1
|
Popstoyanova D, Gerasimova A, Gentscheva G, Nikolova S, Gavrilova A, Nikolova K. Ziziphus jujuba: Applications in the Pharmacy and Food Industry. PLANTS (BASEL, SWITZERLAND) 2024; 13:2724. [PMID: 39409594 PMCID: PMC11479145 DOI: 10.3390/plants13192724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Ziziphus jujuba has been used since ancient times in traditional Eastern medicine. It is widely cultivated in numerous countries between the tropical and temperate climatic zones due to its high ecological plasticity and resilience to adverse weather. The different classes of chemical compounds contained in the plant are the reason for its medicinal properties. Research shows that every part of Ziziphus jujuba, the leaves, fruits and seeds, demonstrate therapeutic properties. This review focuses on the chemical composition in order to establish the relationship between the plant and its clinical use. Various biological effects are summarized and discussed: anticancer, anti-inflammatory, immunostimulating, antioxidant, hepatoprotective, gastrointestinal, etc. Apart from medicinal uses, the fruits of Ziziphus jujuba are edible and used in fresh and dried form. This literature review reveals possible medical applications of Ziziphus jujuba and its great potential for improving the diet of people in areas where the plant is abundant.
Collapse
Affiliation(s)
- Desislava Popstoyanova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv Paisii Hilendarski, 4000 Plovdiv, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University-Pleven, 5800 Pleven, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| |
Collapse
|
2
|
Ma C, Liu B, Du L, Liu W, Zhu Y, Chen T, Wang Z, Chen H, Pang Y. Green Preparation and Antibacterial Activity Evaluation of AgNPs- Blumea balsamifera Oil Nanoemulsion. Molecules 2024; 29:2009. [PMID: 38731501 PMCID: PMC11085303 DOI: 10.3390/molecules29092009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.
Collapse
Affiliation(s)
- Chunfang Ma
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Bingnan Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Lingfeng Du
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Wei Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Hongpeng Chen
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Yuxin Pang
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Database Management Center, Yunfu 527325, China
| |
Collapse
|
3
|
Gowda A, T. C. S, Anil VS, Raghavan S. Phytosynthesis of silver nanoparticles using aqueous sandalwood (Santalum album L.) leaf extract: Divergent effects of SW-AgNPs on proliferating plant and cancer cells. PLoS One 2024; 19:e0300115. [PMID: 38662724 PMCID: PMC11045141 DOI: 10.1371/journal.pone.0300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
The biogenic approach for the synthesis of metal nanoparticles provides an efficient eco-friendly alternative to chemical synthesis. This study presents a novel route for the biosynthesis of silver nanoparticles using aqueous sandalwood (SW) leaf extract as a source of reducing and capping agents under mild, room temperature synthesis conditions. The bioreduction of Ag+ to Ago nanoparticles (SW-AgNPs) was accompanied by the appearance of brown color, with surface plasmon resonance peak at 340-360 nm. SEM, TEM and AFM imaging confirm SW-AgNP's spherical shape with size range of 10-32 nm. DLS indicates a hydrodynamic size of 49.53 nm with predominant negative Zeta potential, which can contribute to the stability of the nanoparticles. FTIR analysis indicates involvement of sandalwood leaf derived polyphenols, proteins and lipids in the reduction and capping of SW-AgNPs. XRD determines the face-centered-cubic crystalline structure of SW-AgNPs, which is a key factor affecting biological functions of nanoparticles. This study is novel in using cell culture methodologies to evaluate effects of SW-AgNPs on proliferating cells originating from plants and human cancer. Exposure of groundnut calli cells to SW-AgNPs, resulted in enhanced proliferation leading to over 70% higher calli biomass over control, enhanced defense enzyme activities, and secretion of metabolites implicated in biotic stress resistance (Crotonyl isothiocyanate, Butyrolactone, 2-Hydroxy-gamma-butyrolactone, Maltol) and plant cell proliferation (dl-Threitol). MTT and NRU were performed to determine the cytotoxicity of nanoparticles on human cervical cancer cells. SW-AgNPs specifically inhibited cervical cell lines SiHa (IC50-2.65 ppm) and CaSki (IC50-9.49 ppm), indicating potential use in cancer treatment. The opposing effect of SW-AgNPs on cell proliferation of plant calli (enhanced cell proliferation) and human cancer cell lines (inhibition) are both beneficial and point to potential safe application of SW-AgNPs in plant cell culture, agriculture and in cancer treatment.
Collapse
Affiliation(s)
- Archana Gowda
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Suman T. C.
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Veena S. Anil
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | | |
Collapse
|
4
|
Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M, Vijayaram S, Rohani MF, Van Doan H, Sun YZ. Comparative Effect of Chemical and Green Zinc Nanoparticles on the Growth, Hematology, Serum Biochemical, Antioxidant Parameters, and Immunity in Serum and Mucus of Goldfish, Carassius auratus (Linnaeus, 1758). Biol Trace Elem Res 2024; 202:1264-1278. [PMID: 37434037 DOI: 10.1007/s12011-023-03753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | | | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
5
|
Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Green synthesis of silver nanoparticles using Helianthemum lippii extracts (Hl-NPs): Characterization, antioxidant and antibacterial activities, and study of interaction with DNA. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Naik J, David M. ROS mediated apoptosis and cell cycle arrest in human lung adenocarcinoma cell lines by silver nanoparticles synthesized using Swietenia macrophylla seed extract. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81130-81165. [PMID: 36203045 PMCID: PMC9540199 DOI: 10.1007/s11356-022-23301-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India.
| | - Veera Mallu Boddu
- Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110012, India
| |
Collapse
|
9
|
Mussin J, Giusiano G. Biogenic silver nanoparticles as antifungal agents. Front Chem 2022; 10:1023542. [PMID: 36277355 PMCID: PMC9583421 DOI: 10.3389/fchem.2022.1023542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
In recent years, an increase in multidrug-resistant fungal strains has been observed, which, together with the limited number of clinically available antifungal agents, highlights the need for the development of new antifungal agents. Due to the proven antifungal activity of silver nanoparticles (AgNPs), there is a growing interest in their use in the treatment of fungal infections. Nanoparticles are usually synthesised through a variety of physical and chemical processes that are costly and pollute the environment. For this reason, biogenic synthesis is emerging as an environmentally friendly technology and new strategies are increasingly based on the use of biogenic AgNPs as antifungal agents for clinical use. The aim of this review is to compare the antifungal activity of different biogenic AgNPs and to summarise the current knowledge on the mechanisms of action and resistance of fungi to AgNPs. Finally, a general analysis of the toxicity of biogenic AgNPs in human and veterinary medicine is performed.
Collapse
|
10
|
Zhang H, Lu Y, Zhang Q, Yang F, Hui A, Wang A. Structural evolution of palygorskite-rich clay as the nanocarriers of silver nanoparticles for efficient improving antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Vyas Y, Gupta S, Punjabi PB, Ameta C. Biogenesis of Quantum Dots: An Update. ChemistrySelect 2022. [DOI: 10.1002/slct.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yogeshwari Vyas
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Sharoni Gupta
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
- Department of Chemistry Aishwarya Post Graduate College affiliated to Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Pinki B. Punjabi
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Chetna Ameta
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| |
Collapse
|
12
|
Isa N, Osman MS, Abdul Hamid H, Inderan V, Lockman Z. Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikesedge and their catalytic activity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:658-669. [PMID: 35858487 DOI: 10.1080/15226514.2022.2099345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study describes the synthesis of silver nanoparticles (AgNPs) using shortleaf spikesedge extract (SSE) to reduce AgNO3. Visual observation, in addition to analyses of UV-vis, EDX, XRD, FTIR, and TEM was employed to monitor the formation of AgNPs. The effects of SSE concentration, AgNO3 concentration, reaction time, pH, and temperature on the synthesis of AgNPs were studied based on the surface plasmon resonance (SPR) band. From the TEM image, highly-scattered AgNPs of quasi-spherical shape with an average particle size of 17.64 nm, were observed. For the catalytic study, the reduction of methylene blue (MB) was evaluated using two systems. A detailed batch study of the removal efficiency (%RE) and kinetics was done at an ambient temperature, various MB initial concentrations, and varying reaction time. Employing the electron relay effect in System 2, the batch study clearly highlighted the significant role of AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. The kinetic data best fitted the pseudo-first-order model with a maximum reaction rate of 2.5715 min-1. These findings suggest the promising application of AgNPs in dye wastewater treatment.The SSE-driven AgNPs were prepared using unwanted dried biomass of shortleaf spikesedge extract (SSE) as a reducing as well as stabilizing agent. Employing the electron relay effect, the batch study clearly highlighted the significant role of SSE-driven AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. In this sense, SSE-driven AgNPs acted as an electron relay point that behaves alternatively as acceptor and donor of electrons. The findings revealed the good catalytic performance of SSE-driven AgNPS, proving their viability for dye wastewater treatment.
Collapse
Affiliation(s)
- Norain Isa
- Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Pulau Pinang, Malaysia
| | - Mohamed Syazwan Osman
- Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Pulau Pinang, Malaysia
| | - Haslinda Abdul Hamid
- Department of Applied Sciences, Universiti Teknologi MARA, Pulau Pinang, Malaysia
| | - Vicinisvarri Inderan
- Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Pulau Pinang, Malaysia
| | - Zainovia Lockman
- Green Electronics NanoMaterials Group (GEMs), School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| |
Collapse
|
13
|
On Recent Developments in Biosynthesis and Application of Au and Ag Nanoparticles from Biological Systems. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/5560244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. The researcher made continuous efforts for the environmental-friendly and economical methods, such as biogenic methods known as green synthesis. There are many strategies for separating and applying gold (Au) and silver (Ag) nanoparticles, of which biological routes have emerged as efficient, low-cost, and environmentally friendly techniques. This review focuses on recent developments of green synthesized AuNPs and AgNPs using biogenic sources such as algae, animals, plants, microbes, bacteria, fungi, and so on. Hence, it discusses their numerous biomedical applications and separating Au and Ag nanoparticles from plants, bacteria, fungi, and algae.
Collapse
|
14
|
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022; 20:262. [PMID: 35672712 PMCID: PMC9171489 DOI: 10.1186/s12951-022-01477-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/23/2022] [Indexed: 12/31/2022] Open
Abstract
Interest in nanomaterials and especially nanoparticles has exploded in the past decades primarily due to their novel or enhanced physical and chemical properties compared to bulk material. These extraordinary properties have created a multitude of innovative applications in the fields of medicine and pharma, electronics, agriculture, chemical catalysis, food industry, and many others. More recently, nanoparticles are also being synthesized ‘biologically’ through the use of plant- or microorganism-mediated processes, as an environmentally friendly alternative to the expensive, energy-intensive, and potentially toxic physical and chemical synthesis methods. This transdisciplinary approach to nanoparticle synthesis requires that biologists and biotechnologists understand and learn to use the complex methodology needed to properly characterize these processes. This review targets a bio-oriented audience and summarizes the physico–chemical properties of nanoparticles, and methods used for their characterization. It highlights why nanomaterials are different compared to micro- or bulk materials. We try to provide a comprehensive overview of the different classes of nanoparticles and their novel or enhanced physicochemical properties including mechanical, thermal, magnetic, electronic, optical, and catalytic properties. A comprehensive list of the common methods and techniques used for the characterization and analysis of these properties is presented together with a large list of examples for biogenic nanoparticles that have been previously synthesized and characterized, including their application in the fields of medicine, electronics, agriculture, and food production. We hope that this makes the many different methods more accessible to the readers, and to help with identifying the proper methodology for any given nanoscience problem.
Collapse
|
15
|
Khurshid S, Arif S, Ali TM, Iqbal HM, Shaikh M, Khurshid H, Akber Q, Yousaf S. Effect of Silver Nanoparticles Prepared from
Saraca asoca
Leaf Extract on Morphological, Functional, Mechanical and Antibacterial Properties of Rice Starch Films. STARCH-STARKE 2022. [DOI: 10.1002/star.202100228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Salman Khurshid
- Food Quality & Safety Research Institute PARC, SARC, University of Karachi Karachi Pakistan
| | - Saqib Arif
- Food Quality & Safety Research Institute PARC, SARC, University of Karachi Karachi Pakistan
| | - Tahira Mohsin Ali
- Department of Food Science & Technology University of Karachi Karachi Pakistan
| | - Hafiza Mehwish Iqbal
- Food Quality & Safety Research Institute PARC, SARC, University of Karachi Karachi Pakistan
| | - Marium Shaikh
- Department of Food Science & Technology University of Karachi Karachi Pakistan
| | | | - Qurrat‐ul‐Ain Akber
- Food Quality & Safety Research Institute PARC, SARC, University of Karachi Karachi Pakistan
| | - Shahid Yousaf
- Food Science Research Institute PARC, NARC Islamabad Pakistan
| |
Collapse
|
16
|
Kordy MGM, Abdel-Gabbar M, Soliman HA, Aljohani G, BinSabt M, Ahmed IA, Shaban M. Phyto-Capped Ag Nanoparticles: Green Synthesis, Characterization, and Catalytic and Antioxidant Activities. NANOMATERIALS 2022; 12:nano12030373. [PMID: 35159718 PMCID: PMC8839298 DOI: 10.3390/nano12030373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Using a simple approach, silver nanoparticles (Ag NPs) were synthesized from green coffee bean extract. The optical color change from yellowish to reddish-brown of the green-produced Ag NPs was initially observed, which was confirmed by the UV-Visible spectrophotometer’s surface plasmonic resonance (SPR) bands at 329 and 425 nm. The functional groups of green coffee-capped Ag NPs (GC-capped Ag NPs) were studied using a Fourier transform infrared spectrometer, revealing that Ag NPs had been capped by phytochemicals, resulting in excellent stability, and preventing nanoparticle aggregation. The presence of elemental silver is confirmed by energy dispersive X-ray analysis. In addition to the measurement of the zeta potential of the prepared GC-capped Ag NPs, the size distribution is evaluated by the dynamic light scattering. Depending on the nano-morphological study, the particle diameter of Ag NPs is 8.6 ± 3.5 nm, while the particle size of GC-capped Ag NPs is 29.9 ± 4.3 nm, implying the presence of well-dispersed nanospheres with an average capsulation layer of thickness 10.7 nm. The phyto-capped Ag NPs were found to be crystalline, having a face-centered cubic (FCC) lattice structure and Ag crystallite size of ~7.2 nm, according to the XRD crystallographic analysis. The catalytic performance of phyto-capped Ag NPs in the removal of methylene blue dye by sodium borohydride (NaBH4) was investigated for 12 min to reach a degradation efficiency of approximately 96%. The scavenging activities of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals are also examined in comparison to previously reported Ag-based nano-catalysts, demonstrating a remarkable IC50 of 26.88 µg/mL, which is the first time it has been recorded.
Collapse
Affiliation(s)
- Mohamed G. M. Kordy
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.G.M.K.); (M.A.-G.); (H.A.S.)
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.G.M.K.); (M.A.-G.); (H.A.S.)
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.G.M.K.); (M.A.-G.); (H.A.S.)
| | - Ghadah Aljohani
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 14177, Saudi Arabia;
| | - Mohammad BinSabt
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Inas A. Ahmed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia;
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia
- Correspondence:
| |
Collapse
|
17
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
18
|
Guimarães ML, da Silva FAG, de Souza AM, da Costa MM, de Oliveira HP. All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
LED Exposure Modulates the Biosynthesis of Silver Nanoparticles from Root Tuber Extract of Chlorophytum borivilianum and their Phytotoxicty. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Sarvalkar PD, Mandavkar RR, Nimbalkar MS, Sharma KK, Patil PS, Kamble GS, Prasad NR. Bio-mimetic synthesis of catalytically active nano-silver using Bos taurus (A-2) urine. Sci Rep 2021; 11:16934. [PMID: 34417491 PMCID: PMC8379231 DOI: 10.1038/s41598-021-96335-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
Herein we have synthesized silver nanoparticles (Ag NPs) using liquid metabolic waste of Bos taurus (A-2 type) urine. Various bio-molecules present in cow urine, are effectively used to reduce silver (Ag) ions into silver nanoparticles in one step. This is bio-inspired electron transfer to Ag ion for the formation of base Ag metal and is fairly prompt and facile. These nanoparticles act as a positive catalyst for various organic transformation reactions. The structural, morphological, and optical properties of the as-synthesized Ag NPs are widely characterized by X-ray diffraction spectroscopy, ultraviolet–visible spectroscopy, scanning electron microscope, Fourier transmission infra-red spectroscopy, and atomic force microscopy. The as-synthesized bio-mimetic Ag NPs show potential activity for several reduction reactions of nitro groups. The Ag NPs were also used for degradation of hazardous dyes such as Methylene blue and Crystal violet with good degradation rate constant.
Collapse
Affiliation(s)
- Prashant D Sarvalkar
- School of Nanoscience and Technology, Shivaji University Kolhapur, Kolhapur, 416004, India
| | - Rutuja R Mandavkar
- School of Nanoscience and Technology, Shivaji University Kolhapur, Kolhapur, 416004, India
| | | | - Kiran K Sharma
- School of Nanoscience and Technology, Shivaji University Kolhapur, Kolhapur, 416004, India
| | - Pramod S Patil
- School of Nanoscience and Technology, Shivaji University Kolhapur, Kolhapur, 416004, India
| | - Ganesh S Kamble
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Affiliated to Shivaji University Kolhapur, Kolhapur, 416234, India
| | - Neeraj R Prasad
- School of Nanoscience and Technology, Shivaji University Kolhapur, Kolhapur, 416004, India.
| |
Collapse
|
21
|
Mussin J, Robles-Botero V, Casañas-Pimentel R, Rojas F, Angiolella L, San Martín-Martínez E, Giusiano G. Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Sci Rep 2021; 11:14566. [PMID: 34267298 PMCID: PMC8282796 DOI: 10.1038/s41598-021-94012-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Combining traditional medicine with nanotechnology therefore opens the door to innovative strategies for treating skin and soft tissue infections (SSTIs) and also contributes to the fight against the rise of antimicrobial resistance. Acanthospermum australe (Loefl.) Kuntze is a medicinal plant used by indigenous peoples in northeastern Argentina to treat SSTIs. Spherical and stable silver nanoparticles (AgNPs) of 14 ± 2 nm were synthesized from the aqueous extract of A. australe and silver nitrate. The antimicrobial activity against main species causing SSTIs and cytotoxicity on peripheral blood mononuclear cells of AgNP solution and its synthesis components were evaluated. Compared to its synthesis components, AgNP solution showed greater antimicrobial activity and lower cytotoxicity. The antimicrobial activity of AgNPs was due to the silver and not to the metabolites of the aqueous extract present on the surface of the nanoparticles. The plant extract played an important role in the formation of stable AgNPs and acted as a modulator of cytotoxic and immune responses.
Collapse
Affiliation(s)
- Javier Mussin
- grid.423606.50000 0001 1945 2152Mycology Department, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500 Resistencia, Chaco, Argentina
| | - Viviana Robles-Botero
- grid.418275.d0000 0001 2165 8782Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CONACYT - Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Casañas-Pimentel
- grid.418275.d0000 0001 2165 8782Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CONACYT - Instituto Politécnico Nacional, Mexico City, Mexico
| | - Florencia Rojas
- grid.423606.50000 0001 1945 2152Mycology Department, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500 Resistencia, Chaco, Argentina
| | - Letizia Angiolella
- grid.7841.aDepartment of Public Health and Infectious Diseases, University of Rome “Sapienza”, Rome, Italy
| | - Eduardo San Martín-Martínez
- grid.418275.d0000 0001 2165 8782Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada - Legaria, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gustavo Giusiano
- grid.423606.50000 0001 1945 2152Mycology Department, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500 Resistencia, Chaco, Argentina
| |
Collapse
|
22
|
Alharthi MN, Ismail I, Bellucci S, Khdary NH, Abdel Salam M. Biosynthesis Microwave-Assisted of Zinc Oxide Nanoparticles with Ziziphus jujuba Leaves Extract: Characterization and Photocatalytic Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1682. [PMID: 34206802 PMCID: PMC8307762 DOI: 10.3390/nano11071682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
The present work is intended to biosynthesize zinc oxide nanoparticles (ZnO NPs) via facile and modern route using aqueous Ziziphus jujuba leaves extract assisted by microwave and explore their photocatalytic degradation of methyl orange anionic dye and methylene blue cationic dye under solar irradiation. The biosynthesized microwave assisted ZnO NPs were characterized and the results showed that ZnO NPs contain hexagonal wurtzite and characterized with a well-defined spherical-like shape with an outstanding band gap (2.70 eV), average particle size of 25 nm and specific surface area of 11.4 m2/g. The photocatalytic degradation of the MO and MB dyes by biosynthesized ZnO NPs under solar irradiation was studied and the results revealed the selective nature of the ZnO NPs for the adsorption and further photocatalytic degradation of the MO dye compared to the MB dye. In addition, the photocatalytic degradation of MO and MB dyes by the ZnO NPs under solar radiation was fitted by the first-order kinetics. Moreover, the photodegradation mechanism proposed that superoxide ions and hydroxyl radicals are the main reactive species.
Collapse
Affiliation(s)
- Maymounah N. Alharthi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Iqbal Ismail
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
| | - Stefano Bellucci
- National Laboratories of Frascati, National Institute of Nuclear Physics, I-00044 Frascati, Italy;
| | - Nezar H. Khdary
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
| |
Collapse
|
23
|
Saman S, Balouch A, Talpur FN, Memon AA, Mousavi BM, Verpoort F. Green synthesis of MgO nanocatalyst by using
Ziziphus mauritiana
leaves and seeds for biodiesel production. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Syed Saman
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Bibi Maryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- National Research Tomsk Polytechnic University Tomsk Russian Federation
- Ghent University‐Global Campus Songdo Incheon South Korea
| |
Collapse
|
24
|
Holišová V, Urban M, Konvičková Z, Kolenčík M, Mančík P, Slabotinský J, Kratošová G, Plachá D. Colloidal stability of phytosynthesised gold nanoparticles and their catalytic effects for nerve agent degradation. Sci Rep 2021; 11:4071. [PMID: 33603017 PMCID: PMC7892814 DOI: 10.1038/s41598-021-83460-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022] Open
Abstract
Herein, Tilia sp. bract leachate was used as the reducing agent for Au nanoparticles (Au NPs) phytosynthesis. The colloidal properties of the prepared Au NPs were determined to confirm their stability over time, and the NPs were then used as active catalysts in soman nerve agent degradation. The Au NPs characterisation, reproducibility and stability studies were performed under transmission electron microscopy, ultraviolet visible spectroscopy and with ζ-potential measurements. The reaction kinetics was detected by gas chromatography coupled with mass spectrometry detector and solid-phase micro-extraction to confirm the Au NPs applicability in soman hydrolysis. The 'green' phytosynthetic formation of colloidal crystalline Au NPs with dominant quasi-spherical shape and 55 ± 10 nm diameter was successfully achieved, and there were no significant differences in morphology, ζ-potential or absorbance values observed during the 5-week period. This verified the prepared colloids' long-term stability. The soman nerve agent was degraded to non-toxic substances within 24 h, with 0.2156 h-1 reaction rate constant. These results confirmed bio-nanotechnology's great potential in preparation of stable and functional nanocatalysts for degradation of hazardous substances, including chemical warfare agents.
Collapse
Affiliation(s)
- Veronika Holišová
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic.
| | - Martin Urban
- National Institute for Nuclear, Biological and Chemical Protection, v.v.i., Kamenná 71, 262 31, Milín, Czech Republic
| | - Zuzana Konvičková
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic.,ENET Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Marek Kolenčík
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic.,Department of Soil Science and Geology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Pavel Mančík
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Jiří Slabotinský
- National Institute for Nuclear, Biological and Chemical Protection, v.v.i., Kamenná 71, 262 31, Milín, Czech Republic
| | - Gabriela Kratošová
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Daniela Plachá
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic. .,ENET Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic.
| |
Collapse
|
25
|
Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 2021; 11:2804-2837. [PMID: 35424248 PMCID: PMC8694026 DOI: 10.1039/d0ra09941d] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University Tanhril Aizawl Mizoram 796001 India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College Aizawl 796001 Mizoram India
| | - Ayushi Biswas
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Bishwajit Changmai
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Samuel Lalthazuala Rokhum
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
26
|
Reddy NV, Li H, Hou T, Bethu MS, Ren Z, Zhang Z. Phytosynthesis of Silver Nanoparticles Using Perilla frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int J Nanomedicine 2021; 16:15-29. [PMID: 33447027 PMCID: PMC7802595 DOI: 10.2147/ijn.s265003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose The present study investigates the phytosynthesis of silver nanoparticles (AgNPs) using Perilla frutescens leaf extract, which acts as a reducing agent for the conversion of silver ions (Ag+) into AgNPs. P. frutescens leaf synthesized AgNPs (PF@AgNPs) were evaluated for biomedical properties including antibacterial, antioxidant and anticancer activities. Materials and Methods PF@AgNPs were synthesized using P. frutescens leaf extract and silver nitrate solution. The morphology and physical properties of PF@AgNPs were studied by spectroscopic techniques including, UV-Vis, FTIR, TEM, XRD, DLS, and TGA. Antibacterial activity of PF@AgNPs was evaluated by disk diffusion assay. Antioxidant activity of PF@AgNPs was checked by 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging assays. Anticancer activity of PF@AgNPs was checked by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cytotoxic effects of PF@AgNPs on most susceptible cancer cell lines were observed by phase contrast microscopy. Results PF@AgNPs showed surface plasmon resonance peak at 461 nm. XRD pattern showed that the PF@AgNPs were face-centered cubic crystals with a mean size of 25.71 nm. TEM analysis revealed the different shapes (spherical, rhombic, triangle, and rod) of PF@AgNPs. Zeta potential value (-25.83 mV) indicated that PF@AgNPs were long-term stable and not agglomerated. A low polydispersity index value (0.389) indicated the monodispersity of PF@AgNPs. TGA revealed the high thermal stability of PF@AgNPs. PF@AgNPs exhibited maximum inhibition against Escherichia coli, followed by Bacillus subtilis and Staphylococcus aureus. PF@AgNPs showed maximum inhibition of 68.02 and 62.93% against DPPH and ABTS-free radicals, respectively. PF@AgNPs showed significant anticancer activity against human colon cancer (COLO205) and prostate adenocarcinoma (LNCaP). PF@AgNPs exhibited apoptotic effects on LNCaP cells including cell shrinkage, membrane blebbing, chromatin condensation, fragmentation of nuclei, and formation of apoptotic bodies. Conclusion The present study reports the successful synthesis of PF@AgNPs using P. frutescens leaf extract. The synthesized PF@AgNPs are FCC crystals, monodispersed, long-term stable, and non-agglomerated. The observed antibacterial, antioxidant, and anticancer activities demonstrate the potential biomedical applications of PF@AgNPs.
Collapse
Affiliation(s)
- N V Reddy
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| | - M S Bethu
- Pharmacology and Toxicology Division, Indian Institute of Chemical Engineering and Technology, Hyderabad, Telangana State, India
| | - Zhiqing Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
27
|
Wang W, Lu Z, Yan H. P. domestica Extract Mediated Silver Nanoparticles and their Antinociceptive Activity for Pain Management in Children. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Khabeeri OM, Al-Thabaiti SA, Khan Z. Citrus sinensis peel waste assisted synthesis of AgNPs: effect of surfactant on the nucleation and morphology. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03801-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
29
|
Impact of Physical Attributes on Proficient Phytosynthesis of Silver Nanoparticles Using Extract of Fresh Mulberry Leaves: Characterization, Stability and Bioactivity Assessment. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01794-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Green Synthesis of Silver Nanoparticles Using Mushroom Flammulina velutipes Extract and Their Antibacterial Activity Against Aquatic Pathogens. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02533-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Arde SM, Patil AD, Mane AH, Salokhe PR, Salunkhe RS. Synthesis of quinoxaline, benzimidazole and pyrazole derivatives under the catalytic influence of biosurfactant-stabilized iron nanoparticles in water. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04240-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Muthu K, Rini S, Nagasundari SM, Akilandaeaswari B. Photocatalytic reduction and antioxidant potential of green synthesized silver nanoparticles from Catharanthus roseus flower extract. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1799404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- K. Muthu
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, TN, India
| | - S. Rini
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, TN, India
| | | | - B. Akilandaeaswari
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, TN, India
| |
Collapse
|
33
|
Azeez NA, Saravanan M, Chandar NRK, Vishaal MK, Deepa VS. Enhancing the Aspirin Loading and Release Efficiency of Silver Oxide Nanoparticles Using Oleic Acid‐based Bio‐Surfactant from
Enteromorpha intestinalis
. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nazeer Abdul Azeez
- Nano‐Bio Translational Research Laboratory, Department of Biotechnology Bannari Amman Institute of Technology Sathyamangalam Erode Tamil Nadu 638 401 India
| | - Muthupandian Saravanan
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences Mekelle University Mekelle 1871 Ethiopia
| | - Nagamuthu Raja Krishna Chandar
- Department of Physics, School of Advanced Sciences Vellore Institute of Technology Vellore 632 014 India
- Institute of Physics, Academia Sinica Taipei Taiwan
| | - Mohan Karthik Vishaal
- Food Technology, Engineering and Nutrition Lund University PO Box 124 Lund SE‐221 00 Sweden
| | | |
Collapse
|
34
|
Nikaeen G, Yousefinejad S, Rahmdel S, Samari F, Mahdavinia S. Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity. Sci Rep 2020; 10:9642. [PMID: 32541669 PMCID: PMC7295808 DOI: 10.1038/s41598-020-66357-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/19/2020] [Indexed: 11/09/2022] Open
Abstract
Central composite design (CCD) was applied to optimize the synthesis condition of silver nanoparticles (AgNPs) using the extract of Plantago major (P. major) seeds via a low cost and single-step process. The aqueous seed extract was applied as both reducing element and capping reagent for green production of AgNPs. Five empirical factors of synthesis including temperature (Temp), pH, volume of P. major extract (Vex), volume of AgNO3 solution (VAg) and synthesis time were used as independent variables of model and peak intensity of Surface Plasmon Resonance (SPR) originated from NPs as the dependent variable. The predicted optimal conditions was determined to be: Temp = 55 °C, pH = 9.9,Vex = 1.5 mL, VAg = 30 mL, time = 60 min. The characterization of the prepared AgNPs at these optimum conditions was conducted by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) to determine the surface bio-functionalities. Bio-activity of these AgNPs against bacteria and fungi were evaluated based on its assay against Micrococcus luteus, Escherichia coli and Penicillium digitatum. Furthermore, antioxidant capacity of these NPs was checked using the ferric reducing antioxidant power (FRAP) assay.
Collapse
Affiliation(s)
- Ghazal Nikaeen
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samane Rahmdel
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fayezeh Samari
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, 71961, Bandar Abbas, Iran
| | - Saeideh Mahdavinia
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Eco-friendly “green” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant activity. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01369-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Prasad SR, Padvi MN, Suryawanshi SS, Shaikh YI, Chaudhary LS, Samant AP, Prasad NR. Bio-inspired synthesis of catalytically and biologically active palladium nanoparticles using Bos taurus urine. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2382-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Zhang Z, Xin G, Zhou G, Li Q, Veeraraghavan VP, Krishna Mohan S, Wang D, Liu F. Green synthesis of silver nanoparticles from Alpinia officinarum mitigates cisplatin-induced nephrotoxicity via down-regulating apoptotic pathway in rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3212-3221. [PMID: 31359793 DOI: 10.1080/21691401.2019.1645158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rhizome of A. officinarum possesses immense pharmaceutical properties like antioxidant, anti-inflammatory, antiapoptotic, anticancer activities. The foremost downside of herbal-based drugs is their poor bioavailability, to trounce this we synthesized a herbal based silver nanodrug with Alpinia officinarum rhizome extract and assessed its effect against the cisplatin-induced nephrotoxicity in in vivo model. The A. officinarum biosynthesized silver nanoparticles (AG-AO) were characterized using UV-Spec, FTIR, XRD, TEM and SAED analysis. The antioxidant and the nephroprotective property of biosynthesized AG-AO nanoparticles were assessed by estimating the levels of kidney biomarkers, cytokine, inflammatory markers, free radicals and antioxidants induced in control and experimental. Antiapoptotic effect of AG-AO nanoparticles were evaluated by measuring the levels of apoptotic proteins in control and experimental rats. Further, it is confirmed with histopathological analysis of kidney tissue with haematoxylin and eosin staining. Our physical analysis confirms the biosynthesized silver nanoparticles by A. officinarum and it satisfies the qualities of potent nanoparticles to be used for medication. Our biochemical, molecular and histopathological results confirm the antioxidant, antiapoptotic, anti-inflammatory properties of AG-AO. Overall our results authentically confirm AG-AO is a potent nephroprotective drug, which can be a supplementary drug to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zhiping Zhang
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Guangda Xin
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Guangyu Zhou
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Qianyu Li
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Vishnu Priya Veeraraghavan
- b Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University , Chennai , India
| | - Surapaneni Krishna Mohan
- c Department of Medical Biochemistry, College of Applied Medical Sciences - Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University , Al Jubail , Kingdom of Saudi Arabia (KSA)
| | - Dayu Wang
- d Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Feng Liu
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| |
Collapse
|
38
|
Guimarães ML, da Silva FAG, da Costa MM, de Oliveira HP. Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01181-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications. Molecules 2019; 24:molecules24193418. [PMID: 31547052 PMCID: PMC6804184 DOI: 10.3390/molecules24193418] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023] Open
Abstract
Catalysis represents the cornerstone of chemistry, since catalytic processes are ubiquitous in almost all chemical processes developed for obtaining consumer goods. Nanocatalysis represents nowadays an innovative approach to obtain better properties for the catalysts: stable activity, good selectivity, easy to recover, and the possibility to be reused. Over the last few years, for the obtaining of new catalysts, classical methods—based on potential hazardous reagents—have been replaced with new methods emerged by replacing those reagents with plant extracts obtained in different conditions. Due to being diversified in morphology and chemical composition, these materials have different properties and applications, representing a promising area of research. In this context, the present review focuses on the metallic nanocatalysts’ importance, different methods of synthesis with emphasis to the natural compounds used as support, characterization techniques, parameters involved in tailoring the composition, size and shape of nanoparticles and applications in catalysis. This review presents some examples of green nanocatalysts, grouped considering their nature (mono- and bi-metallic nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).
Collapse
|
40
|
Ertürk AS. Controlled Production of Monodisperse Plant‐Mediated AgNP Catalysts Using Microwave Chemistry: A Desirability‐Function‐Based Multiple‐Response Optimization Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201902197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Serol Ertürk
- Department of Analytical ChemistryFaculty of PharmacyAdıyaman University 02040, Adıyaman Turkey
| |
Collapse
|
41
|
El-Seedi HR, El-Shabasy RM, Khalifa SAM, Saeed A, Shah A, Shah R, Iftikhar FJ, Abdel-Daim MM, Omri A, Hajrahand NH, Sabir JSM, Zou X, Halabi MF, Sarhan W, Guo W. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv 2019; 9:24539-24559. [PMID: 35527869 PMCID: PMC9069627 DOI: 10.1039/c9ra02225b] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles (NPs) are new inspiring clinical targets that have emerged from persistent efforts with unique properties and diverse applications. However, the main methods currently utilized in their production are not environmentally friendly. With the aim of promoting a green approach for the synthesis of NPs, this review describes eco-friendly methods for the preparation of biogenic NPs and the known mechanisms for their biosynthesis. Natural plant extracts contain many different secondary metabolites and biomolecules, including flavonoids, alkaloids, terpenoids, phenolic compounds and enzymes. Secondary metabolites can enable the reduction of metal ions to NPs in eco-friendly one-step synthetic processes. Moreover, the green synthesis of NPs using plant extracts often obviates the need for stabilizing and capping agents and yields biologically active shape- and size-dependent products. Herein, we review the formation of metallic NPs induced by natural extracts and list the plant extracts used in the synthesis of NPs. In addition, the use of bacterial and fungal extracts in the synthesis of NPs is highlighted, and the parameters that influence the rate of particle production, size, and morphology are discussed. Finally, the importance and uniqueness of NP-based products are illustrated, and their commercial applications in various fields are briefly featured.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre Box 574 SE-751 23 Uppsala Sweden +46 18 4714207
- College of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges Medina 42541 Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University Egypt
| | - Rehan M El-Shabasy
- Department of Chemistry, Faculty of Science, Menoufia University Egypt
- Ecological Chemistry Group, Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology Stockholm Sweden
| | - Shaden A M Khalifa
- Clinical Research Centre, Karolinska University Hospital Huddinge Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE 106 91 Stockholm Sweden
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Afzal Shah
- Department of Chemistry, College of Science, University of Bahrain Sakhir 32038 Bahrain
| | - Raza Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Faiza Jan Iftikhar
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University Ismailia 41522 Egypt
| | - Abdelfatteh Omri
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Nahid H Hajrahand
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Jamal S M Sabir
- Center of Excellence in Bionoscience Research, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Xiaobo Zou
- College of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
| | - Mohammed F Halabi
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges Medina 42541 Saudi Arabia
| | | | - Weisheng Guo
- Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University Guangzhou 510260 China +86-020-34153830
| |
Collapse
|
42
|
Nasrollahzadeh M, Mahmoudi‐Gom Yek S, Motahharifar N, Ghafori Gorab M. Recent Developments in the Plant‐Mediated Green Synthesis of Ag‐Based Nanoparticles for Environmental and Catalytic Applications. CHEM REC 2019; 19:2436-2479. [DOI: 10.1002/tcr.201800202] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/20/2019] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Narjes Motahharifar
- Department of ChemistryFaculty of ScienceUniversity of Qom Qom 37185-359 Iran
| | | |
Collapse
|
43
|
Mahajan PG, Dige NC, Vanjare BD, Phull AR, Kim SJ, Lee KH. Gallotannin mediated silver colloidal nanoparticles as multifunctional nano platform: Rapid colorimetric and turn-on fluorescent sensor for Hg2+, catalytic and In vitro anticancer activities. JOURNAL OF LUMINESCENCE 2019; 206:624-633. [DOI: 10.1016/j.jlumin.2018.10.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
|
44
|
Kaithavelikkakath Francis P, Sivadasan S, Avarachan A, Gopinath A. A novel green synthesis of gold nanoparticles using seaweed Lobophora variegata and its potential application in the reduction of nitrophenols. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2018.1547340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Sreeja Sivadasan
- Department of Marine Chemistry, Kerala University of Fisheries and Ocean Studies, Cochin, India
| | - Anna Avarachan
- Department of Chemistry, St. Albert’s College, Ernakulam, India
| | - Anu Gopinath
- Department of Fishery Hydrography, Kerala University of Fisheries and Ocean Studies, Cochin, India
| |
Collapse
|
45
|
Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-12-813586-0.00006-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Nguyen TTN, Vo TT, Nguyen BNH, Nguyen DT, Dang VS, Dang CH, Nguyen TD. Silver and gold nanoparticles biosynthesized by aqueous extract of burdock root, Arctium lappa as antimicrobial agent and catalyst for degradation of pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34247-34261. [PMID: 30291612 DOI: 10.1007/s11356-018-3322-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
This study presents an efficient and facile method for biosynthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using aqueous extract of burdock root (BR), A. lappa, and their applications. The nanoparticles were characterized by ultraviolet-visible spectrophotometry, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray, thermogravimetry, and differential thermal analysis. AgNPs capped the BR extract (BR-AgNPs) possessed roughly spherical geometry with an average diameter of 21.3 nm while uneven geometry of AuNPs capped the BR extract (BR-AuNPs) showed multi shapes in average size of 24.7 nm. The BR-AgNPs strongly inhibited five tested microorganism strains. In particular, the nanoparticles showed excellent catalytic activity for the conversion of pollutants within wastewater. Pseudo-first-order rate constants for the degradation of 4-nitrophenol, methyl orange, and rhodamine B were respectively found 6.77 × 10-3, 3.70 × 10-3, and 6.07 × 10-3 s-1 for BR-AgNPs and 6.87 × 10-3, 6.07 × 10-3, and 7.07 × 10-3 s-1 for BR-AuNPs. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Thi Thanh-Ngan Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
| | - Thanh-Truc Vo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | | | | | - Van-Su Dang
- Department of Chemical Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh, Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam.
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam.
| |
Collapse
|
47
|
Fard NN, Noorbazargan H, Mirzaie A, Hedayati Ch M, Moghimiyan Z, Rahimi A. Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1047-S1058. [PMID: 30479160 DOI: 10.1080/21691401.2018.1528983] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silver nanoparticles (AgNPs) were synthesized using Artemisia oliveriana extract, and their physicochemical characteristics were studied. The antioxidant and antimicrobial activities of the AgNPs, as well as their anticancer effects on the lung cancer cell line (A549), using 1,1-diphenyl-2-picrylhydrazyl (DPPH), MIC and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) techniques respectively demonstrated that the synthesized AgNPs mainly affected the gram-positive bacteria rather than the gram-negative bacteria, and exhibited significant cellular toxicity on the A549 cell line. Further, the cellular uptake of the AgNPs results indicated that the AgNPs accumulated within the cell. Moreover, their impact on the expression of apoptotic genes including Bax, Bcl-2, caspase-3 (CASP3), caspase-9 (CASP9) and miR-192 using real-time PCR demonstrated substantial increase in the expression of all mentioned genes (p<.001). Finally, the apoptotic effects of the AgNPs through DNA fragmentation test, flow cytometry and cell cycle analysis indicated the induction of apoptosis in the A549 cell line. The results revealed that the AgNPs synthesized using A. oliveriana extract have potential biological applications.
Collapse
Affiliation(s)
- Nafiseh Nafisi Fard
- a Young Researcher and Elite Club, East Tehran Branch , Islamic Azad University , Tehran , Iran.,b Department of Biology, East Tehran Branch , Islamic Azad University , Tehran , Iran
| | - Hassan Noorbazargan
- c Department of Biotechnology, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Amir Mirzaie
- d Department of Biology, Roudehen Branch , Islamic Azad University , Roudehen , Iran
| | - Mojtaba Hedayati Ch
- e Department of Microbiology, Parasitology, and Immunology , Guilan University of Medical Sciences , Rasht , Iran
| | - Zeinab Moghimiyan
- f Department of Biology , Islamic Azad University of Tonekabon Branch , Tonekabon , Iran
| | - Arian Rahimi
- a Young Researcher and Elite Club, East Tehran Branch , Islamic Azad University , Tehran , Iran
| |
Collapse
|
48
|
Kratošová G, Holišová V, Konvičková Z, Ingle AP, Gaikwad S, Škrlová K, Prokop A, Rai M, Plachá D. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol Adv 2018; 37:154-176. [PMID: 30481544 DOI: 10.1016/j.biotechadv.2018.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Chemical, physical and mechanical methods of nanomaterial preparation are still regarded as mainstream methods, and the scientific community continues to search for new ways of nanomaterial preparation. The major objective of this review is to highlight the advantages of using green chemistry and bionanotechnology in the preparation of functional low-cost catalysts. Bionanotechnology employs biological principles and processes connected with bio-phase participation in both design and development of nano-structures and nano-materials, and the biosynthesis of metallic nanoparticles is becoming even more popular due to; (i) economic and ecologic effectiveness, (ii) simple one-step nanoparticle formation, stabilisation and biomass support and (iii) the possibility of bio-waste valorisation. Although it is quite difficult to determine the precise mechanisms in particular biosynthesis and research is performed with some risk in all trial and error experiments, there is also the incentive of understanding the exact mechanisms involved. This enables further optimisation of bionanoparticle preparation and increases their application potential. Moreover, it is very important in bionanotechnological procedures to ensure repeatability of the methods related to the recognised reaction mechanisms. This review, therefore, summarises the current state of nanoparticle biosynthesis. It then demonstrates the application of biosynthesised metallic nanoparticles in heterogeneous catalysis by identifying the many examples where bionanocatalysts have been successfully applied in model reactions. These describe the degradation of organic dyes, the reduction of aromatic nitro compounds, dehalogenation of chlorinated aromatic compounds, reduction of Cr(VI) and the synthesis of important commercial chemicals. To ensure sustainability, it is important to focus on nanomaterials that are capable of maintaining the important green chemistry principles directly from design inception to ultimate application.
Collapse
Affiliation(s)
- Gabriela Kratošová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic.
| | - Veronika Holišová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Zuzana Konvičková
- ENET Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Avinash P Ingle
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Lorena, Brazil
| | - Swapnil Gaikwad
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Tathawade, Pune, India
| | - Kateřina Škrlová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Aleš Prokop
- Chemical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, S.G.B. Amravati University, Amravati 444602, Maharashtra, India
| | - Daniela Plachá
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic; ENET Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| |
Collapse
|
49
|
Optimization of ultrasound-assisted extraction of total phenolic contents and antioxidant activity using response surface methodology from jujube leaves (Ziziphus jujuba) and evaluation of anticholinesterase inhibitory activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9947-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Omran BA, Nassar HN, Younis SA, Fatthallah NA, Hamdy A, El-Shatoury EH, El-Gendy NS. Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria. J Appl Microbiol 2018; 126:138-154. [PMID: 30199141 DOI: 10.1111/jam.14102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/21/2018] [Accepted: 09/04/2018] [Indexed: 01/17/2023]
Abstract
AIMS In order to efficiently control the corrosive sulphate-reducing bacteria (SRB), the main precursor of the microbial influenced corrosion (MIC) in oil industry, the ability of Trichoderma longibrachiatumDSMZ 16517 to synthesize silver nanoparticles (AgNPs) was investigated and their biocidal activity against halotolerant SRB was tested. METHODS AND RESULTS The mycelial cell-free filtrate (MCFF) bioreduced the silver ions (Ag+ ) to their metallic nanoparticle state (Ag0 ), which was presumptively indicated by the appearance of a dark brown suspension and confirmed by the characteristic absorbance of AgNPs at ʎ422nm . One-factor-at-a-time technique was used to optimize the effect of temperature, time, pH, fungal biomass and silver nitrate concentrations, stirring rates and dark effect. The dynamic light scattering (DLS) analysis revealed average AgNPs size and zeta potential values of 17·75 nm and -26·8 mV, respectively, indicating the stability of the prepared AgNPs. The X-ray diffraction (XRD) pattern assured the crystallinity of the mycosynthesized AgNPs, with an average size of 61 nm. The field emission scanning electron microscope (FESEM) and high-resolution transmission electron microscope (HRTEM) showed nonagglomerated spherical, triangular and cuboid AgNPs ranging from 5 to 11 ± 0·5 nm. The Fourier transform infrared spectroscopy (FT-IR) analysis of the mycosynthesized AgNPs affirmed the role of MCFF as a reducing and capping agent. A preliminary suggested mechanism for mycosynthesis of AgNPs was elucidated. The mycosynthesized AgNPs expressed high biocidal activity against a halotolerant planktonic mixed culture of SRB. The HRTEM analysis showed a clear evidence of an alteration in cell morphology, a disruption of SRB cell membranes, a lysis in cell wall and a cytoplasmic extraction after treatment with AgNPs. This confirmed the bactericidal effect of the mycosynthesized AgNPs. CONCLUSION The biocidal activity of the mycosynthesized AgNPs against halotolerant planktonic SRB makes it an attractive option to control MIC in the petroleum industry. SIGNIFICANCE AND IMPACT OF THE STUDY This research provides a helpful insight into the development of a new mycosynthesized biocidal agent against the corrosive sulphate-reducing bacteria.
Collapse
Affiliation(s)
- B A Omran
- Egyptian Petroleum Research Institute, Cairo, Egypt
| | - H N Nassar
- Egyptian Petroleum Research Institute, Cairo, Egypt
| | - S A Younis
- Egyptian Petroleum Research Institute, Cairo, Egypt
| | | | - A Hamdy
- Egyptian Petroleum Research Institute, Cairo, Egypt
| | | | | |
Collapse
|