1
|
O'Donovan SM, Shan D, Wu X, Choi JH, McCullumsmith RE. Dysregulated Transcript Expression but Not Function of the Glutamate Transporter EAAT2 in the Dorsolateral Prefrontal Cortex in Schizophrenia. Schizophr Bull 2024:sbae092. [PMID: 38825587 DOI: 10.1093/schbul/sbae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a serious mental illness with complex pathology, including abnormalities in the glutamate system. Glutamate is rapidly removed from the synapse by excitatory amino acid transporters (EAATs). Changes in the expression and localization of the primary glutamate transporter EAAT2 are found in the brain in central nervous system (CNS) disorders including SCZ. We hypothesize that neuronal expression and function of EAAT2 are increased in the frontal cortex in subjects diagnosed with SCZ. STUDY DESIGN EAAT2 protein expression and glutamate transporter function were assayed in synaptosome preparations from the dorsolateral prefrontal cortex (DLPFC) of SCZ subjects and age- and sex-matched nonpsychiatrically ill controls. EAAT2 splice variant transcript expression was assayed in enriched populations of neurons and astrocytes from the DLPFC. Pathway analysis of publicly available transcriptomic datasets was carried out to identify biological changes associated with EAAT2 perturbation in different cell types. RESULTS We found no significant changes in EAAT2 protein expression or glutamate uptake in the DLPFC in SCZ subjects compared with controls (n = 10/group). Transcript expression of EAAT2 and signaling molecules associated with EAAT2b trafficking (CaMKIIa and DLG1) were significantly altered in enriched populations of astrocytes and pyramidal neurons (P < .05) in SCZ (n = 16/group). These changes were not associated with antipsychotic medications. Pathway analysis also identified cell-type-specific enrichment of biological pathways associated with perturbation of astrocyte (immune pathways) and neuronal (metabolic pathways) EAAT2 expression. CONCLUSIONS Overall, these data support the growing body of evidence for the role of dysregulation of the glutamate system in the pathophysiology of SCZ.
Collapse
Affiliation(s)
| | - Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaojun Wu
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Jae Hyuk Choi
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
- Promedica Neuroscience Institute, Toledo, OH, USA
| |
Collapse
|
2
|
Derome M, Kozuharova P, Diaconescu AO, Denève S, Jardri R, Allen P. Functional connectivity and glutamate levels of the medial prefrontal cortex in schizotypy are related to sensory amplification in a probabilistic reasoning task. Neuroimage 2023; 278:120280. [PMID: 37460012 DOI: 10.1016/j.neuroimage.2023.120280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
The circular inference (CI) computational model assumes a corruption of sensory data by prior information and vice versa, leading at the extremes to 'see what we expect' (through prior amplification) and/or to 'expect what we see' (through sensory amplification). Although a CI mechanism has been reported in a schizophrenia population, it has not been investigated in individuals experiencing psychosis-like experiences, such as people with high schizotypy traits. Furthermore, the neurobiological basis of CI, such as the link between hierarchical amplifications, excitatory neurotransmission, and resting state functional connectivity (RSFC), remains untested. The participants included in the present study consisted of a subsample of those recruited in a study previously published by our group, Kozhuharova et al. (2021b). We included 36 participants with High (n=18) and Low (n=18) levels of schizotypy who completed a probabilistic reasoning task (the Fisher task) for which individual confidence levels were obtained and fitted to the CI model. Participants also underwent a 1H-Magnetic Resonance Spectroscopy (MRS) scan to measure medial prefrontal cortex (mPFC) glutamate metabolite levels, and a functional Magnetic Resonance Imaging (fMRI) scan to measure RSFC of the medial prefrontal cortex (mPFC). People with high levels of schizotypy exhibited changes in CI parameters, altered cortical excitatory neurotransmission and RSFC that were all associated with sensory amplification. Our findings capture a multimodal signature of CI that is observable in people early in the psychosis spectrum.
Collapse
Affiliation(s)
- Mélodie Derome
- School of Psychology, University of Roehampton, Whitelands College, Hollybourne Avenue, London SW154JD, UK; Lille Neuroscience & Cognition Centre (LiNC), Plasticity & Subjectivity Team, Univ Lille, INSERM U-1172, CHU Lille, FR 59037, France; Combined Universities Brain Imaging Centre, Royal Holloway University, London TW200EX, UK
| | - Petya Kozuharova
- School of Psychology, University of Roehampton, Whitelands College, Hollybourne Avenue, London SW154JD, UK
| | - Andreea O Diaconescu
- Department of Psychiatry, Brain and Therapeutics, Krembil Centre for Neuroinformatics, CAMH, Toronto M5S2S1, Canada; Department of Psychiatry, University of Toronto, Toronto, ON MS5, Canada
| | - Sophie Denève
- Laboratoire de Neurosciences Cognitives et Computationnelles (LNC²), ENS, INSERM U-960, PSL Research University, Paris, FR 75006, France
| | - Renaud Jardri
- School of Psychology, University of Roehampton, Whitelands College, Hollybourne Avenue, London SW154JD, UK; Laboratoire de Neurosciences Cognitives et Computationnelles (LNC²), ENS, INSERM U-960, PSL Research University, Paris, FR 75006, France.
| | - Paul Allen
- School of Psychology, University of Roehampton, Whitelands College, Hollybourne Avenue, London SW154JD, UK; Combined Universities Brain Imaging Centre, Royal Holloway University, London TW200EX, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE58AF, UK.
| |
Collapse
|
3
|
Duan J, Gong X, Womer FY, Sun K, Tang L, Liu J, Zheng J, Zhu Y, Tang Y, Zhang X, Wang F. Neurodevelopmental trajectories, polygenic risk, and lipometabolism in vulnerability and resilience to schizophrenia. BMC Psychiatry 2023; 23:153. [PMID: 36894907 PMCID: PMC9999573 DOI: 10.1186/s12888-023-04597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Schizophrenia (SZ) arises from a complex interplay involving genetic and molecular factors. Early intervention of SZ hinges upon understanding its vulnerability and resiliency factors in study of SZ and genetic high risk for SZ (GHR). METHODS Herein, using integrative and multimodal strategies, we first performed a longitudinal study of neural function as measured by amplitude of low frequency function (ALFF) in 21 SZ, 26 GHR, and 39 healthy controls to characterize neurodevelopmental trajectories of SZ and GHR. Then, we examined the relationship between polygenic risk score for SZ (SZ-PRS), lipid metabolism, and ALFF in 78 SZ, and 75 GHR in cross-sectional design to understand its genetic and molecular substrates. RESULTS Across time, SZ and GHR diverge in ALFF alterations of the left medial orbital frontal cortex (MOF). At baseline, both SZ and GHR had increased left MOF ALFF compared to HC (P < 0.05). At follow-up, increased ALFF persisted in SZ, yet normalized in GHR. Further, membrane genes and lipid species for cell membranes predicted left MOF ALFF in SZ; whereas in GHR, fatty acids best predicted and were negatively correlated (r = -0.302, P < 0.05) with left MOF. CONCLUSIONS Our findings implicate divergence in ALFF alteration in left MOF between SZ and GHR with disease progression, reflecting vulnerability and resiliency to SZ. They also indicate different influences of membrane genes and lipid metabolism on left MOF ALFF in SZ and GHR, which have important implications for understanding mechanisms underlying vulnerability and resiliency in SZ and contribute to translational efforts for early intervention.
Collapse
Affiliation(s)
- Jia Duan
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Fay Y Womer
- Dept of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaijin Sun
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China
| | - Lili Tang
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Juan Liu
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Junjie Zheng
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China
| | - Yue Zhu
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Yanqing Tang
- Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.
| | - Fei Wang
- Department of Psychiatry. Early Intervention Unit, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China. .,Department of Psychiatry and Gerontology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
4
|
Gene Expression and Epigenetic Regulation in the Prefrontal Cortex of Schizophrenia. Genes (Basel) 2023; 14:genes14020243. [PMID: 36833173 PMCID: PMC9957055 DOI: 10.3390/genes14020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia pathogenesis remains challenging to define; however, there is strong evidence that the interaction of genetic and environmental factors causes the disorder. This paper focuses on transcriptional abnormalities in the prefrontal cortex (PFC), a key anatomical structure that determines functional outcomes in schizophrenia. This review summarises genetic and epigenetic data from human studies to understand the etiological and clinical heterogeneity of schizophrenia. Gene expression studies using microarray and sequencing technologies reported the aberrant transcription of numerous genes in the PFC in patients with schizophrenia. Altered gene expression in schizophrenia is related to several biological pathways and networks (synaptic function, neurotransmission, signalling, myelination, immune/inflammatory mechanisms, energy production and response to oxidative stress). Studies investigating mechanisms driving these transcriptional abnormalities focused on alternations in transcription factors, gene promoter elements, DNA methylation, posttranslational histone modifications or posttranscriptional regulation of gene expression mediated by non-coding RNAs.
Collapse
|
5
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
6
|
Alijanpour S, Miryounesi M, Ghafouri-Fard S. The role of excitatory amino acid transporter 2 (EAAT2) in epilepsy and other neurological disorders. Metab Brain Dis 2023; 38:1-16. [PMID: 36173507 DOI: 10.1007/s11011-022-01091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer's disease, parkinson's disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.
Collapse
Affiliation(s)
- Sahar Alijanpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Asah S, Alganem K, McCullumsmith RE, O'Donovan SM. A bioinformatic inquiry of the EAAT2 interactome in postmortem and neuropsychiatric datasets. Schizophr Res 2022; 249:38-46. [PMID: 32197935 PMCID: PMC7494586 DOI: 10.1016/j.schres.2020.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Altered expression and localization of the glutamate transporter EAAT2 is found in schizophrenia and other neuropsychiatric (major depression, MDD) and neurological disorders (amyotrophic lateral sclerosis, ALS). However, the EAAT2 interactome, the network of proteins that physically or functionally interact with EAAT2 to support its activity, has yet to be characterized in severe mental illness. We compiled a list of "core" EAAT2 interacting proteins. Using Kaleidoscope, an R-shiny application, we data mined publically available postmortem transcriptome datasets to determine whether components of the EAAT2 interactome are differentially expressed in schizophrenia and, using Reactome, identify which interactome-associated biological pathways are altered. Overall, these "look up" studies highlight region-specific, primarily frontal cortex (dorsolateral prefrontal cortex and anterior cingulate cortex), changes in the EAAT2 interactome and implicate altered metabolism pathways in schizophrenia. Pathway analyses also suggest that perturbation of components of the EAAT2 interactome in animal models of antipsychotic administration impact metabolism. Similar changes in metabolism pathways are seen in ALS, in addition to altered expression of many components of the EAAT2 interactome. However, although EAAT2 expression is altered in a postmortem MDD dataset, few other components of the EAAT2 interactome are changed. Thus, "look up" studies suggest region- and disease-relevant biological pathways related to the EAAT2 interactome that implicate glutamate reuptake perturbations in schizophrenia, while providing a useful tool to exploit "omics" datasets.
Collapse
Affiliation(s)
- Sophie Asah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
8
|
In-depth investigations of the molecular basis underlying sex differences among middle-aged and elderly schizophrenia populations. Psychiatr Genet 2022; 32:178-187. [PMID: 36125368 DOI: 10.1097/ypg.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sex can influence almost all aspects of schizophrenia. However, the molecular mechanisms underlying sex differences in schizophrenia remain poorly understood. In this project, the dataset GSE107638 containing neuronal RNA-seq data and age/sex information of individuals with or without schizophrenia were retrieved. Schizophrenia samples were divided into young male (M-1), young female (F-1), middle-aged and elderly male (M-2) and middle-aged and elderly female (F-2) groups. Next, green/yellow/turquoise modules related to the M-2 trait and turquoise module correlated with the F-2 trait were identified by weighted correlation network analysis (WGCNA) analysis (soft thresholding power: 13; min module size: 200). Crucial genes in the M-2 green, M-2 turquoise and F-2 turquoise modules were identified by WGCNA, gene significance/module membership, and protein-protein interaction (PPI) analysis. Moreover, 2067 and 934 differentially expressed genes (|log2 fold-change| ≥0.58 and P-value < 0.05) in M-2 and F-2 schizophrenia subgroups versus same-age and same-sex counterparts were identified, respectively. Additionally, 82 core genes in the M-2 turquoise module and 4 hub genes in the F-2 turquoise module were differentially expressed in M-2 and F-2 schizophrenia subgroups versus their counterparts, respectively. Among the 82 hub genes, 15 genes were found to be correlated with neuronal development by the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Also, 2 potential PPI networks related to neuronal development were identified. Taken together, multiple potential hub genes and 2 potential neurobiological networks related to schizophrenia sex differences and disease progression were identified among middle-aged and elderly schizophrenia populations.
Collapse
|
9
|
Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, Sarnyai Z, Ramsey AJ, Wen Z, Hahn MK, McCullumsmith RE. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 2022; 27:2393-2404. [PMID: 35264726 DOI: 10.1038/s41380-022-01494-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nicholas D Henkel
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Xiajoun Wu
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily A Devine
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jessica M Jiron
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
10
|
Astrocytes in Neuropsychiatric Disorders: A Review of Postmortem Evidence. ADVANCES IN NEUROBIOLOGY 2021; 26:153-172. [PMID: 34888835 DOI: 10.1007/978-3-030-77375-5_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cell types in the central nervous system (CNS) include microglia, oligodendrocytes and the most diverse type, astrocytes. Clinical and experimental evidence suggest critical roles for astrocytes in the pathogenesis of CNS disease. Here, we summarize the extensive morphological heterogeneity and physiological properties of different astrocyte subtypes. We review postmortem studies, discussing astrocyte-related changes found in the brain in subjects diagnosed with the neuropsychiatric disorders schizophrenia, major depressive disorder and bipolar disorder. Finally, we discuss the potential effects of psychotropic medication on these findings. In summary, postmortem studies highlight that the morphology of astrocytes and the expression of functionally important astrocyte markers are altered in the brain in neuropsychiatric disorders and may play a role in the pathophysiology of these serious mental illnesses.
Collapse
|
11
|
Wu X, Shukla R, Alganem K, Zhang X, Eby HM, Devine EA, Depasquale E, Reigle J, Simmons M, Hahn MK, Au-Yeung C, Asgariroozbehani R, Hahn CG, Haroutunian V, Meller J, Meador-Woodruff J, McCullumsmith RE. Transcriptional profile of pyramidal neurons in chronic schizophrenia reveals lamina-specific dysfunction of neuronal immunity. Mol Psychiatry 2021; 26:7699-7708. [PMID: 34272489 PMCID: PMC8761210 DOI: 10.1038/s41380-021-01205-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
While the pathophysiology of schizophrenia has been extensively investigated using homogenized postmortem brain samples, few studies have examined changes in brain samples with techniques that may attribute perturbations to specific cell types. To fill this gap, we performed microarray assays on mRNA isolated from anterior cingulate cortex (ACC) superficial and deep pyramidal neurons from 12 schizophrenia and 12 control subjects using laser-capture microdissection. Among all the annotated genes, we identified 134 significantly increased and 130 decreased genes in superficial pyramidal neurons, while 93 significantly increased and 101 decreased genes were found in deep pyramidal neurons, in schizophrenia compared to control subjects. In these differentially expressed genes, we detected lamina-specific changes of 55 and 31 genes in superficial and deep neurons in schizophrenia, respectively. Gene set enrichment analysis (GSEA) was applied to the entire pre-ranked differential expression gene lists to gain a complete pathway analysis throughout all annotated genes. Our analysis revealed overrepresented groups of gene sets in schizophrenia, particularly in immunity and synapse-related pathways, suggesting the disruption of these pathways plays an important role in schizophrenia. We also detected other pathways previously demonstrated in schizophrenia pathophysiology, including cytokine and chemotaxis, postsynaptic signaling, and glutamatergic synapses. In addition, we observed several novel pathways, including ubiquitin-independent protein catabolic process. Considering the effects of antipsychotic treatment on gene expression, we applied a novel bioinformatics approach to compare our differential expression gene profiles with 51 antipsychotic treatment datasets, demonstrating that our results were not influenced by antipsychotic treatment. Taken together, we found pyramidal neuron-specific changes in neuronal immunity, synaptic dysfunction, and olfactory dysregulation in schizophrenia, providing new insights for the cell-subtype specific pathophysiology of chronic schizophrenia.
Collapse
Affiliation(s)
- Xiaojun Wu
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Hunter M. Eby
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Emily A. Devine
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Erica Depasquale
- Department of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - James Reigle
- Department of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Micah Simmons
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada, M5T 1R8,Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Christy Au-Yeung
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada, M5T 1R8
| | - Roshanak Asgariroozbehani
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada, M5T 1R8,Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Chang-Gyu Hahn
- Department of Psychiatry, Vickie & Jack Farber Institute for Neuroscience, Jefferson University Hospitals, Philadelphia, PA, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, NY, USA,James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), Bronx, NY, USA
| | - Jarek Meller
- Department of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - James Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA,Neurosciences Institute, ProMedica, Toledo, OH, USA,Author for correspondence: Robert E. McCullumsmith, M.D., Ph.D., Department of Neurosciences, University of Toledo College of Medicine, 3000 Arlington Avenue, Block Health Science Building, Mail Stop 1007, Toledo, OH 43614,
| |
Collapse
|
12
|
Zhang X, Alnafisah RS, Hamoud ARA, Shukla R, Wen Z, McCullumsmith RE, O'Donovan SM. Role of Astrocytes in Major Neuropsychiatric Disorders. Neurochem Res 2021; 46:2715-2730. [PMID: 33411227 DOI: 10.1007/s11064-020-03212-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Astrocytes are the primary homeostatic cells of the central nervous system, essential for normal neuronal development and function, metabolism and response to injury and inflammation. Here, we review postmortem studies examining changes in astrocytes in subjects diagnosed with the neuropsychiatric disorders schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BPD). We discuss the astrocyte-related changes described in the brain in these disorders and the potential effects of psychotropic medication on these findings. Finally, we describe emerging tools that can be used to study the role of astrocytes in neuropsychiatric illness.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rawan S Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Abdul-Rizaq A Hamoud
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
13
|
Kichukova T, Petrov V, Popov N, Minchev D, Naimov S, Minkov I, Vachev T. Identification of serum microRNA signatures associated with autism spectrum disorder as promising candidate biomarkers. Heliyon 2021; 7:e07462. [PMID: 34286132 PMCID: PMC8278430 DOI: 10.1016/j.heliyon.2021.e07462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Background MicroRNAs (miRNAs) are short non-coding RNA molecules with a well-recognized role in gene expression mostly at the post-transcriptional level. Recently, dysregulation of miRNAs and miRNA-mRNA interactions has been associated with CNS diseases, including numerous psychiatric disorders. Dynamic changes in the expression profiles of circulating miRNA are nowadays regarded as promising non-invasive biomarkers that may facilitate the accurate and timely diagnosis of complex conditions. Methods In this study, we investigated the gene expression patterns of four miRNAs, which were previously reported to be dysregulated in pooled serum samples taken from Autism Spectrum Disorder (ASD) patients and typically developing children. The performance of a diagnostic model for ASD based on these four miRNAs was assessed by a receiver operating characteristic (ROC) curve analysis, which evaluates the diagnostic accuracy of the investigated miRNA biomarkers for ASD. Finally, to examine the potential modulation of CNS-related biological pathways, we carried out target identification and pathway analyses of the selected miRNAs. Results Significant differential expression for all the four studied miRNAs: miR-500a-5p, miR-197-5p, miR-424-5p, and miR-664a-3p, was consistently measured in the samples from ASD patients. The ROC curve analysis demonstrated high sensitivity and specificity for miR-500a-5p, miR-197-5p, and miR-424-5p. With all miRNA expression data integrated into an additive ROC curve, the combination of miR-500a-5p and miR-197-5p provided the most powerful diagnostic model. On the other hand, the mRNA target mining showed that miR-424-5p and miR-500-5p regulate pools of target mRNA molecules which are enriched in a number of biological pathways associated with the development and differentiation of the nervous system. Conclusions The steady expression patterns of miR-500a-5p, miR-197-5p, miR-424-5p, and miR-664a-3p in ASD children suggest that these miRNAs can be considered good candidates for non-invasive molecular biomarkers in the study of ASD patients. The highest diagnostic potential is manifested by miR-500a-5p and miR-197-5p, whose combined ROC curve demonstrates very strong predictive accuracy.
Collapse
Affiliation(s)
- Tatyana Kichukova
- Department of Plant Physiology and Molecular Biology, "Paisii Hilendarski" University of Plovdiv, 24 Tzar Assen Street, Plovdiv, Bulgaria
| | - Veselin Petrov
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University of Plovdiv, Bulgaria
| | - Nikolay Popov
- Psychiatric Ward for Active Treatment of Men, State Psychiatry Hospital Pazardzhik, Pazardzhik, Bulgaria
| | - Danail Minchev
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-A Vassil Aprilov Blvd., Plovdiv, Bulgaria.,Division of Molecular and Regenerative Medicine, Research Institute at Medical University of 12 Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Samir Naimov
- Department of Plant Physiology and Molecular Biology, "Paisii Hilendarski" University of Plovdiv, 24 Tzar Assen Street, Plovdiv, Bulgaria
| | - Ivan Minkov
- Institute of Molecular Biology and Biotechnologies (IMBB), Plovdiv, Bulgaria
| | - Tihomir Vachev
- Department of Plant Physiology and Molecular Biology, "Paisii Hilendarski" University of Plovdiv, 24 Tzar Assen Street, Plovdiv, Bulgaria
| |
Collapse
|
14
|
Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E9607. [PMID: 33348528 PMCID: PMC7766851 DOI: 10.3390/ijms21249607] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
The astrocytic glutamate transporters excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) play a key role in nervous system function to maintain extracellular glutamate levels at low levels. In physiology, this is essential for the rapid uptake of synaptically released glutamate, maintaining the temporal fidelity of synaptic transmission. However, EAAT1/2 hypo-expression or hypo-function are implicated in several disorders, including epilepsy and neurodegenerative diseases, as well as being observed naturally with aging. This not only disrupts synaptic information transmission, but in extremis leads to extracellular glutamate accumulation and excitotoxicity. A key facet of EAAT1/2 expression in astrocytes is a requirement for signals from other brain cell types in order to maintain their expression. Recent evidence has shown a prominent role for contact-dependent neuron-to-astrocyte and/or endothelial cell-to-astrocyte Notch signalling for inducing and maintaining the expression of these astrocytic glutamate transporters. The relevance of this non-cell-autonomous dependence to age- and neurodegenerative disease-associated decline in astrocytic EAAT expression is discussed, plus the implications for disease progression and putative therapeutic strategies.
Collapse
Affiliation(s)
- Alison C. Todd
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
15
|
Kim HB, Yoo JY, Yoo SY, Suh SW, Lee S, Park JH, Lee JH, Baik TK, Kim HS, Woo RS. Early-life stress induces EAAC1 expression reduction and attention-deficit and depressive behaviors in adolescent rats. Cell Death Discov 2020; 6:73. [PMID: 32818073 PMCID: PMC7415155 DOI: 10.1038/s41420-020-00308-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023] Open
Abstract
Neonatal maternal separation (NMS), as an early-life stress (ELS), is a risk factor to develop emotional disorders. However, the exact mechanisms remain to be defined. In the present study, we investigated the mechanisms involved in developing emotional disorders caused by NMS. First, we confirmed that NMS provoked impulsive behavior, orienting and nonselective attention-deficit, abnormal grooming, and depressive-like behaviors in adolescence. Excitatory amino acid carrier 1 (EAAC1) is an excitatory amino acid transporter expressed specifically by neurons and is the route for the neuronal uptake of glutamate/aspartate/cysteine. Compared with that in the normal control group, EAAC1 expression was remarkably reduced in the ventral hippocampus and cerebral cortex in the NMS group. Additionally, EAAC1 expression was reduced in parvalbumin-positive hippocampal GABAergic neurons in the NMS group. We also found that EAAC1-knockout (EAAC1-/-) mice exhibited impulsive-like, nonselective attention-deficit, and depressive-like behaviors compared with WT mice in adolescence, characteristics similar to those of the NMS behavior phenotype. Taken together, our results revealed that ELS induced a reduction in EAAC1 expression, suggesting that reduced EAAC1 expression is involved in the pathophysiology of attention-deficit and depressive behaviors in adolescence caused by NMS.
Collapse
Affiliation(s)
- Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Seoul Lee
- Department of Pharmacology and Brain Research Institute, College of Medicine, Wonkwang University, Jeonbuk, 54538 Republic of Korea
| | - Ji Hye Park
- Department of Pharmacology and Brain Research Institute, College of Medicine, Wonkwang University, Jeonbuk, 54538 Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, 34520 Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 110-799 Korea
- Seoul National University College of Medicine, Bundang Hospital, Sungnam, 13620 Republic of Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| |
Collapse
|
16
|
Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark Neuropsychiatry 2020; 3. [PMID: 32656540 PMCID: PMC7351254 DOI: 10.1016/j.bionps.2020.100015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain cognitive deficits in schizophrenia, such as impaired working memory, are thought to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex (DLPFC). Gamma oscillations in the DLPFC appear to be a neural corollary of working memory function, and the power of these oscillations during working memory tasks is lower in individuals with schizophrenia. Thus, gamma oscillations represent a potentially useful biomarker to index dysfunction in the DLPFC circuitry responsible for working memory in schizophrenia. Postmortem studies, by identifying the cellular basis of DLPFC dysfunction, can help inform the utility of biomarker measures obtained in vivo. Given that gamma oscillations reflect network activity of excitatory pyramidal neurons and inhibitory GABA neurons, we review postmortem findings of alterations to both cell types in the DLPFC and discuss how these findings might inform future biomarker development and use.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| |
Collapse
|
17
|
Adell A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020; 10:biom10060947. [PMID: 32585886 PMCID: PMC7355879 DOI: 10.3390/biom10060947] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP), dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in animals and humans. However, ketamine has been recently approved for treatment-resistant depression, although with severe restrictions. Interestingly, the dosage in both conditions is similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here, we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms and schizophrenia patients show an exacerbation of these symptoms after the administration of NMDA receptor antagonists.
Collapse
Affiliation(s)
- Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC-University of Cantabria), Calle Albert Einstein 22 (PCTCAN), 39011 Santander, Spain; or
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 39011 Santander, Spain
| |
Collapse
|
18
|
Malik AR, Szydlowska K, Nizinska K, Asaro A, van Vliet EA, Popp O, Dittmar G, Fritsche-Guenther R, Kirwan JA, Nykjaer A, Lukasiuk K, Aronica E, Willnow TE. SorCS2 Controls Functional Expression of Amino Acid Transporter EAAT3 and Protects Neurons from Oxidative Stress and Epilepsy-Induced Pathology. Cell Rep 2020; 26:2792-2804.e6. [PMID: 30840898 PMCID: PMC6410498 DOI: 10.1016/j.celrep.2019.02.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/20/2019] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
VPS10P domain receptors emerge as central regulators of intracellular protein sorting in neurons with relevance for various brain pathologies. Here, we identified a role for the family member SorCS2 in protection of neurons from oxidative stress and epilepsy-induced cell death. We show that SorCS2 acts as sorting receptor that sustains cell surface expression of the neuronal amino acid transporter EAAT3 to facilitate import of cysteine, required for synthesis of the reactive oxygen species scavenger glutathione. Lack of SorCS2 causes depletion of EAAT3 from the plasma membrane and impairs neuronal cysteine uptake. As a consequence, SorCS2-deficient mice exhibit oxidative brain damage that coincides with enhanced neuronal cell death and increased mortality during epilepsy. Our findings highlight a protective role for SorCS2 in neuronal stress response and provide a possible explanation for upregulation of this receptor seen in surviving neurons of the human epileptic brain.
Collapse
Affiliation(s)
- Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| | - Kinga Szydlowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Karolina Nizinska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Antonino Asaro
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Oliver Popp
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gunnar Dittmar
- Department of Oncology, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Raphaela Fritsche-Guenther
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany; Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany
| | - Jennifer A Kirwan
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany; Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany
| | - Anders Nykjaer
- MIND Center, Danish Research Institute of Translational Neuroscience - DANDRITE, The Danish Research Foundation Center PROMEMO, Departments of Biomedicine, Aarhus University, and Neurosurgery, Aarhus University Hospital, 8000C Aarhus, Denmark
| | - Katarzyna Lukasiuk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, the Netherlands
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
19
|
Parkin GM, Gibbons A, Udawela M, Dean B. Excitatory amino acid transporter (EAAT)1 and EAAT2 mRNA levels are altered in the prefrontal cortex of subjects with schizophrenia. J Psychiatr Res 2020; 123:151-158. [PMID: 32065951 DOI: 10.1016/j.jpsychires.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
Excitatory amino acid transporter (EAAT)1 and EAAT2 mediate glutamatergic neurotransmission and prevent excitotoxicity through binding and transportation of glutamate into glia. These EAATs may be regulated by metabotropic glutamate receptor 5 (mGluR5), which is also expressed by glia. Whilst we have data from an Affymetrix™ Human Exon 1.0 ST Array showing higher levels of EAAT1 mRNA (+36%) in Brodmann's are (BA)9 of subjects with schizophrenia, there is evidence that EAAT1 and EAAT2, as well as mGluR5 levels, are altered in the cortex of subjects with the disorder. Hence, we measured mRNA levels of these genes in other cortical regions in subjects with that disorder. EAAT1, EAAT2 and mGluR5 mRNA were measured, in triplicate, using Quantitative PCR in BA10 and BA46 from subjects with schizophrenia (n = 20) and age and sex matched controls (n = 18). Levels of mRNA were normalised to the geometric mean of two reference genes, transcription factor B1, mitochondrial (TFB1M) and S-phase kinase-associated protein 1A (SKP1A), for which mRNA did not vary between diagnostic groups in either region. Normalised levels of EAAT1 and EAAT2 mRNA were significantly higher in BA10 (EAAT1: U = 58, p = 0.0002; EAAT2 U = 70, p = 0.0009), but not BA46 (EAAT1: U = 122, p = 0.09; EAAT2: U = 136, p = 0.21), from subjects with schizophrenia compared to controls. mGluR5 levels in BA10 (U = 173, p=0.85) and BA46 (U = 178, p = 0.96) did not vary by cohort. Our data suggests that region-specific increases in cortical EAAT1 and EAAT2 mRNA are involved in schizophrenia pathophysiology and that disrupted glutamate uptake in schizophrenia may be of particular significance in BA10.
Collapse
Affiliation(s)
- Georgia M Parkin
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia.
| | - Andrew Gibbons
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Madhara Udawela
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia; The Centre for Mental Health, The Faculty of Health, Arts and Design, Swinburne University, Hawthorne, Victoria, Australia
| |
Collapse
|
20
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
21
|
The impact of endurance training and table soccer on brain metabolites in schizophrenia. Brain Imaging Behav 2019; 14:515-526. [PMID: 31686308 DOI: 10.1007/s11682-019-00198-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Higher glutamate and glutamine (together: Glx) and lower N-acetyl-aspartate (NAA) levels were reported in schizophrenia. Endurance training normalizes NAA in the hippocampus, but its effects on other metabolites in the brain and the relationship of metabolites to clinical symptoms remain unknown. For 12 weeks, 20 schizophrenia inpatients (14 men, 6 women) and 23 healthy controls (16 men, 7 women) performed endurance training and a control group of 21 schizophrenia inpatients (15 men, 6 women) played table soccer. A computer-assisted cognitive performance training program was introduced after 6 weeks. We assessed cognitive performance, psychopathological symptoms, and everyday functioning at baseline and after 6 and 12 weeks and performed single voxel magnetic resonance spectroscopy of the hippocampus, left dorsolateral prefrontal cortex (DLPFC), and thalamus. We quantified NAA, Glx, total creatine (tCr), calculated NAA/tCr and Glx/tCr and correlated these ratios with physical fitness, clinical and neurocognitive scores, and everyday functioning. At baseline, in both schizophrenia groups NAA/tCr was lower in the left DLPFC and left hippocampus and Glx/tCr was lower in the hippocampus than in the healthy controls. After 6 weeks, NAA/tCr increased in the left DLPFC in both schizophrenia groups. Brain metabolites did not change significantly in the hippocampus or thalamus, but the correlation between NAA/tCr and Glx/tCr normalized in the left DLPFC. Global Assessment of Functioning improvements correlated with NAA/tCr changes in the left DLPFC. In our study, endurance training and table soccer induced normalization of brain metabolite ratios in the brain circuitry associated with neuronal and synaptic elements, including metabolites of the glutamatergic system.
Collapse
|
22
|
Velásquez E, Martins-de-Souza D, Velásquez I, Carneiro GRA, Schmitt A, Falkai P, Domont GB, Nogueira FCS. Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients. J Proteome Res 2019; 18:4240-4253. [PMID: 31581776 DOI: 10.1021/acs.jproteome.9b00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a chronic disease characterized by the impairment of mental functions with a marked social dysfunction. A quantitative proteomic approach using iTRAQ labeling and SRM, applied to the characterization of mitochondria (MIT), crude nuclear fraction (NUC), and cytoplasm (CYT), can allow the observation of dynamic changes in cell compartments providing valuable insights concerning schizophrenia physiopathology. Mass spectrometry analyses of the orbitofrontal cortex from 12 schizophrenia patients and 8 healthy controls identified 655 protein groups in the MIT fraction, 1500 in NUC, and 1591 in CYT. We found 166 groups of proteins dysregulated among all enriched cellular fractions. Through the quantitative proteomic analysis, we detect as the main biological pathways those related to calcium and glutamate imbalance, cell signaling disruption of CREB activation, axon guidance, and proteins involved in the activation of NF-kB signaling along with the increase of complement protein C3. Based on our data analysis, we suggest the activation of NF-kB as a possible pathway that links the deregulation of glutamate, calcium, apoptosis, and the activation of the immune system in schizophrenia patients. All MS data are available in the ProteomeXchange Repository under the identifier PXD015356 and PXD014350.
Collapse
Affiliation(s)
- Erika Velásquez
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology , University of Campinas (UNICAMP) , Campinas 13083-970 , Brazil.,Experimental Medicine Research Cluster (EMRC) University of Campinas , Campinas 13083-887 , SP , Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) , Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) , São Paulo , Brazil
| | | | - Gabriel Reis Alves Carneiro
- Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Fabio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil.,Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| |
Collapse
|
23
|
Zou Y, Zhang H, Chen X, Ji W, Mao L, Lei H. Age-dependent effects of (+)-MK801 treatment on glutamate release and metabolism in the rat medial prefrontal cortex. Neurochem Int 2019; 129:104503. [PMID: 31299416 DOI: 10.1016/j.neuint.2019.104503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
NMDAR antagonist treatments in adolescent/young adult rodents are associated with augmented glutamate (Glu) release and perturbed Glu/glutamine (Gln) metabolism in the medial prefrontal cortex (mPFC) resembling those found in first-episode schizophrenia. Few studies, however, investigated NMDAR antagonist-induced changes in the adult mPFC and whether there is an age-dependence to this end. In this study, the effects of acute/repeated (+)-MK801 treatment on Glu release/metabolism were measured in the mPFC of male adolescent (postnatal day 30) and adult (14 weeks) rats. Acute (+)-MK801 treatment at 0.5 mg/kg body weight induced an approximately 4-fold increase of extracellular Glu concentration in the adolescent rats, and repeated treatment for 6 consecutive days significantly increased the levels of Glu + Gln (Glx) and glial metabolites 7 days after the last dose. Histologically (+)-MK801 treatments induced reactive astrocytosis and elevated oxidative stress in the mPFC of adolescent rats, without causing evident neuronal degeneration in the region. All (+)-MK801-induced changes observed in the mPFC of adolescent rats were not present or evident in the adult rats, suggesting that the treatments might have caused less disinhibition in the adult mPFC than in the adolescent mPFC. In conclusion, the effects of (+)-MK801 treatments on the Glu release/metabolism in the mPFC were found to be age-dependent; and the adult mPFC is likely equipped with more robust neurobiological mechanisms to preserve excitatory-inhibitory balance in response to NMDAR hypofunction.
Collapse
Affiliation(s)
- Yijuan Zou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Hui Zhang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xi Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Sciences, Beijing, 100190, PR China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Sciences, Beijing, 100190, PR China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
24
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
25
|
Scott MR, Meador-Woodruff JH. Intracellular compartment-specific proteasome dysfunction in postmortem cortex in schizophrenia subjects. Mol Psychiatry 2019; 25:776-790. [PMID: 30683941 PMCID: PMC6658356 DOI: 10.1038/s41380-019-0359-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Protein homeostasis is an emerging component of schizophrenia (SZ) pathophysiology. Proteomic alterations in SZ are well-documented and changes in transcript expression are frequently not associated with changes in protein expression in SZ brain. The underlying mechanism driving these changes remains unknown, though altered expression of ubiquitin proteasome system (UPS) components have implicated protein degradation. Previous studies have been limited to protein and transcript expression, however, and do not directly test the function of the proteasome. To address this gap in knowledge, we measured enzymatic activity associated with the proteasome (chymotrypsin-, trypsin-, and caspase-like) in the superior temporal gyrus (STG) of 25 SZ and 25 comparison subjects using flourogenic substrates. As localization regulates which cellular processes the proteasome contributes to, we measured proteasome activity and subunit expression in fractions enriched for nucleus, cytosolic, and membrane compartments. SZ subjects had decreased trypsin-like activity in total homogenate. This finding was specific to the nucleus-enriched fraction and was not associated with changes in proteasome subunit expression. Interestingly, both chymotrypsin-like activity and protein expression of 19S RP subunits, which facilitate ubiquitin-dependent degradation, were decreased in the cytosol-enriched fraction of SZ subjects. Intracellular compartment-specific proteasome dysfunction implicates dysregulation of protein expression both through altered ubiquitin-dependent degradation of cytosolic proteins and regulation of protein synthesis due to degradation of transcription factors and transcription machinery in the nucleus. Together, these findings implicate proteasome dysfunction in SZ, which likely has a broad impact on the proteomic landscape and cellular function in the pathophysiology of this illness.
Collapse
Affiliation(s)
- Madeline R. Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V. General Pathophysiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:149-179. [PMID: 31583588 PMCID: PMC7188602 DOI: 10.1007/978-981-13-9913-8_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
27
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
28
|
Lee JH, Yoo JY, Kim HB, Yoo HI, Song DY, Min SS, Baik TK, Woo RS. Neuregulin1 Attenuates H 2O 2-Induced Reductions in EAAC1 Protein Levels and Reduces H 2O 2-Induced Oxidative Stress. Neurotox Res 2018; 35:401-409. [PMID: 30328584 PMCID: PMC6331506 DOI: 10.1007/s12640-018-9965-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Neuregulin 1 (NRG1) exhibits potent neuroprotective properties. The aim of the present study was to investigate the antioxidative effects and underlying mechanisms of NRG1 against H2O2-induced oxidative stress in primary rat cortical neurons. The expression level of the excitatory amino acid carrier 1 (EAAC1) protein was measured by Western blotting and immunocytochemistry. The levels of lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity, GPx activity, and mitochondrial membrane potential (∆ψm) were determined to examine cell death and the antioxidant properties of NRG1 in primary rat cortical neurons. H2O2 reduced the expression of EAAC1 in a dose-dependent manner. We found that pretreatment with NRG1 attenuated the H2O2-induced reduction in EAAC1 expression. Moreover, NRG1 reduced the cell death and oxidative stress induced by H2O2. In addition, NRG1 attenuated H2O2-induced reductions in antioxidant enzyme activity and ∆ψm. Our data indicate a role for NRG1 in protecting against oxidative stress via the regulation of EAAC1. These observations may provide novel insights into the mechanisms of NRG1 activity during oxidative stress and may reveal new therapeutic targets for regulating the oxidative stress associated with various neurological diseases.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Hong-Il Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, College of Medicine, Eulji University, Daejeon, 34824, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
29
|
Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 2018; 8:51-63. [PMID: 29988908 PMCID: PMC6033743 DOI: 10.5498/wjp.v8.i2.51] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 02/05/2023] Open
Abstract
Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the pre-synaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter (EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders.
Collapse
Affiliation(s)
- Georgia M Parkin
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Andrew Gibbons
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Brian Dean
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
- Research Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Hawthorne VIC 3122, Australia
| |
Collapse
|
30
|
Viñas-Jornet M, Esteba-Castillo S, Baena N, Ribas-Vidal N, Ruiz A, Torrents-Rodas D, Gabau E, Vilella E, Martorell L, Armengol L, Novell R, Guitart M. High Incidence of Copy Number Variants in Adults with Intellectual Disability and Co-morbid Psychiatric Disorders. Behav Genet 2018; 48:323-336. [PMID: 29882083 PMCID: PMC6028865 DOI: 10.1007/s10519-018-9902-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/10/2018] [Indexed: 01/04/2023]
Abstract
A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders is not systematically conducted in adults. A cohort of 100 adult patients affected by both phenotypes were analysed in order to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs—including a 7q31 deletion (IMMP2L) in two unrelated patients and duplications in 3q29, 9p24.2p24.1 and 15q14q15.1—providing new evidence of its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a mandatory test to improve the diagnosis in the adult patients in psychiatric services.
Collapse
Affiliation(s)
- Marina Viñas-Jornet
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.,Cellular Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Susanna Esteba-Castillo
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Neus Baena
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - Núria Ribas-Vidal
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Anna Ruiz
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - David Torrents-Rodas
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Elisabeth Gabau
- Pediatry-Clinical Genetics Service, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lluís Armengol
- Research and Development Department, qGenomics Laboratory, Barcelona, Spain
| | - Ramon Novell
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Míriam Guitart
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.
| |
Collapse
|
31
|
Chiappelli J, Shi Q, Wijtenburg SA, Quiton R, Wisner K, Gaston F, Kodi P, Gaudiot C, Kochunov P, Rowland LM, Hong LE. Glutamatergic Response to Heat Pain Stress in Schizophrenia. Schizophr Bull 2018; 44:886-895. [PMID: 29036718 PMCID: PMC6007227 DOI: 10.1093/schbul/sbx133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulation of stress response involves top-down mechanisms of the frontal-limbic glutamatergic system. As schizophrenia is associated with glutamatergic abnormalities, we hypothesized that schizophrenia patients may have abnormal glutamatergic reactivity within the dorsal anterior cingulate cortex (dACC), a key region involved in perception of and reaction to stress. To test this, we developed a somatic stress paradigm involving pseudorandom application of safe but painfully hot stimuli to the forearm of participants while they were undergoing serial proton magnetic resonance spectroscopy to measure changes in glutamate and glutamine levels in the dACC. This paradigm was tested in a sample of 21 healthy controls and 23 patients with schizophrenia. Across groups, glutamate levels significantly decreased following exposure to thermal pain, while ratio of glutamine to glutamate significantly increased. However, schizophrenia patients exhibited an initial increase in glutamate levels during challenge that was significantly different from controls, after controlling for heat pain tolerance. Furthermore, in patients, the acute glutamate response was positively correlated with childhood trauma (r = .41, P = .050) and inversely correlated with working memory (r = -.49, P = .023). These results provide preliminary evidence for abnormal glutamatergic response to stress in schizophrenia patients, which may point toward novel approaches to understanding how stress contributes to the illness.
Collapse
Affiliation(s)
- Joshua Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD,To whom correspondence should be addressed; tel: 410-402-6827, fax: 410-402-6023, e-mail:
| | - Qiaoyun Shi
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Sarah Andrea Wijtenburg
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Raimi Quiton
- Department of Psychology, University of Maryland Baltimore County, Baltimore, MD
| | - Krista Wisner
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Frank Gaston
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Priyadurga Kodi
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Christopher Gaudiot
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD,Department of Psychology, University of Maryland Baltimore County, Baltimore, MD
| | - Liyi Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
O'Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ SCHIZOPHRENIA 2017; 3:32. [PMID: 28935880 PMCID: PMC5608761 DOI: 10.1038/s41537-017-0037-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
Abstract
Altered glutamate transporter expression is a common feature of many neuropsychiatric conditions, including schizophrenia. Excitatory amino acid transporters (EAATs) are responsible for the reuptake of glutamate, preventing non-physiological spillover from the synapse. Postmortem studies have revealed significant dysregulation of EAAT expression in various brain regions at the cellular and subcellular level. Recent animal studies have also demonstrated a role for glutamate spillover as a mechanism of disease. In this review, we describe current evidence for the role of glutamate transporters in regulating synaptic plasticity and transmission. In neuropsychiatric conditions, EAAT splice variant expression is altered. There are changes in the localization of the transporters and disruption of the metabolic and structural protein network that supports EAAT activity. This results in aberrant neuroplasticity and excitatory signaling, contributing to the symptoms associated with neuropsychiatric disease. Understanding the complex functions of glutamate transporters will clarify the relevance of their role in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Courtney R Sullivan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | |
Collapse
|
33
|
Omics analysis of mouse brain models of human diseases. Gene 2017; 600:90-100. [DOI: 10.1016/j.gene.2016.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023]
|
34
|
GRIN3B missense mutation as an inherited risk factor for schizophrenia: whole-exome sequencing in a family with a familiar history of psychotic disorders. Genet Res (Camb) 2017; 99:e1. [PMID: 28132660 PMCID: PMC6865172 DOI: 10.1017/s0016672316000148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamate is the most important excitatory neurotransmitter in the brain. The N-methyl-D-aspartate (NMDA) receptor is a glutamate-gated ionotropic cation channel that is composed of several subunits and modulated by a glycine binding site. Many forms of synaptic plasticity depend on the influx of calcium ions through NMDA receptors, and NMDA receptor dysfunction has been linked to a number of neuropsychiatric disorders, including schizophrenia. Whole-exome sequencing was performed in a family with a strong history of psychotic disorders over three generations. We used an iterative strategy to obtain condense and meaningful variants. In this highly affected family, we found a frameshift mutation (rs10666583) in the GRIN3B gene, which codes for the GluN3B subunit of the NMDA receptor in all family members with a psychotic disorder, but not in the healthy relatives. Matsuno et al., also reported this null variant as a risk factor for schizophrenia in 2015. In a broader sample of 22 patients with psychosis, the allele frequency of the rs10666583 mutation variant was increased compared to those of healthy population samples and unaffected relatives. Compared to the 1000 Genomes Project population, we found a significant increase of this variant with a large effect size among patients. The amino acid shift degrades the S1/S2 glycine binding domain of the dominant modulatory GluN3B subunit of the NMDA receptor, which subsequently affects the permeability of the channel pore to calcium ions. A decreased glycine affinity for the GluN3B subunit might cause impaired functional capability of the NMDA receptor and could be an important risk factor for the pathogenesis of psychotic disorders.
Collapse
|
35
|
Verkhratsky A, Steardo L, Parpura V, Montana V. Translational potential of astrocytes in brain disorders. Prog Neurobiol 2016; 144:188-205. [PMID: 26386136 PMCID: PMC4794425 DOI: 10.1016/j.pneurobio.2015.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
Fundamentally, all brain disorders can be broadly defined as the homeostatic failure of this organ. As the brain is composed of many different cells types, including but not limited to neurons and glia, it is only logical that all the cell types/constituents could play a role in health and disease. Yet, for a long time the sole conceptualization of brain pathology was focused on the well-being of neurons. Here, we challenge this neuron-centric view and present neuroglia as a key element in neuropathology, a process that has a toll on astrocytes, which undergo complex morpho-functional changes that can in turn affect the course of the disorder. Such changes can be grossly identified as reactivity, atrophy with loss of function and pathological remodeling. We outline the pathogenic potential of astrocytes in variety of disorders, ranging from neurotrauma, infection, toxic damage, stroke, epilepsy, neurodevelopmental, neurodegenerative and psychiatric disorders, Alexander disease to neoplastic changes seen in gliomas. We hope that in near future we would witness glial-based translational medicine with generation of deliverables for the containment and cure of disorders. We point out that such as a task will require a holistic and multi-disciplinary approach that will take in consideration the concerted operation of all the cell types in the brain.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Luca Steardo
- Department of Psychiatry, University of Naples, SUN, Largo Madonna delle Grazie, Naples, Italy
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine and Atomic Force Microscopy & Nanotechnology Laboratories, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vedrana Montana
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
36
|
McCullumsmith RE, O’Donovan SM, Drummond JB, Benesh FS, Simmons M, Roberts R, Lauriat T, Haroutunian V, Meador-Woodruff JH. Cell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons? Mol Psychiatry 2016; 21:823-30. [PMID: 26416546 PMCID: PMC7584379 DOI: 10.1038/mp.2015.148] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Abstract
Excitatory amino-acid transporters (EAATs) bind and transport glutamate, limiting spillover from synapses due to their dense perisynaptic expression primarily on astroglia. Converging evidence suggests that abnormalities in the astroglial glutamate transporter localization and function may underlie a disease mechanism with pathological glutamate spillover as well as alterations in the kinetics of perisynaptic glutamate buffering and uptake contributing to dysfunction of thalamo-cortical circuits in schizophrenia. We explored this hypothesis by performing cell- and region-level studies of EAAT1 and EAAT2 expression in the mediodorsal nucleus of the thalamus in an elderly cohort of subjects with schizophrenia. We found decreased protein expression for the typically astroglial-localized glutamate transporters in the mediodorsal and ventral tier nuclei. We next used laser-capture microdissection and quantitative polymerase chain reaction to assess cell-level expression of the transporters and their splice variants. In the mediodorsal nucleus, we found lower expression of transporter transcripts in a population of cells enriched for astrocytes, and higher expression of transporter transcripts in a population of cells enriched for relay neurons. We confirmed expression of transporter protein in neurons in schizophrenia using dual-label immunofluorescence. Finally, the pattern of transporter mRNA and protein expression in rodents treated for 9 months with antipsychotic medication suggests that our findings are not due to the effects of antipsychotic treatment. We found a compensatory increase in transporter expression in neurons that might be secondary to a loss of transporter expression in astrocytes. These changes suggest a profound abnormality in astrocyte functions that support, nourish and maintain neuronal fidelity and synaptic activity.
Collapse
Affiliation(s)
- RE McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - SM O’Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - JB Drummond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - FS Benesh
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - M Simmons
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - R Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - T Lauriat
- Department of Psychiatry, Steward St. Elizabeth’s Medical Center, Brighton, MA, USA
| | - V Haroutunian
- Departments of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, NY, USA
- James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), Bronx, NY, USA
| | - JH Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|
37
|
Bjørn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 2016; 98:4-18. [PMID: 27233497 DOI: 10.1016/j.neuint.2016.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.
Collapse
Affiliation(s)
- Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health, 35 Convent Drive Room 3A: 210 MSC3742, Bethesda, MD 20892-3742, USA.
| |
Collapse
|
38
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL. Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 2016; 7:87-119. [PMID: 21298380 DOI: 10.1007/7854_2010_111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
39
|
Verkhratsky A, Steardo L, Peng L, Parpura V. Astroglia, Glutamatergic Transmission and Psychiatric Diseases. ADVANCES IN NEUROBIOLOGY 2016; 13:307-326. [PMID: 27885635 DOI: 10.1007/978-3-319-45096-4_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Astrocytes are primary homeostatic cells of the central nervous system. They regulate glutamatergic transmission through the removal of glutamate from the extracellular space and by supplying neurons with glutamine. Glutamatergic transmission is generally believed to be significantly impaired in the contexts of all major neuropsychiatric diseases. In most of these neuropsychiatric diseases, astrocytes show signs of degeneration and atrophy, which is likely to be translated into reduced homeostatic capabilities. Astroglial glutamate uptake/release and glutamate homeostasis are affected in all forms of major psychiatric disorders and represent a common mechanism underlying neurotransmission disbalance, aberrant connectome and overall failure on information processing by neuronal networks, which underlie pathogenesis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Luca Steardo
- Department of Psychiatry, University of Naples SUN, Largo Madonna delle Grazie, Naples, Italy
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, 35294, USA
| |
Collapse
|
40
|
Roberts RC, Barksdale KA, Roche JK, Lahti AC. Decreased synaptic and mitochondrial density in the postmortem anterior cingulate cortex in schizophrenia. Schizophr Res 2015; 168:543-53. [PMID: 26210550 PMCID: PMC4591176 DOI: 10.1016/j.schres.2015.07.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 12/24/2022]
Abstract
Schizophrenia (SZ) is a mental illness characterized by psychosis, negative symptoms, and cognitive deficits. The anterior cingulate cortex (ACC), a structurally and functionally diverse region, is one of several brain regions that is abnormal in SZ. The present study compared synaptic organization and mitochondrial number and morphology in postmortem ACC in SZ versus normal control (NC). Total synaptic density in the combined ACC was decreased in SZ, to 72% of normal controls (NCs), due to selective decreases in axospinous synapses, both asymmetric (excitatory) and symmetric (inhibitory). These changes were present in layers 3 and 5/6. The density of mitochondria in all axon terminals combined in SZ was decreased to 64% of NC. In layer 3, mitochondrial density was decreased only in terminals forming asymmetric synapses with spines, while in layers 5/6 mitochondrial density was decreased in terminals forming symmetric synapses with spines and dendrites. The proportion of terminals making symmetric synapses that contained mitochondria was significantly lower in SZ than in NCs, especially for symmetric axospinous synapses. The number of mitochondria per neuronal somata was decreased in the ACC in SZ compared to NCs; this finding was present in layers 5-6. The size of mitochondria in neuronal somata and throughout the neuropil was similar in SZ and NCs. Our results, though preliminary, are well supported by the literature, and support an anatomical substrate for some of the altered executive functions found in SZ.
Collapse
Affiliation(s)
- R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States.
| | - K A Barksdale
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States
| | - J K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States
| | - A C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States
| |
Collapse
|
41
|
Kolomeets NS. [Role of astrocytes in alterations of glutamatergic neurotransmission in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:110-117. [PMID: 25945378 DOI: 10.17116/jnevro201511511110-117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The glutamatergic hypothesis of schizophrenia based on the hypofunction of the N-methyl-D-aspartate-type glutamate receptors (NMDA-R) is one of the most widely implicated hypothesis that explains the origin of positive and negative symptoms of illness as well as cognitive deficits. The author considered a neuromorphological aspect of this hypothesis related to the glial astrocytes function. The literature on the astrocyte ability to regulate glutamate neurotransmission is reviewed. Astrocyte abnormalities in schizophrenia include the disturbances of glutamate reuptake, recycling and turnover of endogenous NMDA-R ligands. The results of the experimental and clinical studies that target levels of endogenous NMDA-R ligands, their enzymes and transporters for treatment of schizophrenia symptoms are discussed. Further studies studies are needed to develop this strategy.
Collapse
Affiliation(s)
- N S Kolomeets
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow
| |
Collapse
|
42
|
Yu HN, Park WK, Nam KH, Song DY, Kim HS, Baik TK, Woo RS. Neuregulin 1 Controls Glutamate Uptake by Up-regulating Excitatory Amino Acid Carrier 1 (EAAC1). J Biol Chem 2015; 290:20233-44. [PMID: 26092725 DOI: 10.1074/jbc.m114.591867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 01/23/2023] Open
Abstract
Neuregulin 1 (NRG1) is a trophic factor that is thought to have important roles in the regulating brain circuitry. Recent studies suggest that NRG1 regulates synaptic transmission, although the precise mechanisms remain unknown. Here we report that NRG1 influences glutamate uptake by increasing the protein level of excitatory amino acid carrier (EAAC1). Our data indicate that NRG1 induced the up-regulation of EAAC1 in primary cortical neurons with an increase in glutamate uptake. These in vitro results were corroborated in the prefrontal cortex (PFC) of mice given NRG1. The stimulatory effect of NRG1 was blocked by inhibition of the NRG1 receptor ErbB4. The suppressed expression of ErbB4 by siRNA led to a decrease in the expression of EAAC1. In addition, the ablation of ErbB4 in parvalbumin (PV)-positive neurons in PV-ErbB4(-/-) mice suppressed EAAC1 expression. Taken together, our results show that NRG1 signaling through ErbB4 modulates EAAC1. These findings link proposed effectors in schizophrenia: NRG1/ErbB4 signaling perturbation, EAAC1 deficit, and neurotransmission dysfunction.
Collapse
Affiliation(s)
- Ha-Nul Yu
- From the Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 301-746, Republic of Korea
| | - Woo-Kyu Park
- The Pharmacology Research Center, Korea Research Institute of Chemical Technology, Yuseong-Gu Daejon 305-343, Republic of Korea
| | - Ki-Hoan Nam
- The Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Korea, and
| | - Dae-Yong Song
- From the Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 301-746, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Tai-Kyoung Baik
- From the Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 301-746, Republic of Korea,
| | - Ran-Sook Woo
- From the Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 301-746, Republic of Korea,
| |
Collapse
|
43
|
O'Donovan SM, Hasselfeld K, Bauer D, Simmons M, Roussos P, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Transl Psychiatry 2015; 5:e579. [PMID: 26057049 PMCID: PMC4490284 DOI: 10.1038/tp.2015.74] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/02/2015] [Accepted: 03/01/2015] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of the glutamate transporters EAAT1 and EAAT2 and their isoforms have been implicated in schizophrenia. EAAT1 and EAAT2 expression has been studied in different brain regions but the prevalence of astrocytic glutamate transporter expression masks the more subtle changes in excitatory amino acid transporters (EAATs) isoforms in neurons in the cortex. Using laser capture microdissection, pyramidal neurons were cut from the anterior cingulate cortex of postmortem schizophrenia (n = 20) and control (n = 20) subjects. The messenger RNA (mRNA) levels of EAAT1, EAAT2 and the splice variants EAAT1 exon9skipping, EAAT2 exon9skipping and EAAT2b were analyzed by real time PCR (RT-PCR) in an enriched population of neurons. Region-level expression of these transcripts was measured in postmortem schizophrenia (n = 25) and controls (n = 25). The relationship between selected EAAT polymorphisms and EAAT splice variant expression was also explored. Anterior cingulate cortex pyramidal cell expression of EAAT2b mRNA was increased (P < 0.001; 67%) in schizophrenia subjects compared with controls. There was no significant change in other EAAT variants. EAAT2 exon9skipping mRNA was increased (P < 0.05; 38%) at region level in the anterior cingulate cortex with no significant change in other EAAT variants at region level. EAAT2 single-nucleotide polymorphisms were significantly associated with changes in EAAT2 isoform expression. Haloperidol decanoate-treated animals, acting as controls for possible antipsychotic effects, did not have significantly altered neuronal EAAT2b mRNA levels. The novel finding that EAAT2b levels are increased in populations of anterior cingulate cortex pyramidal cells further demonstrates a role for neuronal glutamate transporter splice variant expression in schizophrenia.
Collapse
Affiliation(s)
- S M O'Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - K Hasselfeld
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - D Bauer
- Department of Neuroscience, Wellesley College, Wellesley, MA, USA
| | - M Simmons
- Department of Psychiatry, University of Alabama, Birmingham, AL, USA
| | - P Roussos
- Department of Psychiatry, Department of Genetics and Genomic Sciences, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA,James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center, Bronx, NY, USA
| | - V Haroutunian
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - R E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Neuroscience, Wellesley College, Wellesley, MA, USA,Department of Psychiatry, University of Alabama, Birmingham, AL, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, CARE 5830, 231 Albert Sabin Way Cincinnati, Cincinnati, OH 45267-0583, USA. E-mail:
| |
Collapse
|
44
|
Spangaro M, Bosia M, Zanoletti A, Bechi M, Mariachiara B, Pirovano A, Lorenzi C, Bramanti P, Smeraldi E, Cavallaro R. Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics 2015; 15:925-32. [PMID: 24956246 DOI: 10.2217/pgs.14.42] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIM To evaluate the effect of functional polymorphisms (rs4354668 and rs2731880) of the excitatory amino acid transporters (EAAT1 and 2) on the cognitive dysfunction that characterizes schizophrenia. MATERIALS & METHODS One hundred and ninety two subjects diagnosed with schizophrenia were assessed with Brief Assessment of Cognition in Schizophrenia, Wisconsin Card Sorting Test, Continuous Performance Test and N-back test and genotyped for rs4354668 and rs2731880. RESULTS ANOVA showed a significant difference among both EAAT1 and EAAT2 genotype groups on different cognitive measures. Worse performances were observed among carriers of the genotypes associated with lower EAAT expression. CONCLUSION RESULTS suggest that impaired activity and EAAT expression could influence cognitive performances in schizophrenia, thus representing a target of interest for development of pharmacological strategies aimed to improve cognition.
Collapse
Affiliation(s)
- Marco Spangaro
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Vita-Salute San Raffale University, Via Stamira d'Ancona 20, 20127 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stress-induced deficits in cognition and emotionality: a role of glutamate. Curr Top Behav Neurosci 2015; 12:189-207. [PMID: 22261703 DOI: 10.1007/7854_2011_193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress is associated with a number of neuropsychiatric disorders, many of which are characterized by altered cognition and emotionality. Rodent models of stress have shown parallel behavioral changes such as impaired working memory, cognitive flexibility and fear extinction. This coincides with morphological changes to pyramidal neurons in the prefrontal cortex, hippocampus and amygdala, key cortical regions mediating these behaviors. Increasing evidence suggests that alteration in the function of the glutamatergic system may contribute to the pathology seen in neuropsychiatric disorders. Stress can alter glutamate transmission in the prefrontal cortex, hippocampus and amygdala and altered glutamate transmission has been linked to neuronal morphological changes. More recently, genetic manipulations in rodent models have allowed for subunit-specific analysis of the role of AMPA and NMDA receptors as well as glutamate transporters in behaviors shown to be altered by stress. Together these data point to a role for glutamate in mediating the cognitive and emotional changes observed in neuropsychiatric disorders. Furthering our understanding of how stress affects glutamate receptors and related signaling pathways will ultimately contribute to the development of improved therapeutics for individuals suffering from neuropsychiatric disorders.
Collapse
|
46
|
Brand SJ, Moller M, Harvey BH. A Review of Biomarkers in Mood and Psychotic Disorders: A Dissection of Clinical vs. Preclinical Correlates. Curr Neuropharmacol 2015; 13:324-68. [PMID: 26411964 PMCID: PMC4812797 DOI: 10.2174/1570159x13666150307004545] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/23/2022] Open
Abstract
Despite significant research efforts aimed at understanding the neurobiological underpinnings of mood (depression, bipolar disorder) and psychotic disorders, the diagnosis and evaluation of treatment of these disorders are still based solely on relatively subjective assessment of symptoms as well as psychometric evaluations. Therefore, biological markers aimed at improving the current classification of psychotic and mood-related disorders, and that will enable patients to be stratified on a biological basis into more homogeneous clinically distinct subgroups, are urgently needed. The attainment of this goal can be facilitated by identifying biomarkers that accurately reflect pathophysiologic processes in these disorders. This review postulates that the field of psychotic and mood disorder research has advanced sufficiently to develop biochemical hypotheses of the etiopathology of the particular illness and to target the same for more effective disease modifying therapy. This implies that a "one-size fits all" paradigm in the treatment of psychotic and mood disorders is not a viable approach, but that a customized regime based on individual biological abnormalities would pave the way forward to more effective treatment. In reviewing the clinical and preclinical literature, this paper discusses the most highly regarded pathophysiologic processes in mood and psychotic disorders, thereby providing a scaffold for the selection of suitable biomarkers for future studies in this field, to develope biomarker panels, as well as to improve diagnosis and to customize treatment regimens for better therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
47
|
Gudiño-Cabrera G, Ureña-Guerrero ME, Rivera-Cervantes MC, Feria-Velasco AI, Beas-Zárate C. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function. Arch Med Res 2014; 45:653-9. [PMID: 25431840 DOI: 10.1016/j.arcmed.2014.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022]
Abstract
It is likely that monosodium glutamate (MSG) is the excitotoxin that has been most commonly employed to characterize the process of excitotoxicity and to improve understanding of the ways that this process is related to several pathological conditions of the central nervous system. Excitotoxicity triggered by neonatal MSG treatment produces a significant pathophysiological impact on adulthood, which could be due to modifications in the blood-brain barrier (BBB) permeability and vice versa. This mini-review analyzes this topic through brief descriptions about excitotoxicity, BBB structure and function, role of the BBB in the regulation of Glu extracellular levels, conditions that promote breakdown of the BBB, and modifications induced by neonatal MSG treatment that could alter the behavior of the BBB. In conclusion, additional studies to better characterize the effects of neonatal MSG treatment on excitatory amino acids transporters, ionic exchangers, and efflux transporters, as well as the role of the signaling pathways mediated by erythropoietin and vascular endothelial growth factor in the cellular elements of the BBB, should be performed to identify the mechanisms underlying the increase in neurovascular permeability associated with excitotoxicity observed in several diseases and studied using neonatal MSG treatment.
Collapse
Affiliation(s)
- Graciela Gudiño-Cabrera
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Monica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Martha C Rivera-Cervantes
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Alfredo I Feria-Velasco
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México; División de Neurociencias, CIBO, IMSS, Guadalajara, Jalisco, México.
| |
Collapse
|
48
|
Lee M, Cheng MM, Lin CY, Louis ED, Faust PL, Kuo SH. Decreased EAAT2 protein expression in the essential tremor cerebellar cortex. Acta Neuropathol Commun 2014; 2:157. [PMID: 25391854 PMCID: PMC4239402 DOI: 10.1186/s40478-014-0157-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
Genetic polymorphisms in Solute carrier family 1 (glial high affinity glutamate transporter), member 2 (SLC1A2) have been linked with essential tremor. SLC1A2 encodes excitatory amino acid transporter type 2 (EAAT2), which clears glutamate from the synaptic cleft. One postulated mechanism for essential tremor is the over-excitation of glutamatergic olivo-cerebellar climbing fibers, leading to excitotoxic death of Purkinje cells. Other glutamatergic excitatory signals are transmitted to Purkinje cells via parallel fibers of cerebellar granule neurons. Therefore, the expression level of glutamate transporters could be important in essential tremor pathogenesis. Using Western blotting, we compared the expression levels of the two main glutamate transporters in the cerebellar cortex, EAAT1 and EAAT2, in postmortem tissue from 16 essential tremor cases and 13 age-matched controls. We also studied the localization of EAAT1 and EAAT2 using immunohistochemistry in 10 essential tremor cases and 12 controls. EAAT1 protein levels were similar in cases and controls (1.12 ± 0.83 vs. 1.01 ± 0.69, p =0.71) whereas EAAT2 protein levels in essential tremor cases were only 1/3 of that in controls (0.35 ± 0.23 vs. 1.00 ± 0.62, p < 0.01). Interestingly, EAAT2, but not EAAT1, was expressed in astrocytic processes surrounding the Purkinje cell axon initial segment, a region of previously observed pathological changes in essential tremor. Our main finding, a significant reduction in cerebellar cortical EAAT2 protein levels in essential tremor, suggests that Purkinje cells in essential tremor might be more vulnerable to excitotoxic damage than those of controls.
Collapse
|
49
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
50
|
Funk AJ, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Increased G protein-coupled receptor kinase (GRK) expression in the anterior cingulate cortex in schizophrenia. Schizophr Res 2014; 159:130-5. [PMID: 25153362 PMCID: PMC4177355 DOI: 10.1016/j.schres.2014.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Current pharmacological treatments for schizophrenia target G protein-coupled receptors (GPCRs), including dopamine receptors. Ligand-bound GPCRs are regulated by a family of G protein-coupled receptor kinases (GRKs), members of which uncouple the receptor from heterotrimeric G proteins, desensitize the receptor, and induce receptor internalization via the arrestin family of scaffolding and signaling molecules. GRKs initiate the activation of downstream signaling pathways, can regulate receptors and signaling molecules independent of GPCR phosphorylation, and modulate epigenetic regulators like histone deacetylases (HDACs). We hypothesize that the expression of GRK proteins is altered in schizophrenia, consistent with previous findings of alterations upstream and downstream from this family of molecules that facilitate intracellular signaling processes. METHODS In this study, we measured protein expression via Western blot analysis for GRKs 2, 3, 5, and 6 in the anterior cingulate cortex of patients with schizophrenia (n=36) and a comparison group (n=33). To control for antipsychotic treatment, we measured these same targets in haloperidol-treated vs. untreated rats (n=10 for both). RESULTS We found increased levels of GRK5 in schizophrenia. No changes were detected in GRK protein expression in rats treated with haloperidol decanoate for 9 months. CONCLUSION These data suggest that increased GRK5 expression may contribute to the pathophysiology of schizophrenia via abnormal regulation of the cytoskeleton, endocytosis, signaling, GPCRs, and histone modification.
Collapse
Affiliation(s)
- Adam J. Funk
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, CARE 5830, 231 Albert Sabin Way, Cincinnati, OH 45267-0583
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama Birmingham, SC 560, 1530 3 Avenue South, Birmingham, AL 35294,Evelyn F. McKnight Brain Institute, University of Alabama Birmingham, Shelby 911, 1530 3 Avenue South, Birmingham, AL 35294
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, CARE 5830, 231 Albert Sabin Way, Cincinnati, OH 45267-0583
| |
Collapse
|