th17-derived cytokines (IL-1β, IL-2, IL-8, IL-12, IFN-γ, IL-17), and HSPs (HSP40, HSP60, HSP70, HSP90) was upregulated (P < 0.05), and that of Th2-deviated cytokines (IL-4, IL-6, IL-10, IL-13) and IκBα was downregulated (P < 0.05) in small intestine in almost all ACS-broilers. Compared to ACS group, mRNA expression of most of the TLR4/MyD88/NF-κB pathway-related genes, Th1/Th17-derived cytokines, and HSPs was downregulated and that of Th2-derived cytokines was upregulated in CS3+ACS group (P < 0.05). Protein expression levels of TLR4, MyD88, p-p65/p65, p-IκBα/IκBα, IKK, TNF-α, IL-1β, IL-10, and HSPs were similar to their mRNA expression. The concentration of sIgA and activities of CAT, SOD, and GSH-px were decreased and MDA and H2O2 were increased in ACS and CS9+ACS groups compared to CON group (P < 0.05). Therefore, cold stress caused oxidative stress and inflammation, leading to gut immune dysfunction; while mild cold stimulation at 3℃ below normal rearing temperature alleviated cold stress-induced intestinal injure and dysfunction by modulating the TLR4/MyD88/NF-κB pathway in broilers.
Collapse
Affiliation(s)
- Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, 150030 Harbin, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Hongyu Wang
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Qiang Xue
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China.
| |
Collapse
|
6
|
Su Y, Li T, He X, Sun H, Li J. PI3K/AKT pathway modulation and cold acclimation alleviation concerning apoptosis and necroptosis in broiler thymus. Poult Sci 2024; 103:103634. [PMID: 38537409 PMCID: PMC10987937 DOI: 10.1016/j.psj.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Moderate cold stimulation regulates the thymus's growth and function and facilitates cold acclimatization in broilers. However, the underlying mechanism remains unknown. To explore the possible mechanism of the thymus in cold-acclimated broilers against cold stress, 240 one-day-old Arbor Acres (AA) broilers were assigned to 2 groups randomly. The control group (C) was housed at conventional temperatures. The temperature during the first week was 33°C to 34°C. Between the ages of 8 and 32 d, the temperature was lowered by 1°C every 2 d, i.e., gradually from 32°C to 20°C, and then maintained at 20°C until 42 d of age. The cold-acclimated group (C-3) was housed at the same temperature as C from 1 to 7 d after birth. Between 8 and 42 d, the temperature of C-3 was 3°C colder than C. After 24 h exposure to acute cold stress (ACS) at 42 d, C and C-3 were named as S and S-3. The results showed that ACS was able to induce oxidation stress, modulate PI3K/AKT signal, and cause necroptosis and apoptosis in broiler thymus. By contrast, cold acclimation could alleviate apoptosis and necroptosis induced by cold stress via alleviating oxidative stress, efficiently activating the PI3K/AKT signal, as well as decreasing apoptotic and necrotic genes' levels. This study offers a novel theoretical basis for cold acclimation to improve the body's cold tolerance.
Collapse
Affiliation(s)
- Yingying Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyue He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hanqing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
7
|
Lei J, Ran X, Guo M, Liu J, Yang F, Chen D. Screening, Identification, and Probiotic Properties of Bacillus Pumilus From Yak. Probiotics Antimicrob Proteins 2024; 16:531-540. [PMID: 36995549 DOI: 10.1007/s12602-023-10054-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/31/2023]
Abstract
The yak has a unique physiological structure suited to life in anoxic and cold environments at high altitudes. The aim of this study was to isolate Bacillus species with good probiotic properties from yak feces. A series of tests were performed on the isolated Bacillus: 16S rRNA identification, antibacterial activity, tolerance to gastroenteric fluid, hydrophobicity, auto-aggregation, antibiotic sensitivity, growth performance, antioxidants, and immune indexes. A safe and harmless Bacillus pumilus DX24 strain with good survival rate, hydrophobicity, auto-aggregation, and antibacterial activity was identified in the yak feces. Feeding mice with Bacillus pumilus DX24 increased their daily weight gain, jejunal villus length, villi/Crypt ratio, blood IgG levels, and jejunum sIgA levels. This study confirmed the probiotic effects of Bacillus pumilus isolated from yak feces and provides the theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Jiangying Lei
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Xuan Ran
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Minghao Guo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiahao Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
8
|
Li J, Cui Z, Wei M, Almutairi MH, Yan P. Omics analysis of the effect of cold normal saline stress through gastric gavage on LPS induced mice. Front Microbiol 2023; 14:1256748. [PMID: 38163070 PMCID: PMC10755949 DOI: 10.3389/fmicb.2023.1256748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cold stress is a significant environmental stimulus that negatively affects the health, production, and welfare of animals and birds. However, the specific effects of cold stimulation combined with lipopolysaccharide (LPS) on the mouse intestine remain poorly understood. Therefore, we designed this research to explore the effect of cold stimulation + LPS on mice intestine via microbiome and microbiota sequencing. Forty-eight mice were randomly divided into four experimental groups (n = 12): Control (CC), LPS-induced (CL), cold normal saline-induced (MC) and LPS + cold normal saline-induced (ML). Our results showed body weight was similar among different groups of mice. However, the body weight of mice in groups CC and CL were slightly higher compared to those in groups MC and ML. The results of gene expressions reflected that CL and ML exposure caused gut injury and barrier dysfunction, as evident by decreased ZO-1, OCCLUDIN (P < 0.01), and CASPASE-1 (P < 0.01) expression in the intestine of mice. Moreover, we found that cold stress induced oxidative stress in LPS-challenged mice by increasing malondialdehyde (MDA) accumulation and decreasing the antioxidant capacity [glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total and antioxidant capacity (T-AOC)]. The cold stress promoted inflammatory response by increased IL-1β in mice treated with cold normal saline + LPS. Whereas, microbiome sequencing revealed differential abundance in four phyla and 24 genera among the mouse groups. Metabolism analysis demonstrated the presence of 4,320 metabolites in mice, with 43 up-regulated and 19 down-regulated in CC vs. MC animals, as well as 1,046 up-regulated and 428 down-regulated in ML vs. CL animals. It is Concluded that cold stress enhances intestinal damage by disrupting the balance of gut microbiota and metabolites, while our findings contribute in improving management practices of livestock in during cold seasons.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Pawar SS, Kurade NP, Bhendarkar MP, Bhosale SV, Nirmale AV, Kochewad SA. Modulation of heat shock protein 70 (HSP70) gene expression ex vivo in response to heat stress in chicken. Anim Biotechnol 2023; 34:5168-5172. [PMID: 37071509 DOI: 10.1080/10495398.2023.2200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The present study was conducted to assess the effect of exposure to heat stress on the HSP70 gene expression pattern ex vivo in chickens. The adult healthy birds (n = 15) grouped into three replicates of n = 5 each were used to isolate peripheral blood mononuclear cells (PBMCs). The PBMCs were subjected to heat stress at 42 °C for 1 h, and cells without heat stress (NHS) were taken as control. The cells were seeded in 24 well plates and incubated in a humidified incubator at 37 °C under 5% CO2 for recovery. HSP70 expression kinetics were evaluated at 0, 2, 4, 6, and 8 h of the recovery period. Compared with NHS, the expression pattern of HSP70 was upregulated gradually from 0 to 4 h with peak (p < 0.05) expression recorded at 4 h of recovery time. mRNA expression of HSP70 escalated in a time-dependent manner from 0 to 4 h of heat exposure and thereafter exhibited a gradually decreasing pattern till 8 h of the recovery period. The findings from this study highlight the protective role of HSP70 against the deleterious effects of heat stress in chicken PBMCs. Further, the study demonstrates the possible use of PBMCs as a cellular system in assessing the heat stress effect in chickens ex vivo.
Collapse
Affiliation(s)
- Sachin S Pawar
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Nitin P Kurade
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Mukesh P Bhendarkar
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
- AZTI, Marine Research Division, Sukarrieta, Spain
| | | | - Avinash V Nirmale
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Sanjiv A Kochewad
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| |
Collapse
|
10
|
Daneshmand A, Kumar A, Kheravii SK, Pasquali GAM, Wu SB. Xylanase and beta-glucanase improve performance parameters and footpad dermatitis and modulate intestinal microbiota in broilers under an Eimeria challenge. Poult Sci 2023; 102:103055. [PMID: 37734358 PMCID: PMC10514458 DOI: 10.1016/j.psj.2023.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Coccidiosis is an enteric disease of poultry worldwide that compromises gut health and growth performance. The current research investigated the effects of 2 doses of a multienzyme preparation on broilers' performance, gut health, and footpad dermatitis (FPD) under an Eimeria challenge. A total of 512 mixed-sex day-old chicks (Cobb 500) were randomly allocated to 4 treatments of 8 replicates. Treatments were: 1) nonchallenged control (NC); 2) NC + Eimeria challenge (CC); 3) CC + recommended level of xylanase and glucanase (XG, 100 g/t feed [on top]); 4) CC + double XG (2XG, 200 g/t feed). Eimeria spp. vaccine strains were gavaged on d 9 to induce coccidiosis in chickens. Performance parameters were evaluated during starter, grower, and finisher phases, and 4 birds per pen were euthanized on d 16 for sampling, FPD was scored on d 35, and litter moisture was analyzed on d 17 and 35. The data were analyzed using 1-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally distributed parameters. The results showed that the Eimeria challenge was successful based on reduced weight gain and feed intake during grower phase, and higher FITC-d concentration, lesion score (female), and oocyst counts (d 14) in CC group compared to N.C. group, while XG and 2XG increased (P < 0.001) weight gain and improved FCR compared to CC and NC groups during finisher phase. The addition of X.G. and 2XG decreased litter moisture (P = 0.003) and FPD (P < 0.001) in challenged broilers compared to the N.C. group (d 35). Supplementing XG and 2XG reestablished the population of Lactobacillus in the cecum of challenged birds to an intermediate level between the NC and CC groups (P > 0.05). The inclusion of XG tended to increase the expression of Junctional adhesion molecule 2 (JAM2), which was not different from CC and NC groups (P > 0.05). In conclusion, the combination of xylanase and glucanase (Natugrain TS) improved the performance and modulated jejunal microbiota of broilers under mild Eimeria challenge.
Collapse
Affiliation(s)
- Ali Daneshmand
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Alip Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | | | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
11
|
Daneshmand A, Sharma NK, Kheravii SK, Hall L, Wu SB. Buffered formic acid and a monoglyceride blend improve performance and modulate gut bacteria and immunity gene expression in broilers under necrotic enteritis challenge. Poult Sci 2023; 102:102978. [PMID: 37598553 PMCID: PMC10458320 DOI: 10.1016/j.psj.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Due to the removal of antibiotics from animal feed, alternatives have been sought to control necrotic enteritis (NE) in broilers. The current study investigated the effects of buffered formic acid (Amasil NA) and monoglycerides of short- and medium-chain fatty acids (Balangut LS P) on the performance and gut health of broilers challenged with NE. A total of 816 as-hatched 1-d-old chicks (Cobb 500) were randomly assigned to 6 treatments with 8 replicates. Treatments were: T1) nonchallenged control; T2) NE challenged control; T3) Amasil NA (challenge plus Amasil NA, 0.3% throughout all phases); T4) Balangut LS P (challenge plus Balangut LS P, 0.5%, 0.3%, and 0.2% in the starter, grower and finisher phases, respectively; T5) Combined (challenge plus combination of T3 and T4); T6) Antibiotic (challenge plus Zn bacitracin, 0.05 % throughout all phases). Birds were orally gavaged with live Eimeria vaccine species (d 9) and with Clostridium perfringens (d 14 and 15). On d 16, birds were sampled to evaluate gut permeability, microbiota, and mRNA abundance in the jejunum. The data were analyzed in JMP software using one-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally-distributed parameters. Results showed that Balangut LS P decreased (P<0.05) feed conversion ratio compared to nonchallenged ones at the end of the study. Balangut LS P reduced (P < 0.05) the level of cecal Bacteriods compared to nonchallenged group, whereas Amasil NA shifted the levels of ileal Bifidobacteria, Enterobacteriaceae, and Lactobacillus towards nonchallenged control (P > 0.05). NE challenge upregulated (P < 0.001) the expression of IL-21R, zeta chain of T cell receptor (ZAP70), and dual specificity phosphatase 4 (DUSP4) compared to nonchallenged birds, whereas Balangut LS P showed an intermediate (P > 0.05) expression pattern of these genes towards nonchallenged and antibiotic groups. In conclusion, combination of Balangut LS P and Amasil NA has the potential to be used as an additive to improve the performance and gut health of broiler chickens, especially under challenging conditions such as NE infections.
Collapse
Affiliation(s)
- Ali Daneshmand
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Nishchal K Sharma
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Leon Hall
- BASF Australia Ltd, 12/28 Freshwater Place, Southbank, VIC 3006, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia.
| |
Collapse
|
12
|
Xing L, Li T, Zhang Y, Bao J, Wei H, Li J. Intermittent and Mild Cold Stimulation Maintains Immune Function Stability through Increasing the Levels of Intestinal Barrier Genes of Broilers. Animals (Basel) 2023; 13:2138. [PMID: 37443936 DOI: 10.3390/ani13132138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In order to improve the adaptability of broilers to low-temperature environments and their ability to resist acute cold stress (ACS), 240 one-day-old broilers were selected and randomly divided into three groups. The control treatment (CC) group was raised at the conventional feeding temperature from 1-43 days (d), the cold stimulation treatment (CS) group was kept at 3 °C below the temperature of CC at 1 d intervals for 3 and 6 h from 15 to 35 d, namely, CS3 and CS6, respectively. Then, all broilers were kept at 20 °C from 36 to 43 d. ACS was then carried out at 44 d, and the ambient temperature was dropped to 10 °C for 6 h. The study investigated the production performance, as well as levels of intestinal barrier genes (including Claudin-1, E-cadherin, Occludin, ZO-1, ZO-2 and Mucin2), secretory IgA in duodenum and jejunum, and immunoglobulins (IgA and IgG) in serum. The results showed that IMCS could increase the daily weight gain and decrease the feed conversion ratio. During IMCS, the expression levels of intestinal barrier genes were up-regulated and the content of secretory IgA was increased. When IMCS ceased for one week, the level of immunoglobulins in serum stabilized, and the expression levels of Occludin, ZO-2 and Mucin2 still maintained high levels. After ACS, broilers that received IMCS training maintained high levels of intestinal barrier genes and secretory IgA.
Collapse
Affiliation(s)
- Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
13
|
El-Demerdash AS, Mohamady SN, Megahed HM, Ali NM. Evaluation of gene expression related to immunity, apoptosis, and gut integrity that underlies Artemisia's therapeutic effects in necrotic enteritis-challenged broilers. 3 Biotech 2023; 13:181. [PMID: 37193331 PMCID: PMC10182211 DOI: 10.1007/s13205-023-03560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
The experiment was designed to validate the effect of Artemisia annua and its novel commercial product (Navy Cox) on the control of necrotic enteritis (NE). A total of one hundred forty broiler chicks were randomly distributed into seven equal groups: G1, control negative; G2, infected with Eimeria (day 15) and C. perfringens (day 19); G3, treated with Navy Cox before challenge; G4, treated with Artemisia before challenge; G5, infected and then treated with Navy Cox; G6, infected and then treated with Artemisia; and G7, infected and treated with amoxicillin. Chicken response and immune organ indicants were recorded during the observation period (4 weeks). Whole blood and serum samples were collected for immunological evaluation, and tissue samples were collected for bacterial counts and estimation of mRNA expression of genes encoding apoptosis, tight junctions, and immunity. Chickens in the infected group revealed a significant decrease in RBCS, HB, PCV% total protein, Lysozyme, and nitric oxide activity in addition to leukocytosis, heterophilia, monocytosis, increase in cortisol, interleukins, and malondialdehyde. Treated groups displayed lower lesions, colony-forming units, and no mortality. Concurrently, a complete blood profile, antioxidants, and immune markers showed significant improvements. The mRNA expression levels of CASP, CLDN-1, OCLN, TJPI, MUC2, and cell-mediated immune response genes (p < 0.0001) were significantly alleviated in the treated groups compared with the challenged counterpart. This is the first-ever report on the efficacy valuation of Navy Cox compared to standard antibiotic treatment of clostridial NE. Navy Cox proved remarkable capability to minimize C. perfringens colonization in broiler intestines, modulation of mucus production, gut health integrity, immune organs, and immune response when used as a prophylactic agent in this form or naturally as Artemisia.
Collapse
Affiliation(s)
- Azza S. El-Demerdash
- Microbiology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Sahar N. Mohamady
- Clinical Pathology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Hend M. Megahed
- Biochemistry Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Naglaa M. Ali
- Poultry Disease Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Assuit, Egypt
| |
Collapse
|
14
|
Wu J, Li G, Guo H, Huang B, Li G, Dai S. Acute cold stress induces intestinal injury via CIRP-TLR4-IRE1 signaling pathway in pre-starter broilers. Mol Biol Rep 2023:10.1007/s11033-023-08487-1. [PMID: 37253919 DOI: 10.1007/s11033-023-08487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cold stress is a common environmental stress in broiler chicks. Cold-inducible RNA-binding protein (CIRP) is a conserved cold shock protein that can regulate inflammatory response through Toll-like receptor 4 (TLR4). The mechanism that how CIRP involves in the regulation of cold stress in broilers remains unclear. METHODS AND RESULTS In this study, 360 7-day-old healthy male SZ901 chicks were selected and randomly allocated to four groups, and then subjected to acute cold exposure at the ambient temperature of 12 ± 1 °C for 0 h, 4 h, 8 h, and 12 h, respectively. After cold exposure, abdominall skin temperature, gene expression of CIRP-TLR4-IRE1 signaling pathway in ileum mucosa, and small intestinal structure were measured. The results showed that cold exposure decreased abdominall skin temperature, upregulated the gene expression of endoplasmic reticulum stress (ERS) markers IRE1, inflammatory factors IL-1β, IL-6, IL-10, TNF-α, and tight junction proteins ZO-1 and Occludin in ileum of chicks compared with the control group with no (0 h) cold exposure. Compared with the control group, a long time cold exposure upregulated the gene expression of CIRP, TLR4, GRP78, NF-κB in ileum mucosa, and decreased the villus height and V/C of small intestine. CONCLUSIONS The above results suggest that acute cold stress induces endoplasmic reticulum stress via upregulating the gene expression of CIRP-TLR4-IRE1 signaling pathway, and results in the structural damage of chick intestine.
Collapse
Affiliation(s)
- Juanjuan Wu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Guiyao Li
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Haoneng Guo
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Bo Huang
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Guanhong Li
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China.
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, Jiangxi, China.
| |
Collapse
|
15
|
Zhang S, Gong R, Zhao N, Zhang Y, Xing L, Liu X, Bao J, Li J. Effect of intermittent mild cold stimulation on intestinal immune function and the anti-stress ability of broilers. Poult Sci 2023; 102:102407. [PMID: 36571877 PMCID: PMC9803957 DOI: 10.1016/j.psj.2022.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A total of 240 healthy 1-day-old Ross 308 male broilers were randomly divided into 3 groups (CS0 group, CS3 group, and CS6 group), with 5 replicates in each group and 16 broilers in each replicate, in order to evaluate the effects of intermittent mild cold stimulation (IMCS) on the intestinal immune function and anti-cold stress ability of broilers after acute cold stress. The mRNA expression levels of cytokines and Toll-like receptors (TLRs) in the duodenum and jejunum were detected at the end of cold stimulation (36 d), 2 wk after recovery (50 d), and after acute cold stress (Y6). In addition, the mRNA and protein expression levels of heat shock proteins (HSPs) were measured before and after acute cold stress. The experimental data were statistically processed using 1-way ANOVA and Duncan's multiple comparisons. The results showed that the mRNA expression levels of IL2, IL8, IFN γ, TLR7, and TLR21 in the duodenum and IL2 and IFN γ in jejunum were significantly higher in the CS6 group than in the CS0 and CS3 groups at 36 d (P < 0.05). All TLR levels in the jejunum were significantly lower in the CS3 group than in the CS0 and CS6 groups at 36 d (P < 0.05). After 6 h of acute cold stress, in the duodenum, the mRNA expression levels of IL6 and IL8 were significantly decreased in the CS0 and CS6 groups compared to levels at 50 d (P < 0.05), while levels in the CS3 group remained stable (P > 0.05). Compared with 50 d, the expression level of HSP mRNA in the jejunum in the CS3 group was relatively stable compared to that in the CS0 and CS6 groups after acute cold stress (P > 0.05). At the protein level, the HSP60 expression level in the duodenum and HSP40, HSP60, and HSP70 expression levels in the jejunum were significantly higher in the CS3 group than in the CS0 and CS6 groups after acute cold stress (P < 0.05). In conclusion, cold stimulation training at 3℃/3 h lower than the conventional feeding temperature can improve the intestinal immune function and anti-stress ability of broilers.
Collapse
Affiliation(s)
- Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Balakrishnan KN, Ramiah SK, Zulkifli I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals (Basel) 2023; 13:ani13020317. [PMID: 36670857 PMCID: PMC9854570 DOI: 10.3390/ani13020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Compared to other animal species, production has dramatically increased in the poultry sector. However, in intensive production systems, poultry are subjected to stress conditions that may compromise their well-being. Much like other living organisms, poultry respond to various stressors by synthesising a group of evolutionarily conserved polypeptides named heat shock proteins (HSPs) to maintain homeostasis. These proteins, as chaperones, play a pivotal role in protecting animals against stress by re-establishing normal protein conformation and, thus, cellular homeostasis. In the last few decades, many advances have been made in ascertaining the HSP response to thermal and non-thermal stressors in poultry. The present review focuses on what is currently known about the HSP response to thermal and non-thermal stressors in poultry and discusses the factors that modulate its induction and regulatory mechanisms. The development of practical strategies to alleviate the detrimental effects of environmental stresses on poultry will benefit from detailed studies that describe the mechanisms of stress resilience and enhance our understanding of the nature of heat shock signalling proteins and gene expression.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Idrus Zulkifli
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-4882
| |
Collapse
|
17
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
18
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. RNA-seq and LC-MS/MS analysis of antiviral effects mediated by cold stress and stress hormone corticosterone in chicken DF-1 cells. Vet Microbiol 2022; 275:109580. [DOI: 10.1016/j.vetmic.2022.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
|
19
|
Liu X, Li S, Zhao N, Xing L, Gong R, Li T, Zhang S, Li J, Bao J. Effects of Acute Cold Stress after Intermittent Cold Stimulation on Immune-Related Molecules, Intestinal Barrier Genes, and Heat Shock Proteins in Broiler Ileum. Animals (Basel) 2022; 12:3260. [PMID: 36496781 PMCID: PMC9739716 DOI: 10.3390/ani12233260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Cold stress will have a negative impact on animal welfare and health. In order to explore the effect of intermittent cold stimulation training on the cold resistance of broilers. Immune-related and intestinal barrier genes were detected before and after acute cold stress (ACS), aiming to find an optimal cold stimulation training method. A total of 240 1-day-old Ross broilers (Gallus) were divided into three groups (G1, G2, and G3), each with 5 replicates (16 chickens each replicate). The broilers of G1 were raised at normal temperature, while the broilers of G2 and G3 were treated with cold stimulation at 3 °C lower than the G1 for 3 h and 6 h from 15 to 35 d, respectively, at one-day intervals. At 50 d, the ambient temperature for all groups was reduced to 10 °C for six hours. The results demonstrated that before ACS, IL6, IL17, TLR21, and HSP40 mRNA levels in G3 were apparently down-regulated (p < 0.05), while IL8 and Claudin-1 mRNA levels were significantly up-regulated compared with G1 (p < 0.05). After ACS, IL2, IL6, and IL8 expression levels in G3 were lower than those in G2 (p < 0.05). Compared to G2, Claudin-1, HSP90 mRNA levels, HSP40, and HSP70 protein levels were increased in G3 (p < 0.05). The mRNA levels of TLR5, Mucin2, and Claudin-1 in G2 and IL6, IL8, and TLR4 in G3 were down-regulated after ACS, while IL2, IL6, and IL17 mRNA levels in G2 and HSP40 protein levels in G3 were up-regulated after ACS (p < 0.05). Comprehensive investigation shows that cold stimulation at 3 °C lower than the normal feeding temperature for six hours at one day intervals can enhanced immune function and maintain the stability of intestinal barrier function to lessen the adverse effects on ACS in broilers.
Collapse
Affiliation(s)
- Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Guo Y, Liu T, Li W, Zhang W, Cai C, Lu C, Gao P, Cao G, Li B, Guo X, Yang Y. Effects of Low-Ambient-Temperature Stimulation on Modifying the Intestinal Structure and Function of Different Pig Breeds. Animals (Basel) 2022; 12:ani12202740. [PMID: 36290125 PMCID: PMC9597737 DOI: 10.3390/ani12202740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Low ambient temperature resulted in the body’s cold stress response, while local wild boars in the middle-temperate zone performed better than commercial pigs. Therefore, three breeds—Large White (LW) pigs, a local Mashen (MS) pig breed and Jinfen White (JFW) pigs, a hybrid breed from wild boar—were investigated in an artificial climate chamber. The results implicated that low-ambient-temperature stimulation increased trypsin activity in duodenal chyme and promoted inflammatory response in Mashen pigs. The cold-resistance mechanism of MS pigs should be explored to reduce hogs’ stress caused by low-ambient-temperature stimulation. Abstract Ambient temperature (Ta) fluctuation is a key factor affecting the growth performance and economic returns of pigs. However, whether the response of intestinal structure and function are related to pig breeds in low Ta has not been investigated yet. In this study, Large White (LW) pigs, Jinfen White (JFW) pigs and Mashen (MS) pigs were raised in artificial climate chambers under normal Ta (25 °C) and low Ta (4 °C) for 96 h. Afterwards, the decrease in body temperature and complete blood counts (CBC) of all pigs were measured. Hematoxylin–eosin, immunohistochemical staining, qPCR and ELISA were used to investigate their intestinal mucosa integrity and inflammatory response. The results showed that MS pigs could maintain a normal body temperature and villus structure after 4 °C stimulation compared with those of LW and JFW pigs. Villus height and villus height/crypt depth of MS pigs were significantly higher than those of LW and JFW pigs at 4 °C. Low-Ta stimulation increased the digestion of carbohydrates of all pigs. Meanwhile, low Ta enhanced the activity of lipase in LW pigs and increased trypsin activity in MS and JFW pigs. Furthermore, low-Ta stimulation significantly downregulated the protein of tight junction and upregulated the mRNA expression of inflammatory cytokines in MS pigs. MS pigs also showed stronger spleen immune function at 4 °C. These results indicated that the local MS pig breed had stronger intestinal function in low Ta by producing a stronger inflammatory response, which lays the foundation for further study on the mechanism of cold tolerance in pigs.
Collapse
|
21
|
Fu Y, Zhang S, Zhao N, Xing L, Li T, Liu X, Bao J, Li J. Effect of mild intermittent cold stimulation on thymus immune function in broilers. Poult Sci 2022; 101:102073. [PMID: 36058173 PMCID: PMC9450148 DOI: 10.1016/j.psj.2022.102073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
This study aims to assess the effect of intermittent and mild cold stimulation (IMCS) on thymus function and the ability of 1-day-old male Ross 308 broilers to withstand cold. Four hundred broilers were reared under normal and mild cold temperatures at 3°C below the normal feeding temperature and were subjected to acute cold stress (ACS) at 10°C on d 50 at 7 am for 6 h, 12 h, and 24 h. We determined the expression levels of toll-like receptors (TLRs), cytokines and avian β-defencins (AvBDs), encoding genes in thymus of broilers at 22, 36, 43, and 50 d of age, and the serum ACTH and cortisol (CORT) levels at 50 d of age. At D22 and D36, the mRNA expression levels of TLRs and AvBDs genes in CS groups were generally significantly decreased (P < 0.05). The lowest expression levels were found in birds submitted to intermittent and mild cold stimulation training for 5 h (CS5 group) on d 22 and 36 of development (P < 0.05). At D43 and D49 after IMCS, mRNA expression levels of most TLRs and AvBDs were significantly lower than those in CC group (P < 0.05), and that mRNA expression levels of all TLRs and most AvBDs in CS5 group had the same change trend with age as those in CC group (P > 0.05). At D22 and D36, mRNA expression levels of different cytokines in each CS groups were different (P < 0.05). mRNA expression levels of IL-2, IL-4, IL-6, IL-8, IL-17, and IFN-α all reached the highest values in the CS5 group at D36 (P < 0.05). The levels of ACTH and CORT in all IMCS-treated birds changed in varying degrees after ACS, but there was no significant change in CS5 group (P > 0.05). Collectively, different cold stimulation schemes could modulate thymus immune function of broilers by maintaining homeostasis and enhancing cold resistance. In particular, the optimal cold adaptation scheme was at 3°C below the conventional feeding temperature for 5 h.
Collapse
|
22
|
Yildiz M, Buyuk B, Kanbur S. The Effect of Chronic Intermittent Cold Exposure on Gastrin-, Somatostatin-, Secretin-, and Serotonin-Containing Cells in the Small Intestine of Rats. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Akinyemi F, Adewole D. Environmental Stress in Chickens and the Potential Effectiveness of Dietary Vitamin Supplementation. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.775311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental stressors can promote the vulnerability of animals to infections; it is therefore, essential to understand how stressors affect the immune system, the adaptive capacity of animals to respond, and effective techniques in managing stress. This review highlights scientific evidence regarding environmental stress challenge models and the potential effectiveness of vitamin supplementation. The major environmental stressors discussed are heat and cold stress, feed restriction, stocking density, and pollutants. Much work has been done to identify the effects of environmental stress in broilers and layers, while few involved other types of poultry. Studies indicated that chickens' performance, health, and welfare are compromised when challenged with environmental stress. These stressors result in physiological alterations, behavioral changes, decreased egg and meat quality, tissue and intestinal damage, and high mortalities. The application of vitamins with other nutritional approaches can help in combating these environmental stressors in chickens. Poultry birds do not synthesize sufficient vitamins during stressful periods. It is therefore suggested that chicken diets are supplemented with vitamins when subjected to environmental stress. Combination of vitamins are considered more efficient than the use of individual vitamins in alleviating environmental stress in chickens.
Collapse
|
24
|
Leishman EM, Ellis J, van Staaveren N, Barbut S, Vanderhout RJ, Osborne VR, Wood BJ, Harlander-Matauschek A, Baes CF. Meta-analysis to predict the effects of temperature stress on meat quality of poultry. Poult Sci 2021; 100:101471. [PMID: 34607155 PMCID: PMC8496168 DOI: 10.1016/j.psj.2021.101471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Temperature stress (TS) is a significant issue in poultry production, which has implications for animal health and welfare, productivity, and industry profitability. Temperature stress, including both hot (heat stress) and cold conditions (cold stress), is associated with increased incidence of meat quality defects such as pale, soft, and exudative (PSE) and dark, firm, and dry (DFD) meat costing poultry industries millions of dollars annually. A meta-analysis was conducted to determine the effect of ambient TS on meat quality parameters of poultry. Forty-eight publications which met specific criteria for inclusion were identified through a systematic literature review. Temperature stress was defined by extracting 2 descriptors for each treatment mean from the chosen studies: (1) temperature imposed for the experimental treatments (°C) and duration of temperature exposure. Treatment duration was categorized for analysis into acute (≤24 h) or chronic (>24 h) treatments. Meat quality parameters considered were color (L*-a*-b* scheme), pH (initial and ultimate), drip loss, cooking loss, and shear force. Linear mixed model analysis, including study as a random effect, was used to determine the effect of treatment temperature and duration on meat quality. Model evaluation was conducted by performing a k-fold cross-validation to estimate test error, and via assessment of the root mean square prediction error (RMSPE), and concordance correlation coefficient (CCC). Across both acute and chronic durations, treatment temperature was found to have a significant effect on all studied meat quality parameters. As treatment temperature increased, meat demonstrated characteristics of PSE meat and, as temperature decreased, meat demonstrated characteristics of DFD meat. The interaction between treatment temperature and duration was significant for most traits, however, the relative impact of treatment duration on the studied traits was inconsistent. Acute TS had a larger effect than chronic TS on ultimate pH, and chronic stress had a more considerable impact on color traits (L* and a*). This meta-analysis quantifies the effect of ambient TS on poultry meat quality. However, quantitative effects were generally small, and therefore may or may not be of practical significance from a processing perspective.
Collapse
Affiliation(s)
- Emily M Leishman
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Ellis
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Nienke van Staaveren
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Ryley J Vanderhout
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Vern R Osborne
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Benjamin J Wood
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1; Hybrid Turkeys, Kitchener, Ontario, Canada, N2K 3S2; School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia
| | | | - Christine F Baes
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland.
| |
Collapse
|
25
|
Intermittent mild cold stimulation improves the immunity and cold resistance of spleens in broilers. Poult Sci 2021; 100:101492. [PMID: 34695632 PMCID: PMC8554259 DOI: 10.1016/j.psj.2021.101492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
In order to investigate the effect of intermittent mild cold stimulation (IMCS) on immune function of spleens and adaptability to cold stress in broilers, 400 healthy 1-day-old Ross-308 chickens were divided into 5 groups: CC (control) reared in normal thermal environment from 1 to 49 d; CS3, CS4, CS5, and CS6 (treatments) raised at 3°C below the temperature of CC for 3, 4, 5, or 6 h at 1-d intervals from 15 to 35 d, respectively. Subsequently, CS3-6 was raised at 20°C from 36 to 49 d. At 50 d, all groups were exposed to acute cold stress (ACS) for 12 h. The spleen immunity index at 22, 29, 36, 43, and 49 d, expression levels of toll-like receptors (TLRs), cytokines and immunoglobulins at 22, 43, and 49 d and heat shock proteins (HSPs) before and after ACS at 50 d were examined. The spleen index of broilers aged 22 to 49 d did not differ between CS and CC (P > 0.05), and the spleen index of CS5 was higher than that of CS3 at 49 d (P < 0.05). The mRNA levels of TLR5, TLR15, TLR21, and IL-2 in CS3, TLR3, TLR4, TLR15, TLR21, IL-2, IL-6, and IFN-ϒ in CS4, TLR1, TLR3, TLR4, TLR21, IL-2, IFN-a, IFN-ϒ, IgA, and IgG in CS6, but all TLRs, immunoglobulins and cytokines except IFN-ϒ in CS5 differential expressed stably compared with CC at 43 and 49 d (P < 0.05). Compared with Pre-ACS, the mRNA levels of HSP60, HSP70, and HSP90 were upregulated in CS after ACS (P < 0.05). Except for HSP90 mRNA and HSP70 protein in CS6, and HSP90 protein in CS3, the levels of HSPs after ACS in all treatment groups were higher than those in CC (P < 0.05), and the highest HSPs levels after ACS were found in CS5. We concluded that IMCS could enhance immunity of spleens and adaptability to ACS in broilers, besides CS5 was the optimal program.
Collapse
|
26
|
Bilal RM, Hassan FU, Farag MR, Nasir TA, Ragni M, Mahgoub HAM, Alagawany M. Thermal stress and high stocking densities in poultry farms: Potential effects and mitigation strategies. J Therm Biol 2021; 99:102944. [PMID: 34420608 DOI: 10.1016/j.jtherbio.2021.102944] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
Environmental changes pose significant threats to agricultural activities particularly animal production. These changes have induced major concerns which will negatively affect the poultry health and productivity under the current climate changes. Moreover, they also alter the immunological status of the exposed birds and make them susceptible to different diseases. The adverse effects of environmental stress also include poor performance of birds (reduced feed intake, growth, feed efficiency, immunity, and egg production) and inferior product quality. The adverse effect of heat stress on different quail breeds like Japanese quail, bobwhite quail, scaled quail, and Gambel's quail ranged from decreased growth rates (11.0-14.5%), body weight (7.7-13.2%), feed intake (6.1-21.6%), feed efficiency (4.3-8.6%), and egg production (6.6-23.3%). Also, birds reared under heat stress (34 °C) had significantly decreased Haugh units by 10.8% and egg weight by 14.3% in comparison with the control group (reared at 22 °C). On the other hand, increasing stoking density from 30 to 45 kg/m2 also negatively affected the feed intake and body weight. Recent studies have focused on evaluating the potential adverse effects of different environmental stresses on poultry performance, behavior, welfare, and reproduction. It is imperative to understand better the interaction of different environmental factors and their subsequent effects on avian physiology, to spotlights on the effective management and nutritional strategies to alleviate the adverse effects of different stresses in poultry. This review aims to present a comprehensive overview of physiological manifestations of major environmental stresses including thermal stress (heat and cold stress) and high stocking densities on poultry health and production. Moreover, we have also critically evaluated the scope and efficacy of some potential strategies to mitigate the influences of these environmental stressors in different poultry species.
Collapse
Affiliation(s)
- Rana Muhammad Bilal
- College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Faiz-Ul Hassan
- Institute of Animal & Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Taquir Ali Nasir
- Department of Animal Science, University of Sargodha, Punjb, Pakistan
| | - Marco Ragni
- Department of Agro-Environmental and Territorial Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - Hany A M Mahgoub
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
27
|
Rajabi M, Torki M. Effect of dietary supplemental vitamin C and zinc sulfate on productive performance, egg quality traits and blood parameters of laying hens reared under cold stress condition. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1949999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Rajabi
- Animal Science Department, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Mehran Torki
- Animal Science Department, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
28
|
Ma L, Li C, Lian S, Xu B, Lv H, Liu Y, Lu J, Ji H, Li S, Guo J, Yang H. Procyanidin B2 alleviates liver injury caused by cold stimulation through Sonic hedgehog signalling and autophagy. J Cell Mol Med 2021; 25:8015-8027. [PMID: 34155807 PMCID: PMC8358862 DOI: 10.1111/jcmm.16733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Procyanidin B2 (PB2), a naturally occurring flavonoid abundant in a wide range of fruits, has been shown to exert antioxidant, anti‐inflammatory and anticancer properties. However, the role of PB2 in the prevention of cold stimulation (CS)‐induced liver injury. The present study was undertaken to determine the effects of PB2 on liver injury induced by cold stimulation and its potential molecular mechanisms. The present study results showed that treatment with PB2 significantly reduced CS‐induced liver injury by alleviating histopathological changes and serum levels of alanine transaminase and aspartate transaminase. Moreover, treatment with PB2 inhibited secretion of inflammatory cytokines and oxidative stress in cold‐stimulated mice. PB2 reduced cold stimulation‐induced inflammation by inhibiting TLR4/NF‐κB and Txnip/NLRP3 signalling. Treatment with PB2 reduced oxidative stress by activating Nrf‐2/Keap1, AMPK/GSK3β signalling pathways and autophagy. Furthermore, simultaneous application of Shh pathway inhibitor cyclopamine proved that PB2 targets the Hh pathway. More importantly, co‐treatment with PB2 and cyclopamine showed better efficacy than monotherapy. In conclusion, our findings provide new evidence that PB2 has protective potential against CS‐induced liver injury, which might be closely linked to the inhibition of Shh signalling pathway.
Collapse
Affiliation(s)
- Li Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chengxu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanzhi Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
29
|
Khaleel KE, Al-Zghoul MB, Saleh KMM. Molecular and morphometric changes in the small intestine during hot and cold exposure in thermally manipulated broiler chickens. Vet World 2021; 14:1511-1528. [PMID: 34316199 PMCID: PMC8304413 DOI: 10.14202/vetworld.2021.1511-1528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023] Open
Abstract
Background and Aim: Thermal stress (hot or cold) is one of many environmental stressors that severely affects the health of broiler chickens. One negative effect of thermal stress is the disruption of the intestinal barrier function in broiler chickens. This study aimed to evaluate the effect of thermal manipulation (TM) on the small intestine in terms of histomorphometry as well as junctional, heat-shock, and immune response gene expression during post-hatch exposure to thermal stress. Materials and Methods: The experiment was conducted by dividing 928 fertile Ross eggs into three incubation groups: The control (C) group (incubated at 37.8°C and 56% relative humidity [RH] for the whole incubation period), the TM using low temperature TML group (incubated at 36°C and 56% RH for 18 h/day from embryonic days 7 to 16), and the TM using high temperature (TMH) group (incubated at 39°C and 65% RH for 18 h/day from embryonic days 7 to 16). On post-hatch day 21, 90 chicks were randomly selected from each incubation group and were equally subdivided into three subgroups for the post-hatch thermal stress experiment: The TN subgroup (room temperature maintained at 24°C), the heat stress (HS) subgroup (room temperature maintained at 35°C), and the cold stress (CS) subgroup (room temperature maintained at 16°C). After 1 day of thermal stress exposure (age 22 days), five birds from each subgroup were euthanized and ileum samples were collected to evaluate the transcription of the Claudin (CLDN1), CLDN-5, Occludin, Cadherin-1, heat shock factors (HSF1), HSF3, 70 kilodalton heat shock protein, 90 kilodalton heat shock protein, Interleukin6 (IL6), IL8, toll-like receptors-2 (TLR2), and TLR4 genes by Real-Time Quantitative Reverse Transcription polymerase chain reaction analysis. Finally, after 4 and 7 days of thermal stress (age 25 and 28 days, respectively), nine chicks were euthanized, and their jejunum and ileum were collected for histomorphometric analysis. Results: After exposure to 1 day of thermal stress, the C subgroups exposed to thermal stress (HS and CS) possessed significantly increased expression of junctional, heat-shock, and immune response genes compared to the C-TN subgroup, and similar results were observed for the TMH. In contrast, thermally stressed TMH subgroups had significantly lower expression of the studied genes compared to C subgroups exposed to thermal stress. Furthermore, no significant changes were detected between the TML subgroups exposed to thermal stress and TML-TN. Moreover, significant alterations in villus height (VH), villus surface area, crypt depth (CD), and VH to CD ratio were observed between the TML, TMH, and C subgroups exposed to CS. Conclusion: It might be suggested that TM may have a protective impact on the small intestine histomorphometry and epithelial integrity of broilers during post-hatch exposure to thermal stress.
Collapse
Affiliation(s)
- Khaleel Emad Khaleel
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Jordan
| | - Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Jordan
| | - Khaled Musa Mohammad Saleh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Jordan
| |
Collapse
|
30
|
Kumar A, Kheravii SK, Li L, Wu SB. Monoglyceride Blend Reduces Mortality, Improves Nutrient Digestibility, and Intestinal Health in Broilers Subjected to Clinical Necrotic Enteritis Challenge. Animals (Basel) 2021; 11:1432. [PMID: 34067698 PMCID: PMC8156546 DOI: 10.3390/ani11051432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
This study evaluated the potential of monoglyceride blend (MG) and buffered formic acid (FA) as alternatives to antibiotics in the performance and intestinal health of broilers under clinical necrotic enteritis (NE) challenge. A total of 544 as-hatched Ross 308 broiler chicks were randomly distributed to 32-floor pens housing 17 birds per pen. The four treatments were: NC-non-additive control; ZBS-antibiotic group supplemented with zinc bacitracin and salinomycin; MG-additive MG supplementation in the starter phase only; and MGFA-additive MG in starter phase and FA in grower and finisher phases. All birds were challenged with Eimeria spp. and Clostridium perfringens. Results showed that the NC group had lower BWG and higher FCR than the ZBS group in the grower and overall period (p < 0.05). The NC group had higher NE-caused mortality (days 14 to 17) than the ZBS group (p < 0.05). Birds fed MG had lower NE-caused mortality than the NC group (p < 0.05). Birds fed MG had upregulated jejunal tight junction protein1 (TJP1) and immunoglobulin (IgG) on day 16 and improved gross energy digestibility on day 24 than the NC group (p < 0.05). These findings suggest that supplementation of MG may improve intestinal health and protect birds from clinical NE occurrence.
Collapse
Affiliation(s)
- Alip Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; (A.K.); (S.K.K.)
| | - Sarbast K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; (A.K.); (S.K.K.)
| | - Lily Li
- BASF Animal Nutrition, Asia Pacific, 7 Temasek Boulevard, Singapore 038987, Singapore;
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; (A.K.); (S.K.K.)
| |
Collapse
|
31
|
Bortoluzzi C, Lahaye L, Perry F, Arsenault R, Santin E, Korver D, Kogut M. A protected complex of biofactors and antioxidants improved growth performance and modulated the immunometabolic phenotype of broiler chickens undergoing early life stress. Poult Sci 2021; 100:101176. [PMID: 34102483 PMCID: PMC8187249 DOI: 10.1016/j.psj.2021.101176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 01/06/2023] Open
Abstract
We evaluated the supplementation of a protected complex of biofactors and antioxidants [P(BF+AOx)] on growth performance, antioxidant activity, expression of immune-related genes, and immunometabolic phenotype of broilers submitted to early life stressors. The treatments were a nutritionally complete basal diet supplemented or not with P(BF+AOx) (Jefo Nutrition Inc., Saint-Hyacinthe, QC, Canada) from 1 to 14 d of age. 720 one-day old male Ross 308 chickens were placed into pens of 30 birds (12 replicates/treatment). Birds were double-vaccinated against infectious bronchitis (IB; MILDVAC-Ma5T) at the hatchery and submitted, on d 3, to an acute reduction on environmental temperature (from 32° C to 20°C) for 48 h. Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were calculated weekly. On d 7 and 15, samples were collected for expression of immune-related genes and kinome array analysis, and serum to evaluate the antioxidant status. Data were analyzed by ANOVA using SAS (SAS 9.4). From d 1 to 21 and d 1 to 28, the dietary supplementation of P(BF+AOx) significantly increased BWG (P < 0.05) by 3.6 and 3.8%, respectively, and improved FCR (P < 0.05) by 1.2 and 1.8%, respectively. From d 1 to 35, dietary supplementation enhanced BWG (P = 0.03) by 4%. Serum glutathione reductase activity on d 15 was higher in birds fed diets supplemented with P(BF+AOx) compared to the control diet-fed birds (P = 0.04). Dietary supplementation reduced the expression of IL-1β (P = 0.03) in the lungs on d 7. On d 15, dietary supplementation increased the expression of IL-6 (P = 0.02) and IL-10 (P = 0.03) in the liver. It was observed that, via decreased phosphorylation, catalase was activated in the jejunum and liver, and the phosphorylation of immunoregulatory or proinflammatory proteins was decreased. Other important cellular signaling pathways were also changed in the liver and jejunum due to the supplementation. The supplementation of P(BF+AOx) improves growth performance by promoting a general anti-inflammatory and antioxidant response in chickens undergoing early life stress.
Collapse
Affiliation(s)
| | - L. Lahaye
- Jefo Nutrition Inc., Saint-Hyacinthe, QC, Canada
| | - F. Perry
- Department of Animal and Food Sciences, University of Delaware, DE, USA
| | - R.J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, DE, USA
| | - E. Santin
- Jefo Nutrition Inc., Saint-Hyacinthe, QC, Canada,Corresponding author:
| | | | - M.H. Kogut
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| |
Collapse
|
32
|
Keerqin C, Rhayat L, Zhang ZH, Gharib-Naseri K, Kheravii SK, Devillard E, Crowley TM, Wu SB. Probiotic Bacillus subtilis 29,784 improved weight gain and enhanced gut health status of broilers under necrotic enteritis condition. Poult Sci 2021; 100:100981. [PMID: 33647722 PMCID: PMC7921872 DOI: 10.1016/j.psj.2021.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
The study investigated the benefit of a Bacillus subtilis probiotic (Bs 29,784) in necrotic enteritis (NE)-challenged broilers. Four treatments were performed with 312 male day-old Ross 308 reared in floor pens from day 0 to day 35: 2 groups fed control diet without or with NE challenge (CtrlNC and CtrlNE); 2 groups fed probiotic and antibiotic supplements in the control diet with NE challenge (ProNE and AntNE). Necrotic enteritis challenge procedures commenced with inoculation of Eimeria spp 1 mL/bird per os at day 9 and Clostridium perfringens EHE-NE18 (approximately 108 cfu/mL) 1 mL/bird per os at day 14 and day 15. Performance parameters were measured on day 16 and day 35. Lesion, cecal microbiota, and jejunal gene expression were analyzed on day 16. Necrotic enteritis challenge significantly suppressed the performance parameters compared with CtrlNC: 27% weight gain reduction, 11 points feed conversion ratio (FCR) increase at day 16, and 12% weight gain reduction, 5-point FCR increase at day 35. By day 35, ProNE and AntNE treatments enabled significantly higher weight gain (4 and 9%, respectively) than CtrlNE. Compared with CtlrNE and contrary to AntNE, ProNE treatment exhibited upregulation of genes coding for tight junctions proteins (CLDN1, JAM2, TJP1), cytokines (IL12, interferon gamma, TGFβ), and Toll-like receptors (TLR5, TLR21) suggesting enhanced immunity and intestinal integrity. 16S NGS analysis of cecal microbiota at day 16 showed a decreased alpha diversity in challenged groups. Principal component analysis of operational taxonomic unit (OTU) abundance revealed that ProNE and AntNE grouped closely while both distantly from CtrlNC and CtrlNE, which were separately grouped, indicating the similar effects of ProNE and AntNE on the OTU diversity that were however different from both CtrlNC and CtrlNE. Microbiota analysis revealed an increase of genera Faecalibacterium, Oscillospira, and Butyricicoccus; and a decrease of genera Ruminococcus, Lactobacillus, and Bacteroides; and an increase of the Firmicutes-to-Bacteroidetes ratio in ProNE and AntNE groups compared with the CtlrNE group. It is concluded that Bs 29,784 may enable improved health of broiler chickens under NE conditions thus performance implications.
Collapse
Affiliation(s)
- C Keerqin
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - L Rhayat
- Center of Expertise and Research in Nutrition, Adisseo France S.A.S. CERN, Commentry, France
| | - Z-H Zhang
- School of Medicine, MMR, Bioinformatics Core Research Facility, Deakin University, Geelong, Australia
| | - K Gharib-Naseri
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - S K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - E Devillard
- Center of Expertise and Research in Nutrition, Adisseo France S.A.S. CERN, Commentry, France
| | - T M Crowley
- School of Medicine, MMR, Bioinformatics Core Research Facility, Deakin University, Geelong, Australia; School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - S-B Wu
- School of Environmental and Rural Science, University of New England, Armidale, Australia.
| |
Collapse
|
33
|
Ma C, Li G, Chen W, Jia Z, Yang X, Pan X, Ma D. Eimeria tenella: IMP1 protein delivered by Lactococcus lactis induces immune responses against homologous challenge in chickens. Vet Parasitol 2021; 289:109320. [PMID: 33248421 DOI: 10.1016/j.vetpar.2020.109320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Abstract
Avian coccidiosis leads to severe economic losses on the global poultry industry. Immune mapped protein-1 (IMP1) is a novel membrane protein, and was reported to be a candidate protective antigen. However, production and utilization modes of IMP1 using Lactococcus lactis as delivery vector were not reported untill now. In the present study, Eimeria tenella IMP1 (EtIMP1) protein was expressed in L. lactis under the nisin-inducible promoter, and EtIMP1 protein was produced in cytoplasmic, cell wall-anchored and secreted forms. Each chicken was orally immunized with one of the three live EtIMP1-expressing lactococci three times at 2 weeks intervals (immunized group), or with live bacteria harboring empty vector (immunized control group). Chickens in immunized and immunized control group were challenged with E. tenella sporulated oocysts to assess the immune responses. The results showed that proliferative responses of peripheral blood T lymphocytes, mRNA expression levels of IL-2, IL-4, IL-10 and IFN-γ in spleen tissues, levels of serum IgG and secretory IgA (sIgA) in cecal lavage fluids from chickens in immunized group were all significantly elevated compared to that in immunized control group. All three the live EtIMP1-expressing lactococci significantly decreased oocyst shedding, alleviated pathological damage in cecum and improved weight gain compared with bacteria harboring empty vector. These results suggested EtIMP1 protein delivered by L. lactis might be a promising candidate in developing novel vaccines against Eimeria infection.
Collapse
Affiliation(s)
- Chunli Ma
- Food College, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Guanghao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, Heilongjiang, PR China
| | - Wenjing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xuelian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
34
|
Zhou HJ, Kong LL, Zhu LX, Hu XY, Busye J, Song ZG. Effects of cold stress on growth performance, serum biochemistry, intestinal barrier molecules, and adenosine monophosphate-activated protein kinase in broilers. Animal 2020; 15:100138. [PMID: 33573943 DOI: 10.1016/j.animal.2020.100138] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
The homeostasis dysfunctions caused by cold stress remain a threat to intestinal health, particularly for young broiler chickens. We hypothesized that adenosine monophosphate-activated protein kinase (AMPK) was involved in the regulation of cold stress on intestinal health. This study aimed to examine the effect of cold stress for 72 h on growth performance, serum biochemistry, intestinal barrier molecules, and AMPK in broilers. A total of 144 10-day-old male Arbor Acres broilers were subjected to temperature treatments (control 28 ± 1 °C vs cold stress 16 ± 1 °C) for 72 h. Growth performance was monitored, serum was collected for the analysis of physiological parameters, and jejunal mucosa was sampled for the determination of tight junction (TJ) proteins, heat shock proteins, and AMPK signaling molecules. Results showed that 72 h cold treatment reduced average BW gain and increased the feed conversion ratio of the broilers (P < 0.05). Cold stress for 72 h increased blood endotoxin, aspartate aminotransferase, glucose, and low-density lipoprotein cholesterol levels (P < 0.05). Moreover, 72 h cold treatment up-regulated jejunal Occludin, zonula occludin 1, inducible nitric oxide synthase, heat shock factor 1, and AMPKα1 gene expression (P < 0.05) but had no obvious effect on total AMPK protein expression (P > 0.05). In conclusion, cold stress significantly reduced the growth performance of broiler chickens. The intestinal barrier function might be impaired, and enhanced bacterial translocation might occur. The unregulated gene expression of TJ proteins implied the remodeling of intestinal barrier. The change of AMPK suggested the possible relationship between intestinal energy metabolism and barrier function under cold stress.
Collapse
Affiliation(s)
- H J Zhou
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - L L Kong
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - L X Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - X Y Hu
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - J Busye
- Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Z G Song
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
35
|
Differential expression of intestinal genes in necrotic enteritis challenged broiler chickens with 2 different Clostridium perfringens strains. Poult Sci 2020; 100:100886. [PMID: 33516477 PMCID: PMC7936145 DOI: 10.1016/j.psj.2020.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The primary cause of necrotic enteritis (NE) disease in chickens is the NetB-positive Clostridium perfringens bacterium. Many factors are known to affect the severity of NE in the challenge models of broiler chickens, and one of these factors is the virulence of C. perfringens strain. This study was conducted to evaluate the effect of 2 pathogenic C. perfringens strains in a NE challenge model on gut health and mRNA expression of genes encoding apoptosis, tight junction, immunity, and nutrient transporters in broilers. Day-old Ross-308 male broilers (n = 468) were allocated in a 2 × 3 factorial arrangement of treatments with in-feed antibiotics (no or yes) and challenge (Non, C. perfringens strain NE18, and C. perfringens strain NE36) as the factors. The birds in the challenged groups were inoculated with Eimeria species on day 9 and with a fresh suspension of C. perfringens NE18 or NE36 on day 14 and 15. Sample collection was performed on 2 birds of each pen on day 16. Necrotic enteritis challenge, impaired feed conversion ratio during day 0 to 16 compared with the control group where the effect of the NE36 challenge was more severe than that with NE18 (P < 0.001). The mRNA expression of mucin-2, immunoglobulin-G, occludin (P < 0.001), and tight junction protein-1 (P < 0.05) genes were downregulated in both challenged groups compared with the nonchallenged counterparts. Antibiotic supplementation, on the other hand, increased weight gain, and feed intake in all challenged birds (P < 0.01), but upregulated mucin-5ac and alanine, serine, cysteine, and threonine transporter-1 (P < 0.05) only in the NE18 challenged birds. The challenge with NE36 significantly upregulated caspase-8 and claudin-1 (P < 0.001), but downregulated glucose transporter-2 (P < 0.001) compared with the NE18 challenge. These results suggest that NE challenge is detrimental to the performance of broilers through compromised intestinal health, and different C. perfringens strains can affect the severity of the disease through modulating the expression of intestinal genes encoding proteins responsible for apoptosis, gut integrity, immunity, mucus production, and nutrient transporters.
Collapse
|
36
|
Modulations of genes related to gut integrity, apoptosis, and immunity underlie the beneficial effects of Bacillus amyloliquefaciens CECT 5940 in broilers fed diets with different protein levels in a necrotic enteritis challenge model. J Anim Sci Biotechnol 2020; 11:104. [PMID: 33088501 PMCID: PMC7566066 DOI: 10.1186/s40104-020-00508-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/26/2020] [Indexed: 01/25/2023] Open
Abstract
Background The ban of in-feed antimicrobial additives has negatively affected the poultry industry by causing necrotic enteritis (NE) to emerge in the flocks. Alternatives such as Bacillus probiotics have shown to be effective on eliminating the negative effects of this disease. Two experiments were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) in broiler chickens under NE challenge and/or fed diets with different protein levels. Methods In both experiments, 480 day-old mix-sexed Ross-308 broilers were arranged in a 2 × 2 factorial arrangement of treatments. In experiment 1, the factors were NE challenge (yes or no) and probiotic (yes or no). In experiment 2, the factors were dietary crude protein levels (standard or reduced) and probiotic (yes or no) and were used under NE challenge condition. Oral administration of Eimeria oocysts (day 9) followed by inoculation with Clostridium perfringens (day 14 and 15) was used to induce NE challenge. On day 16, two birds from each treatment were gavaged with fluorescein isothiocyanate-dextran (FITC-d) and blood samples were collected for gut integrity evaluation, and jejunal samples were collected for gene expression assay. Results In experiment 1, BA supplementation decreased caspase-3 (CASP3) (P < 0.001) and caspase-8 (CASP8) (P < 0.05) and increased occludin (OCLD) (P < 0.05) expression regardless of the challenge. Additionally, BA supplementation downregulated interfron-γ (IFN-γ) expression (P < 0.01) and upregulated immunoglobulin-G (IgG) (P < 0.01) and immunoglobulin-M (IgM) (P < 0.05) only in challenged birds. In experiment 2, the expression of genes encoding mucin-2 (MUC2) (P < 0.001), tight junction protein-1 (TJP1) (P < 0.05) and OCLD (P < 0.05) were upregulated by the addition of BA in the diet, regardless of the crude protein level. Further, BA supplementation downregulated INF-γ (P < 0.01) and upregulated immunoglobulin-A (IgA) (P < 0.05), IgM (P < 0.05) and IgG (P < 0.01) regardless of the crude protein level. Conclusion These findings suggest that supplementation of BA in broiler diets can improve gut health by modulation of genes related to the mucosal barrier, tight junction, and immunity in broilers challenged by unfavourable conditions such as NE challenge.
Collapse
|
37
|
Han Q, Tong J, Sun Q, Teng X, Zhang H, Teng X. The involvement of miR-6615-5p/Smad7 axis and immune imbalance in ammonia-caused inflammatory injury via NF-κB pathway in broiler kidneys. Poult Sci 2020; 99:5378-5388. [PMID: 33142454 PMCID: PMC7647833 DOI: 10.1016/j.psj.2020.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Ammonia (NH3), a toxic gas, has deleterious effects on chicken health in intensive poultry houses. MicroRNA can mediate inflammation. The complex molecular mechanisms underlying NH3 inhalation-caused inflammation in animal kidneys are still unknown. To explore the mechanisms, a broiler model of NH3 exposure was established. Kidney samples were collected on day 14, 28, and 42, and meat yield was evaluated on day 42. We performed histopathological examination, detected miR-6615-5p and mothers against decapentaplegic homolog 7 (Smad7), and determined inflammatory factors and cytokines in kidneys. The results showed that excess NH3 reduced breast weight and thigh weight, which indicated that excess NH3 impaired meat yield of broilers. Besides, kidney tissues displayed histopathological changes after NH3 exposure. Meanwhile, the increases of inducible nitric oxide synthase (iNOS) activity and nitric oxide content were obtained. The mRNA and protein expression of inflammatory factors, including nuclear factor-κB (NF-κB), cyclooxygenase-2, prostaglandin E synthases, and iNOS increased, indicating that NF-κB pathway was activated. T-helper (Th) 1 and regulatory T (Treg) cytokines were downregulated, whereas Th2 and Th17 cytokines were upregulated, suggesting the occurrence of Th1/Th2 and Treg/Th17 imbalances. In addition, we found that Smad7 was a target gene of miR-6615-5p in chickens. After NH3 exposure, miR-6615-5p expression was elevated, and Smad7 mRNA and protein expression were reduced. In summary, our results suggest that NH3 exposure negatively affected meat yield; and miR-6615/Smad7 axis and immune imbalance participated in NH3-induced inflammatory injury via the NF-κB pathway in broiler kidneys. This study is helpful to understand the mechanism of NH3-induced kidney injury and is meaningful to poultry health and breed aquatics.
Collapse
Affiliation(s)
- Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, The People's Republic of China
| | - Jianyu Tong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, The People's Republic of China
| | - Qi Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, The People's Republic of China
| | - Xiaojie Teng
- Grassland Station in Heilongjiang Province, Harbin 150067, The People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, The People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, The People's Republic of China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, The People's Republic of China.
| |
Collapse
|
38
|
Li S, Li J, Liu Y, Li C, Zhang R, Bao J. Effects of Intermittent Mild Cold Stimulation on mRNA Expression of Immunoglobulins, Cytokines, and Toll-Like Receptors in the Small Intestine of Broilers. Animals (Basel) 2020; 10:ani10091492. [PMID: 32846975 PMCID: PMC7552237 DOI: 10.3390/ani10091492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cold stress has been associated with adverse effects on health and welfare of broilers. Whilst several studies have shown that long-term sustained and mild cold stimulation can improve immune function, little is known of the effects of intermittent cold stimulation on immune modulation in broilers. In this study, broilers were submitted to cold stimulation of 3 °C below than the usual rearing temperature during 3 and 6 h every two days during 43 days to explore its effect on the intestinal immunity. The findings confirm that appropriate mild cold stimulation has an overall positive influence on the intestinal immunity of broilers. The mild cold stimulation tested in this study is cost-effective and likely enhances overall health of broilers. Abstract Appropriate cold stimulation can improve immune function and stress tolerance in broilers. In order to investigate the effect of intermittent mild cold stimulation on the intestinal immunity of broilers, 240 healthy one-day-old Ross 308 chickens were randomly divided into three groups: the control group (CC) housed in climatic chambers under usual rearing ambient temperature with a gradual 3.5 °C decrease per week; group II (C3) and group III (C6) to which cold stimulation at 3 °C below the temperature used in CC was applied every two days for 3 and 6 h, respectively, from day 15 to 35, and at the same temperature used in CC from day 35 to 43. The mRNA expression levels of immunoglobulins (IgA and IgG), cytokines (IL2, IL6, IL8, IL17, and IFNγ), and Toll-like receptors (TLR2, TLR4, TLR5, TLR7, and TLR21) were investigated in duodenum, jejunum, and ileum tissue samples on days 22, 29, 35, and 43. From day 15 to 35, mRNA expression of IL2 and IFNγ was increased in the intestine of broilers. After one week of cold stimulation on day 43, mRNA levels of immunoglobulins, cytokines, and Toll-like receptors (TLRs) stabilized. Collectively, the findings indicate that cold stimulation at 3 °C below the usual rearing temperature had a positive impact on intestinal immunity of broilers.
Collapse
Affiliation(s)
- Shuang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (S.L.); (J.L.); (Y.L.); (C.L.)
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (S.L.); (J.L.); (Y.L.); (C.L.)
| | - Yanhong Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (S.L.); (J.L.); (Y.L.); (C.L.)
| | - Chun Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (S.L.); (J.L.); (Y.L.); (C.L.)
| | - Runxiang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (R.Z.); (J.B.)
| | - Jun Bao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (R.Z.); (J.B.)
| |
Collapse
|
39
|
Liu Y, Xue G, Li S, Fu Y, Yin J, Zhang R, Li J. Effect of Intermittent and Mild Cold Stimulation on the Immune Function of Bursa in Broilers. Animals (Basel) 2020; 10:ani10081275. [PMID: 32722590 PMCID: PMC7459812 DOI: 10.3390/ani10081275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cold stress causes growth performance to decrease and increases production costs. Cold adaptation can enhance immune function and alleviate the negative impact caused by the stress condition. The study investigated the effect of intermittent and mild cold stimulation on the immune function of the bursa of Fabricius in broilers. A total of 400 healthy one-day-old broilers were divided into the control group (CC) and cold stimulation (CS) groups. The CC group was raised at a conventional raising temperature of broilers, while the CS groups were raised at 3°C below the temperature of the CC for three-, four-, five-, or six-hour periods at one-day intervals from 15 to 35 days of age (D35), denoted CS3, CS4, CS5, and CS6, respectively. Subsequently, they were raised at 20°C from 36 to 49 days of age (D49). The expression levels of TLRs, cytokines, and AvBDs were determined to access the immune function of bursa in broilers. After 21-day IMCS (at D36), the expression levels of TLR1, TLR15 and TLR21, interleukin (IL)-8, and interferon (IFN)-γ, as well as AvBD8 in CS groups, were lower than those in CC (p < 0.05). The expression levels of TLR3, TLR4 and TLR7, were decreased in the CS3, CS5, and CS6 groups (p < 0.05), but there were no significant differences in both the CC and CS4 groups (p > 0.05). When the IMCS ended for 14 days (at D49), the expression levels of TLR2, TLR3, TLR5, TLR7, TLR15, and TLR21, and IL-8, as well as AvBD2, AvBD4 and AvBD7 in CS groups, were lower than those in CC (p < 0.05). In addition to CS4, the expression levels of TLR1, IFN-γ, and AvBD8 in CS3, CS5, and CS6 were still lower than those in CC (p < 0.05). We concluded that the intermittent and mild cold stimulation could regulate immunoreaction by modulating the production of TLRs, cytokines, and AvBDs in the bursa, which could help broilers adapt to low ambient temperature and maintain homeostasis.
Collapse
Affiliation(s)
- Yanhong Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (G.X.); (S.L.); (Y.F.); (J.Y.)
| | - Ge Xue
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (G.X.); (S.L.); (Y.F.); (J.Y.)
| | - Shuang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (G.X.); (S.L.); (Y.F.); (J.Y.)
| | - Yajie Fu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (G.X.); (S.L.); (Y.F.); (J.Y.)
| | - Jingwen Yin
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (G.X.); (S.L.); (Y.F.); (J.Y.)
| | - Runxiang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (R.Z.); (J.L.)
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (G.X.); (S.L.); (Y.F.); (J.Y.)
- Correspondence: (R.Z.); (J.L.)
| |
Collapse
|
40
|
Xu W, Li H, Wu L, Jin J, Zhu X, Han D, Liu H, Yang Y, Xu X, Xie S. Dietary Scenedesmus ovalternus improves disease resistance of overwintering gibel carp (Carassius gibelio) by alleviating toll-like receptor signaling activation. FISH & SHELLFISH IMMUNOLOGY 2020; 97:351-358. [PMID: 31874297 DOI: 10.1016/j.fsi.2019.12.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to investigate the effect of dietary Scenedesmus ovalternus on the growth and disease resistance of gibel carp (Carassius gibelio) during overwintering. Gibel carp (initial body weight: 90.39 ± 0.33 g) were fed with diets containing 0% or 4% Scenedesmus ovalternus (DS0 and DS4) for 4 weeks during the early overwintering period, and then all fish were left unfed during the late overwintering period. A bacterial challenge test using Aeromonas hydrophila was subsequently conducted. The 4% Scenedesmus ovalternus diet had no effect on the growth of gibel carp (P > 0.05), but did improve the survival rate after the challenge (P ≤ 0.05). In the DS0 group, the bacterial challenge decreased the contents of complement 3 (C3), immunoglobulin M (IgM), interleukin 2 (IL2) and tumor necrosis factor α (TNFα) in fish (P < 0.05); in the DS4 group, the challenge increased total antioxidant capacity (T-AOC) and myeloperoxidase (MPO) activity but decreased IL2 and TNFα contents (P < 0.05). The activities of MPO and contents of C3, IgM and TNFα were higher in the DS4 group than that fed the DS0 diet after bacterial challenge (P < 0.05). Compared to pre challenge, the expression levels of toll like receptor 2 (TLR2), toll like receptor 3 (TLR3), toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), TIR-domain-containing adapter-inducing interferon β (TRIF), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα), transforming growth factor β (TGFβ), interleukin 1β (IL1β), tumor necrosis factor α1 (TNFα1) and interleukin 10 (IL10) in the head kidney of gibel carp were induced after challenge (P < 0.05). Gibel carp fed the DS4 diet showed lower expression of TGFβ in head kidney before the challenge and lower expression of TLR2, TLR3, TLR4, TIRAP, TRIF, IκBα, TNFα1, IL10 and TGFβ after the challenge than that fed the DS0 diet (P < 0.05). Overall, Scenedesmus ovalternus supplement enhanced the resistances of gibel carp against A. hydrophila after overwintering via the TLR signaling pathway.
Collapse
Affiliation(s)
- Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hongyan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China.
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| |
Collapse
|
41
|
Su Y, Li S, Xin H, Li J, Li X, Zhang R, Li J, Bao J. Proper cold stimulation starting at an earlier age can enhance immunity and improve adaptability to cold stress in broilers. Poult Sci 2020; 99:129-141. [PMID: 32416794 PMCID: PMC7587771 DOI: 10.3382/ps/pez570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
The effects of long-term cold stimulation on the immune function of ileum and adaptability to cold stress in broilers were examined. A total of 360 Arbor Acres broilers was divided into 3 groups and four replicates per group. C (control) was reared in normal thermal environment. C-3 and C-12 (treatments) were kept in cold condition of 3 or 12°C lower than the temperature of C from days 8 to 42. At day 42, all the groups were exposed to an acute cold stress challenge, designated as S, S-3, and S-12. The mRNA levels of immune molecules and heat shock proteins as well as oxidative stress-related indicators in ileum tissues, and immunoglobulins contents in serum were examined at 14, 42, and 43 d of age. The C-3 regimen had no adverse effect on production performance, whereas the C-12 regimen reduced the production performance relative to C (P < 0.05). At day 42, C-3 had higher levels of immune indexes (P < 0.05), whereas C-12 had lower levels than C (P < 0.05). No differences in levels of oxidative stress-related indicators were found between C and C-3 at day 42 (P > 0.05). S-3 had higher levels of immune indexes and lower levels of oxidative stress-related indicators (P < 0.05), as compared to S and S-12. The results suggest that 34 d of cold stimulation at 3°C lower than the normal temperature had no adverse impacts on production performance but enhanced the immunity of ileum and adaptability to acute cold challenge in broilers.
Collapse
Affiliation(s)
- Yingying Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Xin
- College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Jiafang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
42
|
Zhang Y, Gu T, Tian Y, Chen L, Li G, Zhou W, Liu G, Wu X, Zeng T, Xu Q, Chen G, Lu L. Effects of cage and floor rearing system on the factors of antioxidant defense and inflammatory injury in laying ducks. BMC Genet 2019; 20:103. [PMID: 31888457 PMCID: PMC6937681 DOI: 10.1186/s12863-019-0806-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/22/2019] [Indexed: 11/13/2022] Open
Abstract
Background Cage-rearing in laying ducks, as a novel rearing system, not only fundamentally solves the pollution problem of the duck industry and improve bio-safety and product quality but also exhibits more benefits by implementing standardized production compared with the floor-rearing. Of course, this system also brings some welfare problems and stress injuries to layers due to lack of water environment and limited activities in the cages. However, the effects on the factors of antioxidant defense and inflammatory injury in the early cage stage are not well-understood. Results In this study, eighty Shaoxing layers were reared on floor and in cages from 12 weeks of age. The ducks were caged 1, 2, 4, 7, and 10 days, the factors of antioxidant defense and inflammatory injury were investigated. The results showed that the caged ducks suffered liver injury to a certain extent when the ducks were just put into the cages. Analysis of antioxidant enzyme activities indicated that the different rearing system could not affect the change of antioxidant capacities, while the liver malondialdehyde (MDA) level was significant higher in the 2-d, 7-d, and 10-d ducks compared with the 1-d ducks during the change of days, while catalase (CAT) activity showed the opposite results. Additionally, quantitative real-time PCR (qRT-RCR) revealed that the relative mRNA levels of endoplasmic reticulum (ER) stress-related gene (CHOP and GRP78) were significantly upregulated in cage rearing ducks compared to that of the floor rearing ducks. Moreover, the mRNA levels of inflammatory cytokines including cycloxygenase-2 (COX-2), nitric oxide synthase (iNOS), Interleukin 1 beta (IL-1β), Interleukin 2 (IL-2) and Interleukin 6 (IL-6), were also increased significantly in caged layers. Conclusions Taken together, although antioxidant defense has no obvious effect on cage stress, the stress levels of laying ducks vary greatly in the early cage stage, which not only caused liver tissue damage to some extent, but also resulted in increases in the expression of the factors of inflammatory injury. Therefore, we recommend that anti-stress agents should be added in the feed to alleviate the stress in the early cage stage.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Tiantian Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Yong Tian
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, Zhejiang, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, Zhejiang, China
| | - Guoqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, Zhejiang, China
| | - Wei Zhou
- Guiliu Animal Husbandry Company, Zhoukou, 450000, Henan, China
| | - Guofa Liu
- Guiliu Animal Husbandry Company, Zhoukou, 450000, Henan, China
| | - Xinsheng Wu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China. .,Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR, China.
| |
Collapse
|
43
|
Jia Z, Chen A, Wang C, He M, Xu J, Fu H, Zhang X, Lv W, Guo Z. Amelioration effects of Kaempferol on immune response following chronic intermittent cold-stress. Res Vet Sci 2019; 125:390-396. [PMID: 31412308 DOI: 10.1016/j.rvsc.2019.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
Cold-stress causes disturbance of the homeostatic regulation of animals, and gradually impairs the immune and antioxidant functions of animals. Therefore, increasing the effectiveness of the immune response and antioxidant function are the most attractive strategies against cold-stress. Kaempferol (KPF) exerts both an anti-inflammatory and antioxidant pharmacological effect. However, nor much is known of the effects of KPF on providing protection from cold-induced intestinal oxidative damage and improving immunity. This study investigated the effects of KPF on immune factors and intestinal antioxidation in the blood of cold-stressed mice. KPF was solubilized in diluted saline before administration. The mice were randomly divided into 4 groups: (1) control, (2) cold-stress, (3) KPF 25 mg/kg, and (4) cinnamon (CAM) 30 mg/kg groups. Groups (2)-(4) were exposed to cold stress once a day for 7 days. Cold-stress was achieved by exposing the mice to a temperature of -15 °C and 70 ± 10% humidity for 60 min, once a day. The histopathological changes in the small intestine of the mice were analyzed. The T lymphocyte populations in blood were measured using flow cytometry. The level of SLC6a4, 5-HT3 and 5-HTT in small intestine tissue was assessed using RT-PCR analysis. Cow blood samples were obtained for the hematological analysis. Kaempferol (KPF) (25 mg/kg) regularized the intestinal antioxidant activity in the cold stress animals. KPF was able to significantly (P < .05) return intestinal SLC6a4, 5-HT3 and 5-HTT levels to normal after it had increased due to cold-stress. KPF treatment prevented the cold stress-induced decrease in blood CD4+T cells and decrease CD8+T cells levels in mice. Improved hematological profiles were additionally observed on treatment cows with KPF. KPF compared favorably with cinnamon in cold stress management, suggesting cold stress disturbs the anti-inflammatory effect of KPF. Thus, KPF contributes to suppress the activated pro-inflammatory cytokines, IL-9, IL-13, CD8+T and neurochemicals, and to increase anti-inflammatory cytokines and CD4+T levels.
Collapse
Affiliation(s)
- Zhifeng Jia
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| | - Meiling He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Jin Xu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - He Fu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Xin Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China; College of Basic Medical, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Wenting Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Zhenshuang Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| |
Collapse
|
44
|
Li A, Wang Y, Li Z, Qamar H, Mehmood K, Zhang L, Liu J, Zhang H, Li J. Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice. Microb Cell Fact 2019; 18:112. [PMID: 31217027 PMCID: PMC6585042 DOI: 10.1186/s12934-019-1161-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Yaks living in the high-altitude hypoxic environment of Tibetan plateau (3600 m) have special gut microbes. However, it is still little research on yak probiotics until now. Therefore, the purpose of our study was to evaluate the growth promoting effect, antioxidant capability, immune effect, and anti-inflammatory ability of Bacillus subtilis and Bacillus velezensis isolated from Tibetan yaks in mice model. RESULTS The results showed that the isolated strains supplementation not only improve the growth performance but also increased the length of villus in the small intestine and intestinal digestive enzyme activity. Importantly, we observed that the T-AOC, SOD, and GSH-PX levels were increased and the MDA content was reduced in probiotic-treated mice, which implied that probiotics supplementation can ameliorate the antioxidative activity of mice. The levels of AST and ALT correlated with the hepatic injury were reduced and the levels of AKP, TP, GLB, ALB, Ca, and P were markedly higher than those in the control group. Additionally, mice treated with probiotics exhibited higher serum IgG, IgM and IgA, which can reflect the immune status to some extent. At the same time, the major pro-inflammatory factor TNF-α, IL-6, and IL-8 were down-regulated and the anti-inflammatory factor IL-10 was up-regulated compared with the control groups. CONCLUSIONS In conclusion, these results demonstrated that Bacillus subtilis and Bacillus velezensis supplementation can increase overall growth performance and ameliorate the blood parameters related to inflammation and immunity of mice.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, People's Republic of China.
| |
Collapse
|
45
|
Lang L, Xu B, Li SZ, Guo W, Yuan J, Zang S, Chen Y, Yang HM, Lian S. Rno-miR-425-5p targets the DLST and SLC16A1 genes to reduce liver damage caused by excessive energy mobilization under cold stress. J Anim Physiol Anim Nutr (Berl) 2019; 103:1251-1262. [PMID: 31087708 DOI: 10.1111/jpn.13100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/24/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNA molecules, which participate in the regulation of many physiological processes, and play a crucial role in cancer, metabolism and other processes. Rno-miR-425-5p has been shown to play a role in the response to cold stress. To explore the mechanism by which rno-miR-425-5p regulates the response to cold stress, we analysed the candidate target genes of rno-miR-425-5p. After verification in rat hepatocyte BRL cells and in rat liver tissue, we identified several target genes that were altered in expression in response to cold stress. In rat liver tissue, the expression of rno-miR-425-5p was significantly increased and the expression levels of target genes DLST and SLC16A1 were decreased under cold stress. The miRNA and mRNA levels were analysed by quantitative real-time PCR and the protein levels were detected by Western blot analysis. Combined with the results of bioinformatic analysis, we concluded that rno-miR-425-5p reduced the expression of DLST and SLC16A1, inhibiting energy release from the tricarboxylic acid cycle and preventing the liver from being injured by excessive energy mobilization.
Collapse
Affiliation(s)
- Limin Lang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianbin Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shucheng Zang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
46
|
Khoso PA, Zhang Y, Yin H, Teng X, Li S. Selenium Deficiency Affects Immune Function by Influencing Selenoprotein and Cytokine Expression in Chicken Spleen. Biol Trace Elem Res 2019; 187:506-516. [PMID: 29926390 DOI: 10.1007/s12011-018-1396-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/23/2018] [Indexed: 01/14/2023]
Abstract
Se is an important bioelement essential for a healthy immune system. Dietary Se influences both innate and adaptive immune responses. However, the effects of Se deficiency in chicken spleen are still unknown; thus, we designed an experiment to study the role of Se in chicken spleen. A total of 180 one-day-old sea blue white laying hens were randomly allocated into two groups (a control group and a Se-deficient group). The control group was fed a diet supplemented with sodium selenite with a final Se content of 0.15 mg/kg, and the Se-deficient group was fed a Se-deficient diet with a Se content of 0.033 mg/kg. Twenty selenoproteins and ten cytokines were investigated in detail. The expression levels of selenoproteins in spleen were determined via real-time qPCR at 15, 35, and 55 days, and cytokine levels were determined using ELISA at 15, 35, and 55 days. Protein-protein interaction predictions and principal component analysis were performed. We found that the selenoprotein mRNA levels were significantly lower (P < 0.05) in the Se-deficient group compared with the control group. The expression levels of IL-2, IL-1β, IL-6, IFN-α, and IL-17 were significantly lower (P < 0.05), and the levels of IL-8, IL-10, IFN-γ, IFN-β, and TNF-α were significantly higher (P < 0.05) in the Se-deficient group. These selenoproteins were positively correlated with component 1 and component 2 of the PCA, but the relationship between cytokines and principal components in spleens was very complex. The investigation showed that Se deficiency caused a reduction in selenoprotein gene expression and further affected certain cytokines levels. Our results provide some compensatory data about selenoproteins and cytokines in spleens of Se-deficient chickens and provide clues for further research on the relationship between selenoproteins and cytokines.
Collapse
Affiliation(s)
- Pervez Ahmed Khoso
- College of Veterinary Medicine*, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Yiming Zhang
- College of Veterinary Medicine*, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine*, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine*, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
47
|
Su Y, Zhang X, Xin H, Li S, Li J, Zhang R, Li X, Li J, Bao J. Effects of prior cold stimulation on inflammatory and immune regulation in ileum of cold-stressed broilers. Poult Sci 2018; 97:4228-4237. [DOI: 10.3382/ps/pey308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/21/2018] [Indexed: 01/10/2023] Open
|
48
|
Wei H, Zhang R, Su Y, Bi Y, Li X, Zhang X, Li J, Bao J. Effects of Acute Cold Stress After Long-Term Cold Stimulation on Antioxidant Status, Heat Shock Proteins, Inflammation and Immune Cytokines in Broiler Heart. Front Physiol 2018; 9:1589. [PMID: 30483152 PMCID: PMC6243113 DOI: 10.3389/fphys.2018.01589] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
To investigate the effects of acute cold stress (ACS) on chicken heart after cold stimulation, female broilers were raised in either normal (C) or gradually decreasing temperatures (CS I and CS II) for 34 days followed by a 24 h ACS at 7°C. Cardiac tissues were collected from the pre-ACS and ACS time points to analyze the histopathological changes, antioxidant status and the expression of heat shock proteins, inflammatory factors and immune-related cytokines. The CS II heart tissues showed shrunken cell membranes and nuclei, disordered or ruptured myocardial fibers, higher MDA content and upregulation in HSP27, HSP40, HSP70, NF-κB, COX-2, PTGEs, iNOS, TNF-α and IL-4 mRNAs, and in protein levels of HSP40, NF-κB and iNOS and reduction in CAT, GSH-px and SOD activity, as well as HSP90 and IFN-γ levels compared to the control tissues before ACS. In contrast, the HSPs were significantly increased, and the inflammatory and immune related factors were unaltered prior to the ACS in the CS I compared to the C group. Following ACS, MDA content was significantly increased and antioxidant activity was significantly decreased in the CS I and CS II groups compared to the C group. The levels of HSP27, HSP70, HSP90, inflammatory factors and IL-4 were significantly reduced and that of IFN-γ was significantly increased in CS I broiler hearts; the reverse trends were seen in CS II relative to CS I. Compared to the pre-ACS levels, that of HSP27, HSP40, HSP60, inflammatory factors and IL-4 were increased and IFN-γ was decreased in the C and CS II groups after ACS. Therefore, cold stimulation at drastically lower temperatures induced cardiac damage, which was further aggravated by ACS. In contrast, cold stimulation at only 3°C lower than normal temperature improved the adaptability of the broilers to ACS.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yingying Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
49
|
Su Y, Wei H, Bi Y, Wang Y, Zhao P, Zhang R, Li X, Li J, Bao J. Pre‐cold acclimation improves the immune function of trachea and resistance to cold stress in broilers. J Cell Physiol 2018; 234:7198-7212. [DOI: 10.1002/jcp.27473] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yingying Su
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Haidong Wei
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Yanju Bi
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Yanan Wang
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Peng Zhao
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Runxiang Zhang
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Xiang Li
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| | - Jianhong Li
- Laboratory of Genetics, College of Life Science, Northeast Agricultural University Harbin China
| | - Jun Bao
- Laboratory of Animal Behavior and Welfare, College of Animal Science and Technology, Northeast Agricultural University Harbin China
| |
Collapse
|
50
|
Wang H, Ni X, Qing X, Liu L, Xin J, Luo M, Khalique A, Dan Y, Pan K, Jing B, Zeng D. Probiotic Lactobacillus johnsonii BS15 Improves Blood Parameters Related to Immunity in Broilers Experimentally Infected with Subclinical Necrotic Enteritis. Front Microbiol 2018; 9:49. [PMID: 29441047 PMCID: PMC5797545 DOI: 10.3389/fmicb.2018.00049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 12/24/2022] Open
Abstract
The probiotic strain Lactobacillus johnsonii BS15 could exert beneficial effects on growth performance, lipid metabolism, and intestinal microflora in healthy broilers and those afflicted with subclinical necrotic enteritis (SNE). In particular, BS15 prevents SNE by enhancing intestinal immunity. To further understand the immune regulatory mechanism of BS15, we evaluated its effects on the overall immunity of broilers by determining blood parameters in healthy and SNE broilers. In this study, two experiments were conducted. Experiment 1 involved a 42-day experimental period and used 450 1-day-old male chicks. The chicks were randomly divided into three groups and fed with a basal diet with or without 1 × 105 or 106 colony-forming units (cfu) BS15/g as feed. Experiment 2 involved a 28-day experimental period and used 180 1-day-old male chicks. The chicks were randomly allotted into three groups and given with or without 1 × 106 cfu BS15/g BS15 as feed. SNE infection was treated in all broilers, except in those in the normal diet group. Antioxidant abilities, immunoglobulins, and cytokines in the serum were assessed. T-lymphocyte subsets in peripheral blood were also determined. The first experiment demonstrated that BS15 enhanced the antioxidant abilities; the serum levels of immunoglobulins, interleukin-2, and interferon-gamma; and CD3+CD4+ T-lymphocyte percentage in peripheral blood on day 21. However, limited significant changes were observed on day 42. The second experiment revealed that BS15 supplementation positively influenced the antioxidant abilities and increased the serum levels of immunoglobulins and cytokines that were affected by SNE. BS15 also positively affected T-lymphocyte subsets in peripheral blood during SNE infection. These findings suggest that BS15 supplementation may prevent SNE in broilers by improving blood parameters related to immunity and enhancing intestinal immunity. Furthermore, BS15 supplementation can improve blood parameters in healthy broilers, especially at the starter phase.
Collapse
Affiliation(s)
- Hesong Wang
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Xiaodan Qing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Lei Liu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Min Luo
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Yan Dan
- Chongqing Fisheries Science Research Institute, Chongqing, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|