1
|
Montserrat-Canals M, Cordara G, Krengel U. Allostery. Q Rev Biophys 2025; 58:e5. [PMID: 39849666 DOI: 10.1017/s0033583524000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Mohole M, Naglekar A, Sengupta D, Chattopadhyay A. Probing the energy landscape of the lipid interactions of the serotonin 1A receptor. Biophys Chem 2024; 313:107289. [PMID: 39002247 DOI: 10.1016/j.bpc.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin1A receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1-4 kT, and timescales of 1-10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
3
|
Shubhrasmita Sahu S, Sarkar P, Chattopadhyay A. Quantitation of F-actin in cytoskeletal reorganization: Context, methodology and implications. Methods 2024; 230:44-58. [PMID: 39074540 DOI: 10.1016/j.ymeth.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.
Collapse
Affiliation(s)
- Subhashree Shubhrasmita Sahu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
4
|
Sirbu A, Bathe-Peters M, Kumar JLM, Inoue A, Lohse MJ, Annibale P. Cell swelling enhances ligand-driven β-adrenergic signaling. Nat Commun 2024; 15:7822. [PMID: 39242606 PMCID: PMC11379887 DOI: 10.1038/s41467-024-52191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
G protein-coupled receptors' conformational landscape can be affected by their local, microscopic interactions within the cell plasma membrane. We employ here a pleiotropic stimulus, namely osmotic swelling, to alter the cortical environment within intact cells and monitor the response in terms of receptor function and downstream signaling. We observe that in osmotically swollen cells the β2-adrenergic receptor, a prototypical GPCR, favors an active conformation, resulting in cAMP transient responses to adrenergic stimulation that have increased amplitude. The results are validated in primary cell types such as adult cardiomyocytes, a model system where swelling occurs upon ischemia-reperfusion injury. Our results suggest that receptors' function is finely modulated by their biophysical context, and specifically that osmotic swelling acts as a potentiator of downstream signaling, not only for the β2-adrenergic receptor, but also for other receptors, hinting at a more general regulatory mechanism.
Collapse
Affiliation(s)
- Alexei Sirbu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Marc Bathe-Peters
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jothi L M Kumar
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- ISAR Bioscience Institute, Munich-Planegg, Germany
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
| |
Collapse
|
5
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. Nat Commun 2024; 15:7445. [PMID: 39198447 PMCID: PMC11358326 DOI: 10.1038/s41467-024-51320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
G-protein coupled receptors help regulate cellular function and communication, and are targets of small molecule drug discovery efforts. Conventional techniques to probe these interactions require labels and large amounts of receptor to achieve satisfactory sensitivity. Here, we use frequency-locked optical microtoroids for label-free characterization of membrane interactions in vitro at zeptomolar concentrations for the kappa opioid receptor and its native agonist dynorphin A 1-13, as well as big dynorphin (dynorphin A and dynorphin B) using a supported biomimetic membrane. The measured affinity of the agonist dynorphin A 1-13 to the κ-opioid receptor was also measured and found to be 3.1 nM. Radioligand assays revealed a dissociation constant in agreement with this value (1.1 nM). The limit of detection for the κOR/DynA 1-13 was calculated as 180 zM. The binding of Cholera Toxin B-monosialotetrahexosyl ganglioside was also monitored in real-time and an equilibrium dissociation constant of 1.53 nM was found. Our biosensing platform provides a method for highly sensitive real-time characterization of membrane embedded protein binding kinetics that is rapid and label-free, for drug discovery and toxin screening among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeffrey E Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Stephen B Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
6
|
Eberle SA, Gustavsson M. Bilayer lipids modulate ligand binding to atypical chemokine receptor 3. Structure 2024; 32:1174-1183.e5. [PMID: 38776922 DOI: 10.1016/j.str.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.
Collapse
Affiliation(s)
- Stefanie Alexandra Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
7
|
Yokoi S, Suno R, Mitsutake A. Structural and Computational Insights into Dynamics and Intermediate States of Orexin 2 Receptor Signaling. J Phys Chem B 2024; 128:6082-6096. [PMID: 38722794 DOI: 10.1021/acs.jpcb.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Orexin 2 receptor (OX2R) is a G protein-coupled receptor (GPCR) whose activation is crucial to regulation of the sleep-wake cycle. Recently, inactive and active state structures were determined from X-ray crystallography and cryo-electron microscopy single particle analysis, and the activation mechanisms have been discussed based on these static data. GPCRs have multiscale intermediate states during activation, and insights into these dynamics and intermediate states may aid the precise control of intracellular signaling by ligands in drug discovery. Molecular dynamics (MD) simulations are used to investigate dynamics induced in response to thermal perturbations, such as structural fluctuations of main and side chains. In this study, we proposed collective motions of the TM domain during activation by performing 30 independent microsecond-scale MD simulations for various OX2R systems and applying relaxation mode analysis. The analysis results suggested that TM3 had a vertical structural movement relative to the membrane surface during activation. In addition, we extracted three characteristic amino acid residues on TM3, i.e., Q1343.32, V1423.40, and R1523.50, which exhibited large conformational fluctuations. We quantitatively evaluated the changes in their equilibrium during activation in relation to the movement of TM3. We also discuss the regulation of ligand binding recognition and intracellular signal selectivity by changes in the equilibrium of Q1343.32 and R1523.50, respectively, according to MD simulations and GPCR database. Additionally, the OX2R-Gi signaling complex is stabilized in the conformation resembling a non-canonical (NC) state, which was previously proposed as an intermediate state during activation of neurotensin 1 receptor. Insights into the dynamics and intermediate states during activation gained from this study may be useful for developing biased agonists for OX2R.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka 573-1010, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
8
|
Lihan M, Tajkhorshid E. Improved Highly Mobile Membrane Mimetic Model for Investigating Protein-Cholesterol Interactions. J Chem Inf Model 2024; 64:4822-4834. [PMID: 38844760 DOI: 10.1021/acs.jcim.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cholesterol (CHL) plays an integral role in modulating the function and activity of various mammalian membrane proteins. Due to the slow dynamics of lipids, conventional computational studies of protein-CHL interactions rely on either long-time scale atomistic simulations or coarse-grained approximations to sample the process. A highly mobile membrane mimetic (HMMM) has been developed to enhance lipid diffusion and thus used to facilitate the investigation of lipid interactions with peripheral membrane proteins and, with customized in silico solvents to replace phospholipid tails, with integral membrane proteins. Here, we report an updated HMMM model that is able to include CHL, a nonphospholipid component of the membrane, henceforth called HMMM-CHL. To this end, we had to optimize the effect of the customized solvents on CHL behavior in the membrane. Furthermore, the new solvent is compatible with simulations using force-based switching protocols. In the HMMM-CHL, both improved CHL dynamics and accelerated lipid diffusion are integrated. To test the updated model, we have applied it to the characterization of protein-CHL interactions in two membrane protein systems, the human β2-adrenergic receptor (β2AR) and the mitochondrial voltage-dependent anion channel 1 (VDAC-1). Our HMMM-CHL simulations successfully identified CHL binding sites and captured detailed CHL interactions in excellent consistency with experimental data as well as other simulation results, indicating the utility of the improved model in applications where an enhanced sampling of protein-CHL interactions is desired.
Collapse
Affiliation(s)
- Muyun Lihan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
10
|
Menon I, Sych T, Son Y, Morizumi T, Lee J, Ernst OP, Khelashvili G, Sezgin E, Levitz J, Menon AK. A cholesterol switch controls phospholipid scrambling by G protein-coupled receptors. J Biol Chem 2024; 300:105649. [PMID: 38237683 PMCID: PMC10874734 DOI: 10.1016/j.jbc.2024.105649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/30/2024] Open
Abstract
Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the β1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.
Collapse
Affiliation(s)
- Indu Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yeeun Son
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, New York, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA; Institute of Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Erdinc Sezgin
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, New York, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
11
|
Faivre N, Verollet C, Dumas F. The chemokine receptor CCR5: multi-faceted hook for HIV-1. Retrovirology 2024; 21:2. [PMID: 38263120 PMCID: PMC10807162 DOI: 10.1186/s12977-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
Chemokines are cytokines whose primary role is cellular activation and stimulation of leukocyte migration. They perform their various functions by interacting with G protein-coupled cell surface receptors (GPCRs) and are involved in the regulation of many biological processes such as apoptosis, proliferation, angiogenesis, hematopoiesis or organogenesis. They contribute to the maintenance of the homeostasis of lymphocytes and coordinate the function of the immune system. However, chemokines and their receptors are sometimes hijacked by some pathogens to infect the host organism. For a given chemokine receptor, there is a wide structural, organizational and conformational diversity. In this review, we describe the evidence for structural variety reported for the chemokine receptor CCR5, how this variability can be exploited by HIV-1 to infect its target cells and what therapeutic solutions are currently being developed to overcome this problem.
Collapse
Affiliation(s)
- Natacha Faivre
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
12
|
Menon I, Sych T, Son Y, Morizumi T, Lee J, Ernst OP, Khelashvili G, Sezgin E, Levitz J, Menon AK. A cholesterol switch controls phospholipid scrambling by G protein-coupled receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.24.568580. [PMID: 38045315 PMCID: PMC10690279 DOI: 10.1101/2023.11.24.568580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs, yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the β1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.
Collapse
Affiliation(s)
- Indu Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Taras Sych
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Yeeun Son
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, NY 10065, USA
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Erdinc Sezgin
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Anant K. Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
13
|
Ahmadian Elmi M, Motamed N, Picard D. Proteomic Analyses of the G Protein-Coupled Estrogen Receptor GPER1 Reveal Constitutive Links to Endoplasmic Reticulum, Glycosylation, Trafficking, and Calcium Signaling. Cells 2023; 12:2571. [PMID: 37947649 PMCID: PMC10650109 DOI: 10.3390/cells12212571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER1) has been proposed to mediate rapid responses to the steroid hormone estrogen. However, despite a strong interest in its potential role in cancer, whether it is indeed activated by estrogen and how this works remain controversial. To provide new tools to address these questions, we set out to determine the interactome of exogenously expressed GPER1. The combination of two orthogonal methods, namely APEX2-mediated proximity labeling and immunoprecipitation followed by mass spectrometry, gave us high-confidence results for 73 novel potential GPER1 interactors. We found that this GPER1 interactome is not affected by estrogen, a result that mirrors the constitutive activity of GPER1 in a functional assay with a Rac1 sensor. We specifically validated several hits highlighted by a gene ontology analysis. We demonstrate that CLPTM1 interacts with GPER1 and that PRKCSH and GANAB, the regulatory and catalytic subunits of α-glucosidase II, respectively, associate with CLPTM1 and potentially indirectly with GPER1. An imbalance in CLPTM1 levels induces nuclear association of GPER1, as does the overexpression of PRKCSH. Moreover, we show that the Ca2+ sensor STIM1 interacts with GPER1 and that upon STIM1 overexpression and depletion of Ca2+ stores, GPER1 becomes more nuclear. Thus, these new GPER1 interactors establish interesting connections with membrane protein maturation, trafficking, and calcium signaling.
Collapse
Affiliation(s)
- Maryam Ahmadian Elmi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| |
Collapse
|
14
|
Sarkar P, Chattopadhyay A. Interplay of Cholesterol and Actin in Neurotransmitter GPCR Signaling: Insights from Chronic Cholesterol Depletion Using Statin. ACS Chem Neurosci 2023; 14:3855-3868. [PMID: 37804226 DOI: 10.1021/acschemneuro.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
Abstract
Serotonin1A receptors are important neurotransmitter receptors in the G protein-coupled receptor (GPCR) family and modulate a variety of neurological, behavioral, and cognitive functions. We recently showed that chronic cholesterol depletion by statins, potent inhibitors of HMG-CoA reductase (the rate-limiting enzyme in cholesterol biosynthesis), leads to polymerization of the actin cytoskeleton that alters lateral diffusion of serotonin1A receptors. However, cellular signaling by the serotonin1A receptor under chronic cholesterol depletion remains unexplored. In this work, we explored signaling by the serotonin1A receptor under statin-treated condition. We show that cAMP signaling by the receptor is reduced upon lovastatin treatment due to reduction in cholesterol as well as polymerization of the actin cytoskeleton. To the best of our knowledge, these results constitute the first report describing the effect of chronic cholesterol depletion on the signaling of a G protein-coupled neuronal receptor. An important message arising from these results is that it is prudent to include the contribution of actin polymerization while analyzing changes in membrane protein function due to chronic cholesterol depletion by statins. Notably, our results show that whereas actin polymerization acts as a negative regulator of cAMP signaling, cholesterol could act as a positive modulator. These results assume significance in view of reports highlighting symptoms of anxiety and depression in humans upon statin administration and the role of serotonin1A receptors in anxiety and depression. Overall, these results reveal a novel role of actin polymerization induced by chronic cholesterol depletion in modulating GPCR signaling, which could act as a potential therapeutic target.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
15
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558657. [PMID: 37786702 PMCID: PMC10541581 DOI: 10.1101/2023.09.20.558657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Binding events to elements of the cell membrane act as receptors which regulate cellular function and communication and are the targets of many small molecule drug discovery efforts for agonists and antagonists. Conventional techniques to probe these interactions generally require labels and large amounts of receptor to achieve satisfactory sensitivity. Whispering gallery mode microtoroid optical resonators have demonstrated sensitivity to detect single-molecule binding events. Here, we demonstrate the use of frequency-locked optical microtoroids for characterization of membrane interactions in vitro at zeptomolar concentrations using a supported biomimetic membrane. Arrays of microtoroids were produced using photolithography and subsequently modified with a biomimetic membrane, providing high quality (Q) factors (> 10 6 ) in aqueous environments. Fluorescent recovery after photobleaching (FRAP) experiments confirmed the retained fluidity of the microtoroid supported-lipid membrane with a diffusion coefficient of 3.38 ± 0.26 μm 2 ⋅ s - 1 . Utilizing this frequency-locked membrane-on-a-chip model combined with auto-balanced detection and non-linear post-processing techniques, we demonstrate zeptomolar detection levels The binding of Cholera Toxin B- monosialotetrahexosyl ganglioside (GM1) was monitored in real-time, with an apparent equilibrium dissociation constant k d = 1.53 nM . The measured affiny of the agonist dynorphin A 1-13 to the κ -opioid receptor revealed a k d = 3.1 nM using the same approach. Radioligand binding competition with dynorphin A 1-13 revealed a k d in agreement (1.1 nM) with the unlabeled method. The biosensing platform reported herein provides a highly sensitive real-time characterization of membrane embedded protein binding kinetics, that is rapid and label-free, for toxin screening and drug discovery, among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| | - Jeffrey E. Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
16
|
Ray AP, Thakur N, Pour NG, Eddy MT. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 2023; 31:836-847.e6. [PMID: 37236187 PMCID: PMC10330489 DOI: 10.1016/j.str.2023.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
17
|
Tzortzini E, Kolocouris A. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A 2A Adenosine Receptor. Biomolecules 2023; 13:957. [PMID: 37371538 DOI: 10.3390/biom13060957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipid membrane bilayers with cholesterol representing 34% of the total lipid content in mammalian plasma membranes. Membrane lipids interact with GPCRs structures and modulate their function and drug-stimulated signaling through conformational selection. It has been shown that anionic phospholipids form strong interactions between positively charged residues in the G protein and the TM5-TM6-TM 7 cytoplasmic interface of class A GPCRs stabilizing the signaling GPCR-G complex. Cholesterol with a high content in plasma membranes can be identified in more specific sites in the transmembrane region of GPCRs, such as the Cholesterol Consensus Motif (CCM) and Cholesterol Recognition Amino Acid Consensus (CRAC) motifs and other receptor dependent and receptor state dependent sites. Experimental biophysical methods, atomistic (AA) MD simulations and coarse-grained (CG) molecular dynamics simulations have been applied to investigate these interactions. We emphasized here the impact of phosphatidyl inositol-4,5-bisphosphate (PtdIns(4,5)P2 or PIP2), a minor phospholipid component and of cholesterol on the function-related conformational equilibria of the human A2A adenosine receptor (A2AR), a representative receptor in class A GPCR. Several GPCRs of class A interacted with PIP2 and cholesterol and in many cases the mechanism of the modulation of their function remains unknown. This review provides a helpful comprehensive overview for biophysics that enter the field of GPCRs-lipid systems.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
18
|
Vaughen JP, Theisen E, Clandinin TR. From seconds to days: Neural plasticity viewed through a lipid lens. Curr Opin Neurobiol 2023; 80:102702. [PMID: 36965206 DOI: 10.1016/j.conb.2023.102702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 03/27/2023]
Abstract
Many adult neurons are dynamically remodeled across timescales ranging from the rapid addition and removal of specific synaptic connections, to largescale structural plasticity events that reconfigure circuits over hours, days, and months. Membrane lipids, including brain-enriched sphingolipids, play crucial roles in these processes. In this review, we summarize progress at the intersection of neuronal activity, lipids, and structural remodeling. We highlight how brain activity modulates lipid metabolism to enable adaptive structural plasticity, and showcase glia as key players in membrane remodeling. These studies reveal that lipids act as critical signaling molecules that instruct the dynamic architecture of the brain.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States; Department of Developmental Biology, Stanford University, Stanford, CA, 94305, United States. https://twitter.com/gliaful
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States. https://twitter.com/emmaktheisen
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
19
|
Soubias O, Sodt AJ, Teague WE, Hines KG, Gawrisch K. Physiological changes in bilayer thickness induced by cholesterol control GPCR rhodopsin function. Biophys J 2023; 122:973-983. [PMID: 36419350 PMCID: PMC10111215 DOI: 10.1016/j.bpj.2022.11.2937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
We monitored the effect on function of the G-protein-coupled receptor (GPCR) rhodopsin from small, stepwise changes in bilayer thickness induced by cholesterol. Over a range of phosphatidylcholine bilayers with hydrophobic thickness from ≈21 Å to 38 Å, the metarhodopsin-I (MI)/metarhodopsin-II (MII) equilibrium was monitored with UV-visible spectroscopy while ordering of hydrocarbon chains was probed by 2H-NMR. Addition of cholesterol shifted equilibrium toward MII for bilayers thinner than the average length of hydrophobic transmembrane helices (27 Å) and to MI for thicker bilayers, while small bilayer thickness changes within the range of the protein hydrophobic thickness drastically up- or downregulated MII formation. The cholesterol-induced shifts toward MII for thinner membranes correlated with the cholesterol-induced increase of bilayer hydrophobic thickness measured by NMR, consistent with continuum elastic modeling. The energetic penalty of adding cholesterol to thick bilayers caused rhodopsin oligomerization and a shift toward MI. In membranes of physiological thickness, changes in bilayer mechanical properties induced by cholesterol potentiated the interplay between bilayer and protein thickness resulting in large swings of the MI-MII equilibrium. In membrane containing cholesterol, elastic deformations near the protein are a dominant energetic contribution to the functional equilibrium of the model GPCR rhodopsin.
Collapse
Affiliation(s)
- Olivier Soubias
- Macromolecular NMR Section, Center for Structural Biology, Center for Cancer Research, NCI, NIH, Frederick, Maryland.
| | - Alexander J Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver NICHD, NIH, Bethesda, Maryland
| | - Walter E Teague
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| | - Kirk G Hines
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| | - Klaus Gawrisch
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| |
Collapse
|
20
|
Tzortzini E, Corey RA, Kolocouris A. Comparative Study of Receptor-, Receptor State-, and Membrane-Dependent Cholesterol Binding Sites in A 2A and A 1 Adenosine Receptors Using Coarse-Grained Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:928-949. [PMID: 36637988 DOI: 10.1021/acs.jcim.2c01181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We used coarse-grained molecular dynamics (CG MD) simulations to study protein-cholesterol interactions for different activation states of the A2A adenosine receptor (A2AR) and the A1 adenosine receptor (A1R) and predict new cholesterol binding sites indicating amino acid residues with a high residence time in three biologically relevant membranes. Compared to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-cholesterol and POPC-phosphatidylinositol-bisphosphate (PIP2)-cholesterol, the plasma mimetic membrane best described the cholesterol binding sites previously detected for the inactive state of A2AR and revealed the binding sites with long-lasting amino acid residues. We observed that using the plasma mimetic membrane and plotting residues with cholesterol residence time ≥2 μs, our CG MD simulations captured most obviously the cholesterol-protein interactions. For the inactive A2AR, we identified one more binding site in which cholesterol is bound to residues with a long residence time compared to the previously detected, for the active A1R, three binding sites, and for the inactive A1R, two binding sites. We calculated that for the active states, cholesterol binds to residues with a much longer residence time compared to the inactive state for both A2AR and A1R. The stability of the identified binding sites to A1R or A2AR with CG MD simulations was additionally investigated with potential of mean force calculations using umbrella sampling. We observed that the binding sites with residues to which cholesterol has a long residence time in A2AR have shallow binding free energy minima compared to the related binding sites in A1R, suggesting a stronger binding for cholesterol to A1R. The differences in binding sites in which cholesterol is stabilized and interacts with residues with a long residence time between active and inactive states of A1R and A2AR can be important for differences in functional activity and orthosteric agonist or antagonist affinity and can be used for the design of allosteric modulators, which can bind through lipid pathways. We observed a stronger binding for cholesterol to A1R (i.e., generally higher association rates) compared to A2AR, which remains to be demonstrated. For the active states, cholesterol binds to residues with much longer residence times compared to the inactive state for both A2AR and A1R. Taken together, binding sites of active A1R may be considered as promising allosteric targets.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| |
Collapse
|
21
|
Lowry TW, Kusi-Appiah AE, Fadool DA, Lenhert S. Odor Discrimination by Lipid Membranes. MEMBRANES 2023; 13:151. [PMID: 36837654 PMCID: PMC9962961 DOI: 10.3390/membranes13020151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Odor detection and discrimination in mammals is known to be initiated by membrane-bound G-protein-coupled receptors (GPCRs). The role that the lipid membrane may play in odor discrimination, however, is less well understood. Here, we used model membrane systems to test the hypothesis that phospholipid bilayer membranes may be capable of odor discrimination. The effect of S-carvone, R-carvone, and racemic lilial on the model membrane systems was investigated. The odorants were found to affect the fluidity of supported lipid bilayers as measured by fluorescence recovery after photobleaching (FRAP). The effect of odorants on surface-supported lipid multilayer microarrays of different dimensions was also investigated. The lipid multilayer micro- and nanostructure was highly sensitive to exposure to these odorants. Fluorescently-labeled lipid multilayer droplets of 5-micron diameter were more responsive to these odorants than ethanol controls. Arrays of lipid multilayer diffraction gratings distinguished S-carvone from R-carvone in an artificial nose assay. Our results suggest that lipid bilayer membranes may play a role in odorant discrimination and molecular recognition in general.
Collapse
|
22
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
23
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
24
|
Mohole M, Sengupta D, Chattopadhyay A. Synergistic and Competitive Lipid Interactions in the Serotonin 1A Receptor Microenvironment. ACS Chem Neurosci 2022; 13:3403-3415. [PMID: 36351047 DOI: 10.1021/acschemneuro.2c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The interaction of lipids with G-protein-coupled receptors (GPCRs) has been shown to modulate and dictate several aspects of GPCR organization and function. Diverse lipid interaction sites have been identified from structural biology, bioinformatics, and molecular dynamics studies. For example, multiple cholesterol interaction sites have been identified in the serotonin1A receptor, along with distinct and overlapping sphingolipid interaction sites. How these lipids interact with each other and what is the resultant effect on the receptor is still not clear. In this work, we have analyzed lipid-lipid crosstalk at the receptor of the serotonin1A receptor embedded in a membrane bilayer that mimics the neuronal membrane composition by long coarse-grain simulations. Using a set of similarity coefficients, we classified lipids that bind at the receptor together as synergistic cobinding, and those that bind individually as competitive. Our results show that certain lipids interact with the serotonin1A receptor in synergy with each other. Not surprisingly, the ganglioside GM1 and cholesterol show a synergistic cobinding, along with the relatively uncommon GM1-phosphatidylethanolamine (PE) and cholesterol-PE synergy. In contrast, certain lipid pairs such as cholesterol and sphingomyelin appear to be in competition at several sites, despite their coexistence in lipid nanodomains. In addition, we observed intralipid competition between two lipid tails, with the receptor exhibiting increased interactions with the unsaturated lipid tails. We believe our work represents an important step in understanding the diversity of GPCR-lipid interactions and exploring synergistic cobinding and competition in natural membranes.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research, Ghaziabad201 002, India.,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad500 007, India
| |
Collapse
|
25
|
Sarkar P, Bhat A, Chattopadhyay A. Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin 1A Receptor. J Membr Biol 2022; 255:739-746. [PMID: 35986776 DOI: 10.1007/s00232-022-00262-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Akrati Bhat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
26
|
Abiko LA, Dias Teixeira R, Engilberge S, Grahl A, Mühlethaler T, Sharpe T, Grzesiek S. Filling of a water-free void explains the allosteric regulation of the β 1-adrenergic receptor by cholesterol. Nat Chem 2022; 14:1133-1141. [PMID: 35953642 DOI: 10.1038/s41557-022-01009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Recent high-pressure NMR results indicate that the preactive conformation of the β1-adrenergic receptor (β1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
Collapse
Affiliation(s)
| | | | - Sylvain Engilberge
- Paul Scherrer Institut, Villigen, Switzerland.,European Synchrotron Radiation Facility, Grenoble, France
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
27
|
Kumari S, Mitra A, Bulusu G. Structural dynamics of Smoothened (SMO) in the ciliary membrane and its interaction with membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183946. [PMID: 35483421 DOI: 10.1016/j.bbamem.2022.183946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The Smoothened receptor (SMO, a 7 pass transmembrane domain, Class F GPCR family protein) plays a crucial role in the Hedgehog (HH) signaling pathway, which is involved in embryonic development and is implicated in various types of cancer throughout the animal kingdom. In the absence of HH signaling, SMO is inhibited by Patched 1 (PTC1; a 12 pass transmembrane domain protein), which is localized in the primary cilia. HH binding leads to the dislocation of PTC1 from the cilia, thus making way for SMO to localize in the primary cilia, as an essential prerequisite for its activation. We have carried out MARTINI coarse-grained molecular dynamics simulations of SMO in POPC and in ciliary membrane models, respectively, to study the interactions of SMO with cholesterol and other lipid molecules in the ciliary membrane, and to gain molecular-level insights into the role of the primary cilia in shaping the functional dynamics of SMO. We are able to identify the interaction of membrane cholesterols with definite sites and domains within SMO and relate them with known cholesterol-binding sequence and structure motifs. We show that cholesterol interactions with the transmembrane domain TMD, unlike those with the cysteine-rich domain (CRD) and the intracellular domain (ICD), are through residues belonging to known cholesterol-binding motifs. Notably, a few persistent interactions of cholesterol with lower TM cholesterol-binding domains are governed by the presence of multiple cholesterol-binding motifs. These analyses have also helped to identify and define a strict cholesterol consensus motif (CCM), which may well steer cholesterol into the hitherto identified binding sites within the TMD of SMO. We have also reported the interaction of phosphatidylinositol 4-phosphate with the intracellular region of transmembrane (TM) helices (TM1, TM3, TM4, and TM5), intracellular loop1, helix8, and Arg/Lys clusters of the ICD. Structural analysis of SMO domains shows significant changes in the CRD and ICD, during the course of the simulation. Further detailed analysis of the dynamics of the TMD reveals the movements of TM5, TM6, and TM7, linked with the helix8, which are possibly involved in shaping the conformational disposition of the ICD. The movement of these TM helices could possibly be a consequence of interactions involving the extracellular domain and extracellular loops. In addition, our analysis also shows that phosphatidylinositol-4-phosphate (PI4P), along with some ICD cholesterols, are implicated in anchoring SMO in the membrane.
Collapse
Affiliation(s)
- Shweta Kumari
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Gopalakrishnan Bulusu
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India; Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500 046, India.
| |
Collapse
|
28
|
Gardeta SR, García-Cuesta EM, D’Agostino G, Soler Palacios B, Quijada-Freire A, Lucas P, Bernardino de la Serna J, Gonzalez-Riano C, Barbas C, Rodríguez-Frade JM, Mellado M. Sphingomyelin Depletion Inhibits CXCR4 Dynamics and CXCL12-Mediated Directed Cell Migration in Human T Cells. Front Immunol 2022; 13:925559. [PMID: 35903108 PMCID: PMC9315926 DOI: 10.3389/fimmu.2022.925559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Sphingolipids, ceramides and cholesterol are integral components of cellular membranes, and they also play important roles in signal transduction by regulating the dynamics of membrane receptors through their effects on membrane fluidity. Here, we combined biochemical and functional assays with single-particle tracking analysis of diffusion in the plasma membrane to demonstrate that the local lipid environment regulates CXCR4 organization and function and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration. Our data underscore a critical role for the local lipid composition at the cell membrane in regulating the lateral mobility of chemokine receptors, and their ability to dynamically increase receptor density at the leading edge to promote efficient cell migration.
Collapse
Affiliation(s)
- Sofía R. Gardeta
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M. García-Cuesta
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gianluca D’Agostino
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Blanca Soler Palacios
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adriana Quijada-Freire
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pilar Lucas
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Central Laser Facility, Rutherford Appleton Laboratory, Medical Research Council-Research Complex at Harwell, Science and Technology Facilities Council, Harwell, United Kingdom
- National Institute for Health and Care Research Imperial Biomedical Research Center, London, United Kingdom
| | - Carolina Gonzalez-Riano
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Centro de Estudios Universitarios Universities, Madrid, Spain
| | - Coral Barbas
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Centro de Estudios Universitarios Universities, Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario Mellado
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
- *Correspondence: Mario Mellado,
| |
Collapse
|
29
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
30
|
Serdiuk T, Manna M, Zhang C, Mari SA, Kulig W, Pluhackova K, Kobilka BK, Vattulainen I, Müller DJ. A cholesterol analog stabilizes the human β 2-adrenergic receptor nonlinearly with temperature. Sci Signal 2022; 15:eabi7031. [PMID: 35671340 PMCID: PMC10754352 DOI: 10.1126/scisignal.abi7031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In cell membranes, G protein-coupled receptors (GPCRs) interact with cholesterol, which modulates their assembly, stability, and conformation. Previous studies have shown how cholesterol modulates the structural properties of GPCRs at ambient temperature. Here, we characterized the mechanical, kinetic, and energetic properties of the human β2-adrenergic receptor (β2AR) in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) at room temperature (25°C), at physiological temperature (37°C), and at high temperature (42°C). We found that CHS stabilized various structural regions of β2AR differentially, which changed nonlinearly with temperature. Thereby, the strongest effects were observed for structural regions that are important for receptor signaling. Moreover, at 37°C, but not at 25° or 42°C, CHS caused β2AR to increase and stabilize conformational substates to adopt to basal activity. These findings indicate that the nonlinear, temperature-dependent action of CHS in modulating the structural and functional properties of this GPCR is optimized for 37°C.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR–Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, gujarat, india
| | - Cheng Zhang
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stefania A. Mari
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
| | - Kristyna Pluhackova
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Cluster of Excellence SimTech, Stuttgart Center for Simulation Science, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Brian K. Kobilka
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
- Computational Physics Laboratory, Tampere University, P. O. Box 692, FI-33014 Tampere, Finland
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| |
Collapse
|
31
|
Dutta P, Ray K. Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 2022; 237:2613-2631. [PMID: 35661356 DOI: 10.1002/jcp.30787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Cilium, a tiny microtubule-based cellular appendage critical for cell signalling and physiology, displays a large variety of receptors. The composition and turnover of ciliary lipids and receptors determine cell behaviour. Due to the exclusion of ribosomal machinery and limited membrane area, a cilium needs adaptive logistics to actively reconstitute the lipid and receptor compositions during development and differentiation. How is this dynamicity generated? Here, we examine whether, along with the Intraflagellar-Transport, targeted changes in sector-wise lipid composition could control the receptor localisation and functions in the cilia. We discuss how an interplay between ciliary lipid composition, localised lipid modification, and receptor function could contribute to cilia growth and signalling. We argue that lipid modification at the cell-cilium interface could generate an added thrust for a selective exchange of membrane lipids and the transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
32
|
Eberle SA, Gustavsson M. A Scintillation Proximity Assay for Real-Time Kinetic Analysis of Chemokine-Chemokine Receptor Interactions. Cells 2022; 11:1317. [PMID: 35455996 PMCID: PMC9024993 DOI: 10.3390/cells11081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Chemokine receptors are extensively involved in a broad range of physiological and pathological processes, making them attractive drug targets. However, despite considerable efforts, there are very few approved drugs targeting this class of seven transmembrane domain receptors to date. In recent years, the importance of including binding kinetics in drug discovery campaigns was emphasized. Therefore, kinetic insight into chemokine-chemokine receptor interactions could help to address this issue. Moreover, it could additionally deepen our understanding of the selectivity and promiscuity of the chemokine-chemokine receptor network. Here, we describe the application, optimization and validation of a homogenous Scintillation Proximity Assay (SPA) for real-time kinetic profiling of chemokine-chemokine receptor interactions on the example of ACKR3 and CXCL12. The principle of the SPA is the detection of radioligand binding to receptors reconstituted into nanodiscs by scintillation light. No receptor modifications are required. The nanodiscs provide a native-like environment for receptors and allow for full control over bilayer composition and size. The continuous assay format enables the monitoring of binding reactions in real-time, and directly accounts for non-specific binding and potential artefacts. Minor adaptations additionally facilitate the determination of equilibrium binding metrics, making the assay a versatile tool for the study of receptor-ligand interactions.
Collapse
Affiliation(s)
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| |
Collapse
|
33
|
Morana O, Nieto‐Garai JA, Björkholm P, Bernardino de la Serna J, Terrones O, Arboleya A, Ciceri D, Rojo‐Bartolomé I, Blouin CM, Lamaze C, Lorizate M, Contreras F. Identification of a New Cholesterol-Binding Site within the IFN-γ Receptor that is Required for Signal Transduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105170. [PMID: 35166455 PMCID: PMC9008429 DOI: 10.1002/advs.202105170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Indexed: 05/05/2023]
Abstract
The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases.
Collapse
Affiliation(s)
- Ornella Morana
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Jon Ander Nieto‐Garai
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Patrik Björkholm
- Center for Biomembrane ResearchDepartment of Biochemistry and BiophysicsStockholm UniversityStockholmSE‐106 91Sweden
- Science for Life LaboratoryStockholm UniversitySolnaSE‐171 21Sweden
| | - Jorge Bernardino de la Serna
- National Heart and Lung InstituteFaculty of MedicineImperial College LondonSouth KensingtonSir Alexander Fleming BuildingLondonSW7 2AZUK
- Central Laser FacilityRutherford Appleton LaboratoryMRC‐Research Complex at HarwellScience and Technology Facilities CouncilHarwellOX11 0QXUK
- NIHR Imperial Biomedical Research CentreLondonSW7 2AZUK
| | - Oihana Terrones
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Aroa Arboleya
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Dalila Ciceri
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Iratxe Rojo‐Bartolomé
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Cédric M. Blouin
- Institut Curie ‐ Centre de RecherchePSL Research UniversityMembrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParis75248France
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisU1143France
- Centre National de la Recherche Scientifique (CNRS)UMR 3666Paris75248France
| | - Christophe Lamaze
- Institut Curie ‐ Centre de RecherchePSL Research UniversityMembrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParis75248France
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisU1143France
- Centre National de la Recherche Scientifique (CNRS)UMR 3666Paris75248France
| | - Maier Lorizate
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Francesc‐Xabier Contreras
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48011Spain
| |
Collapse
|
34
|
Baccouch R, Rascol E, Stoklosa K, Alves ID. The role of the lipid environment in the activity of G protein coupled receptors. Biophys Chem 2022; 285:106794. [DOI: 10.1016/j.bpc.2022.106794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022]
|
35
|
Żuk J, Bartuzi D, Miszta P, Kaczor AA. The Role of Lipids in Allosteric Modulation of Dopamine D 2 Receptor-In Silico Study. Molecules 2022; 27:molecules27041335. [PMID: 35209123 PMCID: PMC8874991 DOI: 10.3390/molecules27041335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022] Open
Abstract
The dopamine D2 receptor, belonging to the class A G protein-coupled receptors (GPCRs), is an important drug target for several diseases, including schizophrenia and Parkinson’s disease. The D2 receptor can be activated by the natural neurotransmitter dopamine or by synthetic ligands, which in both cases leads to the receptor coupling with a G protein. In addition to receptor modulation by orthosteric or allosteric ligands, it has been shown that lipids may affect the behaviour of membrane proteins. We constructed a model of a D2 receptor with a long intracellular loop (ICL3) coupled with Giα1 or Giα2 proteins, embedded in a complex asymmetric membrane, and simulated it in complex with positive, negative or neutral allosteric ligands. In this study, we focused on the influence of ligand binding and G protein coupling on the membrane–receptor interactions. We show that there is a noticeable interplay between the cell membrane, G proteins, D2 receptor and its modulators.
Collapse
Affiliation(s)
- Justyna Żuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland; (J.Ż.); (D.B.)
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland; (J.Ż.); (D.B.)
| | - Przemysław Miszta
- Faculty of Chemistry, Biological, Chemical Research Centre, University of Warsaw, PL-02093 Warsaw, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland; (J.Ż.); (D.B.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence: ; Tel.: +48-81-448-72-73
| |
Collapse
|
36
|
Joshi M, Nikte SV, Sengupta D. Molecular determinants of GPCR pharmacogenetics: Deconstructing the population variants in β 2-adrenergic receptor. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:361-396. [PMID: 35034724 DOI: 10.1016/bs.apcsb.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that play a central role in cell signaling and constitute one of the largest classes of drug targets. The molecular mechanisms underlying GPCR function have been characterized by several experimental and computational methods and provide an understanding of their role in physiology and disease. Population variants arising from nsSNPs affect the native function of GPCRs and have been implicated in differential drug response. In this chapter, we provide an overview on GPCR structure and activation, with a special focus on the β2-adrenergic receptor (β2-AR). First, we discuss the current understanding of the structural and dynamic features of the wildtype receptor. Subsequently, the population variants identified in this receptor from clinical and large-scale genomic studies are described. We show how computational approaches such as bioinformatics tools and molecular dynamics simulations can be used to characterize the variant receptors in comparison to the wildtype receptor. In particular, we discuss three examples of clinically important variants and discuss how the structure and function of these variants differ from the wildtype receptor at a molecular level. Overall, the chapter provides an overview of structure and function of GPCR variants and is a step towards the study of inter-individual differences and personalized medicine.
Collapse
Affiliation(s)
- Manali Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Siddhanta V Nikte
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
37
|
Orekhov PS, Bozdaganyan ME, Voskoboynikova N, Mulkidjanian AY, Karlova MG, Yudenko A, Remeeva A, Ryzhykau YL, Gushchin I, Gordeliy VI, Sokolova OS, Steinhoff HJ, Kirpichnikov MP, Shaitan KV. Mechanisms of Formation, Structure, and Dynamics of Lipoprotein Discs Stabilized by Amphiphilic Copolymers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:361. [PMID: 35159706 PMCID: PMC8838559 DOI: 10.3390/nano12030361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.
Collapse
Affiliation(s)
- Philipp S. Orekhov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Marine E. Bozdaganyan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia Voskoboynikova
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Armen Y. Mulkidjanian
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Karlova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Valentin I. Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| |
Collapse
|
38
|
Cholesterol-dependent endocytosis of GPCRs: implications in pathophysiology and therapeutics. Biophys Rev 2021; 13:1007-1017. [DOI: 10.1007/s12551-021-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
|
39
|
Tan Z, Calandrini V, Dhont JKG, Nägele G, Winkler RG. Hydrodynamics of immiscible binary fluids with viscosity contrast: a multiparticle collision dynamics approach. SOFT MATTER 2021; 17:7978-7990. [PMID: 34378623 DOI: 10.1039/d1sm00541c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a multiparticle collision dynamics (MPC) implementation of layered immiscible fluids A and B of different shear viscosities separated by planar interfaces. The simulated flow profile for imposed steady shear motion and the time-dependent shear stress functions are in excellent agreement with our continuum hydrodynamics results for the composite fluid. The wave-vector dependent transverse velocity auto-correlation functions (TVAF) in the bulk-fluid regions of the layers decay exponentially, and agree with those of single-phase isotropic MPC fluids. In addition, we determine the hydrodynamic mobilities of an embedded colloidal sphere moving steadily parallel or transverse to a fluid-fluid interface, as functions of the distance from the interface. The obtained mobilities are in good agreement with hydrodynamic force multipoles calculations, for a no-slip sphere moving under creeping flow conditions near a clean, ideally flat interface. The proposed MPC fluid-layer model can be straightforwardly implemented, and it is computationally very efficient. Yet, owing to the spatial discretization inherent to the MPC method, the model can not reproduce all hydrodynamic features of an ideally flat interface between immiscible fluids.
Collapse
Affiliation(s)
- Zihan Tan
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | | | | | | | | |
Collapse
|
40
|
Chattopadhyay A, Biswas SC, Rukmini R, Saha S, Samanta A. Lack of Environmental Sensitivity of a Naturally Occurring Fluorescent Analog of Cholesterol. J Fluoresc 2021; 31:1401-1407. [PMID: 34224042 DOI: 10.1007/s10895-021-02767-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Dehydroergosterol (DHE, Δ5,7,9(11),22-ergostatetraen-3β-ol) is a naturally occurring fluorescent analog of cholesterol found in yeast. Since DHE has been shown to faithfully mimic cholesterol in a large number of biophysical, biochemical, and cell biological studies, it is widely used to explore cholesterol organization, dynamics and trafficking in model and biological membranes. In this work, we show that DHE, in spite of its localization at the membrane interface, does not exhibit red edge excitation shift (REES) in model membranes, irrespective of the membrane phase. These results are reinforced by semi-empirical quantum chemical calculations of dipole moment changes of DHE in ground and excited states, which show a very small change in the dipole moment of DHE upon excitation. We conclude that DHE fluorescence exhibits lack of environmental sensitivity, despite its usefulness in monitoring cholesterol organization, dynamics and traffic in model and biological membranes.
Collapse
Affiliation(s)
| | - Samares C Biswas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Raju Rukmini
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Satyen Saha
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
- Department of Chemistry, Banaras Hindu University, Varanasi, 221 005, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
41
|
Cholesterol in GPCR Structures: Prevalence and Relevance. J Membr Biol 2021; 255:99-106. [PMID: 34365520 DOI: 10.1007/s00232-021-00197-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Bound cholesterol molecules are emerging as important hallmarks of GPCR structures. In this commentary, we analyze their statistical prevalence and biological relevance.
Collapse
|
42
|
Nappi F, Iervolino A, Avtaar Singh SS. COVID-19 Pathogenesis: From Molecular Pathway to Vaccine Administration. Biomedicines 2021; 9:903. [PMID: 34440107 PMCID: PMC8389702 DOI: 10.3390/biomedicines9080903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
The Coronavirus 2 (SARS-CoV-2) infection is a global pandemic that has affected millions of people worldwide. The advent of vaccines has permitted some restitution. Aside from the respiratory complications of the infection, there is also a thrombotic risk attributed to both the disease and the vaccine. There are no reliable data for the risk of thromboembolism in SARS-CoV-2 infection in patients managed out of the hospital setting. A literature review was performed to identify the pathophysiological mechanism of thrombosis from the SARS-CoV-2 infection including the role of Angiotensin-Converting Enzyme receptors. The impact of the vaccine and likely mechanisms of thrombosis following vaccination were also clarified. Finally, the utility of the vaccines available against the multiple variants is also highlighted. The systemic response to SARS-CoV-2 infection is still relatively poorly understood, but several risk factors have been identified. The roll-out of the vaccines worldwide has also allowed the lifting of lockdown measures and a reduction in the spread of the disease. The experience of the SARS-CoV-2 infection, however, has highlighted the crucial role of epidemiological research and the need for ongoing studies within this field.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Adelaide Iervolino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy;
| | | |
Collapse
|
43
|
Kumar GA, Sarkar P, Stepniewski TM, Jafurulla M, Singh SP, Selent J, Chattopadhyay A. A molecular sensor for cholesterol in the human serotonin 1A receptor. SCIENCE ADVANCES 2021; 7:7/30/eabh2922. [PMID: 34301606 PMCID: PMC8302130 DOI: 10.1126/sciadv.abh2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/09/2021] [Indexed: 05/10/2023]
Abstract
The function of several G protein-coupled receptors (GPCRs) exhibits cholesterol sensitivity. Cholesterol sensitivity of GPCRs could be attributed to specific sequence and structural features, such as the cholesterol recognition/interaction amino acid consensus (CRAC) motif, that facilitate their cholesterol-receptor interaction. In this work, we explored the molecular basis of cholesterol sensitivity exhibited by the serotonin1A receptor, the most studied GPCR in the context of cholesterol sensitivity, by generating mutants of key residues in CRAC motifs in transmembrane helix 2 (TM2) and TM5 of the receptor. Our results show that a lysine residue (K101) in one of the CRAC motifs is crucial for sensing altered membrane cholesterol levels. Insights from all-atom molecular dynamics simulations showed that cholesterol-sensitive functional states of the serotonin1A receptor are associated with reduced conformational dynamics of extracellular loops of the receptor. These results constitute one of the first reports on the molecular mechanism underlying cholesterol sensitivity of GPCRs.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shishu Pal Singh
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bengaluru 560 065, India
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
| | | |
Collapse
|
44
|
Yokoi S, Mitsutake A. Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor. J Phys Chem B 2021; 125:4286-4298. [PMID: 33885321 DOI: 10.1021/acs.jpcb.0c10985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The orexin2 receptor (OX2R), which is classified as a class A G protein-coupled receptor (GPCR), is the target of our study. We performed over 20 several-microsecond-scale molecular dynamics simulations of the wild type and mutants of OX2R to extract the characteristics of the structural changes taking place in the active state. We introduced mutations that exhibited the stable inactive state and the constitutively active state in class A GPCRs. In these simulations, significant characteristic structural changes were observed in the V3096.40Y mutant, which corresponded to a constitutively active mutant. These conformational changes include the outward movement of the transmembrane helix 6 (TM6) and the inward movement of TM7, which are common structural changes in the activation of GPCRs. In addition, we extracted a suitable index for the quantitative evaluation of the active and inactive states of GPCRs, namely, the inter-atomic distance of Cα atoms between x(3.46) and Y(7.53). The structures of the inactive and active states solved by X-ray crystallography and cryo-electron microscopy can be classified using the inter-atomic distance. Furthermore, we clarified that the inward movement of TM7 requires the swapping of M3056.36 on TM6 and L3677.56 on TM7. Finally, we discussed the structural advantages of TM7 inward movement for GPCR activation.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
45
|
Elkins MR, Bandara A, Pantelopulos GA, Straub JE, Hong M. Direct Observation of Cholesterol Dimers and Tetramers in Lipid Bilayers. J Phys Chem B 2021; 125:1825-1837. [DOI: 10.1021/acs.jpcb.0c10631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew R. Elkins
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - George A. Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Kumar GA, Chattopadhyay A. Membrane cholesterol regulates endocytosis and trafficking of the serotonin 1A receptor: Insights from acute cholesterol depletion. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158882. [PMID: 33429076 DOI: 10.1016/j.bbalip.2021.158882] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis and intracellular trafficking constitute important regulatory features associated with G protein-coupled receptor (GPCR) function. GPCR endocytosis involves several remodeling events at the plasma membrane orchestrated by a concerted interplay of a large number of proteins and membrane lipids. Although considerable literature exists on the protein framework underlying GPCR endocytosis, the role of membrane lipids in this process remains largely unexplored. In order to explore the role of membrane cholesterol (an essential and important lipid in higher eukaryotes) in GPCR endocytosis, we monitored the effect of acute cholesterol depletion using methyl-β-cyclodextrin (MβCD) on endocytosis and intracellular trafficking of the serotonin1A receptor, an important neurotransmitter GPCR. Our results show that the serotonin1A receptor exhibits agonist-induced clathrin-mediated endocytosis with a concentration-dependent inhibition in internalization with increasing concentrations of MβCD, which was restored upon cholesterol replenishment. Interestingly, subsequent to internalization under these conditions, serotonin1A receptors were re-routed toward lysosomal degradation, instead of endosomal recycling observed under normal conditions, thereby implicating membrane cholesterol in modulation of intracellular trafficking of the receptor. This raises the possibility of a novel cholesterol-dependent role of intracellular sorting proteins in GPCR trafficking. These results differ from our previous observations on the endocytosis of the serotonin1A receptor upon statin-induced chronic cholesterol depletion, in terms of endocytic pathway. We conclude that analysis of complex cellular trafficking events such as GPCR endocytosis under acute and chronic cholesterol depletion conditions should be carried out with caution due to fundamental differences underlying these processes.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
47
|
Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021; 254:51-64. [PMID: 33409541 PMCID: PMC7936944 DOI: 10.1007/s00232-020-00165-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Abstract Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understanding of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of membrane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
48
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
49
|
Lavington S, Watts A. Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments. Biophys Rev 2020; 12:10.1007/s12551-020-00775-5. [PMID: 33215301 PMCID: PMC7755959 DOI: 10.1007/s12551-020-00775-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins which conduct a wide range of biological roles and represent significant drug targets. Most biophysical and structural studies of GPCRs have been conducted on detergent-solubilised receptors, and it is clear that detergents can have detrimental effects on GPCR function. Simultaneously, there is increasing appreciation of roles for specific lipids in modulation of GPCR function. Lipid nanoparticles such as nanodiscs and styrene maleic acid lipid particles (SMALPs) offer opportunities to study integral membrane proteins in lipid environments, in a form that is soluble and amenable to structural and biophysical experiments. Here, we review the application of lipid nanoparticle technologies to the study of GPCRs, assessing the relative merits and limitations of each system. We highlight how these technologies can provide superior platforms to detergents for structural and biophysical studies of GPCRs and inform on roles for protein-lipid interactions in GPCR function.
Collapse
Affiliation(s)
- Steven Lavington
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
50
|
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 2020; 13:10.1007/s12551-020-00772-8. [PMID: 33188638 PMCID: PMC7930197 DOI: 10.1007/s12551-020-00772-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an intrinsically fluorescent neurotransmitter found in organisms spanning a wide evolutionary range. Serotonin exerts its diverse actions by binding to distinct cell membrane receptors which are classified into many groups. Serotonin receptors are involved in regulating a diverse array of physiological signaling pathways and belong to the family of either G protein-coupled receptors (GPCRs) or ligand-gated ion channels. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, anxiety, depression, aggression, and learning. Serotonin receptors act as drug targets for a number of diseases, particularly neuropsychiatric disorders. The signaling mechanism and efficiency of serotonin receptors depend on their amazing ability to rapidly access multiple conformational states. This conformational plasticity, necessary for the wide variety of functions displayed by serotonin receptors, is regulated by binding to various ligands. In this review, we provide a succinct overview of recent developments in generating and analyzing high-resolution structures of serotonin receptors obtained using crystallography and cryo-electron microscopy. Capturing structures of distinct conformational states is crucial for understanding the mechanism of action of these receptors, which could provide important insight for rational drug design targeting serotonin receptors. We further provide emerging information and insight from studies on interactions of membrane lipids (such as cholesterol) with serotonin receptors. We envision that a judicious combination of analysis of high-resolution structures and receptor-lipid interaction would allow a comprehensive understanding of GPCR structure, function and dynamics, thereby leading to efficient drug discovery.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | |
Collapse
|