1
|
Shahbaz M, Seelan JSS, Abasi F, Fatima N, Mehak A, Raza MU, Raja NI, Proćków J. Nanotechnology for controlling mango malformation: a promising approach. J Biomol Struct Dyn 2025; 43:2610-2630. [PMID: 38344816 DOI: 10.1080/07391102.2024.2312449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/30/2023] [Indexed: 04/05/2024]
Abstract
Mango (Mangifera indica L.) is one of the most important fruit crops in the world with yields of approximately 40 million tons annually and its production continues to decrease every year as a result of the attack of certain pathogens i.e. Colletotrichum gloeosporioides, Erythricium salmonicolor, Amritodus atkinsoni, Idioscopus clypealis, Idioscopus nitidulus, Bactrocera obliqua, Bactrocera frauenfeldi, Xanthomonas campestris, and Fusarium mangiferae. So F. mangiferae is the most harmful pathogen that causes mango malformation disease in mango which decreases its 90% yield. Nanotechnology is an eco-friendly and has a promising effect over traditional methods to cure fungal diseases. Different nanoparticles possess antifungal potential in terms of controlling the fungal diseases in plants but applications of nanotechnology in plant disease managements is minimal. The main focus of this review is to highlight the previous and current strategies to control mango malformation and highlights the promising applications of nanomaterials in combating mango malformation. Hence, the present review aims to provide brief information on the disease and effective management strategies.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Fozia Abasi
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Asma Mehak
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Umair Raza
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Zhang L, Wei Q, Ye L, Wu Z, Huang Y, Yu C, Li Z, Lu S. A flexible multifunctional sensor based on in situ reduction of Ag nanoparticles by yam polysaccharides. Int J Biol Macromol 2025; 306:141541. [PMID: 40020808 DOI: 10.1016/j.ijbiomac.2025.141541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Developing flexible multifunctional sensors that combine humidity, temperature, and strain sensing properties is a challenge. In this paper, PVA/YPs/H3PO4/AgNPs (PYHA) flexible composite films loaded with Ag nanoparticles (AgNPs) were synthesized through in situ reduction and solution casting using polyvinyl alcohol (PVA), yam polysaccharide (YPs), phosphoric acid (H3PO4), and silver nitrate (AgNO3) as raw materials, which exhibited sensitivity to humidity, temperature, and strain. The prepared PYHA humidity sensor was capable of generating stable electrical signals through adsorption and desorption over the relative humidity (RH) range of 35-95 %. Furthermore, the humidity sensor displayed minimal hysteresis (2.17 % RH) and excellent linearity (R2 = 0.973) during respiratory rate monitoring in different body states. As a temperature sensor, the PYHA sensor was capable of sensing human body temperature, exhibiting strong temperature sensitivity (TCR = -1.058 % °C-1) and maintaining excellent linearity (R2 = 0.994) ranging from 35 to 95 °C in temperature. Moreover, the PYHA flexible strain sensor boasted an extensive strain detection range (1-320 %) and swift response/reply time (0.8/1.1 s), and detected physiological signals due to large movements of body joints and weak changes in facial expressions. Therefore, the designed PYHA multifunctional sensor has a promising use in flexible wearable.
Collapse
Affiliation(s)
- Liling Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Qiaoyan Wei
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Liangdong Ye
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Zengju Wu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yanyou Huang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Chuanheng Yu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Ziwei Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
3
|
Zehra SH, Ramzan K, Viskelis J, Viskelis P, Balciunaitiene A. Advancements in Green Synthesis of Silver-Based Nanoparticles: Antimicrobial and Antifungal Properties in Various Films. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:252. [PMID: 39997815 PMCID: PMC11858222 DOI: 10.3390/nano15040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025]
Abstract
Nanotechnology is an evolving field that presents extensive opportunities in antimicrobial and eco-friendly food packaging applications. Silver nanoparticles (AgNPs) are particularly valuable in this context due to their outstanding physicochemical properties and demonstrated biological and antimicrobial efficacy, rendering them highly effective in food packaging applications. Historically, nanoparticle synthesis has largely relied on synthetic chemicals and physical methods; however, growing awareness of their potential toxic impacts on human health and the environment has led researchers to reassess these conventional approaches. In response, green synthesis using plants or their metabolites to produce nanoparticles (NPs) has emerged as a focal point in recent research. This approach provides significant advantages, notably in reducing toxicity associated with traditionally synthesized nanoparticles. Silver, recognized for its non-toxic, safe profile as an inorganic antibacterial and antifungal agent, has been employed for centuries and exhibits remarkable potential in various biological applications in its nanoparticle form. Environmentally friendly synthesis techniques are increasingly prioritized within chemical sciences to reduce the harmful byproducts of reactions. Green synthesis methods also offer economic benefits due to their lower costs and the abundant availability of natural raw materials. In the past five years, concerted efforts have been made to develop new, sustainable, and cost-effective methodologies for nanoparticle synthesis. This review explains the green synthesis of silver nanoparticles from different sources along with their quantification techniques and application in food packaging.
Collapse
Affiliation(s)
- Syeda Hijab Zehra
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, 54333 Babtai, Lithuania; (K.R.); (J.V.); (P.V.)
| | | | | | | | - Aiste Balciunaitiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, 54333 Babtai, Lithuania; (K.R.); (J.V.); (P.V.)
| |
Collapse
|
4
|
Muneer A, Akhtar W, Samad M, Zafar S, Fatima I, Abidi SHI, Kalsoom R, Shahbaz A. Biological potential of Argyrolobium roseum (Camb.) Jaub & Spach mediated silver nanoparticles and their effect on the growth of wheat seeds. Microsc Res Tech 2025; 88:163-171. [PMID: 39237475 DOI: 10.1002/jemt.24695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The green synthesis of silver nanoparticles (AgNPs) using plant-based derivatives is getting attention for biological applications because of their small dimensions and shape. In this study, AgNPs were prepared using leaf extract of Argyrolobium roseum (A. roseum) (Camb.) Jaub. & Spach. and then characterized via Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible absorption (UV-Vis) spectroscopy. The UV-visible spectrum displayed a absorption peak at 450 nm and x-ray diffraction depicted a crystalline nature of biogenic NPs. FTIR analysis showed various functional groups involved in the reduction and capping of AgNPs while SEM revealed the spherical form of synthesized AgNPs. The antibacterial assay was conducted using disc diffusion assay and highest inhibition zones were recorded against Bacillus subtilis (B. subtilis) (9.6 ± 0.5 mm) and Staphylococcus aureus (S. aureus) (8.6 ± 0.5 mm). The antioxidant potential was assessed via DPPH scavenging assay and highest percentage inhibition (89%) was observed at 100 μg/mL. Subsequently, different concentrations of A. roseum AgNPs were applied on the wheat seedlings to investigate its effects on different growth parameters. After applying AgNPs, significant increase in the fresh weight (FW), dry weight (DW), root length (RL), shoot length (SL), leaf number (LN) and chlorophyll content (CC) in wheat (Akbar-2019 variety) seedlings was observed in comparison to the control seedlings. Overall, A. roseum mediated synthesis of AgNPs was cost-effective and safe and can be used in agriculture, biomedical and other fields. RESEARCH HIGHLIGHTS: Synthesis and characterization of A. roseum AgNPs was done. Biogenic AgNPs revealed potent antibacterial and antioxidant potential. A. roseum mediated AgNPs also increases the growth and germination of wheat seedlings.
Collapse
Affiliation(s)
- Arooj Muneer
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Wasim Akhtar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Memoona Samad
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | | | | | | | - Amir Shahbaz
- Department of Botany, University of Layyah, Punjab, Pakistan
| |
Collapse
|
5
|
Shelar A, Singh AV, Chaure N, Jagtap P, Chaudhari P, Shinde M, Nile SH, Chaskar M, Patil R. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175118. [PMID: 39097019 DOI: 10.1016/j.scitotenv.2024.175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Abiotic and biotic stresses during seed germination are typically managed with conventional agrochemicals, known to harm the environment and reduce crop yields. Seeking sustainable alternatives, nanotechnology-based agrochemicals leverage unique physical and chemical properties to boost seed health and alleviate stress during germination. Nanoprimers in seed priming treatment are advanced nanoscale materials designed to enhance seed germination, growth, and stress tolerance by delivering bioactive compounds and nutrients directly to seeds. Present review aims to explores the revolutionary potential of nanoprimers in sustainable seed treatment, focusing on their ability to enhance crop productivity by improving tolerance to abiotic and biotic stresses. Key objectives include understanding the mechanisms by which nanoprimers confer resistance to stresses such as drought, salinity, pests, and diseases, and assessing their impact on plant physiological and biochemical pathways. Key findings reveal that nanoprimers significantly enhance seedling vigor and stress resilience, leading to improved crop yields. These advancements are attributed to the precise delivery of nanomaterials that optimize plant growth conditions and activate stress tolerance mechanisms. However, the study also highlights the importance of comprehensive toxicity and risk assessments. Current review presents a novel contribution, highlighting both the advantages and potential risks of nanoprimers by offering a comprehensive overview of advancements in seed priming with metal and metal oxide nanomaterials, addressing a significant gap in the existing literature. By delivering advanced molecular insights, the study underscores the transformative potential of nanoprimers in fostering sustainable agricultural practices and responsibly meeting global food demands.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589 Berlin, Germany
| | - Nandu Chaure
- Department of Physics, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Pramod Jagtap
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Pramod Chaudhari
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET), Panchawati, Pune 411008, MH, India
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 140306, PB, India.
| | - Manohar Chaskar
- Swami Ramanand Teerth Marathwada University, Nanded 431606 (MS) India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India.
| |
Collapse
|
6
|
Kapeleka JA, Mwema MF. State of nano pesticides application in smallholder agriculture production systems: Human and environmental exposure risk perspectives. Heliyon 2024; 10:e39225. [PMID: 39492887 PMCID: PMC11530829 DOI: 10.1016/j.heliyon.2024.e39225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Due to the intensive and widespread use of agrochemicals, especially pesticides, agriculture in the majority of the world is in dire need of practical improvements to fulfil the rising need for food while at the same time decreasing its associated health and environmental impact. Traditional methods, such as integrated pest control, have been used extensively and globally for decades to lessen the effects of intensive and extensive pesticide use, but they are insufficient. Safer pesticide alternatives, including biopesticides, to replace conventional pesticides have also been developed, but these efforts have not yet reached the necessary degree of operationalization and commercialization. In light of the challenges and trade-offs involved in using conventional pesticides, nanotechnology has sped up the development of nanopesticides, that are poisonous solely to specific pests and pathogens. The effectiveness of nano-agrochemicals has often demonstrated a median gain compared to traditional products of 20-30 %. The use of nanopesticides may enable more precise pest targeting, reduced pesticide dosage and decreased spray frequencies, allowing for a 10-fold reduction in pesticides dosage without sacrificing effectiveness. However, there are environmental concerns and potential for human exposure associated with the use of nanopesticides. This state-of-the-art review examines the most recent advances in science and the application of nanotechnology as a unique tool to address the serious negative effects of conventional pesticides. In addition to the health and environmental implications, policy and regulatory framework, and field application of nanopesticides in smallholder production systems are all part of the scientific review that is presented in this review.
Collapse
Affiliation(s)
- Jones Ackson Kapeleka
- Tanzania Plant Health and Pesticides Authority (TPHPA), P.O. Box 3024, Arusha, Tanzania
| | - Mwema Felix Mwema
- School of Materials, Energy, Water and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
7
|
Singh V, Pandit C, Pandit S, Roy A, Rustagi S, Awwad NS, Ibrahium HA, Anand J, Malik S, Yadav KK, Tambuwala M. Deciphering the Mechanisms and Biotechnological Implications of Nanoparticle Synthesis Through Microbial Consortia. J Basic Microbiol 2024; 64:e2400035. [PMID: 39004868 DOI: 10.1002/jobm.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 07/16/2024]
Abstract
Nanomaterial synthesis is a growing study area because of its extensive range of uses. Nanoparticles' high surface-to-volume ratio and rapid interaction with various particles make them appealing for diverse applications. Traditional physical and chemical methods for creating metal nanoparticles are becoming outdated because they involve complex manufacturing processes, high energy consumption, and the formation of harmful by-products that pose major dangers to human health and the environment. Therefore, there is an increasing need to find alternative, cost-effective, dependable, biocompatible, and environmentally acceptable ways of producing nanoparticles. The process of synthesizing nanoparticles using microbes has become highly intriguing because of their ability to create nanoparticles of varying sizes, shapes, and compositions, each with unique physicochemical properties. Microbes are commonly used in nanoparticle production because they are easy to work with, can use low-cost materials, such as agricultural waste, are cheap to scale up, and can adsorb and reduce metal ions into nanoparticles through metabolic activities. Biogenic synthesis of nanoparticles provides a clean, nontoxic, ecologically friendly, and sustainable method using renewable ingredients for reducing metals and stabilizing nanoparticles. Nanomaterials produced by bacteria can serve as an effective pollution control method due to their many functional groups that can effectively target contaminants for efficient bioremediation, aiding in environmental cleanup. At the end of the paper, we will discuss the obstacles that hinder the use of biosynthesized nanoparticles and microbial-based nanoparticles. The paper aims to explore the sustainability of microorganisms in the burgeoning field of green nanotechnology.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Microbiology, School of Allied health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Chetan Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Hala A Ibrahium
- Department of Biology, Nuclear Materials Authority, El Maadi, Egypt
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Murtaza Tambuwala
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| |
Collapse
|
8
|
Irshad MA, Hussain A, Nasim I, Nawaz R, Al-Mutairi AA, Azeem S, Rizwan M, Al-Hussain SA, Irfan A, Zaki MEA. Exploring the antifungal activities of green nanoparticles for sustainable agriculture: a research update. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2024; 11:133. [DOI: 10.1186/s40538-024-00662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/31/2024] [Indexed: 01/06/2025]
|
9
|
Babu PJ, Tirkey A, Paul AA, Kristollari K, Barman J, Panda K, Sinha N, Babu BR, Marks RS. Advances in nano silver-based biomaterials and their biomedical applications. ENGINEERED REGENERATION 2024; 5:326-341. [DOI: 10.1016/j.engreg.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Sathyanarayanan H, Vaiyapuri M, Kumar R, Gnanadesigan M. Standardization of silver nanoparticle synthesis: Photocatalytic application (immobilized with chitosan complex) with textile dyes and antibacterial activity against Staphylococcus aureus using banana pseudo stem. CHEMOSPHERE 2024; 364:143246. [PMID: 39236920 DOI: 10.1016/j.chemosphere.2024.143246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/27/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The purpose of the study is to standardize the silver nanoparticle (BP-AgNPs) synthesis and its antibacterial activity and photocatalytic application with the selected dyes using the banana pseudo stem extract. "One-factor analysis (OFTA)" was carried out for the standardization of silver nanoparticle synthesis and nanoparticle-chitosan complex immobilization. The parameters were identified with plant quantity (20 g), silver nitrate concentration (1 mM), the ratio of plant extract and silver nitrate solution (2:8), pH (12), temperature (37 °C), dispersed light conditions, shaking conditions (120 rpm), and time (6 h) were analysed. The photocatalytic decolorization efficiency of the standardized BP-AgNPs (immobilized with chitosan complex) has shown 96.92% for methylene blue (10 ppm) at 3 h and 97.55% for safranin (100 ppm) at 15 h. The antibacterial activity for the synthesised BP-AgNPs was determined. MIC value of the BP-AgNPs was determined to be 15.62 μg. mL-1 for S. aureus. The synthesised BP-AgNPs treated with 0.5×, 1× and 2× MIC concentration (x = 15.62 μg. mL-1) showed decreased viable counts of S. aureus (99.6% at 2× concentration having viable count of 22.6 × 102 CFU. mL-1) at 24 h incubation when compared with the control culture. The structural characteristics of the BP-AgNPs were identified as spherical with SEM and the size was identified as 12.19 ± 1.62 nm with TEM and as 37.23 ± 17.89 nm with XRD. The parameters such as FTIR, Zeta potential, EDS further supports the nanoparticle synthesis with banana pseudostem extract. The current result suggested that, the silver nanoparticles (BP-AgNPs) synthesised using the extract of the banana pseudo stem could be used as an alternative source for dye decolorization and antibacterial activities.
Collapse
Affiliation(s)
- Harithaa Sathyanarayanan
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Mithra Vaiyapuri
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Ranjith Kumar
- Water-Energy-Biotech-Nanomaterials Nexus ET Research Group, Environmental Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Murugesan Gnanadesigan
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India.
| |
Collapse
|
11
|
Sahu SK, Kushwaha A, Pradhan U, Majhi P, Shukla AK, Ghorai TK. Sustainable green synthesis of Hedychium coronarium leaf extract-stabilized silver nanoparticles and their applications: colorimetric sensing of Sn 2+ and Hg 2+ and antifungal and antimicrobial properties. NANOSCALE ADVANCES 2024:d4na00443d. [PMID: 39247859 PMCID: PMC11376088 DOI: 10.1039/d4na00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Hedychium coronarium (Hc) (commonly known as Gulbakawali) leaf extract was used for the stable and sustainable green synthesis of silver nanoparticles (Hc-AgNPs), which were biodegradable and non-toxic. Hedychium coronarium leaf extract was used as a reducing agent to stabilize the Hc-AgNPs by converting Ag+ to Ag0 without adding any capping agent. It demonstrated stability for up to six months, and no agglomeration was observed. The Hc-AgNPs were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), ultraviolet-visible spectrophotometry, and fluorescence spectroscopy analysis. The UV-visible spectrum supported the formation of stable Hc-AgNPs by displaying a strong surface plasmon resonance (SPR) peak at 440 nm. FT-IR spectra showed the functional groups present in the leaf extract of Hedychium coronarium, which was the primary source of secondary metabolites attached to Ag0. XRD analysis revealed a distinct 2θ peak of Hc-AgNPs at 38.15°, indicating a face-centred cubic structure with a crystallite size of 22.6 ± 1 nm at the (111) plane. Moreover, TEM demonstrated the spherical morphology of the Hc-AgNPs with an average particle size of 22.42 ± 1 nm. The photophysical characteristics of the Hc-AgNPs, as highlighted by their UV-vis and fluorescence characteristics, revealed their semiconducting nature with an impressive band gap (E g) value of 3.78 eV. Fascinatingly, the fluorescence activity of Hc-AgNPs at 504 nm showed a broad emission band corresponding to the absorption band at 251 nm. We performed the selective colorimetric sensing of Sn2+ metal ions using Hc-AgNPs, which demonstrated a detection limit of 10-3 M, suggesting their potential as very good solid biosensors. Interestingly, the Hc-AgNPs showed antifungal activity, which has not been reported before. Specifically, the results showed that the Hc-AgNPs had a higher fungitoxicity effect against Aspergillus flavus (59.58 ± 3.68) than against Fusarium oxysporum (57.93 ± 4.18). The antibacterial activity of the Hc-AgNPs was evaluated against three Gram-negative phytopathogenic bacteria: Xanthomonas oryzae (X. oryzae), Ralstonia solanacearum (R. solanacearum), and Erwinia carotovora (E. carotovora), showing effective inhibition zones of 16.33 ± 0.57, 15.33 ± 0.57, and 14.33 ± 0.57 mm, respectively. These results indicate that the Hc-AgNPs could inhibit these phytopathogenic bacteria with varying degrees of effectiveness in the order of X. oryzae > R. solanacearum > E. carotovora.
Collapse
Affiliation(s)
- Sanjay Kumar Sahu
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Anjana Kushwaha
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Umakant Pradhan
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Purusottam Majhi
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Awadesh Kumar Shukla
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| | - Tanmay Kumar Ghorai
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India
| |
Collapse
|
12
|
Wasule DL, Shingote PR, Saxena S. Exploitation of functionalized green nanomaterials for plant disease management. DISCOVER NANO 2024; 19:118. [PMID: 39023655 PMCID: PMC11258113 DOI: 10.1186/s11671-024-04063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
A crucial determining factor in agricultural productivity is biotic stress. In addition, supply of quality food to the ever-increasing world's population has raised the food demand tremendously. Therefore, enhanced agricultural crop productivity is the only option to mitigate these concerns. It ultimately demanded the often and indiscriminate use of synthetic agrochemicals such as chemical fertilizers, pesticides, insecticides, herbicides, etc. for the management of various biotic stresses including a variety of plant pathogens. However, the food chain and biosphere are severely impacted due to the use of such harmful agrochemicals and their byproducts. Hence, it is need of hour to search for novel, effective and ecofriendly approaches for the management of biotic stresses in crop plants. Particularly, in plant disease management, efforts are being made to take advantage of newly emerged science i.e. nanotechnology for the creation of inorganic nanoparticles (NPs) such as metallic, oxide, sulphide, etc. through different routes and their application in plant disease management. Among these, green nanomaterials which are synthesized using environmentally friendly methods and materials reported to possess unique properties (such as high surface area, adjustable size and shape, and specific functionalities) making them ideal candidates for targeted disease control. Nanotechnology can stop crop losses by managing specific diseases from soil, plants, and hydroponic systems. This review mainly focuses on the application of biologically produced green NPs in the treatment of plant diseases caused due to bacteria, viruses, and fungi. The utilization of green synthesis of NPs in the creation of intelligent targeted pesticide and biomolecule control delivery systems, for disease management is considered environmentally friendly due to its pursuit of less hazardous, sustainable, and environmentally friendly methods.
Collapse
Affiliation(s)
- Dhiraj L Wasule
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
| | - Prashant R Shingote
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India.
| | - Shreshtha Saxena
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
| |
Collapse
|
13
|
Jali P, Acharya S, Mahalik G. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. DISCOVER NANO 2024; 19:117. [PMID: 39009869 PMCID: PMC11250757 DOI: 10.1186/s11671-024-04059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Plant diseases cause colossal crop loss worldwide and are the major yield constraining component in agriculture. Nanotechnology, which has the possible to revolutionize numerous fields of science, innovation, drug, and agriculture. Nanotechnology can be utilized for combating the plant infectious diseases and nano-materials can be utilized as transporter of dynamic elements of pesticides, host defense etc. to the pathogens. The analysis of diseases, finding of pathogens may turn out to be substantially more precise and fast with the utilization of nanosensors. As worldwide demand for food production raises against an evolving atmosphere, nanotechnology could reasonably alleviate numerous challenges in disease managing by diminishing chemical inputs and advancing quick recognition of pathogens. The major goal of this review is to increase growth and productivity using supplements with nanoparticles. (i.e., metals, metal oxides, and carbon) to treat crop diseases and make agricultural practices more productive and sustainable. Prominently, this improved crop may not only be straight connected to the diminished occurrence of pathogenic microorganisms, yet in might possibly add nutritional benefits of the nanoparticles themselves, particularly for the micronutrients important for generating host resistance.
Collapse
Affiliation(s)
- Pallavi Jali
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Srinivas Acharya
- Department of Environmental Science, Government Autonomous College, Phulbani, Odisha, India.
| | - Gyanranjan Mahalik
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Jatani, Odisha, India.
| |
Collapse
|
14
|
Coman NA, Nicolae-Maranciuc A, Berța L, Nicolescu A, Babotă M, Man A, Chicea D, Farczadi L, Jakab-Farkas L, Silva B, Veiga-Matos J, Tanase C. Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties. Antioxidants (Basel) 2024; 13:822. [PMID: 39061891 PMCID: PMC11274062 DOI: 10.3390/antiox13070822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Quercus species are utilized for their durable wood, providing sustenance for wildlife, conserving biodiversity, and contributing ecological, medicinal, and esthetic benefits to ecosystems and landscapes. In this study, we aimed to use the bark of three Quercus species (Q. dalechampi, Q. fraineto, and Q. petraea) for the synthesis of silver and gold nanoparticles (AgNPs and AuNPs). The aqueous extracts from the bark of Quercus sp. acted both as reducing and stabilizing agent, facilitating the rapid synthesis of AuNPs (AuQD, AuQF, and AuQP) and AgNPs (AgQD, AgQF, and AgQP). The obtained nanoparticles were characterized using UV-vis spectroscopy, TEM, DLS, and FTIR. Characterizations revealed that the nanoparticles exhibited a variety of shapes, such as polygonal, triangular, and spherical forms, with sizes ranging between 14 and 24 nm for AuNPs and 45-70 nm for AgNPs. The total phenolic content was assessed through spectroscopic methods, while several individual phenolic compounds were identified and quantified using UPLC-PDA. Furthermore, we assessed the antioxidant, antibacterial, and antifungal capacities of AuNPs, AgNPs, and raw extracts. The highest antioxidant activity was observed for raw extracts, followed by AgNPs and AuNPs, while the most potent antibacterial and antifungal activity was observed in AgQP. Moreover, cytotoxicity was examined in a human keratinocyte cell line (HaCaT). The results indicated no cytotoxic effects for AuNPs, while AgNPs and the raw extracts exhibited cytotoxic effects after 48 h of incubation. This research underscores the multifaceted utility of Quercus bark extracts in the green synthesis of metallic nanoparticles and their subsequent bioactivity assessment, suggesting promising perspectives for their application in various fields while urging cautious consideration of their cytotoxic implications.
Collapse
Affiliation(s)
- Năstaca-Alina Coman
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania; (A.N.-M.); (D.C.)
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Lavinia Berța
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - Alexandru Nicolescu
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Mihai Babotă
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
- Research Center of Medicinal and Aromatic Plants, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - Adrian Man
- Department of Microbiology, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania; (A.N.-M.); (D.C.)
| | - Lenard Farczadi
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - László Jakab-Farkas
- Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, 540485 Târgu Mures, Romania;
| | - Barbara Silva
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (B.S.); (J.V.-M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jéssica Veiga-Matos
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (B.S.); (J.V.-M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Corneliu Tanase
- Research Center of Medicinal and Aromatic Plants, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| |
Collapse
|
15
|
Hemalatha M, Hilli J, Chandrashekhar S, Vijayakumar A, Reddy UG, Tippannavar P. Application of green synthesized Ag and Cu nanoparticles for the control of bruchids and their impact on seed quality and yield in greengram. Heliyon 2024; 10:e31551. [PMID: 38828321 PMCID: PMC11140714 DOI: 10.1016/j.heliyon.2024.e31551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Storage pests, particularly bruchids, are major biotic constraints causing significant storage losses in pulses. Conventional control methods relying on insecticides and fumigants often lead to food contamination due to toxic pesticide residues and a rapid decline in seed germination. In this investigation, through green nano-technological application, a promising and sustainable alternative for pest management is developed. Silver and copper nanoparticles were synthesized through ocimum leaf extract. The characterization of silver and copper nanoparticles was carried out by UV-spectroscopy, particle size analyzer, scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared. Both the nanoparticles were spherical and crystalline in nature. Greengram seeds were primed with standardized silver and copper nanoparticles at different concentrations (1000, 1500, and 2000 ppm) and compared with castor-treated, deltamethrin-treated, and untreated control seeds for seed quality, growth, and yield. After one month of storage, all the pulse beetles released in different treatments exhibited 100 % mortality, whereas in control, the insects multiplied. At the end of nine months, the control seeds had shown 72 % damage and 39.67 % germination. In contrast, silver nanoparticles at 1000 ppm showed no seed damage and achieved 81.67 % germination, which was on par with copper nanoparticles at 1000 ppm with 79.33 % germination. Seed priming of silver and copper nanoparticles at 1000 ppm also demonstrated superior performance in all the seed quality and biochemical parameters (alpha amylase and catalase) throughout the storage period. Whereas, in the greenhouse experiment, enhanced growth (35.96 cm, 46.48 cm, and 53.00 cm at 30, 60 DAS, and at harvest, respectively) and yield per plant (3.75 g) were significantly higher in plants that were given foliar application with silver nanoparticles at 1000 ppm. Furthermore, foliar application of these nanoparticles at all concentrations (1000, 1500, and 2000 ppm) did not exhibit any adverse effects on soil microbial organisms, as assessed by dehydrogenase enzyme activity. Hence, this research highlights the potential use of silver and copper nanoparticles at 1000 ppm as effective tools for storage pest management and contributing to improved agricultural productivity and sustainability.
Collapse
Affiliation(s)
- M. Hemalatha
- Department of Seed Science and Technology, College of Agriculture, University of Agricultural Sciences (UAS), Dharwad, 580 005, Karnataka, India
| | - J.S. Hilli
- College of Agriculture, Hanumanamatti, UAS, Dharwad, 580 005, Karnataka, India
| | - S.S. Chandrashekhar
- Department of Seed Science and Technology, College of Agriculture, University of Agricultural Sciences (UAS), Dharwad, 580 005, Karnataka, India
| | | | | | | |
Collapse
|
16
|
Krumova E, Benkova D, Stoyancheva G, Dishliyska V, Miteva-Staleva J, Kostadinova A, Ivanov K, El-Sayed K, Staneva G, Elshoky HA. Exploring the mechanism underlying the antifungal activity of chitosan-based ZnO, CuO, and SiO 2 nanocomposites as nanopesticides against Fusarium solani and Alternaria solani. Int J Biol Macromol 2024; 268:131702. [PMID: 38643917 DOI: 10.1016/j.ijbiomac.2024.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Chitosan-based nanocomposites (CS NCs) are gaining considerable attention as multifaceted antifungal agents. This study investigated the antifungal activity of NCs against two phytopathogenic strains: Fusarium solani (F. solani) and Alternaria solani (A. solani). Moreover, it sheds light on their underlying mechanisms of action. The NCs, CS-ZnO, CS-CuO, and CS-SiO2, were characterized using advanced methods. Dynamic and electrophoretic light scattering techniques revealed their size range (60-170 nm) and cationic nature, as indicated by the positive zeta potential values (from +16 to +22 mV). Transmission electron microscopy revealed the morphology of the NCs as agglomerates formed between the chitosan and oxide components. X-ray diffraction patterns confirmed crystalline structures with specific peaks indicating their constituents. Antifungal assessments using the agar diffusion technique demonstrated significant inhibitory effects of the NCs on both fungal strains (1.5 to 4-fold), surpassing the performance of the positive control, nystatin. Notably, the NCs exhibited superior antifungal potency, with CS-ZnO NCs being the most effective. A. solani was the most sensitive strain to the studied agents. Furthermore, the tested NCs induced oxidative stress in fungal cells, which elevated stress biomarker levels, such as superoxide dismutase (SOD) activity and protein carbonyl content (PCC), 2.5 and 6-fold for the most active CS-CuO in F. solani respectively. Additionally, they triggered membrane lipid peroxidation up to 3-fold higher compared to control, a process that potentially compromises membrane integrity. Laurdan fluorescence spectroscopy highlighted alterations in the molecular organization of fungal cell membranes induced by the NCs. CS-CuO NCs induced a membrane rigidifying effect, while CS-SiO2 and CS-ZnO could rigidify membranes in A. solani and fluidize them in F. solani. In summary, this study provides an in-depth understanding of the interactions of CS-based NCs with two fungal strains, showing their antifungal activity and offering insights into their mechanisms of action. These findings emphasize the potential of these NCs as effective and versatile antifungal agents.
Collapse
Affiliation(s)
- Ekaterina Krumova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Dayana Benkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Galina Stoyancheva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Jeny Miteva-Staleva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Kamen Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Kh El-Sayed
- Faculty of Engineering, Galala University, Attaka 51745, Suez, Egypt; Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Hisham A Elshoky
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt; Tumor Biology Research Program, Department of Research, Children's Cancer Hospital, Cairo 11441, Egypt.
| |
Collapse
|
17
|
Choudhary S, Kumawat G, Khandelwal M, Khangarot RK, Saharan V, Nigam S, Harish. Phyco-synthesis of silver nanoparticles by environmentally safe approach and their applications. Sci Rep 2024; 14:9568. [PMID: 38671168 PMCID: PMC11053078 DOI: 10.1038/s41598-024-60195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, there has been an increasing interest in the green synthesis of metallic nanoparticles, mostly because of the evident limitations associated with chemical and physical methods. Green synthesis, commonly referred to as "biogenic synthesis," is seen as an alternative approach to produce AgNPs (silver nanoparticles). The current work focuses on the use of Asterarcys sp. (microalga) for biological reduction of AgNO3 to produce AgNPs. The optimal parameters for the reduction of AgNPs were determined as molarity of 3 mM for AgNO3 and an incubation duration of 24 h at pH 9, using a 20:80 ratio of algal extract to AgNO3. The biosynthesized Ast-AgNPs were characterised using ultraviolet-visible spectroscopy (UV-Vis), zeta potential, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) patterns. The nanoparticles exhibited their highest absorption in the UV-visible spectra at 425 nm. The X-ray diffraction (XRD) investigation indicated the presence of characteristic peaks at certain angles: 38.30° (1 1 1), 44.40° (2 0 0), 64.64° (2 2 0), and 77.59° (3 1 1) according to the JCPDS file No. 04-0783. Based on SEM and TEM, the Ast-AgNPs had an average size of 35 nm and 52 nm, respectively. The zeta potential was determined to be - 20.8 mV, indicating their stability. The highest antibacterial effectiveness is shown against Staphylococcus aureus, with a zone of inhibition of 25.66 ± 1.52 mm at 250 μL/mL conc. of Ast-AgNPs. Likewise, Ast-AgNPs significantly suppressed the growth of Fusarium sp. and Curvularia sp. by 78.22% and 85.05%, respectively, at 150 μL/mL conc. of Ast-AgNPs. In addition, the Ast-AgNPs exhibited significant photocatalytic activity in degrading methylene blue (MB), achieving an 88.59% degradation in 120 min, revealing multiple downstream applications of Ast-AgNPs.
Collapse
Affiliation(s)
- Sunita Choudhary
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Geetanjali Kumawat
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Manisha Khandelwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | | | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, Rajasthan, India
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Harish
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India.
| |
Collapse
|
18
|
Khan MH, Unnikrishnan S, Ramalingam K. Antipathogenic Efficacy of Biogenic Silver Nanoparticles and Antibiofilm Activities Against Multi-drug-Resistant ESKAPE Pathogens. Appl Biochem Biotechnol 2024; 196:2031-2052. [PMID: 37462813 DOI: 10.1007/s12010-023-04630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 04/23/2024]
Abstract
The silver nanoparticles (AgNPs) were produced by employing a biogenic loom and tested for antipathogenic assets against multi-drug-resistant (MDR) ESKAPE bacteria. Biogenically synthesized AgNPs were characterized adopting various high-throughput techniques such as UHRTEM, SEM with EDX, DLS, TGA-DTA, and XRD and spectroscopic analysis showed polydispersion of nanoparticles. In this context, AgNPs with the attribute of spherical-shaped nanoparticles with an average size of 26 nm were successfully synthesized utilizing bacterial supernatant. The antipathogenic activities of AgNPs were assessed against 11 strains of MDR ESKAPE bacteria including Enterococcus faecium; methicillin-resistant Staphylococcus aureus; Klebsiella pneumonia; Acinetobacter baumannii; Pseudomonas aeruginosa; Enterobacter aerogenes; and Enterobacter species. The exposure of biogenic AgNPs in a well diffusion assay showed all the growth inhibitions of ESKAPE bacteria at 200 μg/ml after 18 h of incubation. Growth kinetics demonstrated maximum killing at 60 μg/ml after 4 h of completion. The highest biofilm depletions were found at 100 μg/ml in adhesion assay. Live/dead assays showed effective killing of the ESKAPE bacteria at 10 μg/ml in pre-existing biofilms. The effective inhibitory concentrations of AgNPs were investigated ranging from 10 to 200 μg/ml. The selected pathogens found sensitive to AgNPs are statistically significant (P < 0.05) than that of cefotaxime/AgNO3. Consequently, a broad spectrum of antimicrobial potentials of AgNPs can be alternative to conventional antimicrobial agents for future medicine.
Collapse
Affiliation(s)
- Mohd Hashim Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India
| | - Sneha Unnikrishnan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India
| | - Karthikeyan Ramalingam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India.
| |
Collapse
|
19
|
Vaidya S, Deng C, Wang Y, Zuverza-Mena N, Dimkpa C, White JC. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate? NANOIMPACT 2024; 34:100502. [PMID: 38508516 DOI: 10.1016/j.impact.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Although the Green Revolution dramatically increased food production, it led to non- sustainable conventional agricultural practices, with productivity in general declining over the last few decades. Maintaining food security with a world population exceeding 9 billion in 2050, a changing climate, and declining arable land will be exceptionally challenging. In fact, nothing short of a revolution in how we grow, distribute, store, and consume food is needed. In the last ten years, the field of nanotoxicology in plant systems has largely transitioned to one of sustainable nano-enabled applications, with recent discoveries on the use of this advanced technology in agriculture showing tremendous promise. The range of applications is quite extensive, including direct application of nanoscale nutrients for improved plant health, nutrient biofortification, increased photosynthetic output, and greater rates of nitrogen fixation. Other applications include nano-facilitated delivery of both fertilizers and pesticides; nano-enabled delivery of genetic material for gene silencing against viral pathogens and insect pests; and nanoscale sensors to support precision agriculture. Recent efforts have demonstrated that nanoscale strategies increase tolerance to both abiotic and biotic stressors, offering realistic potential to generate climate resilient crops. Considering the efficiency of nanoscale materials, there is a need to make their production more economical, alongside efficient use of incumbent resources such as water and energy. The hallmark of many of these approaches involves much greater impact with far less input of material. However, demonstrations of efficacy at field scale are still insufficient in the literature, and a thorough understanding of mechanisms of action is both necessary and often not evident. Although nanotechnology holds great promise for combating global food insecurity, there are far more ways to do this poorly than safely and effectively. This review summarizes recent work in this space, calling out existing knowledge gaps and suggesting strategies to alleviate those concerns to advance the field of sustainable nano-enabled agriculture.
Collapse
Affiliation(s)
- Shital Vaidya
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Chaoyi Deng
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Yi Wang
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Nubia Zuverza-Mena
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Christian Dimkpa
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jason C White
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States.
| |
Collapse
|
20
|
Warghane A, Saini R, Shri M, Andankar I, Ghosh DK, Chopade BA. Application of nanoparticles for management of plant viral pathogen: Current status and future prospects. Virology 2024; 592:109998. [PMID: 38301447 DOI: 10.1016/j.virol.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Plant viruses are responsible for nearly 47 % of all crop losses brought by plant diseases, which have a considerable negative impact on agricultural output. Nanoparticles have the potential to greatly raise agricultural output due to their wonderful applications in the fields of highly sensitive biomolecular detection, disease diagnostics, antimicrobials, and therapeutic compounds. The application of nanotechnology in plant virology is known as nanophytovirology, and it involves biostimulation, drug transport, genetic manipulation, therapeutic agents, and induction of plant defenses. The inactivation and denaturation of capsid protein, nucleic acids (RNA or DNA), and other protein constituents are involved in the underlying mechanism. To determine the precise mechanism by which nanoparticles affect viral mobility, reproduction, encapsidation, and transmission, more research is however required. Nanoparticles can be used to precisely detect plant viruses using nanobiosensors or as biostimulants. The varieties of nanoparticles employed in plant virus control and their methods of virus suppression are highlighted in this review.
Collapse
Affiliation(s)
- Ashish Warghane
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India.
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India.
| | - Manju Shri
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Isha Andankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
21
|
Akhtar MF, Irshad M, Ali S, Summer M, Jawad M, Akhter MF, Farooq MA, Asghar G. Spectrophotometric, microscopic, crystallographic and X-ray based optimization and biological applications of Olea paniculata leaf extract mediated silver nanoparticles. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 166:97-105. [DOI: 10.1016/j.sajb.2024.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
|
22
|
Strach A, Dulski M, Wasilkowski D, Matus K, Dudek K, Podwórny J, Rawicka P, Grebnevs V, Waloszczyk N, Nowak A, Poloczek P, Golba S. Multifaceted Assessment of Porous Silica Nanocomposites: Unraveling Physical, Structural, and Biological Transformations Induced by Microwave Field Modification. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:337. [PMID: 38392710 PMCID: PMC10893391 DOI: 10.3390/nano14040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
In response to the persistent challenge of heavy and noble metal environmental contamination, our research explores a new idea to capture silver through porous spherical silica nanostructures. The aim was realized using microwave radiation at varying power (P = 150 or 800 W) and exposure times (t = 60 or 150 s). It led to the development of a silica surface with enhanced metal-capture capacity. The microwave-assisted silica surface modification influences the notable changes within the carrier but also enforces the crystallization process of silver nanoparticles with different morphology, structure, and chemical composition. Microwave treatment can also stimulate the formation of core-shell bioactive Ag/Ag2CO3 heterojunctions. Due to the silver nanoparticles' sphericity and silver carbonate's presence, the modified nanocomposites exhibited heightened toxicity against common microorganisms, such as E. coli and S. epidermidis. Toxicological assessments, including minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) determinations, underscored the efficacy of the nanocomposites. This research represents a significant stride in addressing pollution challenges. It shows the potential of microwave-modified silicas in the fight against environmental contamination. Microwave engineering underscores a sophisticated approach to pollution remediation and emphasizes the pivotal role of nanotechnology in shaping sustainable solutions for environmental stewardship.
Collapse
Affiliation(s)
- Aleksandra Strach
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland; (D.W.); (A.N.)
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland;
| | - Karolina Dudek
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland; (K.D.); (J.P.)
| | - Jacek Podwórny
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland; (K.D.); (J.P.)
| | - Patrycja Rawicka
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Vladlens Grebnevs
- Faculty of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland;
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland;
| | - Anna Nowak
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland; (D.W.); (A.N.)
| | - Paulina Poloczek
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| |
Collapse
|
23
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
24
|
Vijayakumar G, Kim HJ, Jo JW, Rangarajulu SK. Macrofungal Mediated Biosynthesis of Silver Nanoparticles and Evaluation of Its Antibacterial and Wound-Healing Efficacy. Int J Mol Sci 2024; 25:861. [PMID: 38255936 PMCID: PMC10815654 DOI: 10.3390/ijms25020861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Recently, the utilization of biological agents in the green synthesis of nanoparticles has been given interest. In this study, silver nanoparticles were synthesized from an aqueous extract of macrofungus (mushroom), namely Phellinus adamantinus, in a dark room using 20 µL of silver nitrate. Biosynthesized silver nanoparticles were confirmed by analyzing them using a UV-Vis (ultraviolet-visible) spectrophotometer. The synthesized silver nanoparticles were optimized at different pH and temperatures with various dosages of AgNO3 (silver nitrate) and fungal extracts. The synthesized AgNPs (silver nanoparticles) were characterized using TEM (transmission electron microscopy) and EDX (energy-dispersive X-ray) analyses, which confirmed the presence of silver nanoparticles. The size of the nanosilver particles was found to be 50 nm with higher stability. The mycosynthesized AgNPs showed effective antibacterial activity against strains of Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (E. coli and Pseudomonas aeruginosa) bacteria. The minimum inhibitory concentration (MIC) was found to be 3.125 μg/mL by MIC assay. The MTT assay (3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl-2H-tetrazolium bromide) was performed to study cytotoxicity, and reduced cell viability was recorded at 100 μg/mL. Silver-Polygalacturonic acid-Polyvinyl alcohol ((Ag-PGA)-PVA) nanofiber was prepared using the electrospinning method. The in vitro wound scratch assay was demonstrated to study the wound-healing efficacy of the prepared nanofiber. The wound-healing efficacy of the AgNP-incorporated nanofiber was found to be 20% after 24 h. This study will lay a platform to establish a unique route to the development of a novel nanobiomaterial and its application in antibacterial and wound-healing therapy.
Collapse
Affiliation(s)
- Gayathri Vijayakumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India;
| | - Hyung Joo Kim
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (H.J.K.); (J.W.J.)
| | - Jeong Wook Jo
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (H.J.K.); (J.W.J.)
| | | |
Collapse
|
25
|
Mohanta YK, Mishra AK, Panda J, Chakrabartty I, Sarma B, Panda SK, Chopra H, Zengin G, Moloney MG, Sharifi-Rad M. Promising applications of phyto-fabricated silver nanoparticles: Recent trends in biomedicine. Biochem Biophys Res Commun 2023; 688:149126. [PMID: 37951153 DOI: 10.1016/j.bbrc.2023.149126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/13/2023]
Abstract
The prospective contribution of phyto-nanotechnology to the synthesis of silver nanomaterials for biomedical purposes is attracting increasing interest across the world. Green synthesis of silver nanoparticles (Ag-NPs) through plants has been extensively examined recently, and it is now seen to be a green and efficient path for future exploitation and development of practical nano-factories. Fabrication of Ag-NPs is the process involves use of plant extracts/phyto-compounds (e.g.alkaloids, terpenoids, flavonoids, and phenolic compounds) to synthesise nanoparticles in more economical and feasible. Several findings concluded that in the field of medicine, Ag-NPs play a major role in pharmacotherapy (infection and cancer). Indeed, they exhibits novel properties but the reason is unclear (except some theoretical interpretation e.g. size, shape and morphology). But recent technological advancements help to address these questions by predicting the unique properties (composition and origin) by characterizing physical, chemical and biological properties. Due to increased list of publications and their application in the field of agriculture, industries and pharmaceuticals, issues relating to toxicity are unavoidable and question of debate. The present reviews aim to find out the role of plant extracts to synthesise Ag-NPs. It provides an overview of various phytocompounds and their role in the field of biomedicine (antibacterial, antioxidant, anticancer, anti-inflammatory etc.). In addition, this review also especially focused on various applications such as role in infection, oxidative stress, application in medical engineering, diagnosis and therapy, medical devices, orthopedics, wound healing and dressings. Additionally, the toxic effects of Ag-NPs in cell culture, tissue of different model organism, type of toxic reactions and regulation implemented to reduce associated risk are discussed critically. Addressing all above explanations, this review focus on the detailed properties of plant mediated Ag-NPs, its impact on biology, medicine and their commercial properties as well as toxicity.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India.
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Nagarwara, Bangalore, 560045, Karnataka, India.
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, 787057, Assam, India.
| | - Sujogya Kumar Panda
- Centre of Environment Climate Change and Public Health, RUSA 2.0, Deapartment of Zoology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and TechnicalSciences, Chennai, 602105, Tamil Nadu, India.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mark G Moloney
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
26
|
Ejaz M, Gul A, Ozturk M, Hafeez A, Turkyilmaz Unal B, Jan SU, Siddique MT. Nanotechnologies for environmental remediation and their ecotoxicological impacts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1368. [PMID: 37875634 DOI: 10.1007/s10661-023-11661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/01/2023] [Indexed: 10/26/2023]
Abstract
Environmental nanoremediation is an emerging technology that aims to rapidly and efficiently remove contaminants from the polluted sites using engineered nanomaterials (ENMs). Inorganic nanoparticles which are generally metallic, silica-based, carbon-based, or polymeric in nature serve to remediate through chemical reactions, filtration, or adsorption. Their greater surface area per unit mass and high reactivity enable them to treat groundwater, wastewater, oilfields, and toxic industrial contaminants. Despite the growing interest in nanotechnological solutions for bioremediation, the environmental and human hazard associated with their use is raising concerns globally. Nanoremediation techniques when compared to conventional remediation solutions show increased effectivity in terms of cost and time; however, the main challenge is the ability of ENMs to remove contaminants from different environmental mediums by safeguarding the ecosystem. ENMs improving the accretion of the pollutant and increasing their bioavailability should be rectified along with the vigilant management of their transfer to the upper levels of the food chain which subsequently causes biomagnification. The ecosystem-centered approach will help monitor the ecotoxicological impacts of nanoremediation considering the safety, sustainability, and proper disposal of ENMs. The environment and human health risk assessment of each novel engineered nanomaterial along with the regulation of life cycle assessment (LCA) tools of ENMs for nanoremediation can help investigate the possible environmental hazard. This review focuses on the currently available nanotechnological methods used for environmental remediation and their potential toxicological impacts on the ecosystem.
Collapse
Affiliation(s)
- Mahnoor Ejaz
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan.
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Türkiye.
| | - Ahmed Hafeez
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Faculty of Arts and Science, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Sami Ullah Jan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
27
|
Ansari M, Ahmed S, Abbasi A, Khan MT, Subhan M, Bukhari NA, Hatamleh AA, Abdelsalam NR. Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Sci Rep 2023; 13:18048. [PMID: 37872286 PMCID: PMC10593853 DOI: 10.1038/s41598-023-45038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
Nanotechnology is one of the fastest-growing markets, but developing eco-friendly products, their maximum production, stability, and higher yield is a challenge. In this study, silver nanoparticles were synthesized using an easily available resource, leaves extract of the Neem (Azadirachta indica) plant, as a reducing and capping agent, determined their effect on germination and growth of tomato plants. The maximum production of silver nanoparticles was noted at 70 °C after 3 h of reaction time while treating the 10 ml leaf extract of Neem plant with 10 ml of 1 mM silver nitrate. The impact of the extract preparation method and solvent type on the plant mediated fabrication of silver nanoparticles was also investigated. The UV-spectrophotometric analysis confirmed the synthesis of silver nanoparticles and showed an absorption spectrum within Δ420-440 nm range. The size of the fabricated silver nanoparticles was 22-30 nm. The functional groups such as ethylene, amide, carbonyl, methoxy, alcohol, and phenol attached to stabilize the nanoparticles were observed using the FTIR technique. SEM, EDX, and XRD analyses were performed to study the physiochemical characteristics of synthesized nanoparticles. Silver nanoparticles increased the germination rate of tomato seeds up to 70% while decreasing the mean germination time compared to the control. Silver nanoparticles applied at varying concentrations significantly increased the shoot length (25 to 80%), root length (10 to 60%), and fresh biomass (10 to 80%) biomass of the tomato plant. The production of total chlorophyll, carotenoid, flavonoids, soluble sugar, and protein was significantly increased in tomato plants treated with 5 and 10 ppm silver nanoparticles compared to the control. Green synthesized silver nanoparticles are cost-effective and nontoxic and can be applied in agriculture, biomedical, and other fields.
Collapse
Affiliation(s)
- Madeeha Ansari
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan.
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Muhammad Tajammal Khan
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Mishal Subhan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, 66000, Pakistan
| | - Najat A Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
28
|
Pramanik B, Sar P, Bharti R, Gupta RK, Purkayastha S, Sinha S, Chattaraj S, Mitra D. Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107831. [PMID: 37418817 DOI: 10.1016/j.plaphy.2023.107831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
In the era of dire environmental fluctuations, plants undergo several stressors during their life span, which severely impact their development and overall growth in negative aspects. Abiotic stress factors, especially moisture stress i.e shortage (drought) or excess (flooding), salinity, temperature divergence (i.e. heat and cold stress), heavy metal toxicity, etc. create osmotic and ionic imbalance inside the plant cells, which ultimately lead to devastating crop yield, sometimes crop failure. Apart from the array of abiotic stresses, various biotic stress caused by pathogens, insects, and nematodes also affect production. Therefore, to combat these major challenges in order to increase production, several novel strategies have been adapted, among which the use of nanoparticles (NPs) i.e. nanotechnology is becoming an emerging tool in various facets of the current agriculture system, nowadays. This present review will elaborately depict the deployment and mechanisms of different NPs to withstand these biotic and abiotic stresses, along with a brief overview and indication of the future research works to be oriented based on the steps provided for future research in advance NPs application through the sustainable way.
Collapse
Affiliation(s)
- Biswajit Pramanik
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Puranjoy Sar
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India.
| | - Ruchi Bharti
- Department of Agronomy, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Rahul Kumar Gupta
- Department of Agronomy, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Shampa Purkayastha
- Department of Genetics and Plant Breeding and Seed Science and Technology, Centurion University of Technology and Management, Paralekhamundi, 761211, Odisha, India
| | - Somya Sinha
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Sourav Chattaraj
- Department of Microbiology, Raiganj University, Raiganj, 733134, Uttar Dinajpur, West Bengal, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733134, Uttar Dinajpur, West Bengal, India.
| |
Collapse
|
29
|
Tiwari DK. Nanomaterials as a Replacement for Traditional Agrochemicals: Strategies Towards Sustainable Agriculture. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:13-14. [PMID: 37613117 DOI: 10.1093/micmic/ozad067.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- D K Tiwari
- Consejo Nacional de Ciencia y Tecnología- El Colegio de Michoacán, Michoacán, México
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Michoacán, México
| |
Collapse
|
30
|
Alhammad BA, Abdel-Aziz HMM, Seleiman MF, Tourky SMN. How Can Biological and Chemical Silver Nanoparticles Positively Impact Physio-Chemical and Chloroplast Ultrastructural Characteristics of Vicia faba Seedlings? PLANTS (BASEL, SWITZERLAND) 2023; 12:2509. [PMID: 37447073 DOI: 10.3390/plants12132509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Through interactions with plant cells, silver nanoparticles (AgNPs) with both biological and chemical origins can stimulate physiological and metabolic processes in plants. To ensure their safe application in the food chain, it is necessary to investigate their effects on plant systems. Therefore, the effects of chemical AgNPs (chem-AgNPs) and biologically synthesized AgNPs (bio-AgNPs) at different levels (i.e., 0, 10, and 50 ppm) on physiological and biochemical traits {i.e., root and shoot growth traits, photosynthetic pigments (Chl a, Chl b, carotenoids, and total pigments), soluble sugars, total carbohydrates, starch, H2O2, and antioxidant enzyme activities} of Vicia faba L. seedlings were investigated. AgNPs were biosynthesized from silver nitrate (AgNO3) by a green synthesis approach using Jatropha curcas seed extract. The synthesized AgNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), zeta potential, Fourier-transform infrared spectra (FT-IR), and X-ray diffraction (XRD). The results showed that bio-AgNPs at 10 ppm resulted in the highest growth, physiological, and biological traits of faba bean seedlings in comparison with those obtained from both AgNO3 and chem-AgNPs treatments. On the other hand, all AgNPs treatments adversely affected the chloroplast ultrastructure, however, fewer negative effects were obtained with the application of 10 ppm bio-AgNPs. In addition, the roots and shoots of seedlings contained the lowest Ag content under different treatments at 10 ppm AgNPs in comparison to the highest level of AgNPs (50 ppm), which indicates that additional studies should be incorporated to ensure safe use of lower concentrations of bio-AgNPs in seed priming. In conclusion, the application of biogenic nanoparticles at 10 ppm can be recommended to enhance plant growth and the productivity of strategic crops.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Heba M M Abdel-Aziz
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Shaimaa M N Tourky
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
31
|
Guzmán-Altamirano MÁ, Rebollo-Plata B, Joaquín-Ramos ADJ, Gómez-Espinoza MG. Green synthesis and antimicrobial mechanism of nanoparticles: applications in agricultural and agrifood safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2727-2744. [PMID: 35941521 DOI: 10.1002/jsfa.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing demand for food and its safety are a challenge for agriculture and agrifood. This has led to the incorporation of alternatives such as organic agriculture, the use of biocontrollers, the development of transgenic plants resistant to pathogens and the incorporation of nanotechnology. In this sense, agrochemicals based on nanoparticles (NPs) have been developed. Recently, the green synthesis of NPs has grown rapidly and, for this reason, molecules, microorganisms, fungi and plants are used. Synthesis from plant extracts offers a broad spectrum and, despite the fact that NPs are usually dispersed in size and shape, extensive antimicrobial effectiveness has been demonstrated at nanomolar concentrations. It has been shown that the mechanism of action can be through the dissipation of the driving force of the protons, the alteration of cellular permeability, the formation of bonds with the thiol group of the proteins, the generation of reactive species of oxygen, and the hyperoxidation of DNA, RNA and even the cell membrane. To improve the efficiency of NPs, modifications have been made such as coating with other metals, the addition of antibiotics, detergents and surfactants, as well as the acidification of the solution. Consequently, NPs are considered as a promising method for achieving safety in the agricultural and agrifood area. However, it is necessary to investigate the side effects of NPs, when applied in agroecological systems, on the textural, nutriment and sensory properties of food, as well as the impact on human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bernabe Rebollo-Plata
- Departamento de Ing. Electrónica, Instituto Tecnológico superior de Irapuato, Guanajuato, México
| | | | | |
Collapse
|
32
|
Green synthesis of nanoparticles using botanicals and their application in management of fungal phytopathogens: a review. Arch Microbiol 2023; 205:94. [PMID: 36800046 DOI: 10.1007/s00203-023-03431-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Green synthesis of nanoparticles is an emerging aspect in plant disease management that blends nanotechnology and plant-derived ingredients to produce a biocontrol formulation. Different physical and chemical processes employed in the synthesis of nanoparticles are polluting, expensive, and also release hazardous by- products. The range of secondary metabolites present in plants makes them efficient reducing and stabilizing agent during the synthesis process. These metabolites serve a vital role in plant defense against the invasion of phytopathogens including fungi, bacteria, viruses, insect pests, etc. The plant metabolites, such as sugars, terpenoids, polyphenols, alkaloids, phenolic acids, and proteins, have been shown to be crucial in the reduction of metal ions into nanoparticles. In green synthesis of nanoparticles, the plant extracts are used as potential reducing and capping. This also restricts the formation of clusters or aggregates and improves the colloidal stability. The nanoparticles exhibit excellent antimycotic against a variety of phytopathogens and are very efficient in managing plant diseases. The aim of this review is to highlight plants, phytochemicals exhibiting antifungal properties, green synthesis of nanoparticles using plant material and their antimycotic activity.
Collapse
|
33
|
Giri VP, Shukla P, Tripathi A, Verma P, Kumar N, Pandey S, Dimkpa CO, Mishra A. A Review of Sustainable Use of Biogenic Nanoscale Agro-Materials to Enhance Stress Tolerance and Nutritional Value of Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:815. [PMID: 36840163 PMCID: PMC9967242 DOI: 10.3390/plants12040815] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Climate change is more likely to have a detrimental effect on the world's productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are wreaking havoc on human health, especially in rural regions of less developed countries. This could be because plants are unable to absorb the nutrients in conventional fertilizers, or these fertilizers have an inappropriate or unbalanced nutrient composition. Chemical fertilizers have been used for centuries and have considerably increased crop yields. However, they also disrupt soil quality and structure, eventually impacting the entire ecosystem. To address the situation, it is necessary to develop advanced materials that can release nutrients to targeted points in the plant-soil environment or appropriate receptors on the leaf in the case of foliar applications. Recently, nanotechnology-based interventions have been strongly encouraged to meet the world's growing food demand and to promote food security in an environmentally friendly manner. Biological approaches for the synthesis of nanoscale agro-materials have become a promising area of research, with a wide range of product types such as nanopesticides, nanoinsecticides, nanoherbicides, nanobactericides/fungicides, bio-conjugated nanocomplexes, and nanoemulsions emerging therefrom. These materials are more sustainable and target-oriented than conventional agrochemicals. In this paper, we reviewed the literature on major abiotic and biotic stresses that are detrimental to plant growth and productivity. We comprehensively discussed the different forms of nanoscale agro-materials and provided an overview of biological approaches in nano-enabled strategies that can efficiently alleviate plant biotic and abiotic stresses while potentially enhancing the nutritional values of plants.
Collapse
Affiliation(s)
- Ved Prakash Giri
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Department of Botany, Lucknow University, Hasanganj, Lucknow 226007, India
| | - Pallavi Shukla
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Tripathi
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Verma
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Navinit Kumar
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shipra Pandey
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Christian O. Dimkpa
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Shahbaz M, Akram A, Raja NI, Mukhtar T, Mehak A, Fatima N, Ajmal M, Ali K, Mustafa N, Abasi F. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS One 2023; 18:e0274679. [PMID: 36749754 PMCID: PMC9904489 DOI: 10.1371/journal.pone.0274679] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 02/08/2023] Open
Abstract
Plant extract-based green synthesis of nanoparticles is an emerging class of nanotechnology that has revolutionized the entire field of biological sciences. Green synthesized nanoparticles are used as super-growth promoters and antifungal agents. In this study, selenium nanoparticles (SeNPs) were synthesized using Melia azedarach leaves extract as the main reducing and stabilizing agent and characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and fourier transform infrared spectrometer (FTIR). The green synthesized SeNPs were exogenously applied on Mangifera indica infected with mango malformation disease. The SeNPs at a concentration of 30 μg/mL were found to be the best concentration which enhanced the physiological (chlorophyll and membrane stability index), and biochemical (proline and soluble sugar) parameters. The antioxidant defense system was also explored, and it was reported that green synthesized SeNPs significantly reduced the biotic stress by enhancing enzymatic and non-enzymatic activities. In vitro antifungal activity of SeNPs reported that 300 μg/mL concentration inhibited the Fusarium mangiferae the most. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs to improve the health of mango malformation-infected plants and effective management strategy to inhibit the growth of F. mangifera.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Abida Akram
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Asma Mehak
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Maryam Ajmal
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- * E-mail: (KA); (MA)
| | - Kishwar Ali
- College of General Education, University of Doha for Science and Technology, Doha, Qatar
- * E-mail: (KA); (MA)
| | - Nilofar Mustafa
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Fozia Abasi
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
35
|
Jaleh B, Mousavi SS, Sajjadi M, Eslamipanah M, Maryaki MJ, Orooji Y, Varma RS. Synthesis of bentonite/Ag nanocomposite by laser ablation in air and its application in remediation. CHEMOSPHERE 2023; 315:137668. [PMID: 36581123 DOI: 10.1016/j.chemosphere.2022.137668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this research, a simple, green, and efficient approach is described to produce novel bentonite/Ag nanocomposite wherein the preparation of Ag nanoparticles (Ag NPs) deployed the laser ablation method in air; Ag NPs are deposited on the bentonite via the magnetic stirring method. The structural and morphological characterization of the as-prepared bentonite/Ag nanocomposite (denoted as B/Ag30, 30 min being the laser ablation time) is accomplished using different methods. Additionally, the catalytic assessment of the ensued composite exhibited excellent catalytic reduction/degradation activity for common aqueous pollutants namely methyl orange (MO), congo red (CR) and 4-nitrophenol (4-NP) utilizing NaBH4 as reductant. Furthermore, the recycling tests displayed the high stability/reusability of B/Ag30 nanocomposite for at least 4 runs with retention of catalytic prowess.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | | | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Motahar Jafari Maryaki
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
36
|
Abdelmoneim HM, Taha TH, Elnouby MS, AbuShady HM. Extracellular biosynthesis, OVAT/statistical optimization, and characterization of silver nanoparticles (AgNPs) using Leclercia adecarboxylata THHM and its antimicrobial activity. Microb Cell Fact 2022; 21:277. [PMID: 36581886 PMCID: PMC9801658 DOI: 10.1186/s12934-022-01998-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The biosynthesis of silver nanoparticles (AgNPs) is an area of interest for researchers due to its eco-friendly approach. The use of biological approaches provides a clean and promising alternative process for the synthesis of AgNPs. We used for the first time the supernatant of Leclercia adecarboxylata THHM under optimal conditions to produce AgNPs with an acceptable antimicrobial activity against important clinical pathogens. RESULTS In this study, soil bacteria from different locations were isolated and screened for their potential to form AgNPs. The selected isolate, which was found to have the ability to biosynthesize AgNPs, was identified by molecular methods as Leclercia adecarboxylata THHM and its 16S rRNA gene was deposited in GenBank under the accession number OK605882. Different conditions were screened for the maximum production of AgNPs by the selected bacteria. Five independent variables were investigated through optimizations using one variable at a time (OVAT) and the Plackett-Burman experimental design (PBD). The overall optimal parameters for enhancing the biosynthesis of AgNPs using the supernatant of Leclercia adecarboxylata THHM as a novel organism were at an incubation time of 72.0 h, a concentration of 1.5 mM silver nitrate, a temperature of 40.0 °C, a pH of 7.0, and a supernatant concentration of 30% (v/v) under illumination conditions. The biosynthesized AgNPs have been characterized by UV-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The biosynthesized AgNPs showed an absorption peak at 423 nm, spherical shape, and an average particle size of 17.43 nm. FTIR shows the bands at 3321.50, 2160.15, and 1636.33 cm-1 corresponding to the binding vibrations of amine, alkyne nitrile, and primary amine bands, respectively. The biosynthesized AgNPs showed antimicrobial activity against a variety of microbial pathogens of medical importance. Using resazurin-based microtiter dilution, the minimum inhibitory concentration (MIC) values for AgNPs were 500 µg/mL for all microbial pathogens except for Klebsiella pneumoniae ATCC13883, which has a higher MIC value of 1000 µg/mL. CONCLUSIONS The obtained data revealed the successful green production of AgNPs using the supernatant of Leclercia adecarboxylata THHM that can be effectively used as an antimicrobial agent against most human pathogenic microbes.
Collapse
Affiliation(s)
- Hany M. Abdelmoneim
- grid.7269.a0000 0004 0621 1570Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Tarek H. Taha
- grid.420020.40000 0004 0483 2576Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934 Egypt
| | - Mohamed S. Elnouby
- grid.420020.40000 0004 0483 2576Composite and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934 Egypt
| | - Hala Mohamed AbuShady
- grid.7269.a0000 0004 0621 1570Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
37
|
Hasan KF, Xiaoyi L, Shaoqin Z, Horváth PG, Bak M, Bejó L, Sipos G, Alpár T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon 2022; 8:e12322. [PMID: 36590481 PMCID: PMC9800342 DOI: 10.1016/j.heliyon.2022.e12322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The green and facile synthesis of metallic silver nanoparticles (AgNPs) is getting tremendous attention for exploring superior applications because of their small dimensions and shape. AgNPs are already proven materials for superior coloration, biocidal, thermal, UV-protection, and mechanical performance. Originally, some conventional chemical-based reducing agents were used to synthesize AgNPs, but these posed potential risks, especially for enhanced toxicity. This became a driving force to innovate plant-based sustainable and green metallic nanoparticles (NPs). Moreover, the synthesized NPs using plant-based derivatives could be tuned and regulated to achieve the required shape and size of the AgNPs. AgNPs synthesized from naturally derived materials are safe, economical, eco-friendly, facile, and convenient, which is also motivating researchers to find greener routes and viable options, utilizing various parts of plants like flowers, stems, heartwood, leaves and carbohydrates like chitosan to meet the demands. This article intends to provide a comprehensive review of all aspects of AgNP materials, including green synthesis methodology and mechanism, incorporation of advanced technologies, morphological and elemental study, functional properties (coloration, UV-protection, biocidal, thermal, and mechanical properties), marketing value, future prospects and application, especially for the last 20 years or more. The article also includes a SWOT (Strengths, weaknesses, opportunities, and threats) analysis regarding the use of AgNPs. This report would facilitate the industries and consumers associated with AgNP synthesis and application through fulfilling the demand for sustainable, feasible, and low-cost product manufacturing protocols and their future prospects.
Collapse
Affiliation(s)
- K.M. Faridul Hasan
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Liu Xiaoyi
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
| | - Zhou Shaoqin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6525 GA Nijmegen, The Netherlands
| | - Péter György Horváth
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Miklós Bak
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - László Bejó
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, University of Sopron, 9400, Sopron, Hungary
| | - Tibor Alpár
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| |
Collapse
|
38
|
Bernabé-Antonio A, Martínez-Ceja A, Romero-Estrada A, Sánchez-Carranza JN, Columba-Palomares MC, Rodríguez-López V, Meza-Contreras JC, Silva-Guzmán JA, Gutiérrez-Hernández JM. Green Synthesis of Silver Nanoparticles Using Randia aculeata L. Cell Culture Extracts, Characterization, and Evaluation of Antibacterial and Antiproliferative Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4184. [PMID: 36500807 PMCID: PMC9736092 DOI: 10.3390/nano12234184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The demand for metallic nanoparticles synthesized using green methods has increased due to their various therapeutic and clinical applications, and plant biotechnology may be a potential resource facilitating sustainable methods of AgNPs synthesis. In this study, we evaluate the capacity of extracts from Randia aculeata cell suspension culture (CSC) in the synthesis of AgNPs at different pH values, and their activity against pathogenic bacteria and cancer cells was evaluated. Using aqueous CSC extracts, AgNPs were synthesized with 10% (w/v) of fresh biomass and AgNO3 (1 mM) at a ratio of 1:1 for 24 h of incubation and constant agitation. UV-vis analysis showed a high concentration of AgNPs as the pH increased, and TEM analysis showed polydisperse nanoparticles with sizes from 10 to 90 nm. Moreover, CSC extracts produce reducing agents such as phenolic compounds (162.2 ± 27.9 mg gallic acid equivalent/100 g biomass) and flavonoids (122.07 ± 8.2 mg quercetin equivalent/100 g biomass). Notably, AgNPs had strong activity against E. coli, S. pyogenes, P. aeruginosa, S. aureus, and S. typhimurium, mainly with AgNPs at pH 6 (MIC: 1.6 to 3.9 µg/mL). AgNPs at pH 6 and 10 had a high antiproliferative effect on cancer cells (IC50 < 5.7 µg/mL). Therefore, the use of cell suspension cultures may be a sustainable option for the green synthesis of AgNPs.
Collapse
Affiliation(s)
- Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Alejandro Martínez-Ceja
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Antonio Romero-Estrada
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Jessica Nayelli Sánchez-Carranza
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - María Crystal Columba-Palomares
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Verónica Rodríguez-López
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Juan Carlos Meza-Contreras
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - José Antonio Silva-Guzmán
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - José Manuel Gutiérrez-Hernández
- Laboratory of Basic Sciences, Faculty of Odontology, Autonomous University of San Luis Potosí, Dr. Manuel Nava No. 2, Zona Universitaria, San Luis Potosí 78290, San Luis Potosí, Mexico
| |
Collapse
|
39
|
Sankareswari M, Amutha C, Vasantha V, Arunpandian M, Nagarajan E. Biosynthesized silver nanoparticles using Rosary Pea seed Extract: Evaluation of Antibacterial, cytotoxic and photocatalytic activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Khalil AT, Ovais M, Iqbal J, Ali A, Ayaz M, Abbas M, Ahmad I, Devkota HP. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Semin Cancer Biol 2022; 86:693-705. [PMID: 34118405 DOI: 10.1016/j.semcancer.2021.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/27/2023]
Abstract
Past few years have seen a paradigm shift towards ecofriendly, green and biological fabrication of metal nanoparticles (MNPs) for diverse nanomedicinal applications especially in cancer nanotheranostics. Besides, the well-known green synthesis methods of plant materials, the potential of the microbial world (bacteria, fungi, alga, etc.) in biofabrication is equally realized. Biomolecules and enzymes in the microbial cells are capable of catalyzing the biosynthesis process. These microbial derived inorganic nanoparticles have been frequently evaluated as potential agents in cancer therapies revealing exciting results. Through, cellular and molecular pathways, these microbial derived nanoparticles are capable of killing the cancer cells. Considering the recent developments in the anticancer applications of microbial derived inorganic MNPs, a dire need was felt to bring the available information to a single document. This manuscript reviews not only the mechanistic aspects of the microbial derived MNPs but also include the diverse mechanisms that governs their anticancer potential. Besides, an updated literature review is presented that includes studies of 2019-onwards.
Collapse
Affiliation(s)
- Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, KP, Pakistan.
| | - Muhammad Ovais
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Javed Iqbal
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Arbab Ali
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, KP, Pakistan.
| | | | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Hari Parsad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, HIGO Program, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
41
|
Preparation and evaluation of the antimicrobial activity of sodium alginate-grafted diphenylamine embedded with silver nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractAntibiotic nanocomposite polymers show great promise in treating a variety of pathogens that cause widespread disease. Sodium alginate-grafted diphenylamine (NaAlg-g-DPA) embedded with different ratios of silver nanoparticles (AgNPs) was fabricated and characterized through different techniques including FTIR, XRD, and SEM techniques for investigating the antimicrobial activity. XRD confirmed the crystallinity of these compounds, and the average crystal size of Na Alg-g-DPA/Ag was estimated to be 48.6 nm. Then it was applied as an antimicrobial agent and evaluated through two ways (inhibition zone and MIC techniques) against Staphylococcus aureus as gram-positive bacteria with an inhibition zone of 19.31.6 mm and 18.60.63 mm against Escherichia coli as gram-negative bacteria while with increasing the Ag ratio 2:1 there was an enhancement in their biological activity to be 21.90.69 mm against Staphylococcus aureus and with an inhibition zone of 21.32.1 mm against Escherichia coli. The outcomes of this investigation are important for the development of new composite materials with antibacterial properties for industrial applications.
Collapse
|
42
|
Gurunathan S, Lee AR, Kim JH. Antifungal Effect of Nanoparticles against COVID-19 Linked Black Fungus: A Perspective on Biomedical Applications. Int J Mol Sci 2022; 23:12526. [PMID: 36293381 PMCID: PMC9604067 DOI: 10.3390/ijms232012526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that has caused a 'coronavirus disease 2019' (COVID-19) pandemic in multiple waves, which threatens human health and public safety. During this pandemic, some patients with COVID-19 acquired secondary infections, such as mucormycosis, also known as black fungus disease. Mucormycosis is a serious, acute, and deadly fungal infection caused by Mucorales-related fungal species, and it spreads rapidly. Hence, prompt diagnosis and treatment are necessary to avoid high mortality and morbidity rates. Major risk factors for this disease include uncontrolled diabetes mellitus and immunosuppression that can also facilitate increases in mucormycosis infections. The extensive use of steroids to prevent the worsening of COVID-19 can lead to black fungus infection. Generally, antifungal agents dedicated to medical applications must be biocompatible, non-toxic, easily soluble, efficient, and hypoallergenic. They should also provide long-term protection against fungal growth. COVID-19-related black fungus infection causes a severe increase in fatalities. Therefore, there is a strong need for the development of novel and efficient antimicrobial agents. Recently, nanoparticle-containing products available in the market have been used as antimicrobial agents to prevent bacterial growth, but little is known about their efficacy with respect to preventing fungal growth, especially black fungus. The present review focuses on the effect of various types of metal nanoparticles, specifically those containing silver, zinc oxide, gold, copper, titanium, magnetic, iron, and carbon, on the growth of various types of fungi. We particularly focused on how these nanoparticles can impact the growth of black fungus. We also discussed black fungus co-infection in the context of the global COVID-19 outbreak, and management and guidelines to help control COVID-19-associated black fungus infection. Finally, this review aimed to elucidate the relationship between COVID-19 and mucormycosis.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
43
|
Synthesis of silver nanoparticles employing Polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen. Biochem Biophys Rep 2022; 31:101320. [PMID: 36032398 PMCID: PMC9398913 DOI: 10.1016/j.bbrep.2022.101320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
The P. longifolia mediated silver (PL-AgNPs) nanoparticles are very stable and efficient. UV–Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX) were used to characterize the produced AgNPs. UV–Vis analysis showed a characteristic peak at 435 nm corresponding to surface plasmon resonance. The synthesis process was spectrophotometrically optimized for various parameters. After optimization, highly stable AgNPs were prepared using 3.0 ml of P. longifolia leaf extract, pH 7.0, 1.0 mM AgNO3, and 60 °C. The zeta potential was measured by DLS, which showed −20.8 mV and the PDI value was 5.42. TEM and SEM analysis shows a spherical shape of the synthesized nanoparticles, and the size was measured between 10 and 40 nm. EDX analysis showed intense peaks from silver and oxygen and small peaks from various metal atoms such as Na, P, S and Al indicating their presence in trace amounts. The average size of the PL-AgNPs was 14 nm. The phytochemical analysis shows that the presence of alkaloids, essential oils and saponins seems to be responsible for the synthesis of nanoparticles. PL-AgNPs were further investigated for their antifungal activity against Alternaria alternata. The minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and effect of nanoparticles on cytomorphology of A. alternata have also been reported. Biosynthesized nanoparticles have proven to be inexpensive, environmentally friendly, stable, easily reproducible, and highly effective against plant-pathogenic fungi. Green synthesis of AgNPs using aqueous leaf extract of Polyalthia longifolia. Characterization using UV–vis, DLS, XRD, TEM, SEM, EDX. Optimization of AgNPs at different Temperature, pH, Concentration and Time. Nanoparticles were stable for more than 5 months. The antifungal activity of the AgNPs against A. alternata were studied.
Collapse
|
44
|
Liaqat N, Jahan N, Khalil-ur-Rahman, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem 2022; 10:952006. [PMID: 36105303 PMCID: PMC9465387 DOI: 10.3389/fchem.2022.952006] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 12/26/2022] Open
Abstract
Green nanotechnology has emerged as a viable option for the production of nanoparticles. The purpose of the current investigation was to synthesize silver nanoparticles (AgNPs) using Eucalyptus camaldulensis and Terminalia arjuna extracts, as well as their combinations, as green reducing and capping agents. The parameters (concentration of silver nitrate solution and plant extract, time, pH, and temperature) were optimized for maximal yields, regulated size, and stability of silver nanoparticles. The ultraviolet–visible spectrophotometer (UV-Vis) and the surface plasmon resonance band (SPR) were used to validate the synthesis of AgNPs. The size, shape, and stability of nanoparticles were assessed using a zeta analyzer and a scanning electron microscope (SEM). The biomolecules responsible for the reduction of silver ion (Ag+) and the stability of silver nanoparticles generated with the plant extracts were identified using Fourier-transform infrared spectroscopy (FTIR). The agar-well diffusion method was used to test the antimicrobial activity of biosynthesized nanoparticles against Bacillus subtilis, Staphylococcus aureus, Pasteurella multocida, and Escherichia coli. When 1 mM of silver nitrate (AgNO3) was added to plant extracts and incubated for 60 min at 75°C in a neutral medium, maximum nanoparticles were produced. Biosynthesized silver nanoparticles were stable, spherical, and monodispersed according to zeta potential and scanning electron microscopy. Silver nanoparticles synthesized with combination 2 and T. arjuna showed the highest zone of inhibition (16 mm) against B. subtilis while combination 3 showed the largest zone of inhibition against S. aureus (17 ± 0.8). It was concluded that greenly produced silver nanoparticles showed good antibacterial activity while causing negligible cytotoxicity.
Collapse
|
45
|
Cherian T, Maity D, Rajendra Kumar RT, Balasubramani G, Ragavendran C, Yalla S, Mohanraju R, Peijnenburg WJGM. Green Chemistry Based Gold Nanoparticles Synthesis Using the Marine Bacterium Lysinibacillus odysseyi PBCW2 and Their Multitudinous Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172940. [PMID: 36079977 PMCID: PMC9458051 DOI: 10.3390/nano12172940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/24/2023]
Abstract
Green chemistry has paved an 'avant-garde avenue' in the production and fabrication of eco-friendly stable nanoparticles employing the utilization of biological agents. In the present study we present the first report on the potential of the marine bacterium Lysinibacillus odysseyi PBCW2 for the extracellular production of gold nanoparticles (AuNPs). Utilizing a variety of methods, AuNPs in the cell-free supernatant of L. odysseyi (CFS-LBOE) were identified and their antioxidant, antibacterial, and dye-degrading properties were examined. The visual coloring of the reaction mixture to a ruby red hue showed the production of LBOE-AuNPs; validated by means of XRD, TEM, SEM, XRD, DLS, TGA, and FT-IR analysis. Additionally, the 2,2-diphenyl-1-picrylhydrazyl technique and the well diffusion assay were used to examine their dose-dependent antioxidant and antibacterial activity. These biogenic LBOE-AuNPs showed 91% dye degradation efficiency during catalytic reduction activity on BTB dye, demonstrating their versatility as options for heterogeneous catalysis.
Collapse
Affiliation(s)
- Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai 600 028, Tamil Nadu, India
| | - Debasis Maity
- ETH Zürich—Department of Biosystems Science and Engineering ETH (D-BSSE ETH Zürich), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ramasamy T. Rajendra Kumar
- Advanced Materials and Research Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Govindasamy Balasubramani
- Department of Biotechnology, Division of Research & Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveethanagar, Chennai 602 105, Tamil Nadu, India
| | - Chinnasamy Ragavendran
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Suneelkumar Yalla
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
| | - Raju Mohanraju
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
| | - Willie J. G. M. Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
46
|
Yang X, Wu JY. Synthetic Conditions, Physical Properties, and Antibacterial Activities of Silver Nanoparticles with Exopolysaccharides of a Medicinal Fungus. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5620. [PMID: 36013754 PMCID: PMC9412466 DOI: 10.3390/ma15165620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 05/14/2023]
Abstract
Natural polysaccharides are attractive and promising biomacromolecules for the green synthesis of silver nanoparticles (Ag NPs) with a broad spectrum of useful functions. This study aims to evaluate the synthetic conditions and physical properties of Ag NPs using three fractions of exopolysaccharide (EPS), namely EPS-1, EPS-2, and EPS-3, produced by a medicinal fungus known as Cs-HK1, with variations in their chemical composition and molecular weight. Each of the EPS fractions had a unique set of optimal synthetic conditions (reaction time course, temperature, and reagent concentration), resulting in a specific range of Ag NP size distributions. The Ag NPs synthesized with the EPS-1 fraction had the smallest particle size (~160 nm) and the most significant antibacterial activities against Escherichia coli (Gram-) and Staphylococcus aureus (Gram+), with a minimal inhibitory concentration (MIC) of 0.2 mg/mL on E. coli and 0.075 mg/mL on S. aureus. The results proved the success of the scheme of this green synthesis scheme with all three EPS fractions and the potential antibacterial application of EPS-coated Ag NPs.
Collapse
Affiliation(s)
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
47
|
Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological Synthesis of Silver Nanoparticles and Prospects in Plant Disease Management. Molecules 2022; 27:4754. [PMID: 35897928 PMCID: PMC9330430 DOI: 10.3390/molecules27154754] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Exploration of nanoparticles (NPs) for various biological and environmental applications has become one of the most important attributes of nanotechnology. Due to remarkable physicochemical properties, silver nanoparticles (AgNPs) are the most explored and used NPs in wide-ranging applications. Also, they have proven to be of high commercial use since they possess great chemical stability, conductivity, catalytic activity, and antimicrobial potential. Though several methods including chemical and physical methods have been devised, biological approaches using organisms such as bacteria, fungi, and plants have emerged as economical, safe, and effective alternatives for the biosynthesis of AgNPs. Recent studies highlight the potential of AgNPs in modern agricultural practices to control the growth and spread of infectious pathogenic microorganisms since the introduction of AgNPs effectively reduces plant diseases caused by a spectrum of bacteria and fungi. In this review, we highlight the biosynthesis of AgNPs and discuss their applications in plant disease management with recent examples. It is proposed that AgNPs are prospective NPs for the successful inhibition of pathogen growth and plant disease management. This review gives a better understanding of new biological approaches for AgNP synthesis and modes of their optimized applications that could contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Moh Tariq
- Department of Botany, Lords University, Alwar 301028, India
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Khan Nazima Mohammad
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mansoor A. Siddiqui
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
48
|
Nayak S, Goveas LC, Kumar PS, Selvaraj R, Vinayagam R. Plant-mediated gold and silver nanoparticles as detectors of heavy metal contamination. Food Chem Toxicol 2022; 167:113271. [PMID: 35792219 DOI: 10.1016/j.fct.2022.113271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 01/13/2023]
Abstract
Heavy metals are dumped into the environment as a result of human activities, posing a serious threat to ecology and human health. Surface water, potable drinking water, potable groundwater, and majority of wastewater include their traces, due to which, their detection by nanoparticles has received a lot of attention in recent years. Although microorganisms are utilised for green nanoparticle production, plant materials have recently been explored because they are more environmentally friendly, easier to scale up, and require fewer specific growth conditions. The production and attributes of nanoparticles synthesized by plant mediation could be enhanced through design of experiments approach, extending their feasibility in the detection of heavy metals in polluted environmental samples. A concise review on green synthesis of silver and gold nanoparticles utilizing plant phytochemicals, its mechanism of synthesis along with significance of design of experiments for enhancement, and their use as heavy metal contamination detectors is presented in the current study.
Collapse
Affiliation(s)
- Sneha Nayak
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to be University), Nitte, Karnataka 574110, India.
| | - Louella Concepta Goveas
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to be University), Nitte, Karnataka 574110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
49
|
Dutta P, Kumari A, Mahanta M, Biswas KK, Dudkiewicz A, Thakuria D, Abdelrhim AS, Singh SB, Muthukrishnan G, Sabarinathan KG, Mandal MK, Mazumdar N. Advances in Nanotechnology as a Potential Alternative for Plant Viral Disease Management. Front Microbiol 2022; 13:935193. [PMID: 35847105 PMCID: PMC9279558 DOI: 10.3389/fmicb.2022.935193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plant viruses cause enormous losses in agricultural production accounting for about 47% of the total overall crop losses caused by plant pathogens. More than 50% of the emerging plant diseases are reported to be caused by viruses, which are inevitable or unmanageable. Therefore, it is essential to devise novel and effective management strategies to combat the losses caused by the plant virus in economically important crops. Nanotechnology presents a new tendency against the increasing challenges in the diagnosis and management of plant viruses as well as plant health. The application of nanotechnology in plant virology, known as nanophytovirology, includes disease diagnostics, drug delivery, genetic transformation, therapeutants, plant defense induction, and bio-stimulation; however, it is still in the nascent stage. The unique physicochemical properties of particles in the nanoscale allow greater interaction and it may knock out the virus particles. Thus, it opens up a novel arena for the management of plant viral diseases. The main objective of this review is to focus on the mounting collection of tools and techniques involved in the viral disease diagnosis and management and to elucidate their mode of action along with toxicological concerns.
Collapse
|
50
|
Sabra MA, Alaidaroos BA, Jastaniah SD, Heflish AI, Ghareeb RY, Mackled MI, El-Saadony MT, Abdelsalam NR, Conte-Junior CA. Comparative Effect of Commercially Available Nanoparticles on Soil Bacterial Community and “Botrytis fabae” Caused Brown Spot: In vitro and in vivo Experiment. Front Microbiol 2022. [DOI: 10.3389/fmicb.2022.934031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study revealed the possible effects of various levels of silver nanoparticle (AgNP) application on plant diseases and soil microbial diversity. It investigated the comparison between the application of AgNPs and two commercial nanoproducts (Zn and FeNPs) on the rhizobacterial population and Botrytis fabae. Two experiments were conducted. The first studied the influence of 13 AgNP concentration on soil bacterial diversity besides two other commercial nanoparticles, ZnNPs (2,000 ppm) and FeNPs (2,500 ppm), used for comparison and application on onion seedlings. The second experiment was designed to determine the antifungal activity of previous AgNP concentrations (150, 200, 250, 300, 400, and 500 ppm) against B. fabae, tested using commercial fungicide as control. The results obtained from both experiments revealed the positive impact of AgNPs on the microbial community, representing a decrease in both the soil microbial biomass and the growth of brown spot disease, affecting microbial community composition, including bacteria, fungi, and biological varieties. In contrast, the two commercial products displayed lower effects compared to AgNPs. This result clearly showed that the AgNPs strongly inhibited the plant pathogen B. fabae growth and development, decreasing the number of bacteria (cfu/ml) and reducing the rhizosphere. Using AgNPs as an antimicrobial agent in the agricultural domain is recommended.
Collapse
|